WO2012173026A1 - Image capture lens for image capture device and image capture device - Google Patents

Image capture lens for image capture device and image capture device Download PDF

Info

Publication number
WO2012173026A1
WO2012173026A1 PCT/JP2012/064558 JP2012064558W WO2012173026A1 WO 2012173026 A1 WO2012173026 A1 WO 2012173026A1 JP 2012064558 W JP2012064558 W JP 2012064558W WO 2012173026 A1 WO2012173026 A1 WO 2012173026A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
conditional expression
image
object side
Prior art date
Application number
PCT/JP2012/064558
Other languages
French (fr)
Japanese (ja)
Inventor
石川亮太
佐野永悟
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2012173026A1 publication Critical patent/WO2012173026A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to an imaging lens and an imaging device for an imaging device, and in particular, the present invention is a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor and suitable for a solid-state imaging device having a curved imaging surface.
  • the present invention relates to an imaging lens and an imaging apparatus using the imaging lens.
  • a lens having one or two lenses is widely used because it is advantageous for downsizing and cost reduction.
  • the two-lens imaging lens lacks the ability to correct aberrations and is insufficient to form a high-quality image.
  • the imaging lens is composed of three or more lenses, the optical performance is improved.
  • the total length of the lens is increased and the cost is increased accordingly.
  • Patent Document 1 discloses that a solid-state imaging device can be curved into a polynomial surface shape to correct the curvature of field and distortion generated by a lens in a well-balanced manner, thereby providing a compact and high-resolution imaging apparatus.
  • the solid-state imaging device since the solid-state imaging device has a CIF size (352 pixels ⁇ 288 pixels), the imaging lens has a single lens configuration, and chromatic aberration is not sufficiently corrected, a solid-state imaging device having a higher pixel is used. Therefore, it is not possible to obtain an imaging device having high performance.
  • Patent Document 2 discloses that a subject image is formed on a curved surface, but here the imaging target is assumed to be both a silver salt film and a solid-state image sensor, and the optical total length Is not taken into consideration in terms of shortening. Due to the structure of a camera using a roll film, the distance between the lens and the imaging surface must be wide, and as a result, the camera lens described in Patent Document 2 has not been sufficiently shortened in optical length. Furthermore, the camera lens of Patent Document 2 has a dark F value of F10 or more, and in recent years, the light receiving area per pixel tends to be reduced due to the increase in the density of solid-state imaging devices. It could not be said that it has a lens.
  • Patent Document 3 includes an image pickup optical system device that includes an image pickup element whose electronic image pickup surface is formed in a concave shape in a cross section including the optical axis, and that can properly correct field curvature using two lenses. Is described. However, although the lens disclosed in Patent Document 3 has a bright F value, in order to obtain a so-called telecentric characteristic of a chief ray incident angle of a light beam incident on the imaging surface, the distance between the lens and the imaging surface is wide. The shortening of the optical total length was insufficient.
  • the present invention has been made in view of the above problems, and has a two-element configuration with respect to a solid-state imaging device having a curved imaging surface, and has a bright F value, a short optical system overall length, and high image quality.
  • An object of the present invention is to provide an obtained imaging lens and an imaging device using the imaging lens.
  • the present invention aims at miniaturization at a level satisfying the following expression.
  • the entire imaging apparatus can be reduced in size and weight.
  • L Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: diagonal length along the imaging surface of the solid-state imaging device (on the imaging surface of the rectangular effective pixel region of the solid-state imaging device) Diagonal length along)
  • the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.
  • a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package is disposed between the image-side surface of the imaging lens and the image-side focal position, the imaging lens is parallel.
  • the flat plate portion is calculated as the above L value after the air conversion distance. More preferably, the range of the following formula is good. L / 2Y ⁇ 1.0 (10 ′)
  • the imaging lens according to claim 1 is an imaging lens for forming a subject image on an imaging surface of a solid-state imaging device that is curved three-dimensionally about an optical axis, and is provided on the object side and is a positive lens.
  • both the short side direction and long side direction of the imaging surface have a curved surface on the object side around the imaging surface, which degrades the optical performance caused by the difference in curvature between the short side and long side of the imaging surface, which occurs in a cylindrical manner. Can be suppressed. As a result, a high-quality image can be formed even with a two-lens imaging lens with relatively low aberration correction performance.
  • the chief ray incident angle of the light beam incident on the imaging surface is likely to have a so-called telecentric characteristic, but if the exit pupil is too close to the imaging surface, a sufficient angle is obtained. Can't get.
  • an aperture stop is provided on the object side of the second lens, and the distance between the imaging surface and the exit pupil is maintained appropriately by separating the aperture position from the imaging surface like a so-called front diaphragm or middle diaphragm. It is possible to maintain the telecentric characteristic.
  • the basic configuration of this patent consists of a first lens having a positive refractive power and a convex meniscus shape on the object side, and a second lens having a positive or negative refractive power.
  • the value r2 / f exceeds the lower limit value of the conditional expression (1), the curvature radius of the image side surface of the first lens does not become too small, and overcorrection is prevented with respect to the imaging surface curved toward the object side at the periphery. I can do it.
  • the focal length of the first lens does not become too long and the front principal point position approaches the object side, the optical length of the imaging lens does not become long and the size can be reduced.
  • the radius of curvature does not become too large, and a high image height light beam can be sufficiently jumped, and the incident angle of the principal ray at the periphery Can be set appropriately.
  • the Petzval sum does not become too large with respect to the solid-state imaging device curved at the periphery, it is possible to obtain good image surface performance up to the periphery of the screen. More preferably, the range of the following formula is good. 0.45 ⁇ r2 / f ⁇ 3.6 (1) ′
  • the imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied. 0.15 ⁇ PTZ ⁇ 0.40 (2) However, PTZ: Petzval sum of the first lens and the second lens
  • Conditional expression (2) is an expression (Petzbar sum) representing the relationship between a planar object and the curvature of field with respect to the plane object, and in order to suppress the curvature of field, the combination of the focal length of each lens and the refractive power of the lens material It is desirable to optimize.
  • the Petzval sum is required to be small.
  • the degree of curvature of the lens is lost and correction of spherical aberration and chromatic aberration becomes insufficient. There is a fear.
  • conditional expression (2) since the Petzval sum does not become too small by making the value of conditional expression (2) exceed the lower limit, the amount of curvature toward the object side around the image plane of the optical system is maintained, and at the same time Aberration and chromatic aberration can be corrected.
  • conditional expression (2) below the upper limit value, the periphery of the image plane of the optical system is not excessively curved toward the object side, which is favorable for the image plane around the solid-state imaging device. Image surface performance can be obtained. More preferably, the range of the following formula is good. 0.18 ⁇ PTZ ⁇ 0.35 (2) ′
  • the imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the following conditional expression is satisfied. 0.30 ⁇ d3 / f ⁇ 2.60 (3) However, d3: Core thickness of the second lens
  • Conditional expression (3) is a conditional expression that determines the core thickness of the second lens. By making the value of conditional expression (3) exceed the lower limit value, the light flux for each image height can be sufficiently separated in the second lens. Aberration correction becomes easier. On the other hand, an imaging lens can be reduced in size by making the value of conditional expression (3) fall below an upper limit. More preferably, the range of the following formula is good. 0.36 ⁇ d3 / f ⁇ 2.30 (3) ′
  • An imaging lens according to a fourth aspect of the invention is characterized in that, in the invention according to any one of the first to third aspects, the following conditional expression is satisfied. 0.30 ⁇ r1 / f ⁇ 2.30 (4) However, r1: radius of curvature of the object side surface of the first lens
  • Conditional expression (4) is a conditional expression that determines the radius of curvature of the object side surface of the first lens.
  • the value of conditional expression (4) is less than the upper limit value, the refractive power of the object side surface of the first lens can be appropriately maintained, and the composite principal point of the first lens and the second lens is arranged on the object side. And the entire length of the imaging lens can be shortened.
  • the value of conditional expression (4) exceeds the lower limit value, the refractive power of the first lens object side surface does not become excessively large, and higher-order spherical aberration and coma aberration generated in the first lens are reduced. It can be kept small. More preferably, the range of the following formula is good. 0.32 ⁇ r1 / f ⁇ 2.03 (4) ′
  • the imaging lens described in claim 5 is characterized in that, in the invention described in any one of claims 1 to 4, the following conditional expression is satisfied. 0.10 ⁇ fB / TL ⁇ 0.60 (5) However, fB: Distance between the image side surface of the second lens and the solid-state imaging device TL: Total lens length
  • Conditional expression (5) is a conditional expression that determines the distance between the second lens and the imaging surface.
  • the value of conditional expression (5) exceeds the lower limit value, a sufficient interval for inserting the infrared cut filter or the cover glass of the sensor can be secured. Since the distance between the second lens and the imaging surface can be prevented from being shortened, an increase in the diameter of the second lens can be prevented.
  • the value of conditional expression (5) is less than the upper limit value, the distance between the second lens and the imaging surface does not become too long, and the size can be reduced.
  • the range of the following formula is more desirable. 0.15 ⁇ fB / TL ⁇ 0.55 (5) ′
  • the imaging lens described in claim 6 is characterized in that, in the invention described in any one of claims 1 to 5, the following conditional expression is satisfied. ⁇ 0.38 ⁇ Y / rI ⁇ 0.01 (6) However, rI: radius of curvature of the imaging surface Y: maximum image height
  • Conditional expression (6) is a conditional expression that determines the amount of bending when the imaging surface is defined by the radius of curvature.
  • the value of conditional expression (6) exceeds the lower limit value, the amount of bending can be appropriately maintained, so that necessary telecentric characteristics can be obtained.
  • the value of conditional expression (6) is less than the upper limit value, the amount of curvature that protrudes toward the object side at the periphery of the imaging surface of the solid-state imaging device does not become too large, and the optical axis of the imaging lens and the center of the individual imaging device Since performance degradation due to deviation can be reduced, performance degradation during mass production is reduced. More preferably, the range of the following formula is good. ⁇ 0.34 ⁇ Y / rI ⁇ 0.07 (6) ′
  • An imaging lens according to a seventh aspect is characterized in that, in the invention according to any one of the first to sixth aspects, the following conditional expression is satisfied. ⁇ 1> 30 (7) However, ⁇ 1: Abbe number of the first lens
  • Conditional expression (7) is a conditional expression that determines the Abbe number of the material of the first lens.
  • conditional expression (7) exceeds the lower limit value, axial chromatic aberration can be kept small, and the image side surface of the first lens is a divergent surface, so that the peripheral portion of the screen is caused by a large amount of light rays from the periphery. Chromatic aberration of magnification can be reduced. More preferably, the range of the following formula is good. ⁇ 1> 34 (7) '
  • An imaging lens according to an eighth aspect is characterized in that, in the invention according to any one of the first to seventh aspects, the following conditional expression is satisfied.
  • n2 Refractive index of the second lens
  • Conditional expression (8) is a conditional expression that determines the refractive indexes of the materials of the first lens and the second lens.
  • conditional expression (8) exceeds the lower limit, the Petzval sum does not become too large, so that it can be adjusted to the imaging surface of the curved solid-state imaging device.
  • the curvature at the lens periphery does not become excessively strong, the lateral chromatic aberration at the periphery of the screen can be reduced. More preferably, the range of the following formula is good. n1> 1.49 and n2> 1.49 (8) ′
  • An imaging lens according to a ninth aspect is the invention according to any one of the first to sixth aspects, wherein at least one of the first lens and the second lens is a substrate and a lens portion formed on the substrate. It is a lens provided with.
  • the first lens and the second lens By using at least one of the first lens and the second lens as a lens having a lens portion formed on a flat substrate (resin or glass), a material constituting the object side surface and the image side surface of each lens portion is used. Since it can be changed, chromatic aberration and image surface can be improved.
  • a lens can be manufactured by molding a large number of lens parts at once on a substrate (resin or glass) and then cutting them into individual pieces, thus reducing costs. I can do it.
  • Such a lens can be formed using, for example, a manufacturing method described in Japanese Patent Application Laid-Open No. 2011-028213.
  • the image pickup lens described in claim 10 is characterized in that, in the invention described in claim 9, the following conditional expression is satisfied. ⁇ 1f> 30 and ⁇ 1b> 30 (9) However, ⁇ 1f: Abbe number of the object side surface of the first lens ⁇ 1b: Abbe number of the image side surface of the first lens
  • Conditional expression (9) is a conditional expression that determines the Abbe number of the material of the first lens.
  • conditional expression (9) exceeds the lower limit value, axial chromatic aberration can be kept small, and the image side surface of the first lens is a diverging surface, so that the peripheral portion of the screen is caused by a large amount of peripheral rays being bounced up. Chromatic aberration of magnification can be reduced. More preferably, the range of the following formula is good. ⁇ 1f> 34 and ⁇ 1b> 34 (9) ′
  • An imaging lens according to an eleventh aspect is the lens according to the ninth or tenth aspect, wherein the first lens and the second lens are each provided with a substrate and a lens portion formed on the substrate.
  • the following conditional expressions are satisfied.
  • n2f Refractive index of the object side surface of the second lens
  • Conditional expression (10) is a conditional expression that determines the refractive indexes of the materials of the first lens and the second lens.
  • conditional expression (10) exceeds the lower limit value, the Petzval sum does not become too large, so that it can be adjusted to the imaging surface of the curved solid-state imaging device. Further, since the curvature at the lens periphery is not too strong, the lateral chromatic aberration at the periphery of the screen can be reduced. More preferably, the range of the following formula is good. n1f> 1.49 and n2f> 1.49 (10) ′
  • An imaging lens according to a twelfth aspect is characterized in that, in the invention according to any one of the first to eleventh aspects, the following conditional expression is satisfied. ⁇ 0.25 ⁇ f1 / f2 ⁇ 1.40 (11) However, f1: Focal length of the first lens f2: Focal length of the second lens
  • Conditional expression (11) is a conditional expression that determines the focal length of the first lens and the second lens.
  • the value of conditional expression (11) is less than the upper limit value, the focal length of the second lens does not become too small compared to the focal length of the first lens, so the back focus does not become too long and the overall length can be shortened.
  • the value of the conditional expression (11) exceeds the lower limit value, the interval for inserting the cover glass or the IR cut filter of the solid-state image sensor is maintained. More preferably, the range of the following formula is good. ⁇ 0.10 ⁇ f1 / f2 ⁇ 1.10 (11) ′
  • the imaging lens according to claim 13 is characterized in that, in the invention according to any one of claims 1 to 12, the solid-state imaging device is rotationally symmetric with respect to the optical axis. “Rotational symmetry with respect to the optical axis” means that the amount of curvature of the imaging surface that is equidistant from the center of the imaging surface is constant.
  • the pixel pitch of a solid-state image sensor has become smaller, and a lens with a brighter F-number has been demanded. For this reason, if the lens is bent only in the long side direction like a film, the optical performance in the short side direction is deteriorated. Such deterioration of the optical performance can be avoided by making the amount of bending of the solid-state imaging device constant according to the distance in the optical axis orthogonal direction from the center of the solid-state imaging device.
  • An imaging lens according to a fourteenth aspect is characterized in that in the invention according to any one of the first to thirteenth aspects, the imaging lens further includes a lens having substantially no power. That is, even when a dummy lens having substantially no power is added to the configuration of claim 1, it is within the scope of application of the present invention.
  • An imaging apparatus includes the imaging lens according to any one of the first to fourteenth aspects, and a solid-state imaging element whose imaging surface is curved in three dimensions.
  • the imaging apparatus of the present invention can acquire a high-quality image while using a two-lens imaging lens.
  • the imaging device of the present invention can also be used for an imaging device mounted on or attached to a mobile phone, a portable information terminal, a flat-screen TV or a PC display, a drive recorder, a back monitor, or the like.
  • the present invention is useful for devices that require an imaging lens or an imaging device with a short overall length, such as smartphones and tablet computers, which have a large display and are thin portable information devices.
  • an imaging lens capable of obtaining a high image quality with a bright F-number, a short optical system overall length, and a high image quality while having a two-element configuration with respect to a solid-state imaging device having a curved imaging surface, and imaging using the imaging lens
  • FIG. 1A and 1B are external views of a mobile phone that is an example of a mobile terminal provided with an imaging device according to the present embodiment, where FIG. 1A is a view seen from a side where an input unit is provided, and FIG. It is the figure seen from the side. 2 is a cross-sectional view of an imaging lens of Example 1.
  • FIG. FIG. 4 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 1.
  • FIG. 6 is a cross-sectional view of an imaging lens of Example 2.
  • FIG. FIG. 6 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 2.
  • 6 is a cross-sectional view of an imaging lens of Example 3.
  • FIG. 6 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 3.
  • 6 is a cross-sectional view of an imaging lens of Example 4.
  • 6 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 4.
  • 6 is a cross-sectional view of an imaging lens of Example 5.
  • FIG. FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 5.
  • 6 is a cross-sectional view of an imaging lens of Example 6.
  • FIG. FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 6.
  • FIG. 10 is a cross-sectional view of an imaging lens of Example 7.
  • FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 7.
  • 10 is a cross-sectional view of an imaging lens of Example 8.
  • FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 8.
  • 10 is a cross-sectional view of an imaging lens of Example 9.
  • FIG. FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 8.
  • 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 9.
  • 10 is a cross-sectional view of an imaging lens of Example 10.
  • FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 10.
  • 14 is a cross-sectional view of the imaging lens of Example 11.
  • FIG. FIG. 14 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 11.
  • FIG. 14 is a cross-sectional view of an imaging lens of Example 12.
  • FIG. FIG. 14 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 12. It is a figure which shows the displacement amount to the optical axis parallel direction from the surface vertex of a lens to the point in the height h of a lens surface.
  • FIG. 1 is a top view of an imaging apparatus 50 according to the present embodiment
  • FIG. 2 is a cross-sectional view obtained by cutting the configuration of FIG. 1 along a cross section including an optical axis.
  • the imaging device 50 includes a CMOS type imaging device 51 as a solid-state imaging device having a photoelectric conversion unit 51 a and an imaging lens that captures a subject image on the photoelectric conversion unit 51 a on the imaging device 51. 10 and a housing 20 made of a light shielding member having an opening for light incidence from the object side, and these are integrally formed.
  • the image sensor 51 is curved in a spherical shape (preferably rotationally symmetric with respect to the optical axis) with a predetermined radius of curvature, and a pixel (Photoelectric conversion elements) are two-dimensionally arranged, a photoelectric conversion unit 51a as a light receiving unit is formed, and a signal processing circuit 51b is formed around the photoelectric conversion unit 51a.
  • the signal processing circuit 51b includes a driving circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
  • the image pickup element is not limited to the above-described CMOS type image sensor, and may be one to which another one such as a CCD is applied.
  • the lower end of the housing 20 is fixed to the photoelectric conversion unit 51 a side of the image sensor 51 through the spacer B, and the side surface portion of the optical low-pass filter F that is a parallel plate is fixed to the inner periphery of the lower end of the housing 20. ing.
  • the optical low-pass filter F is a flat plate here, but may be curved in accordance with the photoelectric conversion unit 51a.
  • a plurality of external electrodes 52 used for connection to an external circuit are formed on the other surface of the image sensor 51 (surface opposite to the photoelectric conversion unit 51a).
  • the external electrode 52 and an external circuit (not shown) (for example, a control circuit included in a host device on which the imaging device is mounted) are connected to receive a voltage or a clock signal for driving the imaging device 51 from the external circuit.
  • an external circuit for example, a control circuit included in a host device on which the imaging device is mounted
  • a substrate is disposed on the surface opposite to the photoelectric conversion unit 51a of the image sensor 51, the substrate and the image sensor 51 are connected by wire bonding, and an external surface is connected to the surface of the substrate opposite to the image sensor.
  • a plurality of external electrodes used for connection with a circuit may be formed.
  • the casing 20 made of a light shielding member holds the imaging lens 10 on the photoelectric conversion unit 51 a side of the imaging element 51.
  • the imaging lens 10 includes, in order from the object side, a meniscus first lens L1, a second lens L2, and an aperture stop S provided on the object side from the second lens L2 having a positive refractive power and convex toward the object side.
  • the subject image is formed on the photoelectric conversion surface 51a of the image sensor 51.
  • any one of the first lens L1, the second lens L2, and the optical low-pass filter F has an infrared light cut coat.
  • an infrared light cut filter may be disposed in front of the optical low-pass filter instead of the infrared cut coat.
  • a disc-shaped light shielding member SH1 having an opening formed in the center is disposed between the flange portions L1c and L2c of the lenses L1 and L2 constituting the imaging lens 10, and the central opening serves as a diaphragm S.
  • the flange portions L1c and L2c of the lenses L1 and L2 are abutted with each other, and a spacer SP is provided between the flange portion L2c of the lens L2 and the optical low-pass filter F.
  • a diaphragm S may be provided on the object side of the lens L1.
  • FIGS. 3A and 3B are external views of a mobile phone 100 that is an example of a mobile terminal provided with the imaging device 50 according to the present embodiment.
  • an upper casing 71 as a case having display screens D1 and D2 and a lower casing 72 having an operation button 60 as an input unit are connected via a hinge 73.
  • the imaging device 50 is built below the display screen D ⁇ b> 2 in the upper casing 71, and is arranged so that the imaging device 50 can capture light from the outer surface side of the upper casing 71.
  • the position of the imaging device may be disposed above or on the side of the display screen D2 in the upper casing 71.
  • the mobile phone is not limited to a folding type.
  • f focal length of the entire imaging lens system
  • fB back focus
  • Fno F number 2Y: diagonal length ENTP along the imaging surface of the solid-state imaging device: entrance pupil position (distance from the first surface to the entrance pupil position)
  • EXTP exit pupil position (distance from imaging surface to exit pupil position)
  • H1 Front principal point position (distance from first surface to front principal point position)
  • H2 Rear principal point position (distance from the final surface to the rear principal point position)
  • r radius of curvature
  • t axial top surface spacing
  • nd refractive index ⁇ d of lens material with respect to d-line: Abbe number of lens material
  • Example 1 Lens data is shown in Table 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5e ⁇ 002
  • 4 is a sectional view of the lens of Example 1.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • F is a parallel flat plate assuming an optical low-pass filter
  • an IR cut filter a seal glass of a solid-state imaging device
  • I is an imaging surface.
  • Show. 5A is a spherical aberration diagram of Example 1
  • FIG. 5B is an astigmatism diagram
  • FIG. 5C is a distortion diagram
  • 5D is a meridional coma aberration diagram.
  • g represents the amount of spherical aberration with respect to the g line
  • d represents the amount of spherical aberration with respect to the d line.
  • the solid line S represents the sagittal plane
  • the dotted line M represents the meridional plane (the same applies hereinafter).
  • the first lens L1 and the second lens L2 are single lenses, and the aperture stop S is between the first lens L1 and the second lens L2.
  • the first lens L1 is a glass lens
  • the second lens L2 is a glass lens.
  • Example 2 shows the lens data.
  • 6 is a sectional view of the lens of Example 2.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc.
  • I is an imaging surface.
  • Show. 7A is a spherical aberration diagram of Example 2
  • FIG. 7B is an astigmatism diagram
  • FIG. 7C is a distortion diagram
  • FIG. 7D is a meridional coma aberration diagram.
  • the first lens L1 and the second lens L2 are single lenses
  • the aperture stop S is between the first lens L1 and the second lens L2.
  • the first lens L1 is a glass lens
  • the second lens L2 is a glass lens.
  • FIG. 8 is a sectional view of the lens of Example 3.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc.
  • I is an imaging surface.
  • FIG. 9A is a spherical aberration diagram of Example 3
  • FIG. 9B is an astigmatism diagram
  • FIG. 9C is a distortion diagram
  • FIG. 9D is a meridional coma aberration diagram.
  • the first lens L1 and the second lens L2 are single lenses
  • the aperture stop S is between the first lens L1 and the second lens L2.
  • the first lens L1 is a glass lens
  • the second lens L2 is a glass lens.
  • Example 4 Table 4 shows the lens data.
  • FIG. 10 is a sectional view of the lens of Example 4.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc.
  • I is an imaging surface.
  • Show. 11A is a spherical aberration diagram of Example 4
  • FIG. 11B is an astigmatism diagram
  • FIG. 11C is a distortion aberration diagram
  • FIG. 11D is a meridional coma aberration diagram.
  • the first lens L1 and the second lens L2 are single lenses
  • the aperture stop S is on the object side of the first lens L1.
  • the first lens L1 is a glass lens
  • the second lens L2 is a glass lens.
  • Table 5 shows the lens data.
  • 12 is a sectional view of the lens of Example 5.
  • Show. 13A is a spherical aberration diagram of Example 5
  • FIG. 13B is an astigmatism diagram
  • FIG. 13C is a distortion diagram
  • FIG. 13D is a meridional coma aberration diagram.
  • the first lens L1 and the second lens L2 are single lenses, and the aperture stop S is on the object side of the first lens L1.
  • the first lens L1 is a glass lens
  • the second lens L2 is a resin lens.
  • FIG. 14 is a sectional view of the lens of Example 6.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc.
  • I is an imaging surface.
  • FIG. 15A is a spherical aberration diagram of Example 6,
  • FIG. 15B is an astigmatism diagram,
  • FIG. 15C is a distortion diagram, and
  • FIG. 15D is a meridional coma aberration diagram.
  • the first lens L1 and the second lens L2 are single lenses, and the aperture stop S is on the object side of the first lens L1.
  • the first lens L1 is a resin lens
  • the second lens L2 is a glass lens.
  • FIG. 16 is a sectional view of the lens of Example 7.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc.
  • I is an imaging surface.
  • FIG. 17A is a spherical aberration diagram of Example 7
  • FIG. 17B is an astigmatism diagram
  • FIG. 17C is a distortion diagram
  • FIG. 17D is a meridional coma aberration diagram.
  • the first lens L1 is a multilayer lens composed of a parallel plate substrate LS1, a lens portion L1a formed on the object side, and a lens portion L1b formed on the image side of the substrate LS1, and the second lens L2
  • the lens LS2 has a multilayer structure including a parallel plate substrate LS2, a lens portion L2a formed on the object side thereof, and a lens portion L12 formed on the image side of the substrate LS2.
  • the aperture stop S is a parallel plate substrate LS1.
  • the first lens L1 and the second lens L2 are formed by transferring a resin material or the like onto a transparent parallel plate made of glass or resin, for example, using a curable resin material and curing the resin material.
  • Even such a multilayer lens is made of a single material such as resin or glass from the viewpoint of an imaging lens for forming a subject image on the imaging surface of a solid-state imaging device curved in three dimensions. It is possible to further reduce the manufacturing cost while obtaining the same optical performance as the lens has. Further, by using such a lens, the material constituting the object side surface and the image side surface of each lens unit can be changed, so that the chromatic aberration and the image surface can be improved. In addition, since the wafer level lens can mold a large number of lenses at a time, the cost can be reduced.
  • FIG. 18 is a sectional view of the lens of Example 8.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc.
  • I is an imaging surface.
  • Show. 19A is a spherical aberration diagram of Example 8
  • FIG. 19B is an astigmatism diagram
  • FIG. 19C is a distortion diagram
  • FIG. 19D is a meridional coma aberration diagram.
  • the first lens L1 is a compound lens composed of a parallel plate substrate LS1, a lens portion L1a formed on the object side thereof, and a lens portion L1b formed on the image side of the substrate LS1. This is a lens obtained by dividing the level lens into individual pieces.
  • the second lens L2 is a single glass lens, and the aperture stop S is formed between a parallel plate substrate LS1 and a lens portion L1a formed on the object side thereof.
  • Example 9 shows the lens data.
  • FIG. 20 is a sectional view of the lens of Example 9.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc.
  • I is an imaging surface.
  • Show. 21A is a spherical aberration diagram of Example 9
  • FIG. 21B is an astigmatism diagram
  • FIG. 21C is a distortion diagram
  • FIG. 21D is a meridional coma aberration diagram.
  • the first lens L1 is a single glass lens
  • the second lens L2 includes a parallel plate substrate LS2, a lens portion L2a formed on the object side, and a lens portion L2b formed on the image side of the substrate LS2.
  • This is a compound lens, which is a lens obtained by dividing a wafer level lens into pieces as in the seventh embodiment.
  • the aperture stop S is formed between the first lens L1 and the second lens L2.
  • FIG. 22 is a sectional view of the lens of Example 10.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • I is an imaging surface.
  • FIG. 23 (a) is a spherical aberration diagram of Example 10
  • FIG. 23 (b) is an astigmatism diagram
  • FIG. 23 (c) is a distortion diagram
  • FIG. 23 (d) is a meridional coma aberration diagram.
  • the first lens L1 is a single lens
  • the second lens L2 is a single lens
  • the aperture stop S is formed on the object side of the first lens L1.
  • the first lens L1 is a resin lens
  • the second lens L2 is a resin lens.
  • FIG. 24 is a sectional view of the lens of Example 11.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • I is an imaging surface.
  • FIG. 25A is a spherical aberration diagram of Example 11
  • FIG. 25B is an astigmatism diagram
  • FIG. 25C is a distortion diagram
  • FIG. 25D is a meridional coma aberration diagram.
  • the first lens L1 is a single lens
  • the second lens L2 is a single lens
  • the aperture stop S is formed on the object side of the first lens L1.
  • the first lens L1 is a resin lens
  • the second lens L2 is a resin lens.
  • FIG. 26 is a sectional view of the lens of Example 12.
  • L1 is a first lens
  • L2 is a second lens
  • S is an aperture stop
  • I is an imaging surface.
  • 27A is a spherical aberration diagram of Example 12
  • FIG. 27B is an astigmatism diagram
  • FIG. 27C is a distortion diagram
  • FIG. 27D is a meridional coma aberration diagram.
  • the first lens L1 is a single lens
  • the second lens L2 is a single lens
  • the aperture stop S is formed on the object side of the first lens L1.
  • the first lens L1 is a glass lens
  • the second lens L2 is a glass lens.
  • a sag amount s measured using a contact type method or a non-contact type method with an ultra-high precision coordinate measuring machine (UA3P) or the like is given by the following formula.
  • the effective radius of the lens surface means that the light beam passing through the outermost side (position farthest from the optical axis of the lens) among all the light rays that are formed at the maximum image height intersects the lens surface. Means the height in the direction perpendicular to the optical axis.
  • Imaging lens 20 Case 50 Imaging device 51a Photoelectric conversion part 51b Signal processing circuit 52 External electrode 60 Operation button 71 Upper case 72 Lower case 73 Hinge 100 Cellular phone B, SP Spacer F Optical low-pass filter D1, D2 Display screen L1 First lens L2 Second lens S Aperture stop SH1 Light blocking member

Abstract

Provided are an image capture lens which offers high-quality images while having a two-layer configuration, and an image capture device employing same. In a two-layer configuration image capture lens, with the value r2/f exceeding the lower bound of the formula (1), the radius of curvature of the image-side face of the first lens cannot be made too small and overcompensation on the image capture surface which is curved on the periphery thereof may be prevented. Additionally, the focal length of the first lens increases, thereby bringing the forward principal point location closer to the image surface, increasing the image capture lens optical length, and complicating miniaturization. Conversely, with the value r2/f falling below the upper bound of the formula (1), the radius of curvature cannot be made too large, a high image height light beam may be projected therefrom, and an incident angle of a primary light beam upon the periphery may be appropriately set. Additionally, the Petzval sum does not get too large with respect to a solid state image capture element which is curved on the periphery thereof, and it is thus possible to obtain good image surface performance out to the screen periphery part. 0.40<r2/f<4.0 (1) where r2 is the radius of curvature of the first lens image side surface, and f is the focal length of the total assembly.

Description

撮像装置用の撮像レンズ及び撮像装置Imaging lens and imaging device for imaging device
 本発明は、撮像装置用の撮像レンズ及び撮像装置に関し、特に本発明は、CCD型イメージセンサあるいはCMOS型イメージセンサ等の固体撮像素子であって撮像面が湾曲してなる固体撮像素子に好適な撮像レンズ及びこれを用いた撮像装置に関する。 The present invention relates to an imaging lens and an imaging device for an imaging device, and in particular, the present invention is a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor and suitable for a solid-state imaging device having a curved imaging surface. The present invention relates to an imaging lens and an imaging apparatus using the imaging lens.
 近年、CCD(Charge Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像素子の高性能化、小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及している。これらの撮像装置に搭載される撮像レンズには、さらなる小型化、高画質化が求められている。又、携帯端末以外にも、小型の撮像装置の用途は広がっており、液晶技術などを用いた、所謂薄型テレビやPCディスプレイに搭載または付属する撮像装置や、ドライブレコーダーやバックモニター用の車載の撮像装置等への展開が期待されている。特に、近年急速に普及している、スマートフォンやタブレット型コンビュータなど、大サイズのディスプレイを備えかつ薄型で携帯性に優れた携帯情報機器には、高画質であるとともに、全長の短い撮像装置であることが求められている。 In recent years, with the improvement in performance and miniaturization of image sensors using solid-state image sensors such as CCD (Charge Coupled Device) image sensors or CMOS (Complementary Metal Oxide Semiconductor) image sensors, Portable information terminals are widespread. Imaging lenses mounted on these imaging apparatuses are required to be further reduced in size and higher in image quality. In addition to portable terminals, the use of small-sized imaging devices is expanding, and imaging devices mounted on or attached to so-called flat-screen TVs and PC displays using liquid crystal technology, as well as in-vehicle devices for drive recorders and back monitors. Expansion to imaging devices and the like is expected. In particular, portable information devices such as smartphones and tablet computers, which have rapidly spread in recent years, are equipped with large-sized displays and are thin and excellent in portability. It is demanded.
 このような用途の撮像装置用レンズとしては、1枚構成や2枚構成のものが小型化、低コスト化に有利なため広く使われている。しかし、近年撮像素子の高画素化による高画質化が要求されることにより、2枚構成の撮像レンズでは収差補正能力が不足し、高画質な画像を形成するには不十分となる。これに対し、撮像レンズを3枚以上で構成すれば光学性能が向上するが、その分レンズ全長が長くなり、またコストも増大する。 As a lens for an imaging apparatus for such a use, a lens having one or two lenses is widely used because it is advantageous for downsizing and cost reduction. However, due to the recent demand for higher image quality by increasing the number of pixels in the image sensor, the two-lens imaging lens lacks the ability to correct aberrations and is insufficient to form a high-quality image. On the other hand, if the imaging lens is composed of three or more lenses, the optical performance is improved. However, the total length of the lens is increased and the cost is increased accordingly.
 一方、レンズに頼らず像面性能を向上させる手法として、撮像面を湾曲させる撮像装置も開発されている。例えば特許文献1では、固体撮像素子を多項式面形状に湾曲させることにより、レンズで発生する像面湾曲、歪曲収差をバランスよく補正し、小型で解像度の高い撮像装置を提供できることが開示されている。しかしながら、特許文献1においては、固体撮像素子はCIFサイズ(352画素×288画素)、撮像レンズは1枚構成であり、色収差は十分に補正されていないので、さらに高画素の固体撮像素子を用いて高性能を有する撮像装置を得ることは望めない。 On the other hand, as a technique for improving the image plane performance without relying on a lens, an imaging apparatus that curves the imaging plane has also been developed. For example, Patent Document 1 discloses that a solid-state imaging device can be curved into a polynomial surface shape to correct the curvature of field and distortion generated by a lens in a well-balanced manner, thereby providing a compact and high-resolution imaging apparatus. . However, in Patent Document 1, since the solid-state imaging device has a CIF size (352 pixels × 288 pixels), the imaging lens has a single lens configuration, and chromatic aberration is not sufficiently corrected, a solid-state imaging device having a higher pixel is used. Therefore, it is not possible to obtain an imaging device having high performance.
 又、特許文献2には、湾曲面に被写体像を結像することが開示されているが、ここでは結像の対象が銀塩フイルムと固体撮像素子との両方を想定しており、光学全長の短縮化という観点での考慮がなされていない。ロールフイルムを使用するカメラの構造上、レンズと撮像面の間隔を広く取らなければならないため、結果として、特許文献2に記載されるカメラ用レンズでは、光学全長の短縮化が不十分だった。さらに、特許文献2のカメラ用レンズは、F値がF10以上と暗く、近年固体撮像素子の高密度化により1画素あたりの受光面積が縮小傾向にあるという実情に照らせば、十分な明るさを持っているレンズとはいえなかった。 Further, Patent Document 2 discloses that a subject image is formed on a curved surface, but here the imaging target is assumed to be both a silver salt film and a solid-state image sensor, and the optical total length Is not taken into consideration in terms of shortening. Due to the structure of a camera using a roll film, the distance between the lens and the imaging surface must be wide, and as a result, the camera lens described in Patent Document 2 has not been sufficiently shortened in optical length. Furthermore, the camera lens of Patent Document 2 has a dark F value of F10 or more, and in recent years, the light receiving area per pixel tends to be reduced due to the increase in the density of solid-state imaging devices. It could not be said that it has a lens.
 更に、特許文献3には、電子撮像面が光軸を含む断面において凹状に形成された撮像素子を備え、2つのレンズを用いて像面湾曲を良好に補正し得るようにした撮像光学系装置が記載されている。しかし、特許文献3で開示されたレンズは、F値は明るいものの、撮像面に入射する光束の主光線入射角いわゆるテレセントリック特性を得るために、レンズと撮像面の間隔が広く取られており、光学全長の短縮化が不十分だった。 Further, Patent Document 3 includes an image pickup optical system device that includes an image pickup element whose electronic image pickup surface is formed in a concave shape in a cross section including the optical axis, and that can properly correct field curvature using two lenses. Is described. However, although the lens disclosed in Patent Document 3 has a bright F value, in order to obtain a so-called telecentric characteristic of a chief ray incident angle of a light beam incident on the imaging surface, the distance between the lens and the imaging surface is wide. The shortening of the optical total length was insufficient.
特開2004-356175号公報JP 2004-356175 A 特開平8-334684号公報JP-A-8-334684 特開2004-118077号公報JP 2004-118077 A
 本発明は、以上の課題に鑑みてなされたものであり、撮像面が湾曲してなる固体撮像素子に対し、2枚構成でありながら、F値が明るく、光学系全長が短く、高画質の得られる撮像レンズ及びこれを用いた撮像装置を提供することを目的とする。 The present invention has been made in view of the above problems, and has a two-element configuration with respect to a solid-state imaging device having a curved imaging surface, and has a bright F value, a short optical system overall length, and high image quality. An object of the present invention is to provide an obtained imaging lens and an imaging device using the imaging lens.
 ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
 L/2Y<1.1   (10)
ただし、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:固体撮像素子の撮像面に沿った対角線長(固体撮像素子の矩形実効画素領域の撮像面に沿った対角線長)
Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
L / 2Y <1.1 (10)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: diagonal length along the imaging surface of the solid-state imaging device (on the imaging surface of the rectangular effective pixel region of the solid-state imaging device) Diagonal length along)
 ここで、像側焦点とは撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、より望ましくは下式の範囲が良い。
 L/2Y<1.0   (10’)
Here, the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens. When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package is disposed between the image-side surface of the imaging lens and the image-side focal position, the imaging lens is parallel. The flat plate portion is calculated as the above L value after the air conversion distance. More preferably, the range of the following formula is good.
L / 2Y <1.0 (10 ′)
 請求項1に記載の撮像レンズは、光軸を中心に3次元に湾曲してなる固体撮像素子の撮像面に被写体像を結像させるための撮像レンズであって、物体側に設けられ正の屈折力を有し物体側に凸のメニスカスの第1レンズと、像側に設けられ正または負の屈折力を有する第2レンズと、前記第2レンズより物体側に設けられた開口絞りとからなり、以下の条件式を満足することを特徴とする。
 0.40<r2/f<4.0   (1)
ただし、
r2:前記第1レンズの像側面の曲率半径
f:全系の焦点距離
The imaging lens according to claim 1 is an imaging lens for forming a subject image on an imaging surface of a solid-state imaging device that is curved three-dimensionally about an optical axis, and is provided on the object side and is a positive lens. A first meniscus lens having a refractive power and convex toward the object side; a second lens having a positive or negative refractive power provided on the image side; and an aperture stop provided on the object side from the second lens. Thus, the following conditional expression is satisfied.
0.40 <r2 / f <4.0 (1)
However,
r2: radius of curvature of the image side surface of the first lens f: focal length of the entire system
 一般的に、固体撮像素子の場合、撮像面に入射する光束の主光線入射角を30°以下に収める必要があることが多く、撮像面が平面の固体撮像素子を用いると、像面前のレンズの周辺で強く光線を曲げることになり、これが倍率色収差の悪化の原因の一つとなっていた。これに対し、撮像面に負の曲率を付ける(つまり撮像面の周縁側が物体側に倒れるように3次元的に湾曲させる)ことで、主光線入射角が自然と緩和されることになり、無理に周辺像高の光線を曲げる必要がなくなり色収差が改善される。また、撮像面の短辺方向、長辺方向が共に撮像面周辺で物体側に曲面を持つことで、シリンドリカルで起きるような、撮像面の短辺と長辺の曲率差で起きる光学性能の劣化を抑制できる。これにより、収差補正性能が比較的低い2枚構成の撮像レンズでも、高画質な像を形成できる。 In general, in the case of a solid-state imaging device, it is often necessary to keep the principal ray incident angle of a light beam incident on the imaging surface to 30 ° or less. The light beam was strongly bent in the vicinity of the lens, which was one of the causes of the deterioration of lateral chromatic aberration. On the other hand, by attaching a negative curvature to the imaging surface (that is, three-dimensionally curving so that the peripheral side of the imaging surface falls to the object side), the chief ray incident angle is naturally relaxed, Chromatic aberration is improved because it is not necessary to bend the light at the peripheral image height. In addition, both the short side direction and long side direction of the imaging surface have a curved surface on the object side around the imaging surface, which degrades the optical performance caused by the difference in curvature between the short side and long side of the imaging surface, which occurs in a cylindrical manner. Can be suppressed. As a result, a high-quality image can be formed even with a two-lens imaging lens with relatively low aberration correction performance.
 更に、上記のように撮像面が平面の場合と比べると、撮像面に入射する光束の主光線入射角はいわゆるテレセントリック特性を取りやすくなるが、射出瞳が撮像面と近すぎると十分な角度を得ることができない。これに対し、第2レンズの像側面の後ろに絞りを置きテレセントリック特性を維持しようとすると、バックフォーカスを十分に取らなくてはいけなくなり、小型化には不向きである。そのため、第2レンズより物体側に開口絞りを設け、いわゆる前置絞りまたは中絞りのように絞り位置を撮像面から離すことで、撮像面と射出瞳の間隔が適切に保たれ、十分小型でありながらテレセントリック特性を維持することが可能になる。 Furthermore, compared to the case where the imaging surface is flat as described above, the chief ray incident angle of the light beam incident on the imaging surface is likely to have a so-called telecentric characteristic, but if the exit pupil is too close to the imaging surface, a sufficient angle is obtained. Can't get. On the other hand, if an aperture is placed behind the image side surface of the second lens to maintain the telecentric characteristics, sufficient back focus must be obtained, which is not suitable for miniaturization. For this reason, an aperture stop is provided on the object side of the second lens, and the distance between the imaging surface and the exit pupil is maintained appropriately by separating the aperture position from the imaging surface like a so-called front diaphragm or middle diaphragm. It is possible to maintain the telecentric characteristic.
 本特許の基本構成は、正の屈折力を有し物体側に凸のメニスカス形状の第1レンズ、正または負の屈折力を有する第2レンズからなる。値r2/fが条件式(1)の下限値を上回ることで、第1レンズの像側面の曲率半径が小さくなりすぎず、周辺で物体側に向かって湾曲した撮像面に対し補正過剰を防ぐことが出来る。また、第1レンズの焦点距離が長くなりすぎず、前方主点位置が物体側に近づくため、撮像レンズ光学長が長くならず、小型化することができる。 The basic configuration of this patent consists of a first lens having a positive refractive power and a convex meniscus shape on the object side, and a second lens having a positive or negative refractive power. When the value r2 / f exceeds the lower limit value of the conditional expression (1), the curvature radius of the image side surface of the first lens does not become too small, and overcorrection is prevented with respect to the imaging surface curved toward the object side at the periphery. I can do it. In addition, since the focal length of the first lens does not become too long and the front principal point position approaches the object side, the optical length of the imaging lens does not become long and the size can be reduced.
 一方、値r2/fが条件式(1)の上限値を下回ることで、曲率半径が大きくなりすぎず、高い像高の光線を十分に跳ね上げることができ、周辺での主光線の入射角度を適切に設定できる。また、周辺で湾曲した固体撮像素子に対し、ペッツバール和が大きくなりすぎないため、画面周辺部まで良好な像面性能を得ることが可能になる。また、より望ましくは下式の範囲がよい。
 0.45<r2/f<3.6   (1)’
On the other hand, when the value r2 / f is lower than the upper limit value of the conditional expression (1), the radius of curvature does not become too large, and a high image height light beam can be sufficiently jumped, and the incident angle of the principal ray at the periphery Can be set appropriately. Further, since the Petzval sum does not become too large with respect to the solid-state imaging device curved at the periphery, it is possible to obtain good image surface performance up to the periphery of the screen. More preferably, the range of the following formula is good.
0.45 <r2 / f <3.6 (1) ′
 請求項2に記載の撮像レンズは、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
 0.15< PTZ <0.40   (2)
ただし、
PTZ:前記第1レンズと前記第2レンズのペッツバール和
The imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied.
0.15 <PTZ <0.40 (2)
However,
PTZ: Petzval sum of the first lens and the second lens
 条件式(2)は、平面物体とそれに対する像面湾曲の関係を表した式(ペッツバール和)であり、像面湾曲を抑制するために、各レンズの焦点距離とレンズ材料の屈折力の組み合わせを最適化することが望ましい。固体撮像素子が平面の場合は、ペッツバール和は、小さくすることが求められる。しかしながら、2枚構成のレンズでは、光学面の面数が少ないため、ペッツバール和を小さく保とうとすると、レンズの曲率の自由度が奪われるため、球面収差や色収差の補正が不十分になってしまう恐れがある。 Conditional expression (2) is an expression (Petzbar sum) representing the relationship between a planar object and the curvature of field with respect to the plane object, and in order to suppress the curvature of field, the combination of the focal length of each lens and the refractive power of the lens material It is desirable to optimize. When the solid-state imaging device is a flat surface, the Petzval sum is required to be small. However, in a two-lens configuration, since the number of optical surfaces is small, if the Petzval sum is kept small, the degree of curvature of the lens is lost and correction of spherical aberration and chromatic aberration becomes insufficient. There is a fear.
 そこで、条件式(2)の値が下限値を上回るようにすることで、ペッツバール和が小さくなりすぎないため、光学系の像面周辺の物体側への湾曲量が保たれると同時に、球面収差や色収差の補正可能になる。一方、条件式(2)の値が上限値を下回るようにすることで、光学系の像面周辺が物体側に過剰に湾曲することがなくなり、固体撮像素子周辺の像面に対し、良好な像面性能を得ることが出来る。また、より望ましくは下式の範囲がよい。
 0.18< PTZ <0.35   (2)’
Therefore, since the Petzval sum does not become too small by making the value of conditional expression (2) exceed the lower limit, the amount of curvature toward the object side around the image plane of the optical system is maintained, and at the same time Aberration and chromatic aberration can be corrected. On the other hand, by setting the value of conditional expression (2) below the upper limit value, the periphery of the image plane of the optical system is not excessively curved toward the object side, which is favorable for the image plane around the solid-state imaging device. Image surface performance can be obtained. More preferably, the range of the following formula is good.
0.18 <PTZ <0.35 (2) ′
 請求項3に記載の撮像レンズは、請求項1又は2に記載の発明において、以下の条件式を満足することを特徴とする。
 0.30<d3/f<2.60   (3)
ただし、
d3:前記第2レンズの芯厚
The imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the following conditional expression is satisfied.
0.30 <d3 / f <2.60 (3)
However,
d3: Core thickness of the second lens
 条件式(3)は、第2レンズの芯厚を決める条件式である。条件式(3)の値が下限値を上回るようにすることで、第2レンズにおいて像高毎の光束が十分に分離できるようになり、第2レンズの像側面の非球面により、像高毎の収差補正が容易になる。一方、条件式(3)の値が上限値を下回るようにすることで撮像レンズを小型することができる。また、より望ましくは下式の範囲がよい。
 0.36<d3/f<2.30   (3)’
Conditional expression (3) is a conditional expression that determines the core thickness of the second lens. By making the value of conditional expression (3) exceed the lower limit value, the light flux for each image height can be sufficiently separated in the second lens. Aberration correction becomes easier. On the other hand, an imaging lens can be reduced in size by making the value of conditional expression (3) fall below an upper limit. More preferably, the range of the following formula is good.
0.36 <d3 / f <2.30 (3) ′
 請求項4に記載の撮像レンズは、請求項1~3のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
 0.30<r1/f<2.30   (4)
ただし、
r1:前記第1レンズの物体側面の曲率半径
An imaging lens according to a fourth aspect of the invention is characterized in that, in the invention according to any one of the first to third aspects, the following conditional expression is satisfied.
0.30 <r1 / f <2.30 (4)
However,
r1: radius of curvature of the object side surface of the first lens
 条件式(4)は、第1レンズの物体側面の曲率半径を決める条件式である。条件式(4)の値が上限値を下回ることで、第1レンズの物体側面の屈折力を適度に維持することができ、第1レンズと第2レンズの合成主点を物体側へ配置することができ、撮像レンズ全長を短くすることが出来る。一方、条件式(4)の値が下限値を上回ることで、第1レンズ物体側面の屈折力が必要以上に大きくなりすぎず、第1レンズで発生する、高次の球面収差やコマ収差を小さく抑えることができる。また、より望ましくは下式の範囲がよい。
0.32<r1/f<2.03   (4)’
Conditional expression (4) is a conditional expression that determines the radius of curvature of the object side surface of the first lens. When the value of conditional expression (4) is less than the upper limit value, the refractive power of the object side surface of the first lens can be appropriately maintained, and the composite principal point of the first lens and the second lens is arranged on the object side. And the entire length of the imaging lens can be shortened. On the other hand, when the value of conditional expression (4) exceeds the lower limit value, the refractive power of the first lens object side surface does not become excessively large, and higher-order spherical aberration and coma aberration generated in the first lens are reduced. It can be kept small. More preferably, the range of the following formula is good.
0.32 <r1 / f <2.03 (4) ′
 請求項5に記載の撮像レンズは、請求項1~4のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
 0.10<fB/TL<0.60   (5)
ただし、
fB:前記第2レンズの像側面と前記固体撮像素子との間隔
TL:レンズ全長
The imaging lens described in claim 5 is characterized in that, in the invention described in any one of claims 1 to 4, the following conditional expression is satisfied.
0.10 <fB / TL <0.60 (5)
However,
fB: Distance between the image side surface of the second lens and the solid-state imaging device TL: Total lens length
 条件式(5)は、第2レンズと撮像面の間隔を決める条件式である。条件式(5)の値が下限値を上回ることで、赤外線カットフィルタやセンサのカバーガラスを挿入するための間隔を充分確保できる。第2レンズと撮像面の間隔が短くなることを抑えられるので、第2レンズの径の増大を防ぐことができる。一方、条件式(5)の値が上限値を下回ることで、第2レンズと撮像面の間隔が長くなりすぎず、小型化することができる。より望ましくは下式の範囲がよい。
 0.15<fB/TL<0.55   (5)’
Conditional expression (5) is a conditional expression that determines the distance between the second lens and the imaging surface. When the value of conditional expression (5) exceeds the lower limit value, a sufficient interval for inserting the infrared cut filter or the cover glass of the sensor can be secured. Since the distance between the second lens and the imaging surface can be prevented from being shortened, an increase in the diameter of the second lens can be prevented. On the other hand, when the value of conditional expression (5) is less than the upper limit value, the distance between the second lens and the imaging surface does not become too long, and the size can be reduced. The range of the following formula is more desirable.
0.15 <fB / TL <0.55 (5) ′
 請求項6に記載の撮像レンズは、請求項1~5のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
 -0.38<Y/rI<-0.01   (6)
ただし、
rI:前記撮像面の曲率半径
Y:最大像高
The imaging lens described in claim 6 is characterized in that, in the invention described in any one of claims 1 to 5, the following conditional expression is satisfied.
−0.38 <Y / rI <−0.01 (6)
However,
rI: radius of curvature of the imaging surface Y: maximum image height
 条件式(6)は、撮像面を曲率半径で規定した場合の湾曲量を決める条件式である。条件式(6)の値が下限値を上回ることで、湾曲量を適度に維持することが出来るため、必要なテレセントリック特性を得ることが出来る。一方、条件式(6)の値が上限値を下回ることで、固体撮像素子の撮像面周辺部で物体側にせり出す湾曲量が大きくなりすぎず、撮像レンズの光軸と個体撮像素子中心とのズレによる性能劣化を低減することができるため、量産時における性能劣化が少なくなる。また、より望ましくは下式の範囲がよい。
 -0.34<Y/rI<-0.07   (6)’
Conditional expression (6) is a conditional expression that determines the amount of bending when the imaging surface is defined by the radius of curvature. When the value of conditional expression (6) exceeds the lower limit value, the amount of bending can be appropriately maintained, so that necessary telecentric characteristics can be obtained. On the other hand, when the value of conditional expression (6) is less than the upper limit value, the amount of curvature that protrudes toward the object side at the periphery of the imaging surface of the solid-state imaging device does not become too large, and the optical axis of the imaging lens and the center of the individual imaging device Since performance degradation due to deviation can be reduced, performance degradation during mass production is reduced. More preferably, the range of the following formula is good.
−0.34 <Y / rI <−0.07 (6) ′
 請求項7に記載の撮像レンズは、請求項1~6のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
 ν1>30     (7)
ただし、
ν1:前記第1レンズのアッベ数
An imaging lens according to a seventh aspect is characterized in that, in the invention according to any one of the first to sixth aspects, the following conditional expression is satisfied.
ν1> 30 (7)
However,
ν1: Abbe number of the first lens
 条件式(7)は、第1レンズの材料のアッベ数を決める条件式である。条件式(7)の値が下限値を上回ることで、軸上色収差を小さく維持できると共に、第1レンズの像側面が発散面であるため、周辺の光線が大きく跳ね上げられことによる画面周辺部での倍率色収差を小さく出来る。また、より望ましくは下式の範囲がよい。
 ν1>34      (7)’
Conditional expression (7) is a conditional expression that determines the Abbe number of the material of the first lens. When the value of conditional expression (7) exceeds the lower limit value, axial chromatic aberration can be kept small, and the image side surface of the first lens is a divergent surface, so that the peripheral portion of the screen is caused by a large amount of light rays from the periphery. Chromatic aberration of magnification can be reduced. More preferably, the range of the following formula is good.
ν1> 34 (7) '
 請求項8に記載の撮像レンズは、請求項1~7のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
 n1>1.40 且つ n2>1.40   (8)
ただし、
n1:前記第1レンズの屈折率
n2:前記第2レンズの屈折率
An imaging lens according to an eighth aspect is characterized in that, in the invention according to any one of the first to seventh aspects, the following conditional expression is satisfied.
n1> 1.40 and n2> 1.40 (8)
However,
n1: Refractive index of the first lens n2: Refractive index of the second lens
 条件式(8)は、第1レンズと第2レンズの材料の屈折率を決める条件式である。条件式(8)の値が下限値を上回ることで、ペッツバール和が大きくなりすぎないため、湾曲した固体撮像素子の撮像面に合わせることが出来る。また、レンズ周辺部の曲率が強くなりすぎないため、画面周辺部の倍率色収差を小さくすることが出来る。また、より望ましくは下式の範囲がよい。
 n1>1.49 且つ n2>1.49   (8)’
Conditional expression (8) is a conditional expression that determines the refractive indexes of the materials of the first lens and the second lens. When the value of conditional expression (8) exceeds the lower limit, the Petzval sum does not become too large, so that it can be adjusted to the imaging surface of the curved solid-state imaging device. In addition, since the curvature at the lens periphery does not become excessively strong, the lateral chromatic aberration at the periphery of the screen can be reduced. More preferably, the range of the following formula is good.
n1> 1.49 and n2> 1.49 (8) ′
 請求項9に記載の撮像レンズは、請求項1~6のいずれかに記載の発明において、前記第1レンズと前記第2レンズのうち少なくとも一方が、基板と基板上に形成されたレンズ部とを備えたレンズであることを特徴とする。 An imaging lens according to a ninth aspect is the invention according to any one of the first to sixth aspects, wherein at least one of the first lens and the second lens is a substrate and a lens portion formed on the substrate. It is a lens provided with.
 第1レンズと第2レンズのうち少なくとも一方を、平板である基板(樹脂またはガラス)上に、レンズ部を成形したレンズを用いることにより、各レンズ部の物体側面、像側面を構成する材料を変更可能なため、色収差や像面を良好にすることが出来る。また、このようなレンズは、基板(樹脂またはガラス)上に、一度に多数個のレンズ部を成形した後、個々に切断して個片化することで作製可能なため、コストを低減させることが出来る。このようなレンズは、例えば特開2011-028213号公報に記載の製造方法を用いて形成できる。 By using at least one of the first lens and the second lens as a lens having a lens portion formed on a flat substrate (resin or glass), a material constituting the object side surface and the image side surface of each lens portion is used. Since it can be changed, chromatic aberration and image surface can be improved. In addition, such a lens can be manufactured by molding a large number of lens parts at once on a substrate (resin or glass) and then cutting them into individual pieces, thus reducing costs. I can do it. Such a lens can be formed using, for example, a manufacturing method described in Japanese Patent Application Laid-Open No. 2011-028213.
 請求項10に記載の撮像レンズは、請求項9に記載の発明において、以下の条件式を満足することを特徴とする。
 ν1f>30  且つ ν1b>30    (9)
ただし、
ν1f:前記第1レンズの物体側面のアッベ数
ν1b:前記第1レンズの像側面のアッベ数
The image pickup lens described in claim 10 is characterized in that, in the invention described in claim 9, the following conditional expression is satisfied.
ν1f> 30 and ν1b> 30 (9)
However,
ν1f: Abbe number of the object side surface of the first lens ν1b: Abbe number of the image side surface of the first lens
 条件式(9)は、第1レンズの材料のアッベ数を決める条件式である。条件式(9)の値が下限値を上回ることで、軸上色収差を小さく維持できると共に、第1レンズの像側面が発散面であるため、周辺の光線が大きく跳ね上げられことによる画面周辺部での倍率色収差を小さく出来る。また、より望ましくは下式の範囲がよい。
 ν1f>34 且つ ν1b>34    (9)’
Conditional expression (9) is a conditional expression that determines the Abbe number of the material of the first lens. When the value of conditional expression (9) exceeds the lower limit value, axial chromatic aberration can be kept small, and the image side surface of the first lens is a diverging surface, so that the peripheral portion of the screen is caused by a large amount of peripheral rays being bounced up. Chromatic aberration of magnification can be reduced. More preferably, the range of the following formula is good.
ν1f> 34 and ν1b> 34 (9) ′
 請求項11に記載の撮像レンズは、請求項9又は10に記載の発明において、前記第1レンズと前記第2レンズがそれぞれ、基板と基板上に形成されたレンズ部とを備えたレンズであり、以下の条件式を満足することを特徴とする。
 n1f>1.40 且つ n2f>1.40   (10)
ただし、
n1f:前記第1レンズの物体側面の屈折率
n2f:前記第2レンズの物体側面の屈折率
An imaging lens according to an eleventh aspect is the lens according to the ninth or tenth aspect, wherein the first lens and the second lens are each provided with a substrate and a lens portion formed on the substrate. The following conditional expressions are satisfied.
n1f> 1.40 and n2f> 1.40 (10)
However,
n1f: Refractive index of the object side surface of the first lens n2f: Refractive index of the object side surface of the second lens
 条件式(10)は、第1レンズと第2レンズの材料の屈折率を決める条件式である。条件式(10)の値が下限値を上回ることで、ペッツバール和が大きくなりすぎないため、湾曲した固体撮像素子の撮像面に合わせることが出来る。また、レンズ周辺部の曲率が強くりすぎないため、画面周辺部の倍率色収差を小さくすることが出来る。また、より望ましくは下式の範囲がよい。
 n1f>1.49 且つ n2f>1.49   (10)’
Conditional expression (10) is a conditional expression that determines the refractive indexes of the materials of the first lens and the second lens. When the value of conditional expression (10) exceeds the lower limit value, the Petzval sum does not become too large, so that it can be adjusted to the imaging surface of the curved solid-state imaging device. Further, since the curvature at the lens periphery is not too strong, the lateral chromatic aberration at the periphery of the screen can be reduced. More preferably, the range of the following formula is good.
n1f> 1.49 and n2f> 1.49 (10) ′
 請求項12に記載の撮像レンズは、請求項1~11のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
 -0.25<f1/f2<1.40   (11)
ただし、
f1:前記第1レンズの焦点距離
f2:前記第2レンズの焦点距離
An imaging lens according to a twelfth aspect is characterized in that, in the invention according to any one of the first to eleventh aspects, the following conditional expression is satisfied.
−0.25 <f1 / f2 <1.40 (11)
However,
f1: Focal length of the first lens f2: Focal length of the second lens
 条件式(11)は、第1レンズと第2レンズの焦点距離を決める条件式である。条件式(11)の値が上限値を下回ることで、第1レンズの焦点距離に比べ、第2レンズの焦点距離が小さくなりすぎないため、バックフォーカスが長くなりすぎず、全長を短くできる。一方、条件式(11)の値が下限値を上回ることで、固体撮像素子のカバーガラスやIRカットフィルタを入れる間隔が保持される。また、より望ましくは下式の範囲がよい。
 -0.10<f1/f2<1.10   (11)’
Conditional expression (11) is a conditional expression that determines the focal length of the first lens and the second lens. When the value of conditional expression (11) is less than the upper limit value, the focal length of the second lens does not become too small compared to the focal length of the first lens, so the back focus does not become too long and the overall length can be shortened. On the other hand, when the value of the conditional expression (11) exceeds the lower limit value, the interval for inserting the cover glass or the IR cut filter of the solid-state image sensor is maintained. More preferably, the range of the following formula is good.
−0.10 <f1 / f2 <1.10 (11) ′
 請求項13に記載の撮像レンズは、請求項1~12のいずれかに記載の発明において、前記固体撮像素子は、光軸に対して回転対称であることを特徴とする。「光軸に対して回転対称」とは、撮像面の中心から等距離に有る撮像面の湾曲量が一定であることをいう。 The imaging lens according to claim 13 is characterized in that, in the invention according to any one of claims 1 to 12, the solid-state imaging device is rotationally symmetric with respect to the optical axis. “Rotational symmetry with respect to the optical axis” means that the amount of curvature of the imaging surface that is equidistant from the center of the imaging surface is constant.
 近年固体撮像素子の画素ピッチが小さくなり、よりFナンバーの明るいレンズが求められているため、焦点深度は短くなる傾向にある。そのため、フイルムのようにシリンドリカルに長辺方向にのみ曲げると、短辺方向の光学性能の劣化が起きることとなる。このような光学性能の劣化は、固体撮像素子の湾曲量を、固体撮像素子の中心から光軸直交方向の距離に応じて一定にすることによって避けることが出来る。 In recent years, the pixel pitch of a solid-state image sensor has become smaller, and a lens with a brighter F-number has been demanded. For this reason, if the lens is bent only in the long side direction like a film, the optical performance in the short side direction is deteriorated. Such deterioration of the optical performance can be avoided by making the amount of bending of the solid-state imaging device constant according to the distance in the optical axis orthogonal direction from the center of the solid-state imaging device.
 請求項14に記載の撮像レンズは、請求項1~13のいずれかに記載の発明において、実質的にパワーを持たないレンズを更に有することを特徴とする。つまり、請求項1の構成に、実質的にパワーを持たないダミーレンズを付与した場合でも本発明の適用範囲内である。 An imaging lens according to a fourteenth aspect is characterized in that in the invention according to any one of the first to thirteenth aspects, the imaging lens further includes a lens having substantially no power. That is, even when a dummy lens having substantially no power is added to the configuration of claim 1, it is within the scope of application of the present invention.
 請求項15に記載の撮像装置は、請求項1~14のいずれかに記載の撮像レンズと、撮像面が3次元に湾曲した固体撮像素子とを有することを特徴とする。 An imaging apparatus according to a fifteenth aspect includes the imaging lens according to any one of the first to fourteenth aspects, and a solid-state imaging element whose imaging surface is curved in three dimensions.
 本発明の撮像装置は、2枚構成の撮像レンズを用いながらも、高画質な画像を取得できる。尚、本発明の撮像装置は、携帯電話や携帯情報端末、薄型テレビやPCディスプレイに搭載または付属する撮像装置や、ドライブレコーダーやバックモニター用途等にも用いることができる。特に、スマートフォンやタブレット型コンビュータなど、大サイズのディスプレイを備えかつ薄型の携帯情報機器など、全長の短い撮像レンズや撮像装置が求められる機器に対して有用である。 The imaging apparatus of the present invention can acquire a high-quality image while using a two-lens imaging lens. The imaging device of the present invention can also be used for an imaging device mounted on or attached to a mobile phone, a portable information terminal, a flat-screen TV or a PC display, a drive recorder, a back monitor, or the like. In particular, the present invention is useful for devices that require an imaging lens or an imaging device with a short overall length, such as smartphones and tablet computers, which have a large display and are thin portable information devices.
 本発明によれば、撮像面が湾曲してなる固体撮像素子に対し、2枚構成でありながら、F値が明るく、光学系全長が短く、高画質の得られる撮像レンズ及びこれを用いた撮像装置を提供することができる。 According to the present invention, an imaging lens capable of obtaining a high image quality with a bright F-number, a short optical system overall length, and a high image quality while having a two-element configuration with respect to a solid-state imaging device having a curved imaging surface, and imaging using the imaging lens An apparatus can be provided.
本実施の形態に係る撮像装置の斜視図である。It is a perspective view of the imaging device concerning this embodiment. 本実施の形態に係る撮像装置の撮像レンズの光軸に沿った断面を模式的に示した図である。It is the figure which showed typically the cross section along the optical axis of the imaging lens of the imaging device which concerns on this Embodiment. 本実施の形態に係る撮像装置を備えた携帯端末の一例である携帯電話機の外観図(a)(b)で、(a)は入力部のある側から見た図、(b)はその反対側から見た図である。1A and 1B are external views of a mobile phone that is an example of a mobile terminal provided with an imaging device according to the present embodiment, where FIG. 1A is a view seen from a side where an input unit is provided, and FIG. It is the figure seen from the side. 実施例1の撮像レンズの断面図である。2 is a cross-sectional view of an imaging lens of Example 1. FIG. 実施例1の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 4 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 1. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. 実施例2の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 6 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 2. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. 実施例3の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 6 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 3. 実施例4の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 4. FIG. 実施例4の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 6 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 4. 実施例5の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 5. FIG. 実施例5の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 5. 実施例6の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 6. FIG. 実施例6の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 6. 実施例7の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 7. FIG. 実施例7の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 7. 実施例8の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 8. FIG. 実施例8の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 8. 実施例9の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 9. FIG. 実施例9の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 9. 実施例10の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 10. FIG. 実施例10の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 10 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 10. 実施例11の撮像レンズの断面図である。14 is a cross-sectional view of the imaging lens of Example 11. FIG. 実施例11の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 14 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)) of the imaging lens of Example 11. 実施例12の撮像レンズの断面図である。14 is a cross-sectional view of an imaging lens of Example 12. FIG. 実施例12の撮像レンズの収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 14 is an aberration diagram (spherical aberration (a), astigmatism (b), distortion aberration (c), and meridional coma aberration diagram (d)) of the imaging lens of Example 12. レンズの面頂点から、レンズ面の高さhにおける点までの光軸平行方向への変位量を示す図である。It is a figure which shows the displacement amount to the optical axis parallel direction from the surface vertex of a lens to the point in the height h of a lens surface.
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置50の上面図であり、図2は、図1の構成を、光軸を含む断面で切断してなる断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a top view of an imaging apparatus 50 according to the present embodiment, and FIG. 2 is a cross-sectional view obtained by cutting the configuration of FIG. 1 along a cross section including an optical axis.
 図1又は図2に示すように、撮像装置50は光電変換部51aを有する固体撮像素子としてのCMOS型撮像素子51と、この撮像素子51上の光電変換部51aに被写体像を撮像する撮像レンズ10と、物体側からの光入射用の開口部を有する遮光部材からなる筐体20とを備え、これらが一体的に形成されている。 As illustrated in FIG. 1 or FIG. 2, the imaging device 50 includes a CMOS type imaging device 51 as a solid-state imaging device having a photoelectric conversion unit 51 a and an imaging lens that captures a subject image on the photoelectric conversion unit 51 a on the imaging device 51. 10 and a housing 20 made of a light shielding member having an opening for light incidence from the object side, and these are integrally formed.
 図2に示すように、撮像素子51は、所定の曲率半径で球状(光軸に対して回転対称であると好ましい)に湾曲しており、その湾曲した受光側の面の中央部に画素(光電変換素子)が2次元的に配置され、受光部としての光電変換部51aが形成され、その周囲には信号処理回路51bが形成されている。この信号処理回路51bは、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用い画像信号出力を形成する信号処理部等から構成されている。なお、撮像素子は、上述のCMOS型のイメージセンサに限るものでなく、CCD等の他のものを適用したものでもよい。 As shown in FIG. 2, the image sensor 51 is curved in a spherical shape (preferably rotationally symmetric with respect to the optical axis) with a predetermined radius of curvature, and a pixel ( Photoelectric conversion elements) are two-dimensionally arranged, a photoelectric conversion unit 51a as a light receiving unit is formed, and a signal processing circuit 51b is formed around the photoelectric conversion unit 51a. The signal processing circuit 51b includes a driving circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. Note that the image pickup element is not limited to the above-described CMOS type image sensor, and may be one to which another one such as a CCD is applied.
 撮像素子51の光電変換部51a側には、スペーサBを介し筐体20の下端が固着され、更に、平行平板である光学的ローパスフィルタFの側面部が筐体20の下端内周に固着されている。光学的ローパスフィルタFは、ここでは平板であるが、光電変換部51aに合わせて湾曲していても良い。 The lower end of the housing 20 is fixed to the photoelectric conversion unit 51 a side of the image sensor 51 through the spacer B, and the side surface portion of the optical low-pass filter F that is a parallel plate is fixed to the inner periphery of the lower end of the housing 20. ing. The optical low-pass filter F is a flat plate here, but may be curved in accordance with the photoelectric conversion unit 51a.
 撮像素子51の他方の面(光電変換部51aと反対側の面)には、外部回路との接続に用いられる複数の外部電極52が形成されている。外部電極52と不図示の外部回路(例えば、撮像装置を実装した上位装置が有する制御回路)とが接続されて、外部回路から撮像素子51を駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路へ出力したりすることを可能としている。 A plurality of external electrodes 52 used for connection to an external circuit are formed on the other surface of the image sensor 51 (surface opposite to the photoelectric conversion unit 51a). The external electrode 52 and an external circuit (not shown) (for example, a control circuit included in a host device on which the imaging device is mounted) are connected to receive a voltage or a clock signal for driving the imaging device 51 from the external circuit. In addition, it is possible to output a digital YUV signal to an external circuit.
 なお、図示しないが、撮像素子51の光電変換部51aと反対側の面に基板を配置し、該基板と撮像素子51をワイヤボンディングで接続し、該基板の撮像素子と反対側の面に外部回路との接続に用いられる複数の外部電極を形成してもよい。 Although not shown, a substrate is disposed on the surface opposite to the photoelectric conversion unit 51a of the image sensor 51, the substrate and the image sensor 51 are connected by wire bonding, and an external surface is connected to the surface of the substrate opposite to the image sensor. A plurality of external electrodes used for connection with a circuit may be formed.
 図2に示したように、遮光部材からなる筐体20は、撮像素子51の光電変換部51a側において、撮像レンズ10を保持している。 As shown in FIG. 2, the casing 20 made of a light shielding member holds the imaging lens 10 on the photoelectric conversion unit 51 a side of the imaging element 51.
 撮像レンズ10は、物体側より順に、正の屈折力を有し物体側に凸のメニスカスの第1レンズL1、第2レンズL2、第2レンズL2より物体側に設けられた開口絞りSからなり、撮像素子51の光電変換面51aに、被写体像が結像されるよう構成されている。 The imaging lens 10 includes, in order from the object side, a meniscus first lens L1, a second lens L2, and an aperture stop S provided on the object side from the second lens L2 having a positive refractive power and convex toward the object side. The subject image is formed on the photoelectric conversion surface 51a of the image sensor 51.
 第1レンズL1、第2レンズL2、光学的ローパスフィルタFのいずれか一つの面には赤外光カットコートがなされている。なお、図示しないが、赤外カットコートのかわりに光学的ローパスフィルタより前方に赤外光カットフィルタを配置してもよい。 Any one of the first lens L1, the second lens L2, and the optical low-pass filter F has an infrared light cut coat. Although not shown, an infrared light cut filter may be disposed in front of the optical low-pass filter instead of the infrared cut coat.
 図2においては、撮像レンズ10を構成するレンズL1,L2のフランジ部L1c、L2c間には、中央に開口を形成した円盤状の遮光部材SH1が配置されており、その中央開口が絞りSを構成する。レンズL1,L2のフランジ部L1c、L2c同士は突き当てられており、また、レンズL2のフランジ部L2cと光学的ローパスフィルタFとの間に、スペーサSPが設けられている。尚、レンズL1の物体側に絞りSを設けても良い。 In FIG. 2, a disc-shaped light shielding member SH1 having an opening formed in the center is disposed between the flange portions L1c and L2c of the lenses L1 and L2 constituting the imaging lens 10, and the central opening serves as a diaphragm S. Constitute. The flange portions L1c and L2c of the lenses L1 and L2 are abutted with each other, and a spacer SP is provided between the flange portion L2c of the lens L2 and the optical low-pass filter F. A diaphragm S may be provided on the object side of the lens L1.
 図3(a)(b)は、本実施の形態に係る撮像装置50を備えた携帯端末の一例である携帯電話機100の外観図である。同図に示す携帯電話機100は、表示画面D1及びD2を備えたケースとしての上筐体71と、入力部である操作ボタン60を備えた下筐体72とがヒンジ73を介して連結されている。撮像装置50は、上筐体71内の表示画面D2の下方に内蔵されており、撮像装置50が上筐体71の外表面側から光を取り込めるよう配置されている。なお、この撮像装置の位置は上筐体71内の表示画面D2の上方や側面に配置してもよい。また携帯電話機は折りたたみ式に限るものではないのは、勿論である。 3A and 3B are external views of a mobile phone 100 that is an example of a mobile terminal provided with the imaging device 50 according to the present embodiment. In the mobile phone 100 shown in the figure, an upper casing 71 as a case having display screens D1 and D2 and a lower casing 72 having an operation button 60 as an input unit are connected via a hinge 73. Yes. The imaging device 50 is built below the display screen D <b> 2 in the upper casing 71, and is arranged so that the imaging device 50 can capture light from the outer surface side of the upper casing 71. Note that the position of the imaging device may be disposed above or on the side of the display screen D2 in the upper casing 71. Of course, the mobile phone is not limited to a folding type.
(実施例)
 次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。各実施例に使用する記号は下記の通りである。
f  :撮像レンズ全系の焦点距離
fB :バックフォーカス
Fno:Fナンバー
2Y :固体撮像素子の撮像面に沿った対角線長
ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
H1  :前側主点位置(第1面から前側主点位置までの距離)
H2  :後側主点位置(最終面から後側主点位置までの距離)
r  :曲率半径
t  :軸上面間隔
nd :レンズ材料のd線に対する屈折率
νd :レンズ材料のアッベ数
(Example)
Next, examples suitable for the above-described embodiment will be described. However, the present invention is not limited to the following examples. Symbols used in each example are as follows.
f: focal length of the entire imaging lens system fB: back focus Fno: F number 2Y: diagonal length ENTP along the imaging surface of the solid-state imaging device: entrance pupil position (distance from the first surface to the entrance pupil position)
EXTP: exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from first surface to front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
r: radius of curvature t: axial top surface spacing nd: refractive index νd of lens material with respect to d-line: Abbe number of lens material
 各実施例において、各面番号の後に「*」又は[SPS](奇数次が含まれる非球面)が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。 In each embodiment, a surface in which “*” or [SPS] (an aspheric surface including an odd order) is described after each surface number is an aspheric surface, and the aspheric surface shape is It is expressed by the following “Equation 1” where the vertex is the origin, the X axis is taken in the optical axis direction, and the height in the direction perpendicular to the optical axis is h.
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
Figure JPOXMLDOC01-appb-M000001
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
(実施例1)
 レンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)を、E(たとえば2.5e-002)を用いて表すものとする。図4は実施例1のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図5(a)は実施例1の球面収差図、図5(b)は非点収差図、図5(c)は歪曲収差図、図5(d)はメリディオナルコマ収差図である。ここで、球面収差図、コマ収差図及びメリディオナルコマ収差図において、gはg線、dはd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線Sはサジタル面、点線Mはメリディオナル面をそれぞれ表す(以下同じ)。第1レンズL1と第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1と第2レンズL2の間にある。また、第1レンズL1はガラスレンズ、第2レンズL2はガラスレンズである。
Example 1
Lens data is shown in Table 1. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5e−002). 4 is a sectional view of the lens of Example 1. FIG. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. 5A is a spherical aberration diagram of Example 1, FIG. 5B is an astigmatism diagram, FIG. 5C is a distortion diagram, and FIG. 5D is a meridional coma aberration diagram. Here, in the spherical aberration diagram, the coma aberration diagram, and the meridional coma aberration diagram, g represents the amount of spherical aberration with respect to the g line, and d represents the amount of spherical aberration with respect to the d line. In the astigmatism diagram, the solid line S represents the sagittal plane, and the dotted line M represents the meridional plane (the same applies hereinafter). The first lens L1 and the second lens L2 are single lenses, and the aperture stop S is between the first lens L1 and the second lens L2. The first lens L1 is a glass lens, and the second lens L2 is a glass lens.
[表1]
実施例1     

SURF DATA
 NUM.       r        d           nd       vd             有効半径(mm)
 OBJ     INFINITY    400.0000
   1*      0.8325    0.4528      1.75512  45.59           0.57
   2*      1.0496    0.0854                               0.33
 STO     INFINITY    0.1089                               0.28
   4*    -20.0981    0.8354      1.75512  45.59           0.40
   5*     -3.0092    0.3105                               0.81 
   6     INFINITY    0.5500      1.51633  64.14
   7     INFINITY    0.5000
 IMG      -8.0901    0.0000

ASPHERICAL SURFACE
1:K=7.74111e-001,A4=-1.13037e-001,A6=4.67147e-001,A8=-1.14870e+001,
A10=1.15302e+002,A12=-6.23049e+002,A14=1.64718e+003,
A16=-1.73023e+003,A18=0.00000e+000,A20=0.00000e+000
2:K=2.19979e+000,A4=1.99300e-002,A6=8.33235e+000,A8=-2.05035e+002,
A10=2.21042e+003,A12=-4.98730e+003,A14=-2.72142e+004,
A16=7.48554e+003,A18=0.00000e+000,A20=0.00000e+000
4:K=-5.00000e+001,A4=-2.97004e-001,A6=6.75943e+000 ,A8=-1.09017e+002,
A10=8.00678e+002,A12=-2.79629e+003,A14=-1.65536e+002,
A16=3.55105e+004,A18=1.04851e+005,A20=-1.18486e+006
5:K=-1.40717e+000,A4=5.34896e-0040,A6=2.51189e-001,A8=-1.70186e+0000,
A10=2.16871e+000,A12=5.96340e+000,A14=-1.17631e+001,
A16=-2.80974e+001,A18=8.42130e+001,A20=-5.64269e+001

f=      2.15 mm
fB=     1.16 mm
Fno=    2.8
2Y=     2.84 mm
ENTP=   0.49 mm
EXTP=  -1.36 mm
H1=     0.13 mm
H2=    -1.66 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       1       2.810 
        2       4       4.590
[table 1]
Example 1

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 400.0000
1 * 0.8325 0.4528 1.75512 45.59 0.57
2 * 1.0496 0.0854 0.33
STO INFINITY 0.1089 0.28
4 * -20.0981 0.8354 1.75512 45.59 0.40
5 * -3.0092 0.3105 0.81
6 INFINITY 0.5500 1.51633 64.14
7 INFINITY 0.5000
IMG -8.0901 0.0000

ASPHERICAL SURFACE
1: K = 7.74111e-001, A4 = -1.13037e-001, A6 = 4.67147e-001, A8 = -1.14870e + 001,
A10 = 1.15302e + 002, A12 = -6.23049e + 002, A14 = 1.64718e + 003,
A16 = -1.73023e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
2: K = 2.19979e + 000, A4 = 1.99300e-002, A6 = 8.33235e + 000, A8 = -2.05035e + 002,
A10 = 2.21042e + 003, A12 = -4.98730e + 003, A14 = -2.72142e + 004,
A16 = 7.48554e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -5.00000e + 001, A4 = -2.97004e-001, A6 = 6.75943e + 000, A8 = -1.09017e + 002,
A10 = 8.00678e + 002, A12 = -2.79629e + 003, A14 = -1.65536e + 002,
A16 = 3.55105e + 004, A18 = 1.04851e + 005, A20 = -1.18486e + 006
5: K = -1.40717e + 000, A4 = 5.34896e-0040, A6 = 2.51189e-001, A8 = -1.70186e + 0000,
A10 = 2.16871e + 000, A12 = 5.96340e + 000, A14 = -1.17631e + 001,
A16 = -2.80974e + 001, A18 = 8.42130e + 001, A20 = -5.64269e + 001

f = 2.15 mm
fB = 1.16 mm
Fno = 2.8
2Y = 2.84 mm
ENTP = 0.49 mm
EXTP = -1.36 mm
H1 = 0.13 mm
H2 = -1.66 mm

Single lens data

Lens Start surface Focal length (mm)
1 1 2.810
2 4 4.590
(実施例2)
 レンズデータを表2に示す。図6は実施例2のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図7(a)は実施例2の球面収差図、図7(b)は非点収差図、図7(c)は歪曲収差図、図7(d)はメリディオナルコマ収差図である。第1レンズL1と第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1と第2レンズL2の間にある。また、第1レンズL1はガラスレンズ、第2レンズL2はガラスレンズである。
(Example 2)
Table 2 shows the lens data. 6 is a sectional view of the lens of Example 2. FIG. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. 7A is a spherical aberration diagram of Example 2, FIG. 7B is an astigmatism diagram, FIG. 7C is a distortion diagram, and FIG. 7D is a meridional coma aberration diagram. The first lens L1 and the second lens L2 are single lenses, and the aperture stop S is between the first lens L1 and the second lens L2. The first lens L1 is a glass lens, and the second lens L2 is a glass lens.
[表2]
実施例2

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY    400.0000
   1*      0.8425    0.4293       1.75512  45.59          0.55 
   2*      1.0549    0.0805                               0.33 
 STO     INFINITY    0.1039                               0.29
   4*   -111.8889    0.8150       1.75512  45.59          0.39 
   5*     -3.4420    0.3907                               0.74 
   6     INFINITY    0.5500       1.51633  64.14 
   7     INFINITY    0.5000
 IMG      -6.2685    0.0000

ASPHERICAL SURFACE
1:K=7.76603e-001,A4=-1.12376e-001,A6=4.77421e-001,A8=-1.14984e+001,
A10=1.15241e+002,A12=-6.23151e+002,A14=1.64734e+003,
A16=-1.72924e+003,A18=0.00000e+000,A20=0.00000e+000
2:K=2.05589e+000,A4=8.12280e-004,A6=8.11398e+000,A8=-2.06773e+002,
A10=2.18520e+003,A12=-4.98730e+003,A14=-2.72142e+004,
A16=7.48554e+003,A18=0.00000e+000,A20=0.00000e+000
4:K=5.00000e+001,A4=-3.06866e-001,A6=6.84365e+000,A8=-1.08989e+002,
A10=7.97792e+002,A12=-2.81339e+003,A14=-2.01321e+002,
A16=3.57375e+004,A18=1.07130e+0050,A20=-1.19090e+006
5:K=-2.13723e+000,A4=2.30927e-004,A6=2.58270e-001,A8=-1.70087e+000,
A10=2.16246e+000,A12=5.95162e+000,A14=-1.17753e+00,A16=-2.81014e+001,
A18=8.42259e+001,A20=-5.63948e+001

f=      2.19 mm
fB=     1.25 mm
Fno=    2.8
2Y=     2.84 mm
ENTP=   0.45 mm
EXTP=  -1.40 mm
H1=     0.09 mm
H2=    -1.71 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       1       2.960
        2       4       4.690 
[Table 2]
Example 2

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 400.0000
1 * 0.8425 0.4293 1.75512 45.59 0.55
2 * 1.0549 0.0805 0.33
STO INFINITY 0.1039 0.29
4 * -111.8889 0.8150 1.75512 45.59 0.39
5 * -3.4420 0.3907 0.74
6 INFINITY 0.5500 1.51633 64.14
7 INFINITY 0.5000
IMG -6.2685 0.0000

ASPHERICAL SURFACE
1: K = 7.76603e-001, A4 = -1.12376e-001, A6 = 4.77421e-001, A8 = -1.14984e + 001,
A10 = 1.15241e + 002, A12 = -6.23151e + 002, A14 = 1.64734e + 003,
A16 = -1.72924e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
2: K = 2.05589e + 000, A4 = 8.12280e-004, A6 = 8.11398e + 000, A8 = -2.06773e + 002,
A10 = 2.18520e + 003, A12 = -4.98730e + 003, A14 = -2.72142e + 004,
A16 = 7.48554e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 5.00000e + 001, A4 = -3.06866e-001, A6 = 6.84365e + 000, A8 = -1.08989e + 002,
A10 = 7.97792e + 002, A12 = -2.81339e + 003, A14 = -2.01321e + 002,
A16 = 3.57375e + 004, A18 = 1.07130e + 0050, A20 = -1.19090e + 006
5: K = -2.13723e + 000, A4 = 2.30927e-004, A6 = 2.58270e-001, A8 = -1.70087e + 000,
A10 = 2.16246e + 000, A12 = 5.95162e + 000, A14 = -1.17753e + 00, A16 = -2.81014e + 001,
A18 = 8.42259e + 001, A20 = -5.63948e + 001

f = 2.19 mm
fB = 1.25 mm
Fno = 2.8
2Y = 2.84 mm
ENTP = 0.45 mm
EXTP = -1.40 mm
H1 = 0.09 mm
H2 = -1.71 mm

Single lens data

Lens Start surface Focal length (mm)
1 1 2.960
2 4 4.690
(実施例3)
 レンズデータを表3に示す。図8は実施例3のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図9(a)は実施例3の球面収差図、図9(b)は非点収差図、図9(c)は歪曲収差図、図9(d)はメリディオナルコマ収差図である。第1レンズL1と第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1と第2レンズL2の間にある。また、第1レンズL1はガラスレンズ、第2レンズL2はガラスレンズである。
(Example 3)
Table 3 shows lens data. FIG. 8 is a sectional view of the lens of Example 3. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. FIG. 9A is a spherical aberration diagram of Example 3, FIG. 9B is an astigmatism diagram, FIG. 9C is a distortion diagram, and FIG. 9D is a meridional coma aberration diagram. The first lens L1 and the second lens L2 are single lenses, and the aperture stop S is between the first lens L1 and the second lens L2. The first lens L1 is a glass lens, and the second lens L2 is a glass lens.
[表3]
実施例3

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY    400.0000
   1*      0.8223    0.5455       1.57207  34.88          0.59
   2*      1.0550    0.0603                               0.30
 STO     INFINITY    0.0794                               0.29
   4*     68.9380    0.6682       1.71539  43.29          0.38
   5*     -2.5652    0.4598                               0.67
   6     INFINITY    0.5500       1.51633  64.14
   7     INFINITY    0.5000
 IMG      -9.9213    0.0000

ASPHERICAL SURFACE
1:K=7.37941e-001,A4=-1.57593e-001,A6=3.49155e-001,A8=-1.17225e+001,
A10=1.14791e+002,A12=-6.24317e+002,A14=1.64366e+003,
A16=-1.73959e+003,A18=0.00000e+000,A20=0.00000e+000
2:K=2.17700e+000,A4=1.84993e-002,A6=8.27100e+000,A8=-2.07531e+002,
A10=2.18630e+003,A12=-4.98730e+003,A14=-2.72142e+004,
A16=7.48554e+003,A18=0.00000e+000,A20=0.00000e+000
4:K=-4.48684e+001,A4=-2.82950e-001,A6=6.84504e+000,A8=-1.06646e+002,
A10=8.14816e+002,A12=-2.77302e+003,A14=-5.12683e+002,
A16=3.18101e+004,A18=9.07088e+004,A20=-1.05427e+006
5:K=7.60680e-001,A4=-1.59596e-002,A6=2.08662e-001,A8=-1.73543e+000,
A10=2.15606e+000,A12=5.97318e+000,A14=-1.17416e+001,
A16=-2.80854e+001,A18=8.42082e+001,A20=-5.63702e+001

f=      2.17 mm
fB=     1.32 mm
Fno=    2.8
2Y=     2.84 mm
ENTP=   0.56 mm
EXTP=  -1.36 mm
H1=     0.19 mm
H2=    -1.68 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       1       3.517
        2       4       3.471
[Table 3]
Example 3

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 400.0000
1 * 0.8223 0.5455 1.57207 34.88 0.59
2 * 1.0550 0.0603 0.30
STO INFINITY 0.0794 0.29
4 * 68.9380 0.6682 1.71539 43.29 0.38
5 * -2.5652 0.4598 0.67
6 INFINITY 0.5500 1.51633 64.14
7 INFINITY 0.5000
IMG -9.9213 0.0000

ASPHERICAL SURFACE
1: K = 7.37941e-001, A4 = -1.57593e-001, A6 = 3.49155e-001, A8 = -1.17225e + 001,
A10 = 1.14791e + 002, A12 = -6.24317e + 002, A14 = 1.64366e + 003,
A16 = -1.73959e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
2: K = 2.17700e + 000, A4 = 1.84993e-002, A6 = 8.27100e + 000, A8 = -2.07531e + 002,
A10 = 2.18630e + 003, A12 = -4.98730e + 003, A14 = -2.72142e + 004,
A16 = 7.48554e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -4.48684e + 001, A4 = -2.82950e-001, A6 = 6.84504e + 000, A8 = -1.06646e + 002,
A10 = 8.14816e + 002, A12 = -2.77302e + 003, A14 = -5.12683e + 002,
A16 = 3.18101e + 004, A18 = 9.07088e + 004, A20 = -1.05427e + 006
5: K = 7.60680e-001, A4 = -1.59596e-002, A6 = 2.08662e-001, A8 = -1.73543e + 000,
A10 = 2.15606e + 000, A12 = 5.97318e + 000, A14 = -1.17416e + 001,
A16 = -2.80854e + 001, A18 = 8.42082e + 001, A20 = -5.63702e + 001

f = 2.17 mm
fB = 1.32 mm
Fno = 2.8
2Y = 2.84 mm
ENTP = 0.56 mm
EXTP = -1.36 mm
H1 = 0.19 mm
H2 = -1.68 mm

Single lens data

Lens Start surface Focal length (mm)
1 1 3.517
2 4 3.471
(実施例4)
 レンズデータを表4に示す。図10は実施例4のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図11(a)は実施例4の球面収差図、図11(b)は非点収差図、図11(c)は歪曲収差図、図11(d)はメリディオナルコマ収差図である。第1レンズL1と第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1の物体側にある。また、第1レンズL1はガラスレンズ、第2レンズL2はガラスレンズである。
Example 4
Table 4 shows the lens data. FIG. 10 is a sectional view of the lens of Example 4. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. 11A is a spherical aberration diagram of Example 4, FIG. 11B is an astigmatism diagram, FIG. 11C is a distortion aberration diagram, and FIG. 11D is a meridional coma aberration diagram. The first lens L1 and the second lens L2 are single lenses, and the aperture stop S is on the object side of the first lens L1. The first lens L1 is a glass lens, and the second lens L2 is a glass lens.
[表4]
実施例4

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY    400.0000
 STO     INFINITY    0.0500                               0.42
   2     INFINITY    -0.0703                              0.45
   3*      0.8936    0.7243       1.58376  56.27          0.51
   4*      1.6461    0.4119                               0.51
   5*      6.3882    0.9000       1.58376  56.27          0.68 
   6*      4.6980    0.0534                               1.14
   7     INFINITY    0.6220       1.51633  64.14
   8     INFINITY    0.2000 
 IMG     -16.5190    0.0000

ASPHERICAL SURFACE
3:K=-2.51009e-001,A4=3.77875e-002,A6=3.21731e-001,A8=-8.20229e-001,
A10=1.10419e+000,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
4:K=5.47356e+000,A4=4.45048e-003,A6=1.15005e+000,A8=-3.34570e+000,
A10=9.64316e+000,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
5:K=-6.96231e+000,A4=-3.74955e-001,A6=4.53090e-001,A8=-2.31109e+000,
A10=6.96332e+000,A12=-1.48006e+001,A14=1.32818e+001,A16=0.00000e+000,
A18=0.00000e+000,A20=0. 00000e+000
6:K=-1.12035e+001,A4=-1.00631e-001,A6=2.21635e-002,A8=-4.37315e-002,
A10=7.05668e-003,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000

f=      2.39 mm
fB=     0.66 mm
Fno=    2.8
2Y=     2.87 mm
ENTP=   0.00 mm
EXTP=  -1.67 mm
H1=    -0.66 mm
H2=    -2.19 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       3         2.472
        2       5       -37.844
[Table 4]
Example 4

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 400.0000
STO INFINITY 0.0500 0.42
2 INFINITY -0.0703 0.45
3 * 0.8936 0.7243 1.58376 56.27 0.51
4 * 1.6461 0.4119 0.51
5 * 6.3882 0.9000 1.58376 56.27 0.68
6 * 4.6980 0.0534 1.14
7 INFINITY 0.6220 1.51633 64.14
8 INFINITY 0.2000
IMG -16.5190 0.0000

ASPHERICAL SURFACE
3: K = -2.51009e-001, A4 = 3.77875e-002, A6 = 3.21731e-001, A8 = -8.20229e-001,
A10 = 1.10419e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 5.47356e + 000, A4 = 4.45048e-003, A6 = 1.15005e + 000, A8 = -3.34570e + 000,
A10 = 9.64316e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -6.96231e + 000, A4 = -3.74955e-001, A6 = 4.53090e-001, A8 = -2.31109e + 000,
A10 = 6.96332e + 000, A12 = -1.48006e + 001, A14 = 1.32818e + 001, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -1.12035e + 001, A4 = -1.00631e-001, A6 = 2.21635e-002, A8 = -4.37315e-002,
A10 = 7.05668e-003, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000

f = 2.39 mm
fB = 0.66 mm
Fno = 2.8
2Y = 2.87 mm
ENTP = 0.00 mm
EXTP = -1.67 mm
H1 = -0.66 mm
H2 = -2.19 mm

Single lens data

Lens Start surface Focal length (mm)
1 3 2.472
2 5 -37.844
(実施例5)
 レンズデータを表5に示す。図12は実施例5のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図13(a)は実施例5の球面収差図、図13(b)は非点収差図、図13(c)は歪曲収差図、図13(d)はメリディオナルコマ収差図である。第1レンズL1と第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1の物体側にある。また、第1レンズL1はガラスレンズ、第2レンズL2は樹脂レンズである。
(Example 5)
Table 5 shows the lens data. 12 is a sectional view of the lens of Example 5. FIG. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. 13A is a spherical aberration diagram of Example 5, FIG. 13B is an astigmatism diagram, FIG. 13C is a distortion diagram, and FIG. 13D is a meridional coma aberration diagram. The first lens L1 and the second lens L2 are single lenses, and the aperture stop S is on the object side of the first lens L1. The first lens L1 is a glass lens, and the second lens L2 is a resin lens.
[表5]
実施例5

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY    400.0000
 STO     INFINITY    0.0500                               0.43
   2     INFINITY    -0.0755                              0.46 
   3*      0.8758    0.6727       1.56758  56.29          0.51
   4*      1.5975    0.4036                               0.51
   5*      6.1433    0.8760       1.51751  56.34          0.68
   6*      6.6593    0.1374                               1.10
   7     INFINITY    0.6220       1.51633  64.14
   8     INFINITY    0.2000
 IMG     -10.4901    0.0000

ASPHERICAL SURFACE
3:K=-2.24372e-001,A4=4.73513e-002,A6=2.93037e-001,A8=-5.61696e-001,
A10=6.98038e-001,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
4:K=5.35554e+000,A4=1.65123e-002,A6=1.16449e+000,A8=-3.27017e+000,
A10=9.83740e+000,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
5:K=1.73115e+001,A4=-3.66290e-001,A6=4.46528e-001,A8=-2.43667e+000,
A10=7.21927e+000,A12=-1.39787e+001,A14=1.24475e+001,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
6:K=2.67581e+001,A4=-1.06058e-001,A6=9.96793e-003,A8=-3.59262e-002,
A10=3.09509e-003,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000

f=      2.41 mm
fB=     0.75 mm
Fno=    2.8
2Y=     2.87 mm
ENTP=   0.00 mm
EXTP=  -1.80 mm
H1=    -0.49 mm
H2=    -2.21 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       3        2.554
        2       5       97.032
[Table 5]
Example 5

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 400.0000
STO INFINITY 0.0500 0.43
2 INFINITY -0.0755 0.46
3 * 0.8758 0.6727 1.56758 56.29 0.51
4 * 1.5975 0.4036 0.51
5 * 6.1433 0.8760 1.51751 56.34 0.68
6 * 6.6593 0.1374 1.10
7 INFINITY 0.6220 1.51633 64.14
8 INFINITY 0.2000
IMG -10.4901 0.0000

ASPHERICAL SURFACE
3: K = -2.24372e-001, A4 = 4.73513e-002, A6 = 2.93037e-001, A8 = -5.61696e-001,
A10 = 6.98038e-001, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 5.35554e + 000, A4 = 1.65123e-002, A6 = 1.16449e + 000, A8 = -3.27017e + 000,
A10 = 9.83740e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 1.73115e + 001, A4 = -3.66290e-001, A6 = 4.46528e-001, A8 = -2.43667e + 000,
A10 = 7.21927e + 000, A12 = -1.39787e + 001, A14 = 1.24475e + 001, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = 2.67581e + 001, A4 = -1.06058e-001, A6 = 9.96793e-003, A8 = -3.59262e-002,
A10 = 3.09509e-003, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000

f = 2.41 mm
fB = 0.75 mm
Fno = 2.8
2Y = 2.87 mm
ENTP = 0.00 mm
EXTP = -1.80 mm
H1 = -0.49 mm
H2 = -2.21 mm

Single lens data

Lens Start surface Focal length (mm)
1 3 2.554
2 5 97.032
(実施例6)
 レンズデータを表6に示す。図14は実施例6のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図15(a)は実施例6の球面収差図、図15(b)は非点収差図、図15(c)は歪曲収差図、図15(d)はメリディオナルコマ収差図である。第1レンズL1と第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1の物体側にある。また、第1レンズL1は樹脂レンズ、第2レンズL2はガラスレンズである。
(Example 6)
Table 6 shows the lens data. FIG. 14 is a sectional view of the lens of Example 6. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. FIG. 15A is a spherical aberration diagram of Example 6, FIG. 15B is an astigmatism diagram, FIG. 15C is a distortion diagram, and FIG. 15D is a meridional coma aberration diagram. The first lens L1 and the second lens L2 are single lenses, and the aperture stop S is on the object side of the first lens L1. The first lens L1 is a resin lens, and the second lens L2 is a glass lens.
[表6]
実施例6

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY    400.0000
 STO     INFINITY    0.0500                               0.41 
   2     INFINITY    -0.0668                              0.44
   3*      0.8502    0.7235       1.49473  64.23          0.50 
   4*      2.0624    0.3916                               0.53
   5*      6.3072    0.7989       1.73920  59.55          0.69
   6*      6.1474    0.1757                               1.08
   7     INFINITY    0.6220       1.51633  64.14
   8     INFINITY    0.2000
 IMG      -9.3955    0.0000

ASPHERICAL SURFACE
3:K=-2.61216e-001,A4=3.38293e-002,A6=2.90645e-001,A8=-4.47149e-001,
A10=1.25687e-001,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
4:K=5.75728e+000,A4=2.07335e-002,A6=1.31375e+000,A8=-3.19799e+000,
A10=1.04609e+001,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
5:K=2.92688e+001,A4=-3.50327e-001,A6=4.47162e-001,A8=-2.50094e+000,
A10=7.25365e+000,A12=-1.38200e+001,A14=1.15734e+001,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
6:K=2.39573e+001,A4=-1.09131e-001,A6=-1.08533e-002,A8=-2.06293e-002,
A10=1.53061e-003,A12=0.00000e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000

f=      2.30 mm
fB=     0.79 mm
Fno=    2.8
2Y=     2.87 mm
ENTP=   0.00 mm
EXTP=   -1.70 mm
H1=     -0.42 mm
H2=     -2.05 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       3         2.442
        2       5       291.774
[Table 6]
Example 6

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 400.0000
STO INFINITY 0.0500 0.41
2 INFINITY -0.0668 0.44
3 * 0.8502 0.7235 1.49473 64.23 0.50
4 * 2.0624 0.3916 0.53
5 * 6.3072 0.7989 1.73920 59.55 0.69
6 * 6.1474 0.1757 1.08
7 INFINITY 0.6220 1.51633 64.14
8 INFINITY 0.2000
IMG -9.3955 0.0000

ASPHERICAL SURFACE
3: K = -2.61216e-001, A4 = 3.38293e-002, A6 = 2.90645e-001, A8 = -4.47149e-001,
A10 = 1.25687e-001, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 5.75728e + 000, A4 = 2.07335e-002, A6 = 1.31375e + 000, A8 = -3.19799e + 000,
A10 = 1.04609e + 001, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 2.92688e + 001, A4 = -3.50327e-001, A6 = 4.47162e-001, A8 = -2.50094e + 000,
A10 = 7.25365e + 000, A12 = -1.38200e + 001, A14 = 1.15734e + 001, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = 2.39573e + 001, A4 = -1.09131e-001, A6 = -1.08533e-002, A8 = -2.06293e-002,
A10 = 1.53061e-003, A12 = 0.00000e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000

f = 2.30 mm
fB = 0.79 mm
Fno = 2.8
2Y = 2.87 mm
ENTP = 0.00 mm
EXTP = -1.70 mm
H1 = -0.42 mm
H2 = -2.05 mm

Single lens data

Lens Start surface Focal length (mm)
1 3 2.442
2 5 291.774
(実施例7)
 レンズデータを表7に示す。図16は実施例7のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図17(a)は実施例7の球面収差図、図17(b)は非点収差図、図17(c)は歪曲収差図、図17(d)はメリディオナルコマ収差図である。第1レンズL1は、平行平板の基板LS1と、その物体側に形成したレンズ部L1aと、基板LS1の像側に形成したレンズ部L1bとからなる多層構成のレンズであり、第2レンズL2は、平行平板の基板LS2と、その物体側に形成したレンズ部L2aと、基板LS2の像側に形成したレンズ部L12とからなる多層構成のレンズであり、開口絞りSは、平行平板の基板LS1と、その物体側に形成したレンズ部L1aとの間に形成されている。第1レンズL1及び第2レンズL2は、ガラスや樹脂などからなる例えばウェハサイズの透明な平行平板上に硬化性樹脂材料などを用いて成形型で転写するとともに樹脂材料を硬化させることにより、多数のレンズ部を並べて形成したいわゆるウェハレベルレンズを、レンズ部毎に切断して個片化して得られたレンズである。このような多層構成のレンズであっても、3次元に湾曲してなる固体撮像素子の撮像面に被写体像を結像させるための撮像レンズという観点で、樹脂やガラス等の単一素材からなるレンズが有するのと同様の光学性能を得つつ、さらに製造コストの低下を図ることが可能である。また、このようなレンズを用いることにより、各レンズ部の物体側面、像側面を構成する材料を変更可能なため、色収差や像面を良好にすることが出来る。また、ウェハレベルレンズは、一度に多数個のレンズ成型をすることが可能なため、コストを低減させることが出来る。
(Example 7)
Table 7 shows the lens data. FIG. 16 is a sectional view of the lens of Example 7. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. FIG. 17A is a spherical aberration diagram of Example 7, FIG. 17B is an astigmatism diagram, FIG. 17C is a distortion diagram, and FIG. 17D is a meridional coma aberration diagram. The first lens L1 is a multilayer lens composed of a parallel plate substrate LS1, a lens portion L1a formed on the object side, and a lens portion L1b formed on the image side of the substrate LS1, and the second lens L2 The lens LS2 has a multilayer structure including a parallel plate substrate LS2, a lens portion L2a formed on the object side thereof, and a lens portion L12 formed on the image side of the substrate LS2. The aperture stop S is a parallel plate substrate LS1. And the lens portion L1a formed on the object side. The first lens L1 and the second lens L2 are formed by transferring a resin material or the like onto a transparent parallel plate made of glass or resin, for example, using a curable resin material and curing the resin material. This is a lens obtained by cutting a so-called wafer level lens formed by arranging the lens portions into individual pieces. Even such a multilayer lens is made of a single material such as resin or glass from the viewpoint of an imaging lens for forming a subject image on the imaging surface of a solid-state imaging device curved in three dimensions. It is possible to further reduce the manufacturing cost while obtaining the same optical performance as the lens has. Further, by using such a lens, the material constituting the object side surface and the image side surface of each lens unit can be changed, so that the chromatic aberration and the image surface can be improved. In addition, since the wafer level lens can mold a large number of lenses at a time, the cost can be reduced.
[表7]
実施例7

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY   1000.0000
   1SPS    0.8654    0.3338       1.51665  56.27          0.54
 STO     INFINITY    0.3000       1.51690  61.89          0.43
   3     INFINITY    0.0800       1.57208  34.88          0.47
   4SPS    2.3025    0.3664                               0.49
   5*     -6.3995    0.0575       1.51615  55.05          0.62
   6     INFINITY    0.9632       1.51690  61.89          0.72 
   7     INFINITY    0.4400       1.55296  39.50          1.3
   8*   -151.6641    0.1619                               1.4
   9     INFINITY    0.3500       1.47140  65.19
  10     INFINITY    0.2000
 IMG     -13.9634    0.0000

ASPHERICAL SURFACE
1:K=6.37674e-001,A3=-1.06002e-001,A4=1.65387e-001,A5=0.00000e+000,
A6=1.53651e-001,A7=0.00000e+000,A8=-1.47903e+001,A9=0.00000e+000,
A10=9.40919e+001,A11=0.00000e+000,A12=-2.63513e+002,A13=0.00000e+000,
A14=2.67490e+002,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,
A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=1.56132e+001,A3=-6.35449e-002,A4=2.96711e-001,A5=0.00000e+000,
A6=-2.77475e+000,A7=0.00000e+000,A8=2.38186e+001,A9=0.00000e+000,
A10=-1.01043e+002,A11=0.00000e+000,A12=1.94244e+002,A13=0.00000e+000,
A14=-1.24473e+002,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,
A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
5:K=-4.24641e+001,A4=-3.41997e-001,A6=4.50290e+000,A8=-1.26646e+002,
A10=1.44719e+003,A12=-8.99411e+003,A14=3.26300e+004,
A16=-6.87009e+004,A18=7.69040e+004,A20=-3.47942e+004
8:K=4.99667e+001,A4=-2.66052e-003,A6=-7.42506e-002,A8=5.51350e-002,
A10=-2.59968e-002,A12=4.85271e-003,A14=3.87280e-004,
A16=-2.36131e-004,A18=0.00000e+000,A20=0.00000e+000

f=      2.68 mm
fB=     0.60 mm
Fno=    2.8
2Y=     3.54 mm
ENTP=   0.25 mm
EXTP=   -1.94 mm
H1=     -0.48 mm
H2=     -2.51 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       1         2.392
        2       5       -13.033
[Table 7]
Example 7

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 1000.0000
1SPS 0.8654 0.3338 1.51665 56.27 0.54
STO INFINITY 0.3000 1.51690 61.89 0.43
3 INFINITY 0.0800 1.57208 34.88 0.47
4SPS 2.3025 0.3664 0.49
5 * -6.3995 0.0575 1.51615 55.05 0.62
6 INFINITY 0.9632 1.51690 61.89 0.72
7 INFINITY 0.4400 1.55296 39.50 1.3
8 * -151.6641 0.1619 1.4
9 INFINITY 0.3500 1.47140 65.19
10 INFINITY 0.2000
IMG -13.9634 0.0000

ASPHERICAL SURFACE
1: K = 6.37674e-001, A3 = -1.06002e-001, A4 = 1.65387e-001, A5 = 0.00000e + 000,
A6 = 1.53651e-001, A7 = 0.00000e + 000, A8 = -1.47903e + 001, A9 = 0.00000e + 000,
A10 = 9.40919e + 001, A11 = 0.00000e + 000, A12 = -2.63513e + 002, A13 = 0.00000e + 000,
A14 = 2.67490e + 002, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000,
A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 1.56132e + 001, A3 = -6.35449e-002, A4 = 2.96711e-001, A5 = 0.00000e + 000,
A6 = -2.77475e + 000, A7 = 0.00000e + 000, A8 = 2.38186e + 001, A9 = 0.00000e + 000,
A10 = -1.01043e + 002, A11 = 0.00000e + 000, A12 = 1.94244e + 002, A13 = 0.00000e + 000,
A14 = -1.24473e + 002, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000,
A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -4.24641e + 001, A4 = -3.41997e-001, A6 = 4.50290e + 000, A8 = -1.26646e + 002,
A10 = 1.44719e + 003, A12 = -8.99411e + 003, A14 = 3.26300e + 004,
A16 = -6.87009e + 004, A18 = 7.69040e + 004, A20 = -3.47942e + 004
8: K = 4.99667e + 001, A4 = -2.66052e-003, A6 = -7.42506e-002, A8 = 5.51350e-002,
A10 = -2.59968e-002, A12 = 4.85271e-003, A14 = 3.87280e-004,
A16 = -2.36131e-004, A18 = 0.00000e + 000, A20 = 0.00000e + 000

f = 2.68 mm
fB = 0.60 mm
Fno = 2.8
2Y = 3.54 mm
ENTP = 0.25 mm
EXTP = -1.94 mm
H1 = -0.48 mm
H2 = -2.51 mm

Single lens data

Lens Start surface Focal length (mm)
1 1 2.392
2 5 -13.033
(実施例8)
 レンズデータを表8に示す。図18は実施例8のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図19(a)は実施例8の球面収差図、図19(b)は非点収差図、図19(c)は歪曲収差図、図19(d)はメリディオナルコマ収差図である。第1レンズL1は、平行平板の基板LS1と、その物体側に形成したレンズ部L1aと、基板LS1の像側に形成したレンズ部L1bとからなる複合レンズであり、実施例7と同様にウェハレベルレンズを個片化して得られたレンズである。第2レンズL2はガラスの単レンズであり、開口絞りSは、平行平板の基板LS1と、その物体側に形成したレンズ部L1aとの間に形成されている。
(Example 8)
Table 8 shows the lens data. FIG. 18 is a sectional view of the lens of Example 8. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. 19A is a spherical aberration diagram of Example 8, FIG. 19B is an astigmatism diagram, FIG. 19C is a distortion diagram, and FIG. 19D is a meridional coma aberration diagram. The first lens L1 is a compound lens composed of a parallel plate substrate LS1, a lens portion L1a formed on the object side thereof, and a lens portion L1b formed on the image side of the substrate LS1. This is a lens obtained by dividing the level lens into individual pieces. The second lens L2 is a single glass lens, and the aperture stop S is formed between a parallel plate substrate LS1 and a lens portion L1a formed on the object side thereof.
[表8]
実施例8

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY   1000.0000
   1SPS    0.8655    0.3549       1.51665  56.27          0.55
 STO     INFINITY    0.3000       1.51690  61.89          0.43
   3     INFINITY    0.0851       1.57208  34.88          0.47
   4SPS    2.3265    0.3580                               0.49
   5*     -6.0376    1.3800       1.59628  36.26          0.61
   6*    -49.7739    0.2492                               1.37
   7     INFINITY    0.3500       1.47140  65.19
   8     INFINITY    0.2000
 IMG     -14.6765    0.0000

ASPHERICAL SURFACE
1:K=6.27071e-001,A3=-1.05382e-001,A4=1.62139e-001,A5=0.00000e+000,
A6=1.23709e-001,A7=0.00000e+000,A8=-1.47495e+001,A9=0.00000e+000,
A10=9.43630e+001,A11=0.00000e+000,A12=-2.63276e+002,A13=0.00000e+000,
A14=2.64398e+002,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,
A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=1.56741e+001,A3=-6.70734e-002,A4=2.93198e-001,A5=0.00000e+000,
A6=-2.75460e+000,A7=0.00000e+000,A8=2.38459e+001,A9=0.00000e+000,
A10=-1.01612e+002,A11=0.00000e+000,A12=1.93062e+002,A13=0.00000e+000,
A14=-1.09145e+002,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,
A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
5:K=-5.00000e+001,A4=-3.23880e-001,A6=4.50722e+000,A8=-1.26665e+002,
A10=1.44721e+003,A12=-8.99415e+003,A14=3.26301e+004,
A16=-6.87001e+004,A18=7.69079e+004,A20=-3.47784e+004
6:K=6.91292e+000,A4=-7.34637e-003,A6=-7.34338e-002,A8=5.51963e-002,
A10=-2.60199e-002,A12=4.83938e-003,A14=3.82653e-004,
A16=-2.37405e-004,A18=0.00000e+000,A20=0.00000e+000

f=      2.70 mm
fB=     0.69 mm
Fno=    2.8
2Y=     3.54 mm
ENTP=   0.27 mm
EXTP=  -1.94 mm
H1=    -0.50 mm
H2=    -2.53 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       1         2.368
        2       5       -11.661
[Table 8]
Example 8

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 1000.0000
1SPS 0.8655 0.3549 1.51665 56.27 0.55
STO INFINITY 0.3000 1.51690 61.89 0.43
3 INFINITY 0.0851 1.57208 34.88 0.47
4SPS 2.3265 0.3580 0.49
5 * -6.0376 1.3800 1.59628 36.26 0.61
6 * -49.7739 0.2492 1.37
7 INFINITY 0.3500 1.47140 65.19
8 INFINITY 0.2000
IMG -14.6765 0.0000

ASPHERICAL SURFACE
1: K = 6.27071e-001, A3 = -1.05382e-001, A4 = 1.62139e-001, A5 = 0.00000e + 000,
A6 = 1.23709e-001, A7 = 0.00000e + 000, A8 = -1.47495e + 001, A9 = 0.00000e + 000,
A10 = 9.43630e + 001, A11 = 0.00000e + 000, A12 = -2.63276e + 002, A13 = 0.00000e + 000,
A14 = 2.64398e + 002, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000,
A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 1.56741e + 001, A3 = -6.70734e-002, A4 = 2.93198e-001, A5 = 0.00000e + 000,
A6 = -2.75460e + 000, A7 = 0.00000e + 000, A8 = 2.38459e + 001, A9 = 0.00000e + 000,
A10 = -1.01612e + 002, A11 = 0.00000e + 000, A12 = 1.93062e + 002, A13 = 0.00000e + 000,
A14 = -1.09145e + 002, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000,
A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -5.00000e + 001, A4 = -3.23880e-001, A6 = 4.50722e + 000, A8 = -1.26665e + 002,
A10 = 1.44721e + 003, A12 = -8.99415e + 003, A14 = 3.26301e + 004,
A16 = -6.87001e + 004, A18 = 7.69079e + 004, A20 = -3.47784e + 004
6: K = 6.91292e + 000, A4 = -7.34637e-003, A6 = -7.34338e-002, A8 = 5.51963e-002,
A10 = -2.60199e-002, A12 = 4.83938e-003, A14 = 3.82653e-004,
A16 = -2.37405e-004, A18 = 0.00000e + 000, A20 = 0.00000e + 000

f = 2.70 mm
fB = 0.69 mm
Fno = 2.8
2Y = 3.54 mm
ENTP = 0.27 mm
EXTP = -1.94 mm
H1 = -0.50 mm
H2 = -2.53 mm

Single lens data

Lens Start surface Focal length (mm)
1 1 2.368
2 5 -11.661
(実施例9)
 レンズデータを表9に示す。図20は実施例9のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板であり、Iは撮像面を示す。図21(a)は実施例9の球面収差図、図21(b)は非点収差図、図21(c)は歪曲収差図、図21(d)はメリディオナルコマ収差図である。第1レンズL1はガラスの単レンズであり、第2レンズL2は、平行平板の基板LS2と、その物体側に形成したレンズ部L2aと、基板LS2の像側に形成したレンズ部L2bとからなる複合レンズであり、実施例7と同様にウェハレベルレンズを個片化して得られたレンズである。開口絞りSは、第1レンズL1と第2レンズL2との間に形成されている。
Example 9
Table 9 shows the lens data. FIG. 20 is a sectional view of the lens of Example 9. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, F is a parallel flat plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, etc. I is an imaging surface. Show. 21A is a spherical aberration diagram of Example 9, FIG. 21B is an astigmatism diagram, FIG. 21C is a distortion diagram, and FIG. 21D is a meridional coma aberration diagram. The first lens L1 is a single glass lens, and the second lens L2 includes a parallel plate substrate LS2, a lens portion L2a formed on the object side, and a lens portion L2b formed on the image side of the substrate LS2. This is a compound lens, which is a lens obtained by dividing a wafer level lens into pieces as in the seventh embodiment. The aperture stop S is formed between the first lens L1 and the second lens L2.
[表9]
実施例9

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY    400.0000
   1*      0.8350    0.4675       1.75512  45.59          0.58
   2*      1.0291    0.0860                               0.33
 STO     INFINITY    0.0839                               0.28
   4*    -98.6942    0.2468       1.57207  34.88          0.37
   5     INFINITY    0.4088       1.63923  38.83          0.52
   6     INFINITY    0.1991       1.67930  47.29          0.75
   7*     -2.8174    0.2566                               0.8
   8     INFINITY    0.5500       1.51633  64.14
   9     INFINITY    0.5000
 IMG      -9.9960    0.0000

ASPHERICAL SURFACE
1:K=7.72606e-001,A4=-1.14493e-001,A6=4.49784e-001,A8=-1.15537e+001,
A10=1.15225e+002,A12=-6.22995e+002,A14=1.64730e+003,
A16=-1.73139e+003,A18=0.00000e+000,A20=0.00000e+000
2:K=2.18653e+000,A4=1.99096e-002,A6=8.21545e+000,A8=-2.07373e+002,
A10=2.22488e+003,A12=-4.98730e+003,A14=-2.72142e+004,
A16=7.48554e+003,A18=0.00000e+000,A20=0.00000e+000
4:K=5.00000e+001,A4=-3.08700e-001,A6=6.39047e+000,A8=-1.08707e+002,
A10=8.10304e+002,A12=-2.75193e+003,A14=-1.42721e+002,
A16=3.46124e+004,A18=1.00282e+005,A20=-1.17397e+006
7:K=-2.07569e+000,A4=4.19194e-003,A6=2.40795e-001,A8=-1.70631e+000,
A10=2.16973e+000,A12=5.96850e+000,A14=-1.17584e+001,
A16=-2.80976e+001,A18=8.42178e+001,A20=-5.63612e+001

f=      2.13 mm
fB=     1.19 mm
Fno=    2.8
2Y=     2.96 mm
ENTP=   0.51 mm
EXTP=  -1.40 mm
H1=     0.14 mm
H2=    -1.71 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       1       2.879
        2       4       4.236
[Table 9]
Example 9

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 400.0000
1 * 0.8350 0.4675 1.75512 45.59 0.58
2 * 1.0291 0.0860 0.33
STO INFINITY 0.0839 0.28
4 * -98.6942 0.2468 1.57207 34.88 0.37
5 INFINITY 0.4088 1.63923 38.83 0.52
6 INFINITY 0.1991 1.67930 47.29 0.75
7 * -2.8174 0.2566 0.8
8 INFINITY 0.5500 1.51633 64.14
9 INFINITY 0.5000
IMG -9.9960 0.0000

ASPHERICAL SURFACE
1: K = 7.72606e-001, A4 = -1.14493e-001, A6 = 4.49784e-001, A8 = -1.15537e + 001,
A10 = 1.15225e + 002, A12 = -6.22995e + 002, A14 = 1.64730e + 003,
A16 = -1.73139e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
2: K = 2.18653e + 000, A4 = 1.99096e-002, A6 = 8.21545e + 000, A8 = -2.07373e + 002,
A10 = 2.22488e + 003, A12 = -4.98730e + 003, A14 = -2.72142e + 004,
A16 = 7.48554e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 5.00000e + 001, A4 = -3.08700e-001, A6 = 6.39047e + 000, A8 = -1.08707e + 002,
A10 = 8.10304e + 002, A12 = -2.75193e + 003, A14 = -1.42721e + 002,
A16 = 3.46124e + 004, A18 = 1.00282e + 005, A20 = -1.17397e + 006
7: K = -2.07569e + 000, A4 = 4.19194e-003, A6 = 2.40795e-001, A8 = -1.70631e + 000,
A10 = 2.16973e + 000, A12 = 5.96850e + 000, A14 = -1.17584e + 001,
A16 = -2.80976e + 001, A18 = 8.42178e + 001, A20 = -5.63612e + 001

f = 2.13 mm
fB = 1.19 mm
Fno = 2.8
2Y = 2.96 mm
ENTP = 0.51 mm
EXTP = -1.40 mm
H1 = 0.14 mm
H2 = -1.71 mm

Single lens data

Lens Start surface Focal length (mm)
1 1 2.879
2 4 4.236
(実施例10)
 レンズデータを表10に示す。図22は実施例10のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Iは撮像面を示す。図23(a)は実施例10の球面収差図、図23(b)は非点収差図、図23(c)は歪曲収差図、図23(d)はメリディオナルコマ収差図である。第1レンズL1は単レンズであり、第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1の物体側に形成されている。また、第1レンズL1は樹脂レンズ、第2レンズL2は樹脂レンズである。
(Example 10)
Table 10 shows the lens data. FIG. 22 is a sectional view of the lens of Example 10. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, and I is an imaging surface. FIG. 23 (a) is a spherical aberration diagram of Example 10, FIG. 23 (b) is an astigmatism diagram, FIG. 23 (c) is a distortion diagram, and FIG. 23 (d) is a meridional coma aberration diagram. The first lens L1 is a single lens, the second lens L2 is a single lens, and the aperture stop S is formed on the object side of the first lens L1. The first lens L1 is a resin lens, and the second lens L2 is a resin lens.
[表10]
実施例10

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY    1e+010
 STO     INFINITY    0.0500                               0.52
   2     INFINITY    -0.1294                              0.53
   3*      1.0556    0.5254       1.54470  56.19          0.55
   4*      1.7302    0.5523                               0.59
   5*    -54.0201    0.5730       1.54470  56.19          0.90
   6*     -3.5854    1.7450                               1.23
 IMG      -7.9000    0.0000

ASPHERICAL SURFACE
3:K=-2.55721e-002,A4=1.85271e-002,A6=2.21956e-001,A8=-7.24440e-001,
A10=2.22994e+000,A12=-2.72820e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
4:K=3.69038e+000,A4=9.23765e-002,A6=6.44387e-002,A8=-2.65755e-001,
A10=1.70831e+000,A12=-8.08348e-001,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
5:K=-1.02970e+002,A4=2.28296e-002,A6=-1.51874e-001,A8=8.29048e-002,
A10=-1.09607e-001,A12=4.58055e-002,A14=-6.96157e-002,
A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
6:K=-5.00000e+001,A4=-3.11841e-002,A6=3.93524e-002,A8=-2.64489e-002,
A10=-4.11103e-002,A12=3.96287e-002,A14=-1.18093e-002,
A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000

f=      2.95 mm
fB=     1.75 mm
Fno=    2.8
2Y=     4.53 mm
ENTP=   0.00 mm
EXTP=  -3.15 mm
H1=     0.19 mm
H2=    -2.95 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       3       3.900
        2       5       7.022
[Table 10]
Example 10

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 1e + 010
STO INFINITY 0.0500 0.52
2 INFINITY -0.1294 0.53
3 * 1.0556 0.5254 1.54470 56.19 0.55
4 * 1.7302 0.5523 0.59
5 * -54.0201 0.5730 1.54470 56.19 0.90
6 * -3.5854 1.7450 1.23
IMG -7.9000 0.0000

ASPHERICAL SURFACE
3: K = -2.55721e-002, A4 = 1.85271e-002, A6 = 2.21956e-001, A8 = -7.24440e-001,
A10 = 2.22994e + 000, A12 = -2.72820e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 3.69038e + 000, A4 = 9.23765e-002, A6 = 6.44387e-002, A8 = -2.65755e-001,
A10 = 1.70831e + 000, A12 = -8.08348e-001, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -1.02970e + 002, A4 = 2.28296e-002, A6 = -1.51874e-001, A8 = 8.29048e-002,
A10 = -1.09607e-001, A12 = 4.58055e-002, A14 = -6.96157e-002,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -5.00000e + 001, A4 = -3.11841e-002, A6 = 3.93524e-002, A8 = -2.64489e-002,
A10 = -4.11103e-002, A12 = 3.96287e-002, A14 = -1.18093e-002,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000

f = 2.95 mm
fB = 1.75 mm
Fno = 2.8
2Y = 4.53 mm
ENTP = 0.00 mm
EXTP = -3.15 mm
H1 = 0.19 mm
H2 = -2.95 mm

Single lens data

Lens Start surface Focal length (mm)
1 3 3.900
2 5 7.022
(実施例11)
 レンズデータを表11に示す。図24は実施例11のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Iは撮像面を示す。図25(a)は実施例11の球面収差図、図25(b)は非点収差図、図25(c)は歪曲収差図、図25(d)はメリディオナルコマ収差図である。第1レンズL1は単レンズであり、第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1の物体側に形成されている。また、第1レンズL1は樹脂レンズ、第2レンズL2は樹脂レンズである。
(Example 11)
Table 11 shows the lens data. FIG. 24 is a sectional view of the lens of Example 11. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, and I is an imaging surface. FIG. 25A is a spherical aberration diagram of Example 11, FIG. 25B is an astigmatism diagram, FIG. 25C is a distortion diagram, and FIG. 25D is a meridional coma aberration diagram. The first lens L1 is a single lens, the second lens L2 is a single lens, and the aperture stop S is formed on the object side of the first lens L1. The first lens L1 is a resin lens, and the second lens L2 is a resin lens.
[表11]
実施例11

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY    1e+010
 STO     INFINITY    0.0500                               0.53
   2     INFINITY    -0.1083                              0.54
   3*      1.2179    0.6467       1.54470  56.19          0.56
   4*      2.1074    0.6012                               0.65
   5*   -801.6790    0.6144       1.54470  56.19          1.03
   6*     -3.2478    1.7330                               1.33
 IMG      -6.8931    0.0000

ASPHERICAL SURFACE
3:K=-8.35886e-002,A4=6.33414e-003,A6=1.78765e-001,A8=-6.20559e-001,
A10=1.61548e+000,A12=-1.88543e+000,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
4:K=4.38529e+000,A4=7.25749e-002,A6=-6.52342e-003,A8=-1.06614e-001,
A10=8.07426e-001,A12=-7.39941e-001,A14=0.00000e+000,A16=0.00000e+000,
A18=0.00000e+000,A20=0.00000e+000
5:K=-9.44828e+004,A4=3.08602e-002,A6=-1.06667e-001,A8=1.49256e-001,
A10=-2.36159e-001,A12=1.84400e-001,A14=-6.69319e-002,
A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
6:K=-3.46914e+001,A4=-4.40803e-002,A6=5.52254e-002,A8=-2.24381e-002,
A10=-2.51649e-002,A12=2.10058e-002,A14=-5.17048e-003,
A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000

f=      3.00 mm
fB=     1.77 mm
Fno=    2.8
2Y=     4.53 mm
ENTP=   0.00 mm
EXTP=  -3.44 mm
H1=     0.38 mm
H2=    -3.00 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       3       4.216
        2       5       5.985
[Table 11]
Example 11

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 1e + 010
STO INFINITY 0.0500 0.53
2 INFINITY -0.1083 0.54
3 * 1.2179 0.6467 1.54470 56.19 0.56
4 * 2.1074 0.6012 0.65
5 * -801.6790 0.6144 1.54470 56.19 1.03
6 * -3.2478 1.7330 1.33
IMG -6.8931 0.0000

ASPHERICAL SURFACE
3: K = -8.35886e-002, A4 = 6.33414e-003, A6 = 1.78765e-001, A8 = -6.20559e-001,
A10 = 1.61548e + 000, A12 = -1.88543e + 000, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 4.38529e + 000, A4 = 7.25749e-002, A6 = -6.52342e-003, A8 = -1.06614e-001,
A10 = 8.07426e-001, A12 = -7.39941e-001, A14 = 0.00000e + 000, A16 = 0.00000e + 000,
A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -9.44828e + 004, A4 = 3.08602e-002, A6 = -1.06667e-001, A8 = 1.49256e-001,
A10 = -2.36159e-001, A12 = 1.84400e-001, A14 = -6.69319e-002,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -3.46914e + 001, A4 = -4.40803e-002, A6 = 5.52254e-002, A8 = -2.24381e-002,
A10 = -2.51649e-002, A12 = 2.10058e-002, A14 = -5.17048e-003,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000

f = 3.00 mm
fB = 1.77 mm
Fno = 2.8
2Y = 4.53 mm
ENTP = 0.00 mm
EXTP = -3.44 mm
H1 = 0.38 mm
H2 = -3.00 mm

Single lens data

Lens Start surface Focal length (mm)
1 3 4.216
2 5 5.985
(実施例12)
 レンズデータを表12に示す。図26は実施例12のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、Sは開口絞り、Iは撮像面を示す。図27(a)は実施例12の球面収差図、図27(b)は非点収差図、図27(c)は歪曲収差図、図27(d)はメリディオナルコマ収差図である。第1レンズL1は単レンズであり、第2レンズL2は単レンズであり、開口絞りSは、第1レンズL1の物体側に形成されている。また、第1レンズL1はガラスレンズ、第2レンズL2はガラスレンズである。
(Example 12)
Lens data is shown in Table 12. FIG. 26 is a sectional view of the lens of Example 12. In the figure, L1 is a first lens, L2 is a second lens, S is an aperture stop, and I is an imaging surface. 27A is a spherical aberration diagram of Example 12, FIG. 27B is an astigmatism diagram, FIG. 27C is a distortion diagram, and FIG. 27D is a meridional coma aberration diagram. The first lens L1 is a single lens, the second lens L2 is a single lens, and the aperture stop S is formed on the object side of the first lens L1. The first lens L1 is a glass lens, and the second lens L2 is a glass lens.
[表12]
実施例12

SURF DATA
NUM.       r         d            nd       vd            有効半径(mm)
 OBJ     INFINITY   1000.0000
 STO     INFINITY    0.0500                               0.42
   2     INFINITY    -0.0927                              0.42
   3SPS    0.8823    0.4895       1.58313  59.44          0.44
   4SPS    1.5817    0.4908                               0.48
   5*    -44.9353    1.0676       1.58313  59.44          0.75
   6*     -3.3784    0.9560                               1.29
 IMG      -7.7317    0.0000

ASPHERICAL SURFACE
3:K=-3.18388e+000,A3=-1.08727e-001,A4=1.05335e+000,A5=0.00000e+000,
A6=-2.23388e+000,A7=0.00000e+000,A8=3.29672e+000,A9=0.00000e+000,
A10=5.01550e+001,A11=0.00000e+000,A12=-3.23782e+002,A13=0.00000e+000,
A14=7.94440e+002,A15=0.00000e+000,A16=-7.89940e+002,A17=0.00000e+000,
A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=-1.05882e+001,A3=5.21279e-002,A4=4.92990e-001,A5=0.00000e+000,
A6=4.06877e-001,A7=0.00000e+000,A8=2.99123e+000,A9=0.00000e+000,
A10=-7.51279e+000,A11=0.00000e+000,A12=-1.10928e+002,
A13=0.00000e+000,A14=9.20783e+002,A15=0.00000e+000,A16=-1.71585e+003,
A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
5:K=-4.76637e+003,A4=-1.41107e-001,A6=4.21319e-001,A8=-3.29976e+000,
A10=9.80144e+000,A12=-1.60152e+001,A14=1.62835e+001,
A16=-1.62053e+001,A18=1.12444e+001,A20=8.13832e-001
6:K=0.00000e+000,A4=6.40584e-002,A6=-8.70658e-002,A8=6.62701e-002,
A10=-3.61565e-002,A12=1.01357e-003,A14=5.83060e-003,
A16=-2.39215e-004,A18=-1.33294e-003,A20=3.79676e-004

f=      2.35 mm
fB=     0.96 mm
Fno=    2.8
2Y=     3.58 mm
ENTP=   0.00 mm
EXTP=  -1.85 mm
H1=     0.32 mm
H2=    -1.48 mm

単レンズデータ

        レンズ  始面    焦点距離(mm)
        1       3       2.720
        2       5       6.206
[Table 12]
Example 12

SURF DATA
NUM.r d nd vd Effective radius (mm)
OBJ INFINITY 1000.0000
STO INFINITY 0.0500 0.42
2 INFINITY -0.0927 0.42
3SPS 0.8823 0.4895 1.58313 59.44 0.44
4SPS 1.5817 0.4908 0.48
5 * -44.9353 1.0676 1.58313 59.44 0.75
6 * -3.3784 0.9560 1.29
IMG -7.7317 0.0000

ASPHERICAL SURFACE
3: K = -3.18388e + 000, A3 = -1.08727e-001, A4 = 1.05335e + 000, A5 = 0.00000e + 000,
A6 = -2.23388e + 000, A7 = 0.00000e + 000, A8 = 3.29672e + 000, A9 = 0.00000e + 000,
A10 = 5.01550e + 001, A11 = 0.00000e + 000, A12 = -3.23782e + 002, A13 = 0.00000e + 000,
A14 = 7.94440e + 002, A15 = 0.00000e + 000, A16 = -7.89940e + 002, A17 = 0.00000e + 000,
A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -1.05882e + 001, A3 = 5.21279e-002, A4 = 4.92990e-001, A5 = 0.00000e + 000,
A6 = 4.06877e-001, A7 = 0.00000e + 000, A8 = 2.99123e + 000, A9 = 0.00000e + 000,
A10 = -7.51279e + 000, A11 = 0.00000e + 000, A12 = -1.10928e + 002,
A13 = 0.00000e + 000, A14 = 9.20783e + 002, A15 = 0.00000e + 000, A16 = -1.71585e + 003,
A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -4.76637e + 003, A4 = -1.41107e-001, A6 = 4.21319e-001, A8 = -3.29976e + 000,
A10 = 9.80144e + 000, A12 = -1.60152e + 001, A14 = 1.62835e + 001,
A16 = -1.62053e + 001, A18 = 1.12444e + 001, A20 = 8.13832e-001
6: K = 0.00000e + 000, A4 = 6.40584e-002, A6 = -8.70658e-002, A8 = 6.62701e-002,
A10 = -3.61565e-002, A12 = 1.01357e-003, A14 = 5.83060e-003,
A16 = -2.39215e-004, A18 = -1.33294e-003, A20 = 3.79676e-004

f = 2.35 mm
fB = 0.96 mm
Fno = 2.8
2Y = 3.58 mm
ENTP = 0.00 mm
EXTP = -1.85 mm
H1 = 0.32 mm
H2 = -1.48 mm

Single lens data

Lens Start surface Focal length (mm)
1 3 2.720
2 5 6.206
 請求項に記載の条件式の値を表13にまとめて示す。 Table 13 summarizes the values of the conditional expressions described in the claims.
 尚、近軸曲率半径として、超高精度三次元測定機(UA3P)などによる接触式の方法や非接触式の方法を用いて測定されたサグ量sから、下記のような式で与えられる近軸曲率半径の近似値r’を用いてもよい。
   r’={(h)2+(s)2}/(2s)
但し、
 h:レンズ面における有効半径の1/10の高さ
 s:面頂点から、レンズ面の高さhにおける点までの光軸平行方向への変位量(図28参照)
As the paraxial radius of curvature, a sag amount s measured using a contact type method or a non-contact type method with an ultra-high precision coordinate measuring machine (UA3P) or the like is given by the following formula. An approximate value r ′ of the axial curvature radius may be used.
r ′ = {(h) 2 + (s) 2 } / (2s)
However,
h: Height of 1/10 of the effective radius on the lens surface s: Displacement in the direction parallel to the optical axis from the surface apex to the point at the height h of the lens surface (see FIG. 28)
 ここで、レンズ面の有効半径とは、最大像高に結像する全光線のうち最も外側(レンズの光軸から最も離れた位置)を通る光線がこのレンズ面とが交わる点から、光軸までの、光軸と垂直方向への高さを意味する。 Here, the effective radius of the lens surface means that the light beam passing through the outermost side (position farthest from the optical axis of the lens) among all the light rays that are formed at the maximum image height intersects the lens surface. Means the height in the direction perpendicular to the optical axis.
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。例えば、実質的にパワーを持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. For example, even when a dummy lens having substantially no power is further provided, it is within the scope of the present invention.
 10 撮像レンズ
 20 筐体
 50 撮像装置
 51a 光電変換部
 51b 信号処理回路
 52 外部電極
 60 操作ボタン
 71 上筐体
 72 下筐体
 73 ヒンジ
100 携帯電話機
B,SP スペーサ
F 光学的ローパスフィルタ
D1,D2 表示画面
L1 第1レンズ
L2 第2レンズ
S 開口絞り
SH1 遮光部材
DESCRIPTION OF SYMBOLS 10 Imaging lens 20 Case 50 Imaging device 51a Photoelectric conversion part 51b Signal processing circuit 52 External electrode 60 Operation button 71 Upper case 72 Lower case 73 Hinge 100 Cellular phone B, SP Spacer F Optical low-pass filter D1, D2 Display screen L1 First lens L2 Second lens S Aperture stop SH1 Light blocking member

Claims (15)

  1.  光軸を中心として3次元に湾曲してなる固体撮像素子の撮像面に被写体像を結像させるための撮像レンズであって、物体側に設けられ正の屈折力を有し物体側に凸のメニスカスの第1レンズと、像側に設けられ正または負の屈折力を有する第2レンズと、前記第2レンズより物体側に設けられた開口絞りとからなり、以下の条件式を満足することを特徴とする撮像レンズ。
     0.40<r2/f<4.0   (1)
    ただし、
    r2:前記第1レンズの像側面の曲率半径
    f:全系の焦点距離
    An imaging lens for forming a subject image on an imaging surface of a solid-state imaging device that is curved three-dimensionally with an optical axis as a center, and is provided on the object side and has a positive refractive power and is convex on the object side A first lens of meniscus, a second lens provided on the image side and having a positive or negative refractive power, and an aperture stop provided on the object side of the second lens, and satisfying the following conditional expression An imaging lens characterized by.
    0.40 <r2 / f <4.0 (1)
    However,
    r2: radius of curvature of the image side surface of the first lens f: focal length of the entire system
  2.  以下の条件式を満足することを特徴とする、請求項1に記載の撮像レンズ。
     0.15<PTZ<0.40   (2)
    ただし、
    PTZ:前記第1レンズと前記第2レンズのペッツバール和
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    0.15 <PTZ <0.40 (2)
    However,
    PTZ: Petzval sum of the first lens and the second lens
  3.  以下の条件式を満足することを特徴とする、請求項1又は2に記載の撮像レンズ。
     0.30<d3/f<2.60   (3)
    ただし、
    d3:前記第2レンズの芯厚
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    0.30 <d3 / f <2.60 (3)
    However,
    d3: Core thickness of the second lens
  4.  以下の条件式を満足することを特徴とする、請求項1~3のいずれか1項に記載の撮像レンズ。
     0.30<r1/f<2.30   (4)
    ただし、
    r1:前記第1レンズの物体側面の曲率半径
    The imaging lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
    0.30 <r1 / f <2.30 (4)
    However,
    r1: radius of curvature of the object side surface of the first lens
  5.  以下の条件式を満足することを特徴とする、請求項1~4のいずれか1項に記載の撮像レンズ。
     0.10<fB/TL<0.60   (5)
    ただし、
    fB:前記第2レンズの像側面と前記固体撮像素子との間隔
    TL:レンズ全長
    The imaging lens according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
    0.10 <fB / TL <0.60 (5)
    However,
    fB: Distance between the image side surface of the second lens and the solid-state imaging device TL: Total lens length
  6.  以下の条件式を満足することを特徴とする、請求項1~5のいずれか1項に記載の撮像レンズ。
     -0.38<Y/rI<-0.01   (6)
    ただし、
    rI:前記撮像面の曲率半径
    Y:最大像高
    The imaging lens according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
    −0.38 <Y / rI <−0.01 (6)
    However,
    rI: radius of curvature of the imaging surface Y: maximum image height
  7.  以下の条件式を満足することを特徴とする、請求項1~6のいずれか1項に記載の撮像レンズ。
     ν1>30    (7)
    ただし、
    ν1:前記第1レンズのアッベ数
    The imaging lens according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
    ν1> 30 (7)
    However,
    ν1: Abbe number of the first lens
  8.  以下の条件式を満足することを特徴とする、請求項1~7のいずれか1項に記載の撮像レンズ。
     n1>1.40 且つ n2>1.40   (8)
    ただし、
    n1:前記第1レンズの屈折率
    n2:前記第2レンズの屈折率
    The imaging lens according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
    n1> 1.40 and n2> 1.40 (8)
    However,
    n1: Refractive index of the first lens n2: Refractive index of the second lens
  9.  前記第1レンズと前記第2レンズのうち少なくとも一方が、基板と基板上に形成されたレンズ部とを備えたレンズであることを特徴とする、請求項1~6のいずれか1項に記載の撮像レンズ。 The lens according to any one of claims 1 to 6, wherein at least one of the first lens and the second lens is a lens including a substrate and a lens portion formed on the substrate. Imaging lens.
  10.  前記第1レンズが、以下の条件式を満足することを特徴とする、請求項9に記載の撮像レンズ。
     ν1f>30 且つ ν1b>30・・・・ (9)
    ただし、
    ν1f:前記第1レンズの物体側面のアッベ数
    ν1b:前記第1レンズの像側面のアッベ数
    The imaging lens according to claim 9, wherein the first lens satisfies the following conditional expression.
    ν1f> 30 and ν1b> 30 (9)
    However,
    ν1f: Abbe number of the object side surface of the first lens ν1b: Abbe number of the image side surface of the first lens
  11.  前記第1レンズと前記第2レンズがそれぞれ、基板と基板上に形成されたレンズ部とを備えたレンズであり、以下の条件式を満足することを特徴とする、請求項9又は10に記載の撮像レンズ。
     n1f>1.40 且つ n2f>1.40   (10)
    ただし、
    n1f:前記第1レンズの物体側面の屈折率
    n2f:前記第2レンズの物体側面の屈折率
    11. The lens according to claim 9, wherein each of the first lens and the second lens includes a substrate and a lens portion formed on the substrate, and satisfies the following conditional expression. Imaging lens.
    n1f> 1.40 and n2f> 1.40 (10)
    However,
    n1f: Refractive index of the object side surface of the first lens n2f: Refractive index of the object side surface of the second lens
  12.  以下の条件式を満足することを特徴とする、請求項1~11のいずれか1項に記載の撮像レンズ。
     -0.25<f1/f2<1.40   (11)
    ただし、
    f1:前記第1レンズの焦点距離
    f2:前記第2レンズの焦点距離
    The imaging lens according to any one of claims 1 to 11, wherein the following conditional expression is satisfied.
    −0.25 <f1 / f2 <1.40 (11)
    However,
    f1: Focal length of the first lens f2: Focal length of the second lens
  13.  前記固体撮像素子の撮像面は、光軸に対して回転対称であることを特徴とする、請求項1~12のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 12, wherein an imaging surface of the solid-state imaging device is rotationally symmetric with respect to an optical axis.
  14.  実質的にパワーを持たないレンズを更に有することを特徴とする、請求項1~13のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 13, further comprising a lens having substantially no power.
  15.  請求項1~14のいずれか1項に記載の撮像レンズと、撮像面が3次元に湾曲した固体撮像素子とを有することを特徴とする撮像装置。 15. An imaging apparatus comprising: the imaging lens according to claim 1; and a solid-state imaging device whose imaging surface is curved in three dimensions.
PCT/JP2012/064558 2011-06-15 2012-06-06 Image capture lens for image capture device and image capture device WO2012173026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-132903 2011-06-15
JP2011132903 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012173026A1 true WO2012173026A1 (en) 2012-12-20

Family

ID=47357015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064558 WO2012173026A1 (en) 2011-06-15 2012-06-06 Image capture lens for image capture device and image capture device

Country Status (2)

Country Link
JP (1) JPWO2012173026A1 (en)
WO (1) WO2012173026A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119402A1 (en) * 2013-01-30 2014-08-07 ソニー株式会社 Image pickup device and electronic equipment
JP2017017480A (en) * 2015-06-30 2017-01-19 株式会社デンソー Camera device and on-vehicle system
WO2017094503A1 (en) * 2015-11-30 2017-06-08 ソニー株式会社 Imaging device and electronic device
US10031317B2 (en) 2015-02-04 2018-07-24 Largan Precision Co., Ltd. Optical lens assembly and image capturing device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329922A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Image pickup lens
JP2004177628A (en) * 2002-11-27 2004-06-24 Optech:Kk Wide-angle photographic lens
JP2004246169A (en) * 2003-02-14 2004-09-02 Fuji Photo Optical Co Ltd Single focus lens
JP2004312239A (en) * 2003-04-04 2004-11-04 Mitsubishi Electric Corp Image pickup device
JP2004356175A (en) * 2003-05-27 2004-12-16 Matsushita Electric Ind Co Ltd Image pickup device
JP2006106176A (en) * 2004-10-01 2006-04-20 Nippon Zeon Co Ltd Imaging lens
JP2006184783A (en) * 2004-12-28 2006-07-13 Fujinon Corp Imaging device
WO2008102648A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, and mobile terminal
JP2009103896A (en) * 2007-10-23 2009-05-14 Komatsulite Mfg Co Ltd Imaging lens
JP2009236935A (en) * 2006-12-21 2009-10-15 Milestone Kk Imaging lens

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269334B2 (en) * 2002-10-28 2009-05-27 コニカミノルタホールディングス株式会社 Imaging lens, imaging unit, and portable terminal
JP4223311B2 (en) * 2003-03-27 2009-02-12 フジノン株式会社 Imaging lens
JP4264828B2 (en) * 2004-08-26 2009-05-20 ソニー株式会社 Imaging lens and imaging apparatus
JP4431487B2 (en) * 2004-11-30 2010-03-17 セイコープレシジョン株式会社 Imaging lens and imaging module including the same
JP4856938B2 (en) * 2005-11-30 2012-01-18 株式会社エンプラス Imaging lens
JP2009098183A (en) * 2007-10-12 2009-05-07 Komatsulite Mfg Co Ltd Imaging lens
JP2009116063A (en) * 2007-11-07 2009-05-28 Komatsulite Mfg Co Ltd Imaging lens
JP4418844B2 (en) * 2008-04-10 2010-02-24 株式会社小松ライト製作所 Imaging lens
JP5254736B2 (en) * 2008-10-21 2013-08-07 株式会社エンプラス Imaging lens

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329922A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Image pickup lens
JP2004177628A (en) * 2002-11-27 2004-06-24 Optech:Kk Wide-angle photographic lens
JP2004246169A (en) * 2003-02-14 2004-09-02 Fuji Photo Optical Co Ltd Single focus lens
JP2004312239A (en) * 2003-04-04 2004-11-04 Mitsubishi Electric Corp Image pickup device
JP2004356175A (en) * 2003-05-27 2004-12-16 Matsushita Electric Ind Co Ltd Image pickup device
JP2006106176A (en) * 2004-10-01 2006-04-20 Nippon Zeon Co Ltd Imaging lens
JP2006184783A (en) * 2004-12-28 2006-07-13 Fujinon Corp Imaging device
JP2009236935A (en) * 2006-12-21 2009-10-15 Milestone Kk Imaging lens
WO2008102648A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, and mobile terminal
JP2009103896A (en) * 2007-10-23 2009-05-14 Komatsulite Mfg Co Ltd Imaging lens

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119402A1 (en) * 2013-01-30 2014-08-07 ソニー株式会社 Image pickup device and electronic equipment
US9661199B2 (en) 2013-01-30 2017-05-23 Sony Corporation Imaging apparatus and electronic device which can be reduced in height
US10031317B2 (en) 2015-02-04 2018-07-24 Largan Precision Co., Ltd. Optical lens assembly and image capturing device
JP2017017480A (en) * 2015-06-30 2017-01-19 株式会社デンソー Camera device and on-vehicle system
US10331963B2 (en) 2015-06-30 2019-06-25 Denso Corporation Camera apparatus and in-vehicle system capturing images for vehicle tasks
WO2017094503A1 (en) * 2015-11-30 2017-06-08 ソニー株式会社 Imaging device and electronic device
US10591704B2 (en) 2015-11-30 2020-03-17 Sony Semiconductor Solutions Corporation Imaging device and electronic device

Also Published As

Publication number Publication date
JPWO2012173026A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6300183B2 (en) Imaging lens, imaging device, and portable terminal
JP5839038B2 (en) Imaging lens and imaging apparatus
JP6175903B2 (en) Imaging lens, imaging device, and portable terminal
JP5440032B2 (en) Imaging lens and small imaging device
JP6845484B2 (en) Imaging optical system, lens unit and imaging device
WO2017199633A1 (en) Imaging lens and imaging device
JP6425028B2 (en) Imaging lens, lens unit, imaging device, digital still camera and portable terminal
JP5585586B2 (en) Imaging lens and imaging apparatus
JP2015114505A (en) Imaging lens and imaging device
WO2013008862A1 (en) Imaging lens and imaging device
JP2015125405A (en) Image capturing lens, lens unit, image capturing device, digital still camera, and mobile terminal
JP2013088504A (en) Image forming optical system, and image pickup apparatus using the same
JP5644681B2 (en) Imaging device and portable terminal
WO2012160983A1 (en) Imaging lens, imaging device, and mobile terminal
JP5621782B2 (en) Zoom lens and imaging device
WO2015087599A1 (en) Image pickup unit, lens barrel and portable device
JP5353879B2 (en) Imaging lens, imaging device, and portable terminal
JP2015001644A (en) Image capturing lens and image capturing device
JP2019168493A (en) Optical system, lens unit and image capturing device
JP2015079175A (en) Image capturing lens, image capturing device, and portable terminal
WO2012173026A1 (en) Image capture lens for image capture device and image capture device
JP2015022152A (en) Image capturing lens and image capturing device
JP5663367B2 (en) Imaging optical system and imaging apparatus using the same
JP2012002897A (en) Imaging lens, imaging apparatus, and information assistant
JP2013024892A (en) Image pickup lens and image pickup apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800761

Country of ref document: EP

Kind code of ref document: A1