JP2015079175A - Image capturing lens, image capturing device, and portable terminal - Google Patents

Image capturing lens, image capturing device, and portable terminal Download PDF

Info

Publication number
JP2015079175A
JP2015079175A JP2013217112A JP2013217112A JP2015079175A JP 2015079175 A JP2015079175 A JP 2015079175A JP 2013217112 A JP2013217112 A JP 2013217112A JP 2013217112 A JP2013217112 A JP 2013217112A JP 2015079175 A JP2015079175 A JP 2015079175A
Authority
JP
Japan
Prior art keywords
lens
imaging
object side
conditional expression
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013217112A
Other languages
Japanese (ja)
Inventor
中村 健太郎
Kentaro Nakamura
中村  健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013217112A priority Critical patent/JP2015079175A/en
Publication of JP2015079175A publication Critical patent/JP2015079175A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image capturing lens which is compact, high-performing, and bright with an F-number of F2.2 or less, and to provide an image capturing device and portable terminal having the same.SOLUTION: An image capturing lens comprises five or more lenses including, in order from the object side, a first lens L1 being convex on the object side and having positive refractive power and a second lens L2 being convex on the object side and having negative refractive power. A lens L5 located on the most image side is biconcave near an optical axis and has at least one extremum on an image-side surface thereof. The image capturing lens satisfies the following conditional expressions: f/2α<2.2 (1), L/f<1.4 (2). The first lens L1 has an inflection point inside an effective diameter of an object-side surface thereof and satisfies the following conditional expression: 0.75<(R1+R2)/(R2-R1)<0.92 (3), where f represents a focal length of the entire image capturing lens system, α represents a radius of a flare stop located on the object side from the first lens L1, L represents an optical axial distance from the object-side surface of the first lens L1 to an image capturing plane when infinite light enters, R1 represents a curvature radius of the object-side surface of the first lens L1, and R2 represents a curvature radius of an image-side surface of the first lens L1.

Description

本発明は、固体撮像素子によって検出される被写体像を結像させるための小型の撮像レンズ及びかかる撮像レンズを備える撮像装置及び携帯端末に関する。   The present invention relates to a small imaging lens for forming a subject image detected by a solid-state imaging device, an imaging apparatus including the imaging lens, and a portable terminal.

近年、CCD(Charge Coupled Device)型イメージセンサーあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を用いた小型の撮像装置が、携帯電話やPDA(Personal Digital Assistant)等の携帯端末、更にはノートパソコン等にも搭載されるようになり、遠隔地へ音声情報だけでなく画像情報も相互に伝送することが可能になっている。   In recent years, small-sized imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors have become portable terminals such as mobile phones and PDAs (Personal Digital Assistants), Furthermore, it is also installed in notebook personal computers and the like, and it is possible to transmit not only audio information but also image information to a remote place.

このような撮像装置に用いられる固体撮像素子においては、近年、画素サイズの小型化が進み、撮像素子の高画素化や小型化が図られている。さらに、撮像面を湾曲させることも可能になり、そのような撮像素子に最適な、小型で高性能を有する撮像レンズが求められるようになっている。   In the solid-state imaging device used in such an imaging apparatus, in recent years, the pixel size has been reduced, and the imaging device has been increased in size and size. Further, it is possible to curve the imaging surface, and there is a demand for a compact and high-performance imaging lens that is optimal for such an imaging device.

小型で高性能なレンズとして、3枚あるいは4枚構成のレンズに比べ収差補正機能が高く高性能化が可能であるという理由で、5枚構成或いは6枚構成の撮像レンズが提案されている。   As a small and high-performance lens, an imaging lens having a five-lens configuration or a six-lens configuration has been proposed because of its high aberration correction function and higher performance than a three- or four-lens configuration lens.

特許文献1に、物体側から順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、第3レンズ、第4レンズ、負の屈折力を有する第5レンズで構成し撮像レンズ全長(撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離)の小型化を目指した撮像レンズが開示されている。   In Patent Document 1, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens, a fourth lens, and a fifth lens having a negative refractive power are sequentially formed from the object side. An imaging lens that aims to reduce the total lens length (distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system) is disclosed.

国際公開第2011/021271号パンフレットInternational Publication No. 2011/021271 Pamphlet

ところで、サイズアップすることなく高画素化を図るため、画素ピッチを小さくした固体撮像素子が開発されている。このような固体撮像素子に被写体像を結像させるには、よりFナンバーが小さく大口径化を図った撮像レンズが望まれている。特許文献1の撮像レンズは、小型化を目指しつつも比較的小さいFナンバーを有しているが、本発明者の検討結果によれば、このような撮像レンズにてゴーストが発生しやすいことが判明した。   By the way, in order to increase the number of pixels without increasing the size, a solid-state imaging device with a reduced pixel pitch has been developed. In order to form a subject image on such a solid-state imaging device, an imaging lens with a smaller F number and a larger aperture is desired. The imaging lens of Patent Document 1 has a relatively small F-number while aiming for miniaturization. However, according to the examination result of the present inventor, a ghost is likely to occur in such an imaging lens. found.

本発明は、上記背景技術の問題点に鑑みてなされたものであり、小型かつ高性能で、F2.2以下と明るい撮像レンズ及びそれを備えた撮像装置並びに携帯端末を得ることを目的とする。   The present invention has been made in view of the problems of the background art described above, and an object of the present invention is to obtain a small and high-performance imaging lens that is bright at F2.2 or less, an imaging device including the imaging lens, and a portable terminal. .

上記課題を解決するため、本発明に係る撮像レンズは、固体撮像素子の撮像面に被写体像を結像させるための撮像レンズであって、
前記撮像レンズは、物体側より順に、物体側に凸形状を有し正の屈折力を有する第1レンズと、物体側に凸形状を有し負の屈折力を有する第2レンズとを含む5枚以上のレンズから構成され、最も像側のレンズにおける光軸付近が両凹形状であり,且つ光軸方向断面において像側面が光軸近傍以外の点で少なくとも1つの極値を持ち、前記撮像レンズは以下の条件式を満たし、
f/2α<2.2 (1)
L/f<1.4 (2)
更に、前記第1レンズは、光軸方向断面において物体側面が有効径内において変曲点を持ち、以下の条件式を満たすことを特徴とする。
0.75<(R1+R2)/(R2−R1)<0.92 (3)
ただし、
f:撮像レンズ全系の焦点距離(mm)
α:前記第1レンズより物体側に配置される遮光絞りの半径(mm)
L:無限光入射時における前記第1レンズの物体側面から前記撮像面までの光軸上の距離(mm)
R1:前記第1レンズの物体側面の曲率半径(mm)
R2:前記第1レンズの像側面の曲率半径(mm)
In order to solve the above problems, an imaging lens according to the present invention is an imaging lens for forming a subject image on an imaging surface of a solid-state imaging device,
The imaging lens includes, in order from the object side, a first lens having a convex shape on the object side and having positive refractive power, and a second lens having a convex shape on the object side and having negative refractive power. The imaging is composed of two or more lenses, and the vicinity of the optical axis of the most image side lens has a biconcave shape, and the image side surface has at least one extreme value at a point other than the vicinity of the optical axis in the cross section in the optical axis direction. The lens satisfies the following conditional expression:
f / 2α <2.2 (1)
L / f <1.4 (2)
Further, the first lens is characterized in that the object side surface has an inflection point within the effective diameter in the cross section in the optical axis direction, and satisfies the following conditional expression.
0.75 <(R1 + R2) / (R2-R1) <0.92 (3)
However,
f: Focal length of the entire imaging lens (mm)
α: Radius (mm) of the light-shielding stop arranged on the object side from the first lens
L: Distance on the optical axis from the object side surface of the first lens to the imaging surface when infinite light is incident (mm)
R1: radius of curvature of object side surface of the first lens (mm)
R2: radius of curvature of the image side surface of the first lens (mm)

本発明によれば、(1)式を満たすことで、Fナンバーが小さく大口径の撮像レンズを提供でき,更に(2)式を満たすことで、携帯端末等に搭載可能な撮像装置に好適な小型の撮像レンズを提供できる。好ましくは、以下の条件式を満たすことである。
f/2α<2.1 (1’)
L/f<1.3 (2’)
According to the present invention, an imaging lens having a small F-number and a large aperture can be provided by satisfying the formula (1), and further suitable for an imaging device that can be mounted on a portable terminal or the like by satisfying the formula (2). A small imaging lens can be provided. Preferably, the following conditional expression is satisfied.
f / 2α <2.1 (1 ′)
L / f <1.3 (2 ′)

本発明者は、鋭意研究の結果、第1レンズの周辺側の形状がゴーストに大きく影響していることを見いだした。より具体的には、第1レンズの周辺側の形状が有効径の近傍において、漸次像側に向かう形状の場合、画角外から入射した光線が第1レンズの物体側面と像側面とで複数回反射した後、前記第1レンズの周辺部から出射し、固体撮像素子の撮像面に集光して検出されることで、ゴーストとして認識されることを見いだしたのである。かかる知見に基づき、本発明者は、光軸方向断面において第1レンズの物体側面に、有効径内において変曲点を持たせることで、画角外から入射した光線が第1レンズの周辺から出射したときに、固体撮像素子の撮像面に集光しないようにし、これによりゴーストが生じにくいようにしたのである。ここで、「極値」とは、光軸方向の距離をx(h)とし、光軸からの高さをhとしたときに、1階微分(dx(h)/dh)=0で表される点をいう。又、「変曲点」とは、光軸方向の距離をx(h)とし、光軸からの高さをhとしたときに、2階微分(d2x(h)/dh2)=0で表される点をいう。第1レンズの物体側面の変曲点は、有効径の95%以内にあると更に好ましい。尚、本発明の効果は、撮像レンズのレンズ枚数に限られないが、5枚以上のレンズにおいて特に効果がある。 As a result of diligent research, the present inventor has found that the shape on the peripheral side of the first lens greatly affects the ghost. More specifically, when the shape on the peripheral side of the first lens is a shape gradually toward the image side in the vicinity of the effective diameter, a plurality of rays incident from outside the angle of view are incident on the object side surface and the image side surface of the first lens. It has been found that after being reflected once, it is emitted from the periphery of the first lens, condensed on the imaging surface of the solid-state imaging device, and detected as a ghost. Based on this knowledge, the present inventor has an inflection point within the effective diameter on the object side surface of the first lens in the cross section in the optical axis direction, so that the light incident from outside the angle of view is emitted from the periphery of the first lens. When emitted, the light is not condensed on the image pickup surface of the solid-state image pickup device, thereby making it difficult for ghosts to occur. Here, the “extreme value” is expressed by first-order differentiation (dx (h) / dh) = 0, where x (h) is the distance in the optical axis direction and h is the height from the optical axis. The point to be done. The “inflection point” is a second-order differential (d 2 x (h) / dh 2 ) = when the distance in the optical axis direction is x (h) and the height from the optical axis is h. The point represented by 0. More preferably, the inflection point on the object side surface of the first lens is within 95% of the effective diameter. The effect of the present invention is not limited to the number of lenses of the imaging lens, but is particularly effective for five or more lenses.

条件式(3)は第1レンズの形状、所謂シェーピングファクター(Shaping factor)を適切に設定するための条件式である。より具体的には、条件式(3)の値が上限を下回ることで、第1レンズ物体側面の屈折力が小さくなりすぎず、所定のテレフォト性を確保することができるため、全長の短縮が容易になる。一方、条件式(3)の値が下限を上回ることで、第1レンズ物体側面の屈折力が大きくなりすぎることがなくなり、第1レンズ物体側面で発生する高次の球面収差やコマ収差を小さくすることができ、さらには画角外から入射した光線が第1レンズの物体側面と像側面とで複数回反射する際に全反射しにくく第1レンズの周辺から出射したゴースト光の強度を小さくすることが可能となる。   Conditional expression (3) is a conditional expression for appropriately setting the shape of the first lens, that is, a so-called shaping factor. More specifically, when the value of conditional expression (3) is less than the upper limit, the refractive power on the side surface of the first lens object does not become too small, and a predetermined telephoto property can be ensured. It becomes easy. On the other hand, if the value of conditional expression (3) exceeds the lower limit, the refractive power on the side surface of the first lens object will not become too large, and higher-order spherical aberration and coma aberration generated on the side surface of the first lens object will be reduced. Furthermore, when the light beam incident from outside the angle of view is reflected by the object side surface and the image side surface of the first lens a plurality of times, it is difficult to totally reflect, and the intensity of the ghost light emitted from the periphery of the first lens is reduced. It becomes possible to do.

請求項2に記載の撮像レンズは、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
25<θmax<40 (4)
ただし、
θmax:前記第1レンズの物体側面の有効径内における最大面角度(°)
The imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied.
25 <θmax <40 (4)
However,
θmax: Maximum surface angle (°) within the effective diameter of the object side surface of the first lens

条件式(4)の値が下限値を上回ることで、第1レンズの正の屈折力が弱くなりすぎず、テレフォトタイプの特性を確保できる。一方、条件式(4)の値が上限値を下回ることで、ゴーストの発生を効果的に抑制することができる。   When the value of conditional expression (4) exceeds the lower limit, the positive refractive power of the first lens does not become too weak, and telephoto type characteristics can be ensured. On the other hand, generation of a ghost can be effectively suppressed because the value of conditional expression (4) is lower than the upper limit value.

請求項3に記載の撮像レンズは、請求項1又は2に記載の発明において、以下の条件式を満足することを特徴とする。
−2.5<f2/f<−1.0 (5)
ただし、
f2:前記第2レンズの焦点距離(mm)
The imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the following conditional expression is satisfied.
−2.5 <f2 / f <−1.0 (5)
However,
f2: Focal length (mm) of the second lens

条件式(5)の値が上限を下回ることで、第2レンズが有する負の屈折力を強くすることになるため、主点位置を像面に近付けることができ、広角化に有利になる。一方、条件式(5)の値が下限を上回ることにより、第2レンズの負の屈折力が強くなり過ぎることによる、球面収差やコマ収差の発生や誤差感度の増大を防ぐことができる。   When the value of conditional expression (5) is below the upper limit, the negative refractive power of the second lens is strengthened, so that the principal point position can be brought closer to the image plane, which is advantageous for widening the angle. On the other hand, when the value of conditional expression (5) exceeds the lower limit, it is possible to prevent the occurrence of spherical aberration and coma aberration and increase in error sensitivity due to the negative refractive power of the second lens becoming too strong.

請求項4に記載の撮像レンズは、請求項1〜3のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
20<ν1−ν2<40 (6)
ただし、
ν1:前記第1レンズを構成する材料のd線におけるアッベ数
ν2:前記第2レンズを構成する材料のd線におけるアッベ数
The imaging lens of Claim 4 satisfies the following conditional expressions in the invention of any one of Claims 1-3.
20 <ν1-ν2 <40 (6)
However,
ν1: Abbe number in the d-line of the material constituting the first lens ν2: Abbe number in the d-line of the material constituting the second lens

条件式(6)は、撮像レンズ全系の色収差を良好に補正するための条件式である。条件式(6)の値が下限を上回ることで、軸上色収差や倍率色収差などの色収差をバランス良く補正することができる。一方、条件式(6)の値が上限を下回ることで、入手しやすい硝材で構成することができる。   Conditional expression (6) is a conditional expression for satisfactorily correcting the chromatic aberration of the entire imaging lens system. When the value of conditional expression (6) exceeds the lower limit, chromatic aberrations such as axial chromatic aberration and lateral chromatic aberration can be corrected in a well-balanced manner. On the other hand, when the value of conditional expression (6) is below the upper limit, it can be made of a readily available glass material.

請求項5に記載の撮像レンズは、請求項1〜4のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.9<f12/f<2.0 (7)
ただし、
f12:前記第1レンズと前記第2レンズの合成焦点距離(mm)
The imaging lens of Claim 5 satisfies the following conditional expressions in the invention in any one of Claims 1-4, It is characterized by the above-mentioned.
0.9 <f12 / f <2.0 (7)
However,
f12: Composite focal length (mm) of the first lens and the second lens

条件式(7)は、第1レンズと第2レンズの合成焦点距離を適切に設定するための条件式である。条件式(7)の値が下限を上回ることで、第1レンズと第2レンズの合成屈折力を適度に維持することができ、撮像レンズ全長を短縮することができる。一方、条件式(7)の値が上限を下回ることで、必要以上に合成屈折力が強くなりすぎないため、第1レンズと第2レンズの誤差感度の低減を図れ、組み立て工程の製造難易度を下げることができるようになる。   Conditional expression (7) is a conditional expression for appropriately setting the combined focal length of the first lens and the second lens. When the value of conditional expression (7) exceeds the lower limit, the combined refractive power of the first lens and the second lens can be appropriately maintained, and the overall length of the imaging lens can be shortened. On the other hand, since the value of conditional expression (7) is less than the upper limit, the combined refractive power does not become excessively strong, the error sensitivity of the first lens and the second lens can be reduced, and the manufacturing difficulty of the assembly process Can be lowered.

請求項6に記載の撮像レンズは、請求項1〜5のいずれかに記載の発明において、最も像側のレンズに隣接した物体側のレンズは,像側面が凸形状であって正の屈折力を有することを特徴とする。   The imaging lens according to claim 6 is the imaging lens according to any one of claims 1 to 5, wherein the object side lens adjacent to the most image side lens has a convex shape on the image side surface and a positive refractive power. It is characterized by having.

最も像側のレンズに隣接した物体側のレンズに正の屈折力を持たせることで、撮像レンズの前側主点位置から開口絞りまでの距離が大きくなる。これにより撮影レンズの射出瞳位置を結像面からより遠くに位置させることができ、従って良好な像側テレセントリック特性を得ることができる。更に、最も像側のレンズに隣接した物体側のレンズの像側面を凸面とすることで、像面への光線入射角を小さく抑えることができる。   By giving positive refractive power to the object side lens adjacent to the lens closest to the image side, the distance from the front principal point position of the imaging lens to the aperture stop is increased. As a result, the exit pupil position of the photographic lens can be positioned farther from the imaging plane, and thus good image side telecentric characteristics can be obtained. Furthermore, by making the image side surface of the object side lens adjacent to the most image side lens convex, the incident angle of light on the image surface can be kept small.

請求項7に記載の撮像レンズは、請求項1〜6のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
−0.6<fe/f<−0.4 (8)
ただし、
fe:最も像側のレンズの焦点距離(mm)
The imaging lens of Claim 7 satisfies the following conditional expressions in the invention in any one of Claims 1-6, It is characterized by the above-mentioned.
−0.6 <fe / f <−0.4 (8)
However,
fe: Focal length (mm) of the lens closest to the image side

条件式(8)は最も像側のレンズの焦点距離を適切に設定するための条件式である。条件式(8)の値が下限を上回ることで、最も像側のレンズの負の屈折力が必要以上に大きくなりすぎず、撮像素子の撮像面周辺部に結像する光束が過度に跳ね上げられることがなくなり、像側光束のテレセントリック特性の確保を容易にすることができる。一方、条件式(8)の値が上限を下回ることで、最も像側のレンズの負の屈折力を適度に維持することができ、レンズ全長の短縮化及び像面湾曲や歪曲収差等の軸外諸収差の補正を良好に行うことができる。   Conditional expression (8) is a conditional expression for appropriately setting the focal length of the lens closest to the image side. When the value of conditional expression (8) exceeds the lower limit, the negative refractive power of the lens on the most image side does not become larger than necessary, and the light beam that forms an image on the periphery of the imaging surface of the imaging element excessively jumps up. Therefore, it is possible to easily secure the telecentric characteristic of the image side light beam. On the other hand, when the value of conditional expression (8) is less than the upper limit, the negative refractive power of the lens closest to the image side can be appropriately maintained, and the length of the lens can be shortened and axes such as field curvature and distortion aberration can be maintained. It is possible to satisfactorily correct external aberrations.

請求項8に記載の撮像レンズは、請求項1〜7のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.15<d1/f<0.2 (9)
ただし、
d1:前記第1レンズの軸上厚さ(mm)
An imaging lens according to an eighth aspect of the invention according to any one of the first to seventh aspects satisfies the following conditional expression.
0.15 <d1 / f <0.2 (9)
However,
d1: On-axis thickness of the first lens (mm)

条件式(9)は、第1レンズの芯厚を適切に設定し、全長の短縮と良好な成形性を達成するための条件式である。条件式(9)の値が下限を上回ることで、第1レンズの縁厚を十分に確保できるため良好な成形性を確保できる。一方、条件式(9)の値が上限を下回ることで第1レンズの芯厚が厚くなりすぎず、撮像レンズ全長を短くすることができる。   Conditional expression (9) is a conditional expression for appropriately setting the core thickness of the first lens to achieve shortening of the total length and good moldability. When the value of conditional expression (9) exceeds the lower limit, the edge thickness of the first lens can be sufficiently ensured, so that good moldability can be ensured. On the other hand, when the value of conditional expression (9) is below the upper limit, the core thickness of the first lens does not become too thick, and the entire length of the imaging lens can be shortened.

請求項9に記載の撮像レンズは、請求項1〜8のいずれかに記載の発明において、全てのレンズがプラスチック製であることを特徴とする。   An imaging lens according to a ninth aspect is characterized in that in the invention according to any one of the first to eighth aspects, all the lenses are made of plastic.

各レンズをプラスチックから大量に成形することで,撮像レンズを軽量且つ安価なものとできる。   By molding a large amount of each lens from plastic, the imaging lens can be made lightweight and inexpensive.

請求項10に記載の撮像装置は、請求項1〜9のいずれかに記載の撮像レンズと、固体撮像素子とを有することを特徴とする。   An imaging apparatus according to a tenth aspect includes the imaging lens according to any one of the first to ninth aspects and a solid-state imaging element.

請求項11に記載の携帯端末は、請求項10に記載の撮像装置を備えることを特徴とする。   A portable terminal according to an eleventh aspect includes the imaging device according to the tenth aspect.

本発明によれば、小型かつ高性能で、F2.2以下と明るい撮像レンズ及びそれを備えた撮像装置並びに携帯端末を得ることができる。   According to the present invention, it is possible to obtain a small and high-performance imaging lens that is bright at F2.2 or less, an imaging device including the imaging lens, and a portable terminal.

本実施の形態にかかる撮像ユニット50の斜視図である。It is a perspective view of the imaging unit 50 concerning this Embodiment. 撮像ユニット50の撮像光学系の光軸に沿った断面を模式的に示した図である。3 is a diagram schematically showing a cross section along the optical axis of an imaging optical system of the imaging unit 50. FIG. 撮像ユニットを適用した携帯端末としてのスマートフォンの正面図(a)、及び撮像ユニットを適用したスマートフォンの背面図(b)である。It is the front view (a) of the smart phone as a portable terminal to which an imaging unit is applied, and the back view (b) of the smart phone to which the imaging unit is applied. 図3のスマートフォンの制御ブロック図である。It is a control block diagram of the smart phone of FIG. 実施例1の撮像レンズの光軸方向断面図である。3 is a cross-sectional view in the optical axis direction of the imaging lens of Example 1. FIG. 実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 4 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例2の撮像レンズの光軸方向断面図である。FIG. 6 is a cross-sectional view in the optical axis direction of the imaging lens of Example 2. 実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 6 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例3の撮像レンズの光軸方向断面図である。6 is a cross-sectional view in the optical axis direction of the imaging lens of Embodiment 3. FIG. 実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。FIG. 6 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)). 実施例と比較例の第1レンズの周辺側断面である。It is a peripheral side cross section of the 1st lens of an Example and a comparative example. 実施例について迷光の撮像面周辺における集光状態を示す図である。It is a figure which shows the condensing state in the periphery of the imaging surface of a stray light about an Example. 比較例について迷光の撮像面周辺における集光状態を示す図である。It is a figure which shows the condensing state in the imaging surface periphery of a stray light about a comparative example.

以下、本発明の実施の形態を、図面を参照して説明する。図1は、本実施の形態にかかる撮像ユニット(撮像装置)50の斜視図であり、図2は、撮像ユニット50の撮像レンズの光軸に沿った断面を模式的に示した図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an imaging unit (imaging device) 50 according to the present embodiment, and FIG. 2 is a diagram schematically showing a cross section along the optical axis of the imaging lens of the imaging unit 50.

図1、2に示すように、撮像ユニット50は、光電変換部51aを有する固体撮像素子としてのCMOS型撮像素子51と、この撮像素子51の光電変換部51aに被写体像を撮像させる撮像レンズ10と、撮像素子51を保持すると共にその電気信号の送受を行う基板52と、物体側からの光入射用の開口部を有し遮光部材からなる鏡筒としての筐体53とを備え、これらが一体的に形成されている。   As shown in FIGS. 1 and 2, the imaging unit 50 includes a CMOS type imaging device 51 as a solid-state imaging device having a photoelectric conversion unit 51 a and an imaging lens 10 that causes the photoelectric conversion unit 51 a of the imaging device 51 to image a subject image. A substrate 52 that holds the image sensor 51 and transmits / receives an electric signal thereof, and a housing 53 as a lens barrel that has an opening for light incidence from the object side and is made of a light shielding member. It is integrally formed.

図2に示すように、撮像素子51は、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部51aが形成されており、その周囲には信号処理回路(不図示)が形成されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、撮像素子51の受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、ワイヤ(不図示)を介して基板52に接続されている。撮像素子51は、光電変換部51aからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤ(不図示)を介して基板52上の所定の回路に出力する。ここで、Yは輝度信号、U(=R−Y)は赤と輝度信号との色差信号、V(=B−Y)は青と輝度信号との色差信号である。なお、撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。   As shown in FIG. 2, the imaging element 51 has a photoelectric conversion part 51 a as a light receiving part in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the plane on the light receiving side. A signal processing circuit (not shown) is formed around the periphery. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. A number of pads (not shown) are arranged in the vicinity of the outer edge of the plane on the light receiving side of the image sensor 51, and are connected to the substrate 52 via wires (not shown). The image sensor 51 converts the signal charge from the photoelectric conversion unit 51a into an image signal such as a digital YUV signal, and outputs it to a predetermined circuit on the substrate 52 via a wire (not shown). Here, Y is a luminance signal, U (= R−Y) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the image sensor is not limited to the above CMOS image sensor, and other devices such as a CCD may be used.

基板52は、その上面で撮像素子51及び筐体53を支持している。図示していないが、基板52は多数の信号伝達用パッドを有しており、不図示の配線を介して撮像素子51と接続されている。   The substrate 52 supports the image sensor 51 and the housing 53 on the upper surface thereof. Although not shown, the substrate 52 has a large number of signal transmission pads, and is connected to the image sensor 51 via wiring (not shown).

図2において、基板52は、外部回路(例えば、撮像ユニットを実装した上位装置が有する制御回路)とを接続し、外部回路から撮像素子51を駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路ヘ出力したりすることを可能とする。   In FIG. 2, a substrate 52 is connected to an external circuit (for example, a control circuit included in a host device on which an imaging unit is mounted), and receives a voltage and a clock signal for driving the imaging element 51 from the external circuit. In addition, the digital YUV signal can be output to an external circuit.

図2において、筐体53は、基板52における撮像素子51が設けられた面上に、撮像素子51を覆うようにして固定配置されている。即ち、筐体53は、撮像素子51側の部分が撮像素子51を囲むように広く開口されると共に、他端部(物体側端部)が小開口を有するフランジ部53aを形成しており、基板52上に撮像素子51側の端部(像側端部)が当接固定されている。   In FIG. 2, the housing 53 is fixedly disposed on the surface of the substrate 52 on which the image sensor 51 is provided so as to cover the image sensor 51. That is, the casing 53 is wide open so that the part on the image sensor 51 side surrounds the image sensor 51, and the other end (object side end) forms a flange 53a having a small opening. An end on the image sensor 51 side (image side end) is abutted and fixed on the substrate 52.

筐体53内に配置された撮像レンズ10は、物体側より順に、正の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2と、第3レンズL3と、第4レンズL4と負の屈折力を有する第5レンズL5とを有する。最も像側のレンズである第5レンズL5は、光軸付近が両凹形状であり,且つ光軸方向断面において像側面が光軸近傍以外の点で少なくとも1つの極値を持つ。撮像レンズ10は以下の条件式を満たす。
f/2α<2.2 (1)
L/f<1.4 (2)
The imaging lens 10 disposed in the housing 53 includes, in order from the object side, a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, a third lens L3, and a fourth lens. It has a lens L4 and a fifth lens L5 having negative refractive power. The fifth lens L5, which is the lens closest to the image side, has a biconcave shape in the vicinity of the optical axis, and has at least one extreme value at a point other than the vicinity of the optical axis on the image side surface in the cross section in the optical axis direction. The imaging lens 10 satisfies the following conditional expression.
f / 2α <2.2 (1)
L / f <1.4 (2)

更に、第1レンズL1は、光軸方向断面において物体側面が有効径内において変曲点を持ち、以下の条件式を満たす。
0.75<(R1+R2)/(R2−R1)<0.92 (3)
ただし、
f:撮像レンズ全系の焦点距離(mm)
α:第1レンズより物体側に配置される遮光絞りの半径(mm)
L:無限光入射時における第1レンズの物体側面から前記撮像面までの光軸上の距離(mm)
R1:第1レンズの物体側面の曲率半径(mm)
R2:第1レンズの像側面の曲率半径(mm)
Further, the first lens L1 has an inflection point within the effective diameter on the object side surface in the cross section in the optical axis direction, and satisfies the following conditional expression.
0.75 <(R1 + R2) / (R2-R1) <0.92 (3)
However,
f: Focal length of the entire imaging lens (mm)
α: Radius (mm) of the light-shielding stop arranged on the object side from the first lens
L: Distance on the optical axis from the object side surface of the first lens to the imaging surface when infinite light is incident (mm)
R1: radius of curvature of object side surface of first lens (mm)
R2: radius of curvature of the image side surface of the first lens (mm)

第1レンズと第2レンズとのフランジ部間には、遮光部材APが配置され,軸間距離を規定している。なお前記APは開口絞りとしての機能を兼ね備えていてもよい。レンズL2〜L5のフランジ部間には遮光部材SHが配置され,それぞれ軸間距離を規定している。第5レンズL5のフランジ部とIRカットフィルタFとの間、及びIRカットフィルタFと基板52との間には、スペーサSPがそれぞれ配置されてなり、軸間距離を規定している。   A light shielding member AP is disposed between the flange portions of the first lens and the second lens to define the interaxial distance. The AP may have a function as an aperture stop. A light shielding member SH is disposed between the flange portions of the lenses L2 to L5, and the distance between the axes is defined. Spacers SP are arranged between the flange portion of the fifth lens L5 and the IR cut filter F, and between the IR cut filter F and the substrate 52, respectively, and define the distance between the axes.

上述した撮像ユニット50の動作について説明する。図3は、撮像ユニット50を携帯端末としてのスマートフォン100に装備した状態を示す図である。また、図4はスマートフォン100の制御ブロック図である。   The operation of the imaging unit 50 described above will be described. FIG. 3 is a diagram illustrating a state in which the imaging unit 50 is mounted on the smartphone 100 as a mobile terminal. FIG. 4 is a control block diagram of the smartphone 100.

撮像ユニット50は、例えば、筐体53の物体側端面がスマートフォン100の背面(図3(b)参照)に設けられ、タッチパネル70の裏側に相当する位置に配設される。   In the imaging unit 50, for example, the object-side end surface of the housing 53 is provided on the back surface of the smartphone 100 (see FIG. 3B), and is disposed at a position corresponding to the back side of the touch panel 70.

撮像ユニット50は、スマートフォン100の制御部101と接続され、輝度信号や色差信号等の画像信号を制御部101側に出力する。   The imaging unit 50 is connected to the control unit 101 of the smartphone 100 and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.

一方、スマートフォン100は、図4に示すように、各部を統括的に制御すると共に、各処理に応じたプログラムを実行する制御部(CPU)101と、番号等をキーにより指示入力するための入力部60と、所定のデータの他に撮像した映像等を表示する液晶表示部70と、外部サーバとの間の各種情報通信を実現するための無線通信部80と、携帯電話機100のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)91と、制御部101によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像ユニット50により得られた撮像データ等を一時的に格納する作業領域として用いられる及び一時記憶部(RAM)92とを備えている。   On the other hand, as shown in FIG. 4, the smartphone 100 performs overall control of each unit, and also inputs a control unit (CPU) 101 that executes a program corresponding to each process, and inputs a number and the like with a key. Unit 60, a liquid crystal display unit 70 for displaying captured images in addition to predetermined data, a wireless communication unit 80 for realizing various information communication with an external server, a system program for mobile phone 100, Obtained by a storage unit (ROM) 91 storing various processing programs and necessary data such as a terminal ID, and various processing programs and data executed by the control unit 101, or processing data, or the imaging unit 50 And a temporary storage unit (RAM) 92 that is used as a work area for temporarily storing imaging data and the like.

スマートフォン100は、入力キー部60の操作によって動作し、タッチパネル(表示部)70に表示されたアイコン71等をタッチすることで、撮像ユニット50を動作させて撮像を行うことができる。撮像ユニット50から入力された画像信号は、制御部101で後述する画像処理を施され、上記スマートフォン100の制御系により、記憶部92に記憶されたり、或いはタッチパネル70で表示され、さらには、無線通信部80を介して映像情報として外部に送信される。   The smartphone 100 operates by operating the input key unit 60, and touches an icon 71 or the like displayed on the touch panel (display unit) 70, whereby the imaging unit 50 can be operated to perform imaging. The image signal input from the imaging unit 50 is subjected to image processing to be described later in the control unit 101, stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and wirelessly It is transmitted to the outside as video information via the communication unit 80.

[実施例]
以下、本発明の撮像レンズの実施例を示す。各実施例において、非球面係数が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
[Example]
Examples of the imaging lens of the present invention will be shown below. In each example, the surface on which the aspheric coefficient is described is a surface having an aspheric shape, and the aspheric shape has an apex at the surface as an origin, an X axis in the optical axis direction, and is perpendicular to the optical axis. The height of the direction is represented by the following “Equation 1” where h.

Figure 2015079175
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
Figure 2015079175
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant

(実施例1)
実施例1のレンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)を、E(たとえば2.5E−02)を用いて表すものとする。また、長さに関する値は特に示さない限りmmとする。各レンズにおいて、S1は物体側面、S2は像側面を示す。非球面係数が記載された面が非球面である。IRCFとは、IRカットフィルタである。
(Example 1)
Table 1 shows lens data of Example 1. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02). Moreover, the value regarding the length is mm unless otherwise indicated. In each lens, S1 represents an object side surface, and S2 represents an image side surface. A surface on which an aspheric coefficient is described is an aspheric surface. IRCF is an IR cut filter.

[表1]
実施例1

面番号 曲率半径 間隔 屈折率 アッベ数 アパチャ(有効半径)
物体 ∞ ∞
絞り ∞ -0.288 0.990
L1-S1 1.690 0.670 1.5447 56.0 0.988
L1-S2 -17.129 0.050 0.921
L2-S1 7.652 0.170 1.6347 23.9 0.904
L2-S2 2.146 0.423 0.932
L3-S1 9.575 0.535 1.5447 56.0 1.106
L3-S2 ∞ 0.460 1.239
L4-S1 17.437 0.745 1.5447 56.0 1.407
L4-S2 -1.380 0.300 1.699
L5-S1 -4.526 0.342 1.5447 56.0 2.069
L5-S2 1.244 0.450 2.514
IRCF-S1 ∞ 0.110 1.5163 64.1 3.300
IRCF-S2 ∞ 0.276 3.300
像面 ∞

非球面係数

S1(物体側面) S2(像側面)
L1 K= -1.6099E+00 K= -5.0000E+01
A3= 0.0000E+00 A3= 0.0000E+00
A4= 4.2509E-02 A4= -8.0097E-02
A5= 0.0000E+00 A5= 0.0000E+00
A6= -2.4907E-02 A6= 3.4510E-01
A8= 9.6714E-02 A8= -5.9251E-01
A10= -2.0014E-01 A10= 4.3589E-01
A12= 1.8931E-01 A12= -1.3901E-01
A14= -7.6314E-02 A14= 0.0000E+00
L2 K= 3.8417E+01 K= -1.4022E+01
A3= 0.0000E+00 A3= 0.0000E+00
A4= -2.5522E-01 A4= -1.9126E-02
A5= 0.0000E+00 A5= 0.0000E+00
A6= 7.9024E-01 A6= 3.4238E-01
A8= -1.2284E+00 A8= -5.2334E-01
A10= 9.4293E-01 A10= 4.4676E-01
A12= -3.0120E-01 A12= -1.5009E-01
A14= 0.0000E+00 A14= 0.0000E+00
L3 K= 2.1484E+01 K= 0.0000E+00
A3= 0.0000E+00 A3= 0.0000E+00
A4= -8.7540E-02 A4= -9.4188E-02
A5= 0.0000E+00 A5= 0.0000E+00
A6= -9.7850E-02 A6= 5.2351E-04
A8= 3.6161E-01 A8= -3.2026E-02
A10= -5.7724E-01 A10= 6.5498E-02
A12= 4.4668E-01 A12= -6.0565E-02
A14= -1.2141E-01 A14= 2.2566E-02
L4 K= 5.0000E+01 K= -7.6240E+00
A3= -4.2649E-02 A3= -1.1300E-01
A4= 4.8067E-02 A4= 1.0455E-02
A5= -1.0040E-01 A5= 3.2856E-03
A6= 1.4611E-02 A6= 3.0690E-03
A8= 1.0093E-02 A8= 3.7157E-04
A10= -1.0196E-02 A10= -2.0447E-03
A12= 1.0353E-03 A12= 1.2798E-03
A14= 0.0000E+00 A14= -2.2925E-04
L5 K= 7.9050E-01 K= -8.5142E+00
A3= -2.4413E-01 A3= -1.5196E-01
A4= 4.6216E-02 A4= 7.4618E-02
A5= 3.5437E-02 A5= -1.5556E-02
A6= 2.9272E-03 A6= 2.8003E-04
A8= -1.3992E-03 A8= -3.0821E-04
A10= -1.0781E-04 A10= -4.4514E-06
A12= 7.5523E-06 A12= 3.4227E-06
A14= 1.8354E-06 A14= 1.7208E-07
[Table 1]
Example 1

Surface number Curvature radius Interval Refractive index Abbe number Aperture (effective radius)
Object ∞ ∞
Aperture ∞ -0.288 0.990
L1-S1 1.690 0.670 1.5447 56.0 0.988
L1-S2 -17.129 0.050 0.921
L2-S1 7.652 0.170 1.6347 23.9 0.904
L2-S2 2.146 0.423 0.932
L3-S1 9.575 0.535 1.5447 56.0 1.106
L3-S2 ∞ 0.460 1.239
L4-S1 17.437 0.745 1.5447 56.0 1.407
L4-S2 -1.380 0.300 1.699
L5-S1 -4.526 0.342 1.5447 56.0 2.069
L5-S2 1.244 0.450 2.514
IRCF-S1 ∞ 0.110 1.5163 64.1 3.300
IRCF-S2 ∞ 0.276 3.300
Image plane ∞

Aspheric coefficient

S1 (side of object) S2 (side of image)
L1 K = -1.6099E + 00 K = -5.0000E + 01
A3 = 0.0000E + 00 A3 = 0.0000E + 00
A4 = 4.2509E-02 A4 = -8.0097E-02
A5 = 0.0000E + 00 A5 = 0.0000E + 00
A6 = -2.4907E-02 A6 = 3.4510E-01
A8 = 9.6714E-02 A8 = -5.9251E-01
A10 = -2.0014E-01 A10 = 4.3589E-01
A12 = 1.8931E-01 A12 = -1.3901E-01
A14 = -7.6314E-02 A14 = 0.0000E + 00
L2 K = 3.8417E + 01 K = -1.4022E + 01
A3 = 0.0000E + 00 A3 = 0.0000E + 00
A4 = -2.5522E-01 A4 = -1.9126E-02
A5 = 0.0000E + 00 A5 = 0.0000E + 00
A6 = 7.9024E-01 A6 = 3.4238E-01
A8 = -1.2284E + 00 A8 = -5.2334E-01
A10 = 9.4293E-01 A10 = 4.4676E-01
A12 = -3.0120E-01 A12 = -1.5009E-01
A14 = 0.0000E + 00 A14 = 0.0000E + 00
L3 K = 2.1484E + 01 K = 0.0000E + 00
A3 = 0.0000E + 00 A3 = 0.0000E + 00
A4 = -8.7540E-02 A4 = -9.4188E-02
A5 = 0.0000E + 00 A5 = 0.0000E + 00
A6 = -9.7850E-02 A6 = 5.2351E-04
A8 = 3.6161E-01 A8 = -3.2026E-02
A10 = -5.7724E-01 A10 = 6.5498E-02
A12 = 4.4668E-01 A12 = -6.0565E-02
A14 = -1.2141E-01 A14 = 2.2566E-02
L4 K = 5.0000E + 01 K = -7.6240E + 00
A3 = -4.2649E-02 A3 = -1.1300E-01
A4 = 4.8067E-02 A4 = 1.0455E-02
A5 = -1.0040E-01 A5 = 3.2856E-03
A6 = 1.4611E-02 A6 = 3.0690E-03
A8 = 1.0093E-02 A8 = 3.7157E-04
A10 = -1.0196E-02 A10 = -2.0447E-03
A12 = 1.0353E-03 A12 = 1.2798E-03
A14 = 0.0000E + 00 A14 = -2.2925E-04
L5 K = 7.9050E-01 K = -8.5142E + 00
A3 = -2.4413E-01 A3 = -1.5196E-01
A4 = 4.6216E-02 A4 = 7.4618E-02
A5 = 3.5437E-02 A5 = -1.5556E-02
A6 = 2.9272E-03 A6 = 2.8003E-04
A8 = -1.3992E-03 A8 = -3.0821E-04
A10 = -1.0781E-04 A10 = -4.4514E-06
A12 = 7.5523E-06 A12 = 3.4227E-06
A14 = 1.8354E-06 A14 = 1.7208E-07

図5は実施例1の撮像レンズの断面図である。図中、撮像レンズは、物体側より順に、物体側に凸形状を有し正の屈折力を有する第1レンズL1と、物体側に凸形状を有し負の屈折力を有する第2レンズL2と、第3レンズL3と、像側面が凸形状であって正の屈折力を有する第4レンズL4と、光軸付近が両凹形状であり且つ光軸方向断面において像側面が光軸近傍以外の点で少なくとも1つの極値を持つ第5レンズL5とを有する。Iは撮像面(被投影面)であり、FはIRカットフィルタである。図6は実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。ここで、球面収差図において、656nmの光線、588nmの光線、486nmの光線に対する球面収差量をそれぞれ表し、非点収差図において、実線Sはサジタル面、点線Mはメリディオナル面を表す(以下、同じ)。   5 is a cross-sectional view of the imaging lens of Example 1. FIG. In the drawing, the imaging lens includes, in order from the object side, a first lens L1 having a convex shape on the object side and having positive refractive power, and a second lens L2 having a convex shape on the object side and having negative refractive power. The third lens L3, the fourth lens L4 having a convex image side surface and positive refractive power, and a biconcave shape in the vicinity of the optical axis, and the image side surface other than the vicinity of the optical axis in the cross section in the optical axis direction. And a fifth lens L5 having at least one extreme value. I is an imaging surface (projection surface), and F is an IR cut filter. FIG. 6 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)). Here, in the spherical aberration diagram, the amount of spherical aberration with respect to the light beam of 656 nm, the light beam of 588 nm, and the light beam of 486 nm is shown, respectively. ).

実施例1に関し、各値を以下に示す。
F(Fナンバー): 1.83
f(全系の焦点距離): 3.619mm
Y(最大像高): 2.921mm
Regarding Example 1, each value is shown below.
F (F number): 1.83
f (focal length of the entire system): 3.619 mm
Y (maximum image height): 2.921 mm

(実施例2)
実施例2の撮像レンズのレンズデータを、表2に示す。
(Example 2)
Table 2 shows lens data of the imaging lens of Example 2.

[表2]
実施例2

面番号 曲率半径 間隔 屈折率 アッベ数 アパチャ(有効半径)
物体 ∞ ∞
絞り ∞ -0.297 0.995
L1-S1 1.663 0.600 1.5447 56.0 0.994
L1-S2 -23.145 0.061 0.941
L2-S1 6.845 0.170 1.6347 23.9 0.920
L2-S2 2.095 0.443 0.938
L3-S1 9.869 0.550 1.5447 56.0 1.123
L3-S2 ∞ 0.468 1.246
L4-S1 15.531 0.753 1.5447 56.0 1.426
L4-S2 -1.439 0.310 1.747
L5-S1 -4.993 0.337 1.5447 56.0 2.138
L5-S2 1.264 0.450 2.545
IRCF-S1 ∞ 0.110 1.5163 64.1 3.300
IRCF-S2 ∞ 0.279 3.300
像面 ∞

非球面係数

S1(物体側面) S2(像側面)
L1 K= -1.5475E+00 K= -5.0000E+01
A3= 0.0000E+00 A3= 0.0000E+00
A4= 4.0287E-02 A4= -6.5168E-02
A5= 0.0000E+00 A5= 0.0000E+00
A6= 4.4796E-03 A6= 2.6332E-01
A8= -1.6498E-03 A8= -4.1375E-01
A10= -3.9525E-02 A10= 2.8647E-01
A12= 6.7797E-02 A12= -9.5420E-02
A14= -4.3573E-02 A14= 0.0000E+00
L2 K= 3.7349E+01 K= -1.2723E+01
A3= 0.0000E+00 A3= 0.0000E+00
A4= -2.3952E-01 A4= -1.5216E-02
A5= 0.0000E+00 A5= 0.0000E+00
A6= 6.7367E-01 A6= 3.2583E-01
A8= -9.7164E-01 A8= -4.6862E-01
A10= 7.1142E-01 A10= 3.9702E-01
A12= -2.2759E-01 A12= -1.3449E-01
A14= 0.0000E+00 A14= 0.0000E+00
L3 K= 2.1484E+01 K= 0.0000E+00
A3= 0.0000E+00 A3= 0.0000E+00
A4= -8.9097E-02 A4= -9.8376E-02
A5= 0.0000E+00 A5= 0.0000E+00
A6= -6.2296E-02 A6= 1.6030E-02
A8= 2.6351E-01 A8= -5.3536E-02
A10= -4.3966E-01 A10= 8.1095E-02
A12= 3.5704E-01 A12= -6.3653E-02
A14= -9.9879E-02 A14= 2.2004E-02
L4 K= -5.0000E+01 K= -8.1848E+00
A3= -3.9088E-02 A3= -1.0888E-01
A4= 4.2886E-02 A4= 9.7430E-03
A5= -9.5715E-02 A5= 4.2689E-03
A6= 1.7343E-02 A6= 4.4695E-03
A8= 8.7354E-03 A8= 3.7844E-04
A10= -1.0532E-02 A10= -2.1306E-03
A12= 1.5969E-03 A12= 1.2591E-03
A14= 0.0000E+00 A14= -2.2405E-04
L5 K= 6.0791E-01 K= -8.3919E+00
A3= -2.4051E-01 A3= -1.5130E-01
A4= 4.4933E-02 A4= 7.5344E-02
A5= 3.4890E-02 A5= -1.5587E-02
A6= 2.7588E-03 A6= -3.5796E-05
A8= -1.4032E-03 A8= -2.6548E-04
A10= -1.0793E-04 A10= -2.1366E-06
A12= 7.3068E-06 A12= 3.5065E-06
A14= 1.8561E-06 A14= 1.1685E-07
[Table 2]
Example 2

Surface number Curvature radius Interval Refractive index Abbe number Aperture (effective radius)
Object ∞ ∞
Aperture ∞ -0.297 0.995
L1-S1 1.663 0.600 1.5447 56.0 0.994
L1-S2 -23.145 0.061 0.941
L2-S1 6.845 0.170 1.6347 23.9 0.920
L2-S2 2.095 0.443 0.938
L3-S1 9.869 0.550 1.5447 56.0 1.123
L3-S2 ∞ 0.468 1.246
L4-S1 15.531 0.753 1.5447 56.0 1.426
L4-S2 -1.439 0.310 1.747
L5-S1 -4.993 0.337 1.5447 56.0 2.138
L5-S2 1.264 0.450 2.545
IRCF-S1 ∞ 0.110 1.5163 64.1 3.300
IRCF-S2 ∞ 0.279 3.300
Image plane ∞

Aspheric coefficient

S1 (object side) S2 (image side)
L1 K = -1.5475E + 00 K = -5.0000E + 01
A3 = 0.0000E + 00 A3 = 0.0000E + 00
A4 = 4.0287E-02 A4 = -6.5168E-02
A5 = 0.0000E + 00 A5 = 0.0000E + 00
A6 = 4.4796E-03 A6 = 2.6332E-01
A8 = -1.6498E-03 A8 = -4.1375E-01
A10 = -3.9525E-02 A10 = 2.8647E-01
A12 = 6.7797E-02 A12 = -9.5420E-02
A14 = -4.3573E-02 A14 = 0.0000E + 00
L2 K = 3.7349E + 01 K = -1.2723E + 01
A3 = 0.0000E + 00 A3 = 0.0000E + 00
A4 = -2.3952E-01 A4 = -1.5216E-02
A5 = 0.0000E + 00 A5 = 0.0000E + 00
A6 = 6.7367E-01 A6 = 3.2583E-01
A8 = -9.7164E-01 A8 = -4.6862E-01
A10 = 7.1142E-01 A10 = 3.9702E-01
A12 = -2.2759E-01 A12 = -1.3449E-01
A14 = 0.0000E + 00 A14 = 0.0000E + 00
L3 K = 2.1484E + 01 K = 0.0000E + 00
A3 = 0.0000E + 00 A3 = 0.0000E + 00
A4 = -8.9097E-02 A4 = -9.8376E-02
A5 = 0.0000E + 00 A5 = 0.0000E + 00
A6 = -6.2296E-02 A6 = 1.6030E-02
A8 = 2.6351E-01 A8 = -5.3536E-02
A10 = -4.3966E-01 A10 = 8.1095E-02
A12 = 3.5704E-01 A12 = -6.3653E-02
A14 = -9.9879E-02 A14 = 2.2004E-02
L4 K = -5.0000E + 01 K = -8.1848E + 00
A3 = -3.9088E-02 A3 = -1.0888E-01
A4 = 4.2886E-02 A4 = 9.7430E-03
A5 = -9.5715E-02 A5 = 4.2689E-03
A6 = 1.7343E-02 A6 = 4.4695E-03
A8 = 8.7354E-03 A8 = 3.7844E-04
A10 = -1.0532E-02 A10 = -2.1306E-03
A12 = 1.5969E-03 A12 = 1.2591E-03
A14 = 0.0000E + 00 A14 = -2.2405E-04
L5 K = 6.0791E-01 K = -8.3919E + 00
A3 = -2.4051E-01 A3 = -1.5130E-01
A4 = 4.4933E-02 A4 = 7.5344E-02
A5 = 3.4890E-02 A5 = -1.5587E-02
A6 = 2.7588E-03 A6 = -3.5796E-05
A8 = -1.4032E-03 A8 = -2.6548E-04
A10 = -1.0793E-04 A10 = -2.1366E-06
A12 = 7.3068E-06 A12 = 3.5065E-06
A14 = 1.8561E-06 A14 = 1.1685E-07

図7は実施例2のレンズの断面図である。図中、撮像レンズは、物体側より順に、物体側に凸形状を有し正の屈折力を有する第1レンズL1と、物体側に凸形状を有し負の屈折力を有する第2レンズL2と、第3レンズL3と、像側面が凸形状であって正の屈折力を有する第4レンズL4と、光軸付近が両凹形状であり且つ光軸方向断面において像側面が少なくとも1つの極値を持つ第5レンズL5とを有する。Iは撮像面(被投影面)であり、FはIRカットフィルタである。図8は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。   FIG. 7 is a sectional view of the lens of Example 2. In the drawing, the imaging lens includes, in order from the object side, a first lens L1 having a convex shape on the object side and having positive refractive power, and a second lens L2 having a convex shape on the object side and having negative refractive power. The third lens L3, the fourth lens L4 having a convex image side surface and positive refractive power, and a biconcave shape in the vicinity of the optical axis, and at least one pole on the image side surface in the cross section in the optical axis direction. And a fifth lens L5 having a value. I is an imaging surface (projection surface), and F is an IR cut filter. FIG. 8 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).

実施例2に関し、各値を以下に示す。
F(Fナンバー): 1.83
f(全系の焦点距離): 3.636mm
Y(最大像高): 2.921mm
Regarding Example 2, each value is shown below.
F (F number): 1.83
f (focal length of the entire system): 3.636 mm
Y (maximum image height): 2.921 mm

(実施例3)
実施例3の撮像レンズのレンズデータを、表3に示す。
(Example 3)
Table 3 shows lens data of the imaging lens of Example 3.

[表3]
実施例3

面番号 曲率半径 間隔 屈折率 アッベ数 アパチャ(有効半径)
物体 ∞ ∞
絞り ∞ -0.309 0.980
L1-S1 1.674 0.550 1.5447 56.0 0.981
L1-S2 -22.691 0.072 0.957
L2-S1 6.962 0.170 1.6347 23.9 0.930
L2-S2 2.009 0.438 0.947
L3-S1 9.940 0.302 1.5447 56.0 1.112
L3-S2 -13.735 0.050 1.190
L4-S1 -24.490 0.250 1.5447 56.0 1.231
L4-S2 ∞ 0.492 1.281
L5-S1 11.305 0.674 1.5447 56.0 1.518
L5-S2 -1.669 0.375 1.848
L6-S1 -6.450 0.330 1.5447 56.0 2.250
L6-S2 1.300 0.450 2.566
IRCF-S1 ∞ 0.110 1.5163 64.1 3.300
IRCF-S2 ∞ 0.265 3.300
像面 ∞

非球面係数

S1(物体側面) S2(像側面)
L1 K= -1.2847E+00 K= -5.0000E+01
A3= 0.0000E+00 A3= 0.0000E+00
A4= 4.0920E-02 A4= -2.9611E-02
A5= 0.0000E+00 A5= 0.0000E+00
A6= -1.5338E-02 A6= 1.9164E-01
A8= 7.9381E-02 A8= -3.3373E-01
A10= -1.6796E-01 A10= 2.9305E-01
A12= 1.7685E-01 A12= -1.2121E-01
A14= -7.5838E-02 A14= 0.0000E+00
L2 K= 3.7674E+01 K= -1.2591E+01
A3= 0.0000E+00 A3= 0.0000E+00
A4= -2.2228E-01 A4= -1.0165E-02
A5= 0.0000E+00 A5= 0.0000E+00
A6= 5.6872E-01 A6= 2.6379E-01
A8= -8.1060E-01 A8= -3.7560E-01
A10= 6.3908E-01 A10= 3.4567E-01
A12= -2.3210E-01 A12= -1.2510E-01
A14= 0.0000E+00 A14= 0.0000E+00
L3 K= 2.1484E+01 K= 4.0539E+01
A3= 0.0000E+00 A3= 1.9943E-02
A4= -4.5079E-02 A4= -8.1325E-03
A5= 0.0000E+00 A5= -1.7823E-02
A6= -1.9485E-01 A6= -1.5766E-02
A8= 4.6306E-01 A8= -5.8080E-03
A10= -6.7401E-01 A10= -1.0188E-03
A12= 5.0711E-01 A12= -3.9936E-05
A14= -1.3734E-01 A14= 0.0000E+00
L4 K= 5.0000E+01 K= 0.0000E+00
A3= -1.8244E-02 A3= 0.0000E+00
A4= -1.0207E-02 A4= -1.3881E-01
A5= -2.6867E-04 A5= 0.0000E+00
A6= 2.0787E-03 A6= 8.8590E-02
A8= 2.0643E-04 A8= -1.1415E-01
A10= -5.2193E-04 A10= 9.5340E-02
A12= 2.1645E-04 A12= -3.9880E-02
A14= 0.0000E+00 A14= 9.4104E-03
L5 K= 4.9907E+01 K= -1.2347E+01
A3= -2.8678E-02 A3= -1.2934E-01
A4= 3.0400E-02 A4= 2.9908E-02
A5= -8.8640E-02 A5= 1.0283E-02
A6= 2.3643E-02 A6= 3.6489E-03
A8= 6.5699E-03 A8= -6.4009E-04
A10= -1.1414E-02 A10= -2.3000E-03
A12= 2.5220E-03 A12= 1.2754E-03
A14= 0.0000E+00 A14= -2.0285E-04
L6 K= 1.3451E+00 K= -9.1398E+00
A3= -2.5974E-01 A3= -1.4920E-01
A4= 4.3475E-02 A4= 7.3435E-02
A5= 3.6855E-02 A5= -1.6681E-02
A6= 3.6439E-03 A6= 9.1273E-04
A8= -1.4050E-03 A8= -2.9024E-04
A10= -1.2174E-04 A10= -1.5986E-05
A12= 5.2842E-06 A12= 2.6097E-06
A14= 1.9797E-06 A14= 5.0012E-07
[Table 3]
Example 3

Surface number Curvature radius Interval Refractive index Abbe number Aperture (effective radius)
Object ∞ ∞
Aperture ∞ -0.309 0.980
L1-S1 1.674 0.550 1.5447 56.0 0.981
L1-S2 -22.691 0.072 0.957
L2-S1 6.962 0.170 1.6347 23.9 0.930
L2-S2 2.009 0.438 0.947
L3-S1 9.940 0.302 1.5447 56.0 1.112
L3-S2 -13.735 0.050 1.190
L4-S1 -24.490 0.250 1.5447 56.0 1.231
L4-S2 ∞ 0.492 1.281
L5-S1 11.305 0.674 1.5447 56.0 1.518
L5-S2 -1.669 0.375 1.848
L6-S1 -6.450 0.330 1.5447 56.0 2.250
L6-S2 1.300 0.450 2.566
IRCF-S1 ∞ 0.110 1.5163 64.1 3.300
IRCF-S2 ∞ 0.265 3.300
Image plane ∞

Aspheric coefficient

S1 (object side) S2 (image side)
L1 K = -1.2847E + 00 K = -5.0000E + 01
A3 = 0.0000E + 00 A3 = 0.0000E + 00
A4 = 4.0920E-02 A4 = -2.9611E-02
A5 = 0.0000E + 00 A5 = 0.0000E + 00
A6 = -1.5338E-02 A6 = 1.9164E-01
A8 = 7.9381E-02 A8 = -3.3373E-01
A10 = -1.6796E-01 A10 = 2.9305E-01
A12 = 1.7685E-01 A12 = -1.2121E-01
A14 = -7.5838E-02 A14 = 0.0000E + 00
L2 K = 3.7674E + 01 K = -1.2591E + 01
A3 = 0.0000E + 00 A3 = 0.0000E + 00
A4 = -2.2228E-01 A4 = -1.0165E-02
A5 = 0.0000E + 00 A5 = 0.0000E + 00
A6 = 5.6872E-01 A6 = 2.6379E-01
A8 = -8.1060E-01 A8 = -3.7560E-01
A10 = 6.3908E-01 A10 = 3.4567E-01
A12 = -2.3210E-01 A12 = -1.2510E-01
A14 = 0.0000E + 00 A14 = 0.0000E + 00
L3 K = 2.1484E + 01 K = 4.0539E + 01
A3 = 0.0000E + 00 A3 = 1.9943E-02
A4 = -4.5079E-02 A4 = -8.1325E-03
A5 = 0.0000E + 00 A5 = -1.7823E-02
A6 = -1.9485E-01 A6 = -1.5766E-02
A8 = 4.6306E-01 A8 = -5.8080E-03
A10 = -6.7401E-01 A10 = -1.0188E-03
A12 = 5.0711E-01 A12 = -3.9936E-05
A14 = -1.3734E-01 A14 = 0.0000E + 00
L4 K = 5.0000E + 01 K = 0.0000E + 00
A3 = -1.8244E-02 A3 = 0.0000E + 00
A4 = -1.0207E-02 A4 = -1.3881E-01
A5 = -2.6867E-04 A5 = 0.0000E + 00
A6 = 2.0787E-03 A6 = 8.8590E-02
A8 = 2.0643E-04 A8 = -1.1415E-01
A10 = -5.2193E-04 A10 = 9.5340E-02
A12 = 2.1645E-04 A12 = -3.9880E-02
A14 = 0.0000E + 00 A14 = 9.4104E-03
L5 K = 4.9907E + 01 K = -1.2347E + 01
A3 = -2.8678E-02 A3 = -1.2934E-01
A4 = 3.0400E-02 A4 = 2.9908E-02
A5 = -8.8640E-02 A5 = 1.0283E-02
A6 = 2.3643E-02 A6 = 3.6489E-03
A8 = 6.5699E-03 A8 = -6.4009E-04
A10 = -1.1414E-02 A10 = -2.3000E-03
A12 = 2.5220E-03 A12 = 1.2754E-03
A14 = 0.0000E + 00 A14 = -2.0285E-04
L6 K = 1.3451E + 00 K = -9.1398E + 00
A3 = -2.5974E-01 A3 = -1.4920E-01
A4 = 4.3475E-02 A4 = 7.3435E-02
A5 = 3.6855E-02 A5 = -1.6681E-02
A6 = 3.6439E-03 A6 = 9.1273E-04
A8 = -1.4050E-03 A8 = -2.9024E-04
A10 = -1.2174E-04 A10 = -1.5986E-05
A12 = 5.2842E-06 A12 = 2.6097E-06
A14 = 1.9797E-06 A14 = 5.0012E-07

図9は実施例3のレンズの断面図である。図中、撮像レンズは、物体側より順に、物体側に凸形状を有し正の屈折力を有する第1レンズL1と、物体側に凸形状を有し負の屈折力を有する第2レンズL2と、第3レンズL3と、第4レンズL4と、像側面が凸形状であって正の屈折力を有する第5レンズL5と、光軸付近が両凹形状であり且つ光軸方向断面において像側面が少なくとも1つの極値を持つ第6レンズL6とを有する。Iは撮像面(被投影面)であり、FはIRカットフィルタである。図10は実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。   FIG. 9 is a sectional view of the lens of Example 3. In the drawing, the imaging lens includes, in order from the object side, a first lens L1 having a convex shape on the object side and having positive refractive power, and a second lens L2 having a convex shape on the object side and having negative refractive power. The third lens L3, the fourth lens L4, the fifth lens L5 having a convex image side surface and positive refractive power, and a biconcave shape in the vicinity of the optical axis and an image in a cross section in the optical axis direction. The side surface includes a sixth lens L6 having at least one extreme value. I is an imaging surface (projection surface), and F is an IR cut filter. FIG. 10 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)).

実施例3に関し、各値を以下に示す。
F(Fナンバー): 1.85
f(全系の焦点距離): 3.625mm
Y(最大像高): 2.921mm
Regarding Example 3, each value is shown below.
F (F number): 1.85
f (focal length of the entire system): 3.625 mm
Y (maximum image height): 2.921 mm

実施例に対応する条件式(1)〜(9)の値を表4に示す。   Table 4 shows values of conditional expressions (1) to (9) corresponding to the examples.

Figure 2015079175
Figure 2015079175

図11〜13は,本発明者の検討結果を説明するための図である。図11(a)は、実施例に対応する5枚構成の撮像レンズの第1レンズL1の周辺を示す模式断面図であり、図11(b)は、比較例に対応する5枚構成の撮像レンズの第1レンズL1の周辺を示す模式断面図であって、S1面が物体側面、S2面が像側面である。実施例では、第1レンズL1の物体側面に変曲点を有するので、その最大面角度θmaxが比較的小さく34°である。一方、比較例では、第1レンズL1の物体側面に変曲点を持たないので、物体側面の周辺が比較的急峻な形状となり、その最大面角度θmaxが比較的大きく43°である   11-13 is a figure for demonstrating the examination result of this inventor. FIG. 11A is a schematic cross-sectional view showing the periphery of the first lens L1 of the five-lens imaging lens corresponding to the embodiment, and FIG. 11B is a five-lens imaging corresponding to the comparative example. FIG. 4 is a schematic cross-sectional view showing the periphery of the first lens L1 of the lens, where the S1 surface is the object side surface and the S2 surface is the image side surface. In the embodiment, since the inflection point is provided on the object side surface of the first lens L1, the maximum surface angle θmax is relatively small and 34 °. On the other hand, in the comparative example, since there is no inflection point on the object side surface of the first lens L1, the periphery of the object side surface has a relatively steep shape, and the maximum surface angle θmax is relatively large and is 43 °.

撮像レンズの第1レンズL1に画角外から光を入射すると、S1面から入射した光は、S2面とS1面で反射を繰り返して周辺側に向かい、S2面から出射する。ここで、図11(b)に示す比較例では、最大面角度θmaxが比較的大きいため、S2面から出射した迷光が局所的に集光されやすくなる。これに対し、図11(a)に示す実施例では、最大面角度θmaxが比較的小さいため、S2面から出射した迷光が拡散されやすい。   When light is incident on the first lens L1 of the imaging lens from the outside of the angle of view, the light incident from the S1 surface repeatedly reflects on the S2 surface and the S1 surface, travels toward the peripheral side, and exits from the S2 surface. Here, in the comparative example shown in FIG. 11B, since the maximum surface angle θmax is relatively large, the stray light emitted from the S2 surface is likely to be locally collected. On the other hand, in the embodiment shown in FIG. 11A, since the maximum surface angle θmax is relatively small, stray light emitted from the S2 surface is easily diffused.

図12,13は、実施例と比較例とで、固体撮像素子の撮像面Iに対して、迷光の結像度合いを点描で示した図である。図13の比較例の場合、撮像面I内において、ライン上に迷光が集光されゴーストと認識されやすいことが分かる。これに対し、図12の実施例の場合、撮像面Iに広範囲に迷光が拡散され、ゴーストとして認識されにくくなっている。   FIGS. 12 and 13 are diagrams showing the degree of stray light imaging on the imaging surface I of the solid-state imaging device in the example and the comparative example. In the case of the comparative example in FIG. 13, it can be seen that stray light is condensed on the line within the imaging surface I and is easily recognized as a ghost. On the other hand, in the embodiment of FIG. 12, stray light is diffused over a wide range on the imaging surface I, and is difficult to be recognized as a ghost.

本発明の撮像レンズは、5枚構成、6枚構成に限られず、7枚以上のレンズから構成されていても良い。   The imaging lens according to the present invention is not limited to the five-lens configuration or the six-lens configuration, and may include seven or more lenses.

10 撮像レンズ
50 撮像ユニット
51 撮像素子
51a 光電変換部
52 基板
53 鏡筒
60 入力部
70 タッチパネル
80 無線通信部
91 記憶部
92 一時記憶部
100 スマートフォン
101 制御部
I 撮像面
L1〜L6 レンズ
DESCRIPTION OF SYMBOLS 10 Imaging lens 50 Imaging unit 51 Imaging element 51a Photoelectric conversion part 52 Substrate 53 Lens barrel 60 Input part 70 Touch panel 80 Wireless communication part 91 Storage part 92 Temporary storage part 100 Smartphone 101 Control part I Imaging surface L1-L6 Lens

Claims (11)

固体撮像素子の撮像面に被写体像を結像させるための撮像レンズであって、
前記撮像レンズは、物体側より順に、物体側に凸形状を有し正の屈折力を有する第1レンズと、物体側に凸形状を有し負の屈折力を有する第2レンズとを含む5枚以上のレンズから構成され、最も像側のレンズにおける光軸付近が両凹形状であり,且つ光軸方向断面において像側面が光軸近傍以外の点で少なくとも1つの極値を持ち、前記撮像レンズは以下の条件式を満たし、
f/2α<2.2 (1)
L/f<1.4 (2)
更に、前記第1レンズは、光軸方向断面において物体側面が有効径内において変曲点を持ち、以下の条件式を満たすことを特徴とする撮像レンズ。
0.75<(R1+R2)/(R2−R1)<0.92 (3)
ただし、
f:撮像レンズ全系の焦点距離(mm)
α:前記第1レンズより物体側に配置される遮光絞りの半径(mm)
L:無限光入射時における前記第1レンズの物体側面から前記撮像面までの光軸上の距離(mm)
R1:前記第1レンズの物体側面の曲率半径(mm)
R2:前記第1レンズの像側面の曲率半径(mm)
An imaging lens for forming a subject image on an imaging surface of a solid-state imaging device,
The imaging lens includes, in order from the object side, a first lens having a convex shape on the object side and having positive refractive power, and a second lens having a convex shape on the object side and having negative refractive power. The imaging is composed of two or more lenses, and the vicinity of the optical axis of the most image side lens has a biconcave shape, and the image side surface has at least one extreme value at a point other than the vicinity of the optical axis in the cross section in the optical axis direction. The lens satisfies the following conditional expression:
f / 2α <2.2 (1)
L / f <1.4 (2)
Furthermore, the first lens has an inflection point within the effective diameter in the cross section in the optical axis direction, and satisfies the following conditional expression.
0.75 <(R1 + R2) / (R2-R1) <0.92 (3)
However,
f: Focal length of the entire imaging lens system (mm)
α: Radius (mm) of the light-shielding stop arranged on the object side from the first lens
L: Distance on the optical axis from the object side surface of the first lens to the imaging surface when infinite light is incident (mm)
R1: radius of curvature of object side surface of the first lens (mm)
R2: radius of curvature of the image side surface of the first lens (mm)
以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
25<θmax<40 (4)
ただし、
θmax:前記第1レンズの物体側面の有効径内における最大面角度(°)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
25 <θmax <40 (4)
However,
θmax: Maximum surface angle (°) within the effective diameter of the object side surface of the first lens
以下の条件式を満足することを特徴とする請求項1又は2に記載の撮像レンズ。
−2.5<f2/f<−1.0 (5)
ただし、
f2:前記第2レンズの焦点距離(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
−2.5 <f2 / f <−1.0 (5)
However,
f2: Focal length (mm) of the second lens
以下の条件式を満足することを特徴とする請求項1〜3のいずれかに記載の撮像レンズ。
20<ν1−ν2<40 (6)
ただし、
ν1:前記第1レンズを構成する材料のd線におけるアッベ数
ν2:前記第2レンズを構成する材料のd線におけるアッベ数
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
20 <ν1-ν2 <40 (6)
However,
ν1: Abbe number in the d-line of the material constituting the first lens ν2: Abbe number in the d-line of the material constituting the second lens
以下の条件式を満足することを特徴とする請求項1〜4のいずれかに記載の撮像レンズ。
0.9<f12/f<2.0 (7)
ただし、
f12:前記第1レンズと前記第2レンズの合成焦点距離(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.9 <f12 / f <2.0 (7)
However,
f12: Composite focal length (mm) of the first lens and the second lens
最も像側のレンズに隣接した物体側のレンズは,像側面が凸形状であって正の屈折力を有することを特徴とする請求項1〜5のいずれかに記載の撮像レンズ。   The imaging lens according to claim 1, wherein the object side lens closest to the image side lens has a convex image side surface and a positive refractive power. 以下の条件式を満足することを特徴とする請求項1〜6のいずれかに記載の撮像レンズ。
−0.6<fe/f<−0.4 (8)
ただし、
fe:最も像側のレンズの焦点距離(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
−0.6 <fe / f <−0.4 (8)
However,
fe: Focal length (mm) of the lens closest to the image side
以下の条件式を満足することを特徴とする請求項1〜7のいずれかに記載の撮像レンズ。
0.15<d1/f<0.2 (9)
ただし、
d1:前記第1レンズの軸上厚さ(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.15 <d1 / f <0.2 (9)
However,
d1: On-axis thickness of the first lens (mm)
全てのレンズがプラスチック製であることを特徴とする請求項1〜8のいずれかに記載の撮像レンズ。   All the lenses are plastics, The imaging lens in any one of Claims 1-8 characterized by the above-mentioned. 請求項1〜9のいずれかに記載の撮像レンズと、固体撮像素子とを有することを特徴とする撮像装置。   An imaging apparatus comprising the imaging lens according to claim 1 and a solid-state imaging device. 請求項10に記載の撮像装置を備えることを特徴とする携帯端末。   A portable terminal comprising the imaging device according to claim 10.
JP2013217112A 2013-10-18 2013-10-18 Image capturing lens, image capturing device, and portable terminal Pending JP2015079175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013217112A JP2015079175A (en) 2013-10-18 2013-10-18 Image capturing lens, image capturing device, and portable terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013217112A JP2015079175A (en) 2013-10-18 2013-10-18 Image capturing lens, image capturing device, and portable terminal

Publications (1)

Publication Number Publication Date
JP2015079175A true JP2015079175A (en) 2015-04-23

Family

ID=53010619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013217112A Pending JP2015079175A (en) 2013-10-18 2013-10-18 Image capturing lens, image capturing device, and portable terminal

Country Status (1)

Country Link
JP (1) JP2015079175A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911675A (en) * 2015-12-21 2016-08-31 瑞声科技(新加坡)有限公司 Image photographing lens
CN106371197A (en) * 2015-07-22 2017-02-01 亚太精密工业(深圳)有限公司 Imaging lens
CN106802464A (en) * 2015-11-26 2017-06-06 三星电机株式会社 Optical imaging system
US9759896B1 (en) 2016-02-24 2017-09-12 AAC Technologies Pte. Ltd. Camera lens
US9766435B1 (en) 2016-03-25 2017-09-19 AAC Technologies Pte. Ltd. Camera lens
KR101904059B1 (en) * 2017-03-08 2018-10-04 주식회사 엔투에이 Subminiature image pickup lens system for preventing inner reflection
US11656435B2 (en) 2018-03-20 2023-05-23 Tokyo Visionary Optics Co., Ltd. Imaging lens and camera module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021271A1 (en) * 2009-08-18 2011-02-24 コニカミノルタオプト株式会社 Imaging lens, imaging device, and portable terminal
JP2011197254A (en) * 2010-03-18 2011-10-06 Olympus Corp Image pickup optical system and image pickup device using the same
JP2011209554A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Image pickup lens, image pickup device and portable terminal device
JP2012189893A (en) * 2011-03-11 2012-10-04 Olympus Corp Imaging optical system and imaging apparatus using the same
WO2013031122A1 (en) * 2011-08-29 2013-03-07 コニカミノルタアドバンストレイヤー株式会社 Image pickup optical system, image pickup device and digital equipment
CN202886720U (en) * 2012-07-06 2013-04-17 大立光电股份有限公司 Optical image pickup system
JP2013109085A (en) * 2011-11-18 2013-06-06 Sony Corp Imaging lens and imaging apparatus
TW201331623A (en) * 2013-02-04 2013-08-01 Largan Precision Co Ltd Optical image capturing system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021271A1 (en) * 2009-08-18 2011-02-24 コニカミノルタオプト株式会社 Imaging lens, imaging device, and portable terminal
JP2011197254A (en) * 2010-03-18 2011-10-06 Olympus Corp Image pickup optical system and image pickup device using the same
JP2011209554A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Image pickup lens, image pickup device and portable terminal device
JP2012189893A (en) * 2011-03-11 2012-10-04 Olympus Corp Imaging optical system and imaging apparatus using the same
WO2013031122A1 (en) * 2011-08-29 2013-03-07 コニカミノルタアドバンストレイヤー株式会社 Image pickup optical system, image pickup device and digital equipment
JP2013109085A (en) * 2011-11-18 2013-06-06 Sony Corp Imaging lens and imaging apparatus
CN202886720U (en) * 2012-07-06 2013-04-17 大立光电股份有限公司 Optical image pickup system
TW201331623A (en) * 2013-02-04 2013-08-01 Largan Precision Co Ltd Optical image capturing system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106371197A (en) * 2015-07-22 2017-02-01 亚太精密工业(深圳)有限公司 Imaging lens
CN106371197B (en) * 2015-07-22 2018-10-09 亚太精密工业(深圳)有限公司 Imaging lens
CN106802464A (en) * 2015-11-26 2017-06-06 三星电机株式会社 Optical imaging system
US10901182B2 (en) 2015-11-26 2021-01-26 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US12007534B2 (en) 2015-11-26 2024-06-11 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN105911675A (en) * 2015-12-21 2016-08-31 瑞声科技(新加坡)有限公司 Image photographing lens
US9766434B2 (en) 2015-12-21 2017-09-19 AAC Technologies Pte. Ltd. Camera lens
CN105911675B (en) * 2015-12-21 2018-08-14 瑞声科技(新加坡)有限公司 Pick-up lens
US9759896B1 (en) 2016-02-24 2017-09-12 AAC Technologies Pte. Ltd. Camera lens
US9766435B1 (en) 2016-03-25 2017-09-19 AAC Technologies Pte. Ltd. Camera lens
KR101904059B1 (en) * 2017-03-08 2018-10-04 주식회사 엔투에이 Subminiature image pickup lens system for preventing inner reflection
US11656435B2 (en) 2018-03-20 2023-05-23 Tokyo Visionary Optics Co., Ltd. Imaging lens and camera module

Similar Documents

Publication Publication Date Title
JP6233408B2 (en) Imaging lens and imaging apparatus
WO2017199633A1 (en) Imaging lens and imaging device
JP5671190B2 (en) Imaging lens and imaging apparatus
JP5854227B2 (en) Imaging lens and imaging apparatus
JP5915462B2 (en) Imaging lens and imaging apparatus
JP5886230B2 (en) Imaging lens and imaging device provided with imaging lens
WO2016092944A1 (en) Imaging lens and imaging device
JP5839038B2 (en) Imaging lens and imaging apparatus
JP6222564B2 (en) Imaging lens, lens unit, imaging device, digital still camera, and portable terminal
JP2014202766A (en) Imaging lens and imaging apparatus
JP2014232147A (en) Imaging lens, imaging apparatus, and portable terminal
JP2014044250A (en) Image pickup lens and image pickup device
JP2011232772A (en) Imaging lens, imaging apparatus and mobile tarminal
JP2015079175A (en) Image capturing lens, image capturing device, and portable terminal
JP5917431B2 (en) Imaging lens and imaging device provided with imaging lens
JP4720214B2 (en) Imaging lens
JP2015125212A (en) Imaging lens and imaging unit
JP2014211586A (en) Image pickup lens
JP6985647B2 (en) Optical system, lens unit, and image pickup device
JP2019045665A (en) Image capturing lens
JP2015121668A (en) Imaging lens and imaging device with imaging lens
JP5353879B2 (en) Imaging lens, imaging device, and portable terminal
JP2015001644A (en) Image capturing lens and image capturing device
JP2008090150A (en) Imaging lens and imaging apparatus
JP2014197104A (en) Imaging lens and imaging apparatus including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180330