WO2012172997A1 - マルチコア増幅光ファイバ - Google Patents

マルチコア増幅光ファイバ Download PDF

Info

Publication number
WO2012172997A1
WO2012172997A1 PCT/JP2012/064171 JP2012064171W WO2012172997A1 WO 2012172997 A1 WO2012172997 A1 WO 2012172997A1 JP 2012064171 W JP2012064171 W JP 2012064171W WO 2012172997 A1 WO2012172997 A1 WO 2012172997A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
amplification optical
refractive index
hole
Prior art date
Application number
PCT/JP2012/064171
Other languages
English (en)
French (fr)
Inventor
幸寛 土田
味村 裕
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP12799722.9A priority Critical patent/EP2722943A4/en
Priority to JP2013500281A priority patent/JP5356626B2/ja
Publication of WO2012172997A1 publication Critical patent/WO2012172997A1/ja
Priority to US14/106,338 priority patent/US9423559B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0283Graded index region external to the central core segment, e.g. sloping layer or triangular or trapezoidal layer
    • G02B6/0285Graded index layer adjacent to the central core segment and ending at the outer cladding index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06737Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06725Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06741Photonic crystal fibre, i.e. the fibre having a photonic bandgap

Definitions

  • the present invention relates to a multi-core amplification optical fiber.
  • Patent Document 1 discloses a multi-core amplification optical fiber for an optical fiber laser in which a plurality of rare earth-added core portions are arranged in a clad.
  • Patent Document 2 discloses a multicore optical fiber amplifier for collectively amplifying signal light propagated through a multicore optical transmission line.
  • some of the conventional rare earth-doped amplification optical fibers in which one core is disposed near the central axis of the optical fiber employ a double clad structure.
  • a component (skew component) of the excitation light that does not contribute to excitation because it does not reach the core portion is generated, so that the excitation efficiency is poor. It has been. Therefore, in order to disturb the skew component and efficiently absorb the skew component, a method is used in which the cross-sectional shape of the inner cladding is a flower shape, a polygonal shape, or a D shape (see Patent Document 3).
  • the amount of light that excites a plurality of existing core portions varies due to the influence of a skew component or the like, and thus there is a problem that the light amplification characteristics of each core portion also vary.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a multi-core amplification optical fiber in which variations in optical amplification characteristics of each core part are suppressed.
  • a multi-core amplification optical fiber according to the present invention is provided with a plurality of core portions to which a rare earth element is added and the outer periphery of the plurality of core portions, An inner clad part having a lower refractive index than the core part and having a first hole, and a refractive index located on the outer periphery of the inner clad part and lower than the refractive index of the inner clad part And an outer cladding layer having a rate.
  • the multi-core amplification optical fiber according to the present invention has a plurality of core portions to which rare earth elements are added and an outer periphery of the plurality of core portions, and has a refractive index lower than that of the plurality of core portions.
  • the first hole is disposed in a region surrounded by the plurality of core portions in a cross section of the multi-core amplification optical fiber.
  • the multi-core amplification optical fiber according to the present invention is characterized in that, in the above-mentioned invention, the plurality of core portions are arranged at positions shifted from lattice points of the triangular lattice in the cross section of the multi-core amplification optical fiber.
  • FIG. 1 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the first embodiment.
  • FIG. 2 is a diagram illustrating a state of a skew component of pumping light in the multi-core amplification optical fiber illustrated in FIG.
  • FIG. 3 is a schematic cross-sectional view of a multi-core amplification optical fiber according to a modification of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the second embodiment.
  • FIG. 5 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the third embodiment.
  • FIG. 6 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the fourth embodiment.
  • FIG. 7 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the fifth embodiment.
  • FIG. 1 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the first embodiment.
  • the multi-core amplification optical fiber 10 includes a core part 11 located near the central axis, six core parts 12 arranged so as to surround the core part 11, and outer periphery of the core parts 11 and 12.
  • the inner clad part 13 located and the outer clad layer 14 located in the outer periphery of the inner clad part 13 are provided.
  • a plurality of holes 15 that are first holes are formed in the inner cladding portion 13.
  • the inner cladding portion 13 has a refractive index lower than that of the core portions 11 and 12.
  • the outer cladding layer 14 has a refractive index lower than that of the inner cladding portion 13.
  • the core portions 11 and 12 are made of quartz glass to which a dopant for increasing the refractive index such as germanium (Ge) is added.
  • the inner cladding part 13 is made of, for example, pure quartz glass to which a dopant for adjusting the refractive index is not added.
  • the outer cladding layer 14 is made of, for example, an optical resin.
  • the refractive index of the optical resin is, for example, 1.1 to 1.1.42.
  • the 7 core parts 11 and 12 are added with rare earth elements.
  • the rare earth element added is erbium (Er), ytterbium (Yb), neodymium (Nd), thulium (Tm), or the like.
  • the amount of rare earth element added is, for example, 50 ppm to 2000 ppm in the case of Er.
  • the core portions 11 and 12 have a core diameter of 1 ⁇ m to 5 ⁇ m and a relative refractive index difference with respect to the inner cladding portion 13 of 0.5% to 2.0%.
  • the core diameters and relative refractive index differences of the core portions 11 and 12 may be the same or different.
  • the six core portions 12 are arranged so as to form a substantially regular hexagon centered on the core portion 11.
  • the core parts 11 and 12 are arranged on the lattice points of a triangular lattice.
  • the distance between adjacent cores of the core portions 11 and 12 is such a distance that light crosstalk between the cores does not adversely affect the optical characteristics of the core portions 11 and 12, for example, the extinction ratio is ⁇ 30 dB or less.
  • the distance between the cores is set as follows. When the core parts 11 and 12 have a core diameter of 1 ⁇ m to 5 ⁇ m as described above and the relative refractive index difference with respect to the inner cladding part 13 is 0.5% to 2.0%, the distance between the cores is 30 ⁇ m or more. preferable. Further, it is preferable that the distance between the cores is 60 ⁇ m or less because the outer diameter of the fiber is not so large and the outer diameter of the inner cladding portion 13 can be about 125 ⁇ m to 250 ⁇ m.
  • the six holes 15 have a circular cross section, for example, a hole diameter of 1 ⁇ m to 15 ⁇ m, and are arranged so as to form a regular hexagon in the region S1 surrounded by the core part 12.
  • the hole diameters of the holes 15 may be equal to or different from each other.
  • the multi-core amplification optical fiber 10 has a double clad structure, and propagates signal light having a wavelength of a rare earth element optical amplification band (for example, 1.5 ⁇ m band in the case of Er) to the core portions 11 and 12,
  • a rare earth element optical amplification band for example, 1.5 ⁇ m band in the case of Er
  • excitation light having a wavelength of a rare earth element excitation band for example, 0.98 ⁇ m band or 1.48 ⁇ m band in the case of Er
  • the rare earth element added to the parts 11 and 12 is excited.
  • the rare earth element exhibits an optical amplification effect and amplifies the light propagating through the core portions 11 and 12.
  • FIG. 2 is a diagram illustrating a state of a skew component of pumping light in the multi-core amplification optical fiber illustrated in FIG.
  • the skew component SL included in the excitation light propagating through the inner cladding portion 13 travels along an optical path that does not reach the central core portion 11 when the hole 15 does not exist. As a result, the optical path is disturbed to reach the central core portion 11.
  • the optical path of the skew component is disturbed by the presence of each hole 15, so that the excitation light that excites each core part 11, 12 than the case where each hole 15 does not exist.
  • the variation in the amount of is suppressed.
  • variations in the optical amplification characteristics of the core portions 11 and 12 are suppressed.
  • the optical amplification characteristics of the core portions 11 and 12 are made more uniform.
  • FIG. 3 is a schematic cross-sectional view of a multi-core amplification optical fiber according to a modification of the first embodiment.
  • the multi-core amplification optical fiber 10 ⁇ / b> A has a hole 15 ⁇ / b> A having the same hole diameter as the hole 15 instead of the hole 15 as compared with the multi-core amplification optical fiber 10 according to the first embodiment.
  • positioned at the inner clad part 13 so that a regular hexagon may be formed differs.
  • the holes 15A may be disposed outside the region S1 surrounded by the core portion 12.
  • FIG. 4 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the second embodiment.
  • the multi-core amplification optical fiber 20 includes three core portions 22, an inner cladding portion 23 located on the outer periphery of the core portion 22, and an outer cladding layer 24 located on the outer periphery of the inner cladding portion 23. I have. A plurality of holes 25 that are first holes are formed in the inner cladding portion 23.
  • the three core portions 22 are arranged on the lattice points of the triangular lattice so as to form a substantially equilateral triangle.
  • the air hole 25 is disposed substantially at the center in the region S ⁇ b> 2 surrounded by the core portion 22.
  • hole 25, for example, the relationship of a constituent material, a size, the distance between cores, or a refractive index, etc. is the element corresponding to Embodiment 1. It is the same.
  • the optical path of the skew component is disturbed by the presence of the holes 25, so that each core portion 22 is excited as compared with the case where the holes 25 do not exist. Variations in the amount of excitation light are suppressed. As a result, the optical amplification characteristics of the core portions 22 are made more uniform.
  • FIG. 5 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the third embodiment.
  • the multi-core amplification optical fiber 30 includes seven core portions 31, 32, an inner cladding portion 33 positioned on the outer periphery of the core portions 31, 32, and an outer cladding positioned on the outer periphery of the inner cladding portion 33.
  • the inner cladding portion 33 is formed with a hole 35 which is a first hole.
  • the six core portions 32 are arranged so as to form a substantially regular hexagon with the core portion 31 as the center.
  • the core portions 31 and 32 are arranged on lattice points of a triangular lattice.
  • the characteristics of the core portions 31, 32, the inner cladding portion 33, the outer cladding layer 34, and the air holes 35 correspond to those in the first embodiment. Same as element.
  • the air holes 35 are arranged in a spiral shape extending from the inside to the outside of the region S3 surrounded by the core portion 32.
  • the arrangement of the holes is not limited to the regular hexagonal shape, and can be arranged in various regular or irregular shapes.
  • the number of holes is not particularly limited and can be one or more. The arrangement shape and number of the holes are preferably set as appropriate so as to cause the skew component to be disturbed so as to suppress the variation in the optical amplification characteristics of the core portions.
  • FIG. 6 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the fourth embodiment.
  • the multi-core amplification optical fiber 40 includes seven core parts 41, 42, an inner cladding part 43 positioned on the outer periphery of the core parts 41, 42, and an outer cladding positioned on the outer periphery of the inner cladding part 43.
  • Layer 44 A hole 45 that is a first hole is formed in the inner cladding portion 43.
  • Each characteristic of the core portions 41 and 42, the inner cladding portion 43, the outer cladding layer 44, and the holes 45 correspond to the corresponding elements in the first embodiment. It is the same.
  • the seven core portions 41 and 42 are arranged at positions shifted from the lattice points LP of the triangular lattice L. Further, the six holes 45 are arranged so as to form a regular hexagon in a region surrounded by the core portion 42.
  • the core part does not necessarily have to be arranged on the lattice points of the triangular lattice, and may be displaced.
  • the difference in distance between the core portions is preferably 0.5 ⁇ m to 10 ⁇ m.
  • a method of manufacturing a multi-core amplification optical fiber in which the position of the core portion deviates from the triangular lattice point in this way for example, a method using play of a glass rod or a glass tube to be stacked in a known stack and draw method, There are methods using glass rods and glass tubes having different diameters.
  • FIG. 7 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the fifth embodiment.
  • the multi-core amplification optical fiber 50 includes a core portion 52 and a clad portion 53 located on the outer periphery of the core portion 52.
  • holes 55a and 55b which are first holes, are formed.
  • the clad portion 53 is formed with a plurality of holes 56 that are second holes arranged so as to surround the core portion 52 and the holes 55a and 55b.
  • the air holes 56 are elliptical and are bent in an arc shape.
  • the excitation light is confined and propagated in the inner region 53a of the clad part 53 surrounded by the holes 56 by a plurality of holes 56 functioning as an air cladding.
  • the three core portions 52 are arranged on the lattice points of the triangular lattice so as to form a substantially equilateral triangle.
  • the hole 55a has a triangular cross section, and is disposed substantially at the center in the region S5 surrounded by the core portion 52.
  • the holes 55b have a circular cross section and are arranged so as to form a substantially equilateral triangle outside the region S5.
  • the first hole is not limited to a circular cross section, and may have an elliptical shape or a polygonal cross section such as a triangle.
  • the characteristics of the core portion 52 and the cladding portion 53 are the same as the corresponding elements of the first embodiment.
  • the cross-sectional area of the holes 55a and 55b is approximately the same as the cross-sectional area of a circular hole having a hole diameter of 1 ⁇ m to 15 ⁇ m.
  • the skew component of the pumping light generated in the inner region 53a disturbs the optical path by the holes 55a and 55b, so that the optical amplification characteristics of the core portions 52 are made more uniform.
  • the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention.
  • the core portion may be shifted from the triangular lattice point. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the multi-core amplification optical fiber according to the present invention is suitable mainly for use in optical communication.
  • Multi-core amplification optical fiber 11 12, 22, 31, 32, 41, 42, 52 Core part 13, 23, 33, 43 Inner cladding part 14, 24, 34, 44 External Cladding layer 15, 15A, 25, 35, 45, 55a, 55b, 56 Hole 53 Cladding portion 53a Internal region L Triangular lattice LP Lattice point S1, S2, S3, S5 region SL Skew component

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Abstract

 希土類元素が添加された複数のコア部と、前記複数のコア部の外周に位置し、該複数のコア部の屈折率よりも低い屈折率を有し、かつ第1の空孔が形成された内部クラッド部と、前記内部クラッド部の外周に位置し、該内部クラッド部の屈折率よりも低い屈折率を有する外部クラッド層と、を備えるマルチコア増幅光ファイバである。好ましくは、前記第1の空孔は、当該マルチコア増幅光ファイバの断面において、前記複数のコア部が囲む領域内に配置されている。これによって、各コア部の光増幅特性のばらつきが抑制される。

Description

マルチコア増幅光ファイバ
 本発明は、マルチコア増幅光ファイバに関するものである。
 近年の急速な伝送容量の増大に対応する為に、一本の光ファイバのクラッド内に複数のコア部を配置した、いわゆるマルチコア光ファイバを用いたマルチコア光伝送路の開発が活発に行われている。これに伴い、マルチコア光伝送路中を伝搬した信号光を増幅するための希土類添加光ファイバ増幅器の開発が求められている。
 たとえば、特許文献1には、クラッド内に複数の希土類添加コア部を配置した、光ファイバレーザ用のマルチコア増幅光ファイバが開示されている。また、特許文献2には、マルチコア光伝送路を伝搬してきた信号光を一括して増幅するためのマルチコア光ファイバ増幅器が開示されている。
 ところで、光ファイバの中心軸付近にコア部が1つ配置された従来の希土類添加増幅光ファイバにおいては、ダブルクラッド構造を採用したものがある。ダブルクラッド構造において、内部クラッドの断面形状を円形にした場合は、励起光のうち、コア部に到達しないために励起に寄与しない成分(スキュー成分)が発生するため、励起効率が悪いことが知られている。そこで、スキュー成分を乱し、これをコア部に効率よく吸収させる目的で、内部クラッドの断面形状を花形や、多角形や、D型とする方法が用いられている(特許文献3参照)。
特許2005-19539号公報 特開平10-125988号公報 特開2003-226540号公報
 マルチコア増幅光ファイバにおいては、スキュー成分等の影響によって、複数存在する各コア部を励起する光の量にばらつきが生じるため、各コア部の光増幅特性にもばらつきが生じるという問題がある。
 本発明は、上記に鑑みてなされたものであって、各コア部の光増幅特性のばらつきが抑制されたマルチコア増幅光ファイバを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るマルチコア増幅光ファイバは、希土類元素が添加された複数のコア部と、前記複数のコア部の外周に位置し、該複数のコア部の屈折率よりも低い屈折率を有し、かつ第1の空孔が形成された内部クラッド部と、前記内部クラッド部の外周に位置し、該内部クラッド部の屈折率よりも低い屈折率を有する外部クラッド層と、を備えることを特徴とする。
 また、本発明に係るマルチコア増幅光ファイバは、希土類元素が添加された複数のコア部と、前記複数のコア部の外周に位置し、該複数のコア部の屈折率よりも低い屈折率を有し、かつ第1の空孔と、前記複数のコア部と前記第1の空孔とを囲むように配置された複数の第2の空孔と、が形成されたクラッド部と、を備えることを特徴とする。
 また、本発明に係るマルチコア増幅光ファイバは、上記の発明において、前記第1の空孔は、当該マルチコア増幅光ファイバの断面において、前記複数のコア部が囲む領域内に配置されていることを特徴とする。
 また、本発明に係るマルチコア増幅光ファイバは、上記の発明において、前記複数のコア部は、当該マルチコア増幅光ファイバの断面において、三角格子の格子点からずれた位置に配置されていることを特徴とする。
 本発明によれば、各コア部の光増幅特性のばらつきが抑制されたマルチコア増幅光ファイバを実現できるという効果を奏する。
図1は、実施の形態1に係るマルチコア増幅光ファイバの模式的な断面図である。 図2は、図1に示すマルチコア増幅光ファイバにおける励起光のスキュー成分の様子を示す図である。 図3は、実施の形態1の変形例に係るマルチコア増幅光ファイバの模式的な断面図である。 図4は、実施の形態2に係るマルチコア増幅光ファイバの模式的な断面図である。 図5は、実施の形態3に係るマルチコア増幅光ファイバの模式的な断面図である。 図6は、実施の形態4に係るマルチコア増幅光ファイバの模式的な断面図である。 図7は、実施の形態5に係るマルチコア増幅光ファイバの模式的な断面図である。
 以下に、図面を参照して本発明に係るマルチコア増幅光ファイバの実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、本明細書で特に定義しない用語についてはITU-T(国際電気通信連合)G.650.1における定義、測定方法に従うものとする。
(実施の形態1)
 図1は、実施の形態1に係るマルチコア増幅光ファイバの模式的な断面図である。図1に示すように、マルチコア増幅光ファイバ10は、中心軸付近に位置するコア部11と、コア部11を囲むように配置された6つのコア部12と、コア部11、12の外周に位置する内部クラッド部13と、内部クラッド部13の外周に位置する外部クラッド層14とを備えている。内部クラッド部13には第1の空孔である複数の空孔15が形成されている。
 内部クラッド部13は、コア部11、12の屈折率よりも低い屈折率を有している。外部クラッド層14は、内部クラッド部13の屈折率よりも低い屈折率を有している。コア部11、12は、たとえばゲルマニウム(Ge)等の屈折率を高めるドーパントを添加した石英系ガラスからなる。内部クラッド部13は、たとえば屈折率調整用のドーパントが添加されていない純石英ガラスからなる。外部クラッド層14は、たとえば光学樹脂からなる。光学樹脂の屈折率はたとえば1.1~1.1.42である。
 7つのコア部11、12は、希土類元素が添加されている。添加される希土類元素は、エルビウム(Er)、イッテルビウム(Yb)、ネオジウム(Nd)、ツリウム(Tm)等である。希土類元素の添加量は、たとえばErの場合は50ppm~2000ppmである。また、コア部11、12は、コア径が1μm~5μmであり、内部クラッド部13に対する比屈折率差が0.5%~2.0%である。コア部11、12のコア径や比屈折率差は互いに等しくてもよいし、異なっていてもよい。
 6つのコア部12は、コア部11を中心とした略正六角形を形成するように配置されている。コア部11、12は三角格子の格子点上に配置されている。コア部11、12のうち隣接するコア間の距離は、コア間の光のクロストークがコア部11、12の光学特性に悪影響を及ぼさない程度の距離であり、たとえば消光比が-30dB以下となるようなコア間距離に設定されている。コア部11、12が、上述したようにコア径1μm~5μmであり、内部クラッド部13に対する比屈折率差が0.5%~2.0%である場合は、コア間距離は30μm以上が好ましい。また、コア間距離が60μm以下であれば、ファイバ外径があまり大きくならず、内部クラッド部13の外径として、125μm~250μm程度にできるので好ましい。
 6つの空孔15は、断面が円形であり、たとえば空孔径が1μm~15μmであり、コア部12が囲む領域S1内に正六角形を形成するように配置されている。空孔15の空孔径は互いに等しくてもよいし、異なっていてもよい。
 このマルチコア増幅光ファイバ10は、ダブルクラッド構造を有しており、コア部11,12に希土類元素の光増幅帯域(たとえばErの場合は1.5μm帯)の波長の信号光を伝搬させながら、内部クラッド部13に希土類元素の励起帯域(たとえばErの場合は0.98μm帯や1.48μm帯)の波長の励起光を入力すると、励起光は内部クラッド部13に閉じ込められて伝搬しながらコア部11、12に添加された希土類元素を励起する。これによって希土類元素は光増幅作用を発揮し、コア部11、12を伝搬する光を増幅する。
 図2は、図1に示すマルチコア増幅光ファイバにおける励起光のスキュー成分の様子を示す図である。マルチコア増幅光ファイバ10において、内部クラッド部13を伝搬する励起光に含まれるスキュー成分SLは、空孔15が存在しない場合には中心のコア部11に到達しない光路を進行するが、空孔15によってその光路が乱されることで中心のコア部11に到達する。
 このように、マルチコア増幅光ファイバ10では、各空孔15の存在によってスキュー成分の光路が乱されるので、各空孔15が存在しない場合よりも、各コア部11、12を励起する励起光の量のばらつきが抑制される。これによって、マルチコア増幅光ファイバ10では、各コア部11、12の光増幅特性のばらつきが抑制される。その結果、各コア部11、12の光増幅特性がより均一化される。
 また、空孔15が、コア部12が囲む領域S1内に配置されていることによって、同じ領域S1内に位置して励起効率が低下しやすいコア部11に対して、光路を乱したスキュー成分を到達させやすくなる。これによって、より効果的に、各コア部11、12を励起する励起光の量のばらつきを抑制するようにスキュー成分を乱すことができる。
(実施の形態1の変形例)
 図3は、実施の形態1の変形例に係るマルチコア増幅光ファイバの模式的な断面図である。図3に示すように、マルチコア増幅光ファイバ10Aは、実施の形態1に係るマルチコア増幅光ファイバ10と比較して、空孔15に代えて、空孔15と同様の空孔径の空孔15Aが、正六角形を形成するように内部クラッド部13に配置されている点が異なる。
 このマルチコア増幅光ファイバ10Aのように、空孔15Aが、コア部12が囲む領域S1の外に配置されていてもよい。
(実施の形態2)
 図4は、実施の形態2に係るマルチコア増幅光ファイバの模式的な断面図である。図4に示すように、マルチコア増幅光ファイバ20は、3つのコア部22と、コア部22の外周に位置する内部クラッド部23と、内部クラッド部23の外周に位置する外部クラッド層24とを備えている。内部クラッド部23には第1の空孔である複数の空孔25が形成されている。
 3つのコア部22は、略正三角形を形成するように、三角格子の格子点上に配置されている。空孔25は、コア部22が囲む領域S2内のほぼ中央に配置されている。
 なお、コア部22、内部クラッド部23、外部クラッド層24、および空孔25の各特性、たとえば構成材料、サイズ、コア間距離または屈折率の関係等は、実施の形態1の対応する要素と同様である。
 このマルチコア増幅光ファイバ20でも、マルチコア増幅光ファイバ10と同様に、空孔25の存在によってスキュー成分の光路が乱されるので、空孔25が存在しない場合よりも、各コア部22を励起する励起光の量のばらつきが抑制される。その結果、各コア部22の光増幅特性がより均一化される。
(実施の形態3)
 図5は、実施の形態3に係るマルチコア増幅光ファイバの模式的な断面図である。図5に示すように、マルチコア増幅光ファイバ30は、7つのコア部31、32と、コア部31、32の外周に位置する内部クラッド部33と、内部クラッド部33の外周に位置する外部クラッド層34とを備えている。内部クラッド部33には第1の空孔である空孔35が形成されている。
 6つのコア部32は、コア部31を中心とした略正六角形を形成するように配置されている。コア部31、32は三角格子の格子点上に配置されている。
 なお、コア部31、32、内部クラッド部33、外部クラッド層34、および空孔35の各特性、たとえば構成材料、サイズ、コア間距離または屈折率の関係等は、実施の形態1の対応する要素と同様である。
 このマルチコア増幅光ファイバ30では、空孔35は、コア部32が囲む領域S3の内側から外側へ伸びるらせん状に配置されている。このように、空孔の配置については、正六角形状に限らず、規則的または不規則な様々な形状に配置することができる。また、空孔の数も特には限定されず、1つまたは複数とできる。空孔の配置形状や数については、各コア部の光増幅特性のばらつきが抑制されるようなスキュー成分の乱れを生じさせるように、適宜設定することが好ましい。
(実施の形態4)
 図6は、実施の形態4に係るマルチコア増幅光ファイバの模式的な断面図である。図6に示すように、マルチコア増幅光ファイバ40は、7つのコア部41、42と、コア部41、42の外周に位置する内部クラッド部43と、内部クラッド部43の外周に位置する外部クラッド層44とを備えている。内部クラッド部43には第1の空孔である空孔45が形成されている。
 コア部41、42、内部クラッド部43、外部クラッド層44、および空孔45の各特性、たとえば構成材料、サイズ、コア間距離または屈折率の関係等は、実施の形態1の対応する要素と同様である。
 ここで、7つのコア部41、42は、三角格子Lの格子点LPからずれた位置に配置されている。また、6つの空孔45は、コア部42が囲む領域内に正六角形を形成するように配置されている。
 このように、コア部は、必ずしも三角格子の格子点上に配置されていなくてもよく、ずれていてもよい。コア部の配置を、対称性が低い配置にすることによって、空孔によるスキュー成分を乱す効果との相乗効果で、各コア部の光増幅特性のばらつきを抑制することができる。
 なお、コア部を三角格子点からずらす場合は、たとえば、少なくとも一組の近接するコア部同士の距離が、他のコア部同士の距離と異なるように、7つのコア部を配置してもよい。この場合、コア部同士の距離の差は0.5μm~10μmが好ましい。
 このようにコア部の位置が三角格子点からずれたマルチコア増幅光ファイバを製造する方法としては、たとえば、公知のスタックアンドドロー法におけるスタックするガラスロッドやガラス管の遊びを利用する方法や、外径の異なるガラスロッドやガラス管を用いる方法などがある。
(実施の形態5)
 図7は、実施の形態5に係るマルチコア増幅光ファイバの模式的な断面図である。図7に示すように、マルチコア増幅光ファイバ50は、コア部52と、コア部52の外周に位置するクラッド部53とを備えている。
 クラッド部53には、第1の空孔である空孔55a、55bが形成されている。さらに、クラッド部53には、コア部52と空孔55a、55bとを囲むように配置された第2の空孔である複数の空孔56が形成されている。空孔56は楕円形であり、円弧状に曲がっている。
 このマルチコア増幅光ファイバ50では、励起光は、エアークラッドとして機能する複数の空孔56によって、空孔56に囲まれたクラッド部53の内部領域53aに閉じ込められて伝搬する。
 3つのコア部52は、略正三角形を形成するように、三角格子の格子点上に配置されている。空孔55aは、断面が三角形であり、コア部52が囲む領域S5内のほぼ中央に配置されている。空孔55bは、断面が円形であり、領域S5の外に略正三角形を形成するように配置されている。このように、第1の空孔としては、断面が円形のものに限られず、楕円形や、三角形等の多角形の断面を有するものでもよい。
 なお、コア部52、クラッド部53の各特性、たとえば構成材料、サイズ、コア間距離または屈折率の関係等は、実施の形態1の対応する要素と同様である。空孔55a、55bの断面積は、空孔径が1μm~15μmである断面円形の空孔の断面積と同程度である。
 このマルチコア増幅光ファイバ50では、内部領域53aにおいて発生した励起光のスキュー成分は、空孔55a、55bによって光路が乱されることによって、各コア部52の光増幅特性がより均一化される。
 なお、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。たとえば、図7に示す実施の形態5において、コア部を三角格子点からずらしてもよい。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 以上のように、本発明に係るマルチコア増幅光ファイバは、主に光通信の用途に利用して好適なものである。
 10、10A、20、30、40、50 マルチコア増幅光ファイバ
 11、12、22、31、32、41、42、52 コア部
 13、23、33、43 内部クラッド部
 14、24、34、44 外部クラッド層
 15、15A、25、35、45、55a、55b、56 空孔
 53 クラッド部
 53a 内部領域
 L 三角格子
 LP 格子点
 S1、S2、S3、S5 領域
 SL スキュー成分

Claims (4)

  1.  希土類元素が添加された複数のコア部と、
     前記複数のコア部の外周に位置し、該複数のコア部の屈折率よりも低い屈折率を有し、かつ第1の空孔が形成された内部クラッド部と、
     前記内部クラッド部の外周に位置し、該内部クラッド部の屈折率よりも低い屈折率を有する外部クラッド層と、
     を備えることを特徴とするマルチコア増幅光ファイバ。
  2.  希土類元素が添加された複数のコア部と、
     前記複数のコア部の外周に位置し、該複数のコア部の屈折率よりも低い屈折率を有し、かつ第1の空孔と、前記複数のコア部と前記第1の空孔とを囲むように配置された複数の第2の空孔と、が形成されたクラッド部と、
     を備えることを特徴とするマルチコア増幅光ファイバ。
  3.  前記第1の空孔は、当該マルチコア増幅光ファイバの断面において、前記複数のコア部が囲む領域内に配置されていることを特徴とする請求項1または2に記載のマルチコア増幅光ファイバ。
  4.  前記複数のコア部は、当該マルチコア増幅光ファイバの断面において、三角格子の格子点からずれた位置に配置されていることを特徴とする請求項1~3のいずれか一つに記載のマルチコア増幅光ファイバ。
PCT/JP2012/064171 2011-06-16 2012-05-31 マルチコア増幅光ファイバ WO2012172997A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12799722.9A EP2722943A4 (en) 2011-06-16 2012-05-31 OPTICAL FIBER WITH MULTIC UR AMPLIFICATION
JP2013500281A JP5356626B2 (ja) 2011-06-16 2012-05-31 マルチコア増幅光ファイバ
US14/106,338 US9423559B2 (en) 2011-06-16 2013-12-13 Multi-core amplification optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161497784P 2011-06-16 2011-06-16
US61/497,784 2011-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/106,338 Continuation US9423559B2 (en) 2011-06-16 2013-12-13 Multi-core amplification optical fiber

Publications (1)

Publication Number Publication Date
WO2012172997A1 true WO2012172997A1 (ja) 2012-12-20

Family

ID=47356988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064171 WO2012172997A1 (ja) 2011-06-16 2012-05-31 マルチコア増幅光ファイバ

Country Status (4)

Country Link
US (1) US9423559B2 (ja)
EP (1) EP2722943A4 (ja)
JP (1) JP5356626B2 (ja)
WO (1) WO2012172997A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698840A (zh) * 2013-11-26 2014-04-02 长飞光纤光缆有限公司 一种多芯非线性光纤
JP5635654B1 (ja) * 2013-06-28 2014-12-03 日本電信電話株式会社 マルチコアファイバ接続部品
KR20160100360A (ko) * 2013-12-15 2016-08-23 인포테크 에스피. 오. 오. 미세구조형 다중코어 광섬유(mmof), 및 미세구조형 다중코어 광섬유의 코어를 독립적으로 어드레싱하기 위한 장치 및 이러한 장치의 제작 방법
JPWO2016027896A1 (ja) * 2014-08-22 2017-06-15 住友電気工業株式会社 光ファイバ
CN112198586A (zh) * 2020-09-25 2021-01-08 北京邮电大学 一种多芯光纤
JPWO2019146750A1 (ja) * 2018-01-25 2021-01-28 古河電気工業株式会社 マルチコアファイバ及びその製造方法
WO2021193305A1 (ja) * 2020-03-24 2021-09-30 古河電気工業株式会社 光増幅ファイバ、光ファイバ増幅器および光通信システム
WO2022044088A1 (ja) * 2020-08-24 2022-03-03 日本電信電話株式会社 希土類添加ファイバ及び光ファイバ増幅器
JP2022052465A (ja) * 2020-09-23 2022-04-04 日本電信電話株式会社 結合型マルチコア光ファイバ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033865A (ja) * 2011-08-02 2013-02-14 Mitsubishi Cable Ind Ltd 光ファイバおよび光ファイバの製造方法
JP2013033863A (ja) * 2011-08-02 2013-02-14 Mitsubishi Cable Ind Ltd 光ファイバ、光ファイバの製造方法及び光増幅器
WO2013051655A1 (ja) * 2011-10-04 2013-04-11 古河電気工業株式会社 マルチコア増幅光ファイバおよびマルチコア光ファイバ増幅器
WO2015116849A1 (en) * 2014-01-30 2015-08-06 Nlight Photonics Corporation Spun round core fiber
CN104701721B (zh) * 2015-02-14 2018-04-17 苏州国科华东医疗器械有限公司 一种大功率光纤激光前列腺治疗系统
JP6597773B2 (ja) * 2015-03-30 2019-10-30 住友電気工業株式会社 光ファイバの漏洩損失測定方法
JP6236638B2 (ja) * 2015-08-21 2017-11-29 株式会社フジクラ マルチコアファイバ及び光ケーブル
JP2022063072A (ja) * 2020-10-09 2022-04-21 住友電気工業株式会社 マルチコア光ファイバおよびマルチコア光ファイバケーブル
DE102020127432A1 (de) 2020-10-19 2022-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Gepulster oder kontinuierlicher Faserlaser oder -verstärker mit speziell dotierter aktiver Faser
US20230204851A1 (en) * 2021-12-28 2023-06-29 Sterlite Technologies Limited Multi-core optical fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208464A1 (en) * 2001-07-12 2004-10-21 Hong Po Optical fiber
JP2005500583A (ja) * 2001-08-30 2005-01-06 クリスタル ファイバー アクティーゼルスカブ 高開口数の光ファイバー、その製造方法並びにその使用法
JP2005019539A (ja) * 2003-06-24 2005-01-20 Fujikura Ltd 希土類添加ファイバおよびこれを用いた光ファイバレーザ
WO2008133242A1 (ja) * 2007-04-25 2008-11-06 Fujikura Ltd. 希土類添加コア光ファイバ
WO2009107414A1 (ja) * 2008-02-27 2009-09-03 古河電気工業株式会社 光伝送システムおよびマルチコア光ファイバ

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566196A (en) * 1994-10-27 1996-10-15 Sdl, Inc. Multiple core fiber laser and optical amplifier
FR2727398B1 (fr) * 1994-11-24 1996-12-27 Alcatel Fibres Optiques Procede de fabrication d'une fibre optique multicoeurs, preforme multicoeurs et fibre optique multicoeurs obtenues par ce procede
JPH10125988A (ja) 1996-10-16 1998-05-15 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ一括増幅器
US6031850A (en) * 1997-12-22 2000-02-29 Pc Photonics Corporation Clad pumped, eye-safe and multi-core phase-locked fiber lasers
US6301420B1 (en) * 1998-05-01 2001-10-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Multicore optical fibre
CN1275057C (zh) * 2001-04-11 2006-09-13 晶体纤维公司 具有特殊色散特性的双芯光子晶体光纤(pcf)
US6611648B2 (en) * 2001-05-09 2003-08-26 Corning Incorporated Optical fibers having cores with different propagation constants, and methods of manufacturing same
US7590323B2 (en) * 2001-08-30 2009-09-15 Crystal Fibre A/S Optical fibre with high numerical aperture, method of its production, and use thereof
JP3863025B2 (ja) 2002-02-04 2006-12-27 三菱電線工業株式会社 ダブルクラッドファイバの製造方法
US7027699B2 (en) * 2003-05-21 2006-04-11 The Hong Kong Polytechnic University Optical fiber and optical fiber sensors
US7280730B2 (en) * 2004-01-16 2007-10-09 Imra America, Inc. Large core holey fibers
US7787729B2 (en) * 2005-05-20 2010-08-31 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US7391561B2 (en) * 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
US7430352B2 (en) * 2005-07-29 2008-09-30 Aculight Corporation Multi-segment photonic-crystal-rod waveguides for amplification of high-power pulsed optical radiation and associated method
JP2007072433A (ja) * 2005-08-11 2007-03-22 Ricoh Co Ltd 光集積素子及び光制御素子
US7142757B1 (en) * 2005-09-20 2006-11-28 The United States Of America As Represented By The Secretary Of The Air Force Large flattened mode tuned cladding photonic crystal fiber laser and amplifier
US7900481B2 (en) * 2006-05-19 2011-03-08 Corning Incorporated Method of making an optical fiber
US7876495B1 (en) * 2007-07-31 2011-01-25 Lockheed Martin Corporation Apparatus and method for compensating for and using mode-profile distortions caused by bending optical fibers
WO2009100113A1 (en) * 2008-02-07 2009-08-13 Imra America, Inc. High power parallel fiber arrays
DK2209029T3 (en) * 2009-01-19 2015-04-13 Sumitomo Electric Industries optical fiber
JPWO2010082656A1 (ja) * 2009-01-19 2012-07-05 住友電気工業株式会社 マルチコア光ファイバ
DK2209031T3 (da) * 2009-01-20 2020-04-06 Sumitomo Electric Industries Anordningsomformer
US7580600B1 (en) * 2009-02-11 2009-08-25 Ipg Photonics Corporation Free space high power fiber coupler
WO2011024808A1 (ja) 2009-08-28 2011-03-03 株式会社フジクラ マルチコアファイバ
JP5708015B2 (ja) * 2010-02-26 2015-04-30 住友電気工業株式会社 光ファイバケーブル
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ
EP2545400B1 (en) * 2010-03-10 2017-12-06 Ofs Fitel Llc, A Delaware Limited Liability Company Multicore fibers and associated structures and techniques
WO2011114795A1 (ja) * 2010-03-16 2011-09-22 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法
US20110280517A1 (en) * 2010-03-16 2011-11-17 Ofs Fitel, Llc Techniques and devices for low-loss, modefield matched coupling to a multicore fiber
JP2011237782A (ja) * 2010-04-13 2011-11-24 Sumitomo Electric Ind Ltd 光分岐素子及びそれを含む光通信システム
JP5855351B2 (ja) * 2010-11-08 2016-02-09 株式会社フジクラ マルチコアファイバ
RU2489741C2 (ru) * 2011-01-19 2013-08-10 Учреждение Российской академии наук Научный центр волоконной оптики РАН (НЦВО РАН) Многосердцевинный волоконный световод (варианты)
CN103415795B (zh) * 2011-03-02 2014-12-10 株式会社藤仓 多芯光纤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208464A1 (en) * 2001-07-12 2004-10-21 Hong Po Optical fiber
JP2005500583A (ja) * 2001-08-30 2005-01-06 クリスタル ファイバー アクティーゼルスカブ 高開口数の光ファイバー、その製造方法並びにその使用法
JP2005019539A (ja) * 2003-06-24 2005-01-20 Fujikura Ltd 希土類添加ファイバおよびこれを用いた光ファイバレーザ
WO2008133242A1 (ja) * 2007-04-25 2008-11-06 Fujikura Ltd. 希土類添加コア光ファイバ
WO2009107414A1 (ja) * 2008-02-27 2009-09-03 古河電気工業株式会社 光伝送システムおよびマルチコア光ファイバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2722943A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635654B1 (ja) * 2013-06-28 2014-12-03 日本電信電話株式会社 マルチコアファイバ接続部品
JP2015012152A (ja) * 2013-06-28 2015-01-19 日本電信電話株式会社 マルチコアファイバ接続部品
CN103698840A (zh) * 2013-11-26 2014-04-02 长飞光纤光缆有限公司 一种多芯非线性光纤
KR102426375B1 (ko) * 2013-12-15 2022-07-27 인포테크 에스피. 제트 오. 오. 미세구조형 다중코어 광섬유(mmof), 및 미세구조형 다중코어 광섬유의 코어를 독립적으로 어드레싱하기 위한 장치 및 이러한 장치의 제작 방법
KR20160100360A (ko) * 2013-12-15 2016-08-23 인포테크 에스피. 오. 오. 미세구조형 다중코어 광섬유(mmof), 및 미세구조형 다중코어 광섬유의 코어를 독립적으로 어드레싱하기 위한 장치 및 이러한 장치의 제작 방법
JP2017504053A (ja) * 2013-12-15 2017-02-02 インフォテック エスピー.オー.オー.Inphotech Sp. O. O. 微細構造マルチコア光ファイバ(mmof)、及び微細構造マルチコア光ファイバのコアを個別に指定するための装置、及びこの装置の製造方法
JPWO2016027896A1 (ja) * 2014-08-22 2017-06-15 住友電気工業株式会社 光ファイバ
US11555957B2 (en) 2018-01-25 2023-01-17 Furukawa Electric Co., Ltd. Multicore fiber and method of manufacture therefor
JPWO2019146750A1 (ja) * 2018-01-25 2021-01-28 古河電気工業株式会社 マルチコアファイバ及びその製造方法
JP7335817B2 (ja) 2018-01-25 2023-08-30 古河電気工業株式会社 マルチコアファイバ及びその製造方法
WO2021193305A1 (ja) * 2020-03-24 2021-09-30 古河電気工業株式会社 光増幅ファイバ、光ファイバ増幅器および光通信システム
WO2022044088A1 (ja) * 2020-08-24 2022-03-03 日本電信電話株式会社 希土類添加ファイバ及び光ファイバ増幅器
JP7420265B2 (ja) 2020-08-24 2024-01-23 日本電信電話株式会社 希土類添加ファイバ及び光ファイバ増幅器
JP2022052465A (ja) * 2020-09-23 2022-04-04 日本電信電話株式会社 結合型マルチコア光ファイバ
JP7320788B2 (ja) 2020-09-23 2023-08-04 日本電信電話株式会社 結合型マルチコア光ファイバ
CN112198586A (zh) * 2020-09-25 2021-01-08 北京邮电大学 一种多芯光纤

Also Published As

Publication number Publication date
EP2722943A1 (en) 2014-04-23
US20150316714A1 (en) 2015-11-05
JP5356626B2 (ja) 2013-12-04
US9423559B2 (en) 2016-08-23
EP2722943A4 (en) 2014-11-05
JPWO2012172997A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5356626B2 (ja) マルチコア増幅光ファイバ
WO2012172996A1 (ja) マルチコア増幅光ファイバ
US6990282B2 (en) Photonic crystal fibers
JP4612583B2 (ja) 増幅された自然放射光の抑制用光ファイバフィルタ
US20090207483A1 (en) Photonic bandgap fiber and fiber amplifier
US8031999B2 (en) Photonic band-gap fiber
JP2013535032A5 (ja)
JPWO2008053922A1 (ja) フォトニックバンドギャップファイバ
JPWO2009028614A1 (ja) 希土類添加コアマルチクラッドファイバ、ファイバ増幅器及びファイバレーザ
JP2007522497A (ja) 大コア穴あきファイバ
JP6979956B2 (ja) ファイバレーザおよび増幅器におけるライン選択のための導波路設計
US7978947B2 (en) Photonic bandgap fiber
JP2007316526A (ja) フォトニックバンドギャップファイバ及びファイバレーザ
JP2013033865A (ja) 光ファイバおよび光ファイバの製造方法
US20100150507A1 (en) Holey fiber
US10261246B2 (en) Polarization-maintaining fiber device supporting propagation in large mode field diameters
WO2014141766A1 (ja) フォトニックバンドギャップファイバ、及び、それを用いたファイバレーザ装置
US20100254669A1 (en) Photonic bandgap fiber
US20090181842A1 (en) Polarization-maintaining optical fiber and method for manufacturing the same
US20040151449A1 (en) Single mode fibre
JP3640943B2 (ja) フォトニッククリスタルファイバ
JP2011039497A (ja) フォトニック結晶ファイバ
JP2006041191A (ja) ホーリーファイバ
JP2005140857A (ja) 分散フラットファイバ
JP2013246245A (ja) ホーリーファイバおよびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013500281

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799722

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012799722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012799722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE