WO2012172887A1 - 心疾患治療薬および心疾患治療用細胞シート - Google Patents

心疾患治療薬および心疾患治療用細胞シート Download PDF

Info

Publication number
WO2012172887A1
WO2012172887A1 PCT/JP2012/061898 JP2012061898W WO2012172887A1 WO 2012172887 A1 WO2012172887 A1 WO 2012172887A1 JP 2012061898 W JP2012061898 W JP 2012061898W WO 2012172887 A1 WO2012172887 A1 WO 2012172887A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
amino acid
heart disease
acid sequence
cell sheet
Prior art date
Application number
PCT/JP2012/061898
Other languages
English (en)
French (fr)
Inventor
吉之輔 濱田
成昭 松浦
芳樹 澤
直正 河口
繁 宮川
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2012172887A1 publication Critical patent/WO2012172887A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • A61L2300/254Enzymes, proenzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/64Animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids

Definitions

  • the present invention relates to a heart disease therapeutic drug and a cell sheet for heart disease treatment.
  • Cardiovascular disease is one of the top causes of death in the world, and the number of patients is expected to increase in the future.
  • Heart failure a condition in which the heart's pumping function is compromised and cannot pump enough blood to the body, is caused by various heart conditions. And the incidence and prevalence are increasing year by year with aging.
  • Myocardial infarction which is a type of ischemic heart disease, is a disease in which the blood flow in the coronary artery that nourishes the myocardium is reduced or interrupted for a certain period of time and the myocardium in the perfusion region falls into necrosis.
  • necrotic part is eventually replaced with scar tissue, but the scar part has no contractile force and gradually deteriorates cardiac function.
  • research on new therapeutic methods using cell transplantation, gene therapy, cytokines, and angiogenic factors has been promoted for such pathological conditions.
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • the present inventors have clarified that a peptide consisting of 7 amino acids (SVVYGLR) present in osteopontin (OPN), which is a kind of extracellular matrix, has an angiogenic action. It has been found that it is as high as VEGF, which plays a central role in angiogenic factors (see Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2). Further, the present inventors have found that the peptide has a mesenchymal cell proliferation promoting action (see Patent Document 2). However, it is not known that the peptide has an ability to improve cardiac function.
  • An object of the present invention is to find a peptide having an ability to improve cardiac function, provide a therapeutic agent for heart disease containing this as an active ingredient, and a cell sheet for treating cardiac disease that secretes the peptide.
  • the present invention includes the following inventions in order to solve the above problems.
  • a peptide having an amino acid sequence represented by the following formula (I), (II), (III) or (IV) and having a cardiac function improving action, or a pharmaceutically acceptable salt thereof is effective.
  • the therapeutic agent for heart disease according to any one of [1] to [6], wherein the heart disease is ischemic heart disease or cardiomyopathy.
  • the heart disease is ischemic heart disease or cardiomyopathy.
  • For the treatment of heart disease characterized by secreting a peptide having an amino acid sequence represented by the following formula (I), (II), (III) or (IV) and having an effect of improving cardiac function Cell sheet.
  • the peptide is a peptide comprising the amino acid sequence represented by SEQ ID NO: 1, 2, or 7 and the amino acid sequence of a secretory signal peptide.
  • the cell sheet according to any one of [8] to [11], wherein the cells are myoblasts, smooth muscle cells, mesenchymal cells, or adipocytes.
  • the present invention it is possible to provide a therapeutic agent for heart disease containing a peptide having an ability to improve cardiac function as an active ingredient and a cell sheet for treating heart disease that secretes the peptide. Since the active ingredient is a peptide, the therapeutic agent for heart disease of the present invention has the advantages that side effects hardly occur from the viewpoint of antigenicity and safety is high.
  • the peptide that is an active ingredient of the therapeutic agent for heart disease of the present invention can be allowed to act on the target site for a long period of time.
  • FIG. 1 It is a figure which shows the result of having evaluated the myocardial fibrosis rate of the myocardial infarction peripheral part of the 3rd, 6th, and 9th week after an operation
  • (A) is a Sirius red dyeing
  • (B) is a myocardial fibrosis rate. It is a figure which shows the analysis result. It is a figure which shows the result of having measured the myocardial cell lateral diameter of the peripheral part of myocardial infarction of 3, 6, and 9 weeks after an operation, (A) is a PAS dyeing
  • FIG. 1 It is a figure which shows the result of having measured the capillary density of the myocardial infarction peripheral part of the 3rd, 6th, and 9th week after an operation
  • (A) is an immunohistochemical dyeing
  • (B ) Is a diagram showing the measurement results of capillary density. It is the chart which tested the synthesized peptide with the high performance liquid chromatograph mass spectrometer. It is the photograph of the isolated myoblast, The left is a phase-contrast microscope image, The right is a fluorescence microscope image.
  • EF left ventricular ejection fraction
  • % FS left ventricular diameter shortening rate
  • EDV left ventricular end-diastolic volume 8 weeks after a cell sheet transplant.
  • HW / BW heart weight ratio
  • FIG. 1 It is a figure which shows the result of having evaluated the left ventricle wall thickness of the infarcted part of the left ventricular cavity at 8 weeks after cell sheet transplantation, (A) is a Masson trichrome stained image of the heart, and (B) is the left ventricular cavity. The figure which shows the evaluation result of the diameter of this, (C) is a figure which shows the evaluation result of the left ventricle wall thickness of an infarction part.
  • FIG. 1 It is a figure which shows the result of having evaluated the myocardial fibrosis rate of the myocardial infarction periphery 8 weeks after cell sheet transplantation,
  • (A) is a Sirius red dyeing
  • (B) is an analysis of myocardial fibrosis rate It is a figure which shows a result. It is a figure which shows the result of having measured the myocardial cell horizontal diameter of the myocardial infarction periphery 8 weeks after a cell sheet transplant, (A) is a PAS dyeing
  • (A) is an immunohistochemical staining image using an antibody against Von WillbrandbFactor
  • (B) It is a figure which shows the measurement result of capillary blood vessel density. It is a figure which shows the result of having examined the distribution of the smooth muscle actin (SMA) positive cell in the ventricle 8 weeks after cell sheet transplantation.
  • SMA smooth muscle actin
  • the therapeutic agent for heart disease according to the present invention contains a peptide having a cardiac function improving action or a pharmaceutically acceptable salt thereof as an active ingredient.
  • a peptide having a cardiac function improving action or a pharmaceutically acceptable salt thereof include peptides having an amino acid sequence represented by the following formula (I), (II), (III) or (IV).
  • X 1 is not particularly limited, but for example, serine, alanine, arginine, lysine, histidine, tryptophan, and phenylalanine are preferable.
  • X 2 is not particularly limited, and for example, valine, alanine, arginine, lysine, histidine, tryptophan, and phenylalanine are preferable.
  • X 3 is not particularly limited, for example, valine, alanine, arginine, lysine, histidine, tryptophan, phenylalanine is preferred.
  • X 5 is not particularly limited, and for example, glycine, alanine, arginine, lysine, histidine, tryptophan, and phenylalanine are preferable.
  • X 6 is not particularly limited, and for example, leucine, alanine, arginine, lysine, histidine, tryptophan, and phenylalanine are preferable.
  • X 7 is not particularly limited, and for example, arginine, alanine, lysine, histidine, tryptophan, and phenylalanine are preferable.
  • the peptide as an active ingredient of the therapeutic agent for heart disease of the present invention may be any peptide having any one of the amino acid sequences represented by the above formulas (I) to (IV), and has an amino acid sequence other than these. May be.
  • the size of the peptide serving as the active ingredient of the therapeutic agent for heart disease of the present invention is not particularly limited, but the total number of amino acid residues is about 50 or less from the viewpoint of side effects such as ease of handling, production efficiency, and antigenicity. Is preferred. More preferably, it is about 30 residues or less, More preferably, it is about 20 residues or less, Most preferably, it is about 10 residues or less. The lower limit is 6 residues, preferably 7 residues or more.
  • the peptide serving as the active ingredient of the therapeutic agent for heart disease of the present invention has the amino acid sequence represented by SEQ ID NO: 1-6 or the amino acid sequence represented by SEQ ID NO: 7-9 below, and the total number of amino acid residues. Less than 20 peptides are preferred.
  • Ser-Val-Val-Tyr-Gly-Leu-Arg (SEQ ID NO: 7) Ser-Val-Val-Phe-Gly-Leu-Arg (SEQ ID NO: 8) Ser-Val-Val-Trp-Gly-Leu-Arg (SEQ ID NO: 9)
  • a peptide comprising the amino acid sequence represented by SEQ ID NO: 1, 2, or 7 and having a total number of amino acid residues of 20 or less is more preferable, and a peptide consisting of the amino acid sequence represented by SEQ ID NO: 1, 2, or 7 is further preferable.
  • the peptide of the present invention can be produced by a solid phase synthesis method (Fmoc method, Boc method) or a liquid phase synthesis method according to a known general peptide synthesis protocol. Moreover, it can manufacture using the transformant which introduce
  • the fact that the obtained peptide has a cardiac function improving action can be confirmed, for example, by evaluating using a heart disease model rat as shown in the Examples. Specifically, it can be confirmed by administering a peptide to a heart disease model rat, recording an echocardiogram after a certain period, and evaluating cardiac function.
  • the cardiac function to be evaluated is not particularly limited. For example, the left ventricular diameter shortening rate (% fractional shortening;% FS), left ventricular ejection fraction (EF), left ventricular end-diastolic volume (LV end-diastolic volume; EDV), left ventricular end systolic volume (LV ESV), and the like.
  • the evaluation time after administration is not particularly limited, but is preferably after about 3 weeks, more preferably after about 4 weeks, and even more preferably after about 5 weeks. If the cardiac function of the individual administered with the peptide is improved compared to the cardiac function of the individual not administered with the peptide, it can be determined that the peptide has a cardiac function improving action.
  • cardiomyocytes are isolated from newborn rats or adult rats, peptides are added to the isolated cardiomyocytes, and changes in cell morphology, protein expression level such as hypertrophy markers, cardiomyocyte viability, etc. are determined in vitro. This can be confirmed by evaluating with
  • the amino acid constituting the peptide of the present invention may be one in which the side chain is modified with an arbitrary substituent.
  • a substituent is not specifically limited, For example, a fluorine atom, a chlorine atom, a cyano group, a hydroxyl group, a nitro group, an alkyl group, a cycloalkyl group, an alkoxy group, an amino group etc. are mentioned.
  • the benzene ring of tryptophan or phenylalanine is modified with a substituent, and more preferably, the benzene ring of tryptophan or phenylalanine in the amino acid sequences represented by SEQ ID NOs: 1 to 9 is modified with a substituent. It is that.
  • the C-terminus may be any of a carboxyl group (—COOH), a carboxylate (—COO ⁇ ), an amide (—CONH 2 ), or an ester (—COOR).
  • R in the ester is, for example, a C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl or n-butyl, for example, a C 3-8 cycloalkyl group such as cyclopentyl, cyclohexyl, for example, phenyl, ⁇ - C 6-12 aryl group such as naphthyl, for example, benzyl, C 7 - 14 aralkyl such as ⁇ - naphthyl -C 1-2 alkyl group such as a phenyl -C 1-2 alkyl or ⁇ - naphthylmethyl such phenethyl
  • a pivaloyloxy a C 1-6 alkyl group such as
  • the amino group of the N-terminal methionine residue is protected with a protecting group (for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl).
  • a protecting group for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl.
  • N-terminal side cleaved in vivo glutamyl group produced by pyroglutamine oxidation, substituent on amino acid side chain in molecule (for example, —OH, —SH, amino group, imidazole group, indole group) And a guanidino group) are protected with an appropriate protecting group (for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl).
  • an appropriate protecting group for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl.
  • the peptide of the present invention may form a pharmaceutically acceptable salt.
  • the salt include hydrochloric acid, sulfuric acid, phosphoric acid, lactic acid, tartaric acid, maleic acid, fumaric acid, oxalic acid, malic acid, Salts with acids such as citric acid, oleic acid and palmitic acid; salts with alkali metals or alkaline earth metals such as sodium, potassium and calcium; or salts with aluminum hydroxides or carbonates; triethylamine, benzylamine , Salts with diethanolamine, t-butylamine, dicyclohexylamine, arginine and the like.
  • the heart disease to be treated is not particularly limited as long as it is a heart disease that exhibits a therapeutic effect by improving cardiac function.
  • ischemic heart disease myocardial infarction, angina pectoris, etc.
  • cardiomyopathy hypertrophic cardiomyopathy, secondary myocardial hypertrophy, dilated cardiomyopathy, restricted cardiomyopathy, etc.
  • myocarditis myocarditis, heart failure, Endocarditis (such as bacterial endocarditis), valvular heart disease (such as mitral regurgitation), pericarditis (such as acute pericarditis, chronic constrictive pericarditis), congenital heart disease (atrium) Septal defect, ventricular septal defect, etc.), cardiac asthma, pulmonary heart and the like.
  • ischemic heart disease cardiomyopathy and heart failure
  • cardiomyopathy and heart failure more preferred are cardiomyopathy and heart failure.
  • the therapeutic agent for heart disease of the present invention can be formulated by using the above-mentioned peptide having a cardiac function-improving action as an active ingredient and appropriately blending a pharmaceutically acceptable carrier or additive.
  • oral preparations such as tablets, coated tablets, pills, powders, granules, capsules, solutions, suspensions, emulsions; parenterals such as injections, infusions, suppositories, ointments, patches, etc. can do. What is necessary is just to set suitably about the mixture ratio of a carrier or an additive based on the range normally employ
  • Carriers or additives that can be blended are not particularly limited.
  • various carriers such as water, physiological saline, other aqueous solvents, aqueous or oily bases; excipients, binders, pH adjusters, disintegrants, absorption
  • Various additives such as an accelerator, a lubricant, a colorant, a corrigent, and a fragrance are included.
  • Additives that can be mixed into tablets, capsules and the like include binders such as gelatin, corn starch, tragacanth and gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, alginic acid and the like. Leavening agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, flavoring agents such as peppermint, red mono oil or cherry.
  • a liquid carrier such as fats and oils can be further contained in the above type of material.
  • Sterile compositions for injection can be formulated according to conventional pharmaceutical practice, such as dissolving or suspending active substances in vehicles such as water for injection, naturally occurring vegetable oils such as sesame oil, coconut oil and the like.
  • aqueous liquid for injection for example, isotonic solutions containing physiological saline, glucose and other adjuvants (for example, D-sorbitol, D-mannitol, sodium chloride, etc.) are used.
  • alcohols eg, ethanol
  • polyalcohols eg, propylene glycol, polyethylene glycol
  • nonionic surfactants eg, polysorbate 80 TM , HCO-50
  • oily liquid for example, sesame oil, soybean oil and the like are used, and they may be used in combination with solubilizing agents such as benzyl benzoate and benzyl alcohol.
  • Buffers eg, phosphate buffer, sodium acetate buffer
  • soothing agents eg, benzalkonium chloride, procaine, etc.
  • stabilizers eg, human serum albumin, polyethylene glycol, etc.
  • storage You may mix
  • the therapeutic agent for heart disease of the present invention may be in a form in which a peptide having an effect of improving cardiac function as an active ingredient is bound to a carrier.
  • the carrier is not particularly limited, and examples thereof include resins used for artificial organs, biopolymers such as proteins, and the like.
  • the therapeutic agent for heart disease of the present invention may be in a form containing cells that secrete peptides having an effect of improving cardiac function of active ingredients.
  • it is a form including a cell sheet that secretes a peptide having an effect of improving cardiac function of an active ingredient. The cells and the cell sheet will be described later.
  • the preparation thus obtained is safe and has low toxicity, for example, it is administered to humans and other mammals (eg, rats, mice, rabbits, sheep, pigs, cows, cats, dogs, monkeys, etc.) can do.
  • the dose varies depending on the administration subject, target disease, administration route, etc., for example, when the therapeutic agent for heart disease of the present invention is orally administered for the purpose of treating cardiomyopathy, generally in an adult (with a body weight of 60 kg).
  • the single dose of the active ingredient varies depending on the administration subject, the target disease, etc.
  • the therapeutic agent for heart disease of the present invention is usually in the form of injection.
  • the active ingredient is administered by intravenous injection per day. Is preferred.
  • the present invention further includes the following inventions.
  • A a peptide having an amino acid sequence represented by the above formula (I), (II), (III) or (IV) and having a cardiac function-improving action for a mammal, or a pharmaceutically
  • a method of treating heart disease comprising administering an effective amount of an acceptable salt.
  • B a peptide having an amino acid sequence represented by the above formula (I), (II), (III) or (IV) for producing a therapeutic agent for heart disease, and having a cardiac function improving action, or Use of a pharmaceutically acceptable salt thereof.
  • C a peptide having an amino acid sequence represented by the above formula (I), (II), (III) or (IV) and having a cardiac function-improving action, for use in the treatment of heart disease, or Its pharmaceutically acceptable salt.
  • the therapeutic agent for heart disease of the present invention maintains improvement in cardiac function even in the 9th week after single administration around the infarcted myocardium in myocardial infarction model rats (see Example 1). .
  • angiogenesis therapy for inducing new blood vessels by introducing VEGF, HGF and bFGF (basic fibroblast growth factor), which are known angiogenesis-promoting factors for ischemic heart disease, has been constructed (Rissanen TT , Et al., Adv Genet. 117-167, 2004, Miyagawa S, et al., Transplantation. 81: 902-907, 2006, Rissanen TT, et al., FASEB.
  • the therapeutic agent for heart diseases of the present invention is a therapeutic agent for cardiac diseases superior to known angiogenesis-promoting factors such as VEGF, HGF, bFGF, etc. in that the effect of improving cardiac function is maintained for a long time.
  • the cell sheet for treating heart disease of the present invention is characterized by secreting a peptide having a cardiac function improving action, which is an active ingredient of the above-mentioned therapeutic agent for heart disease of the present invention.
  • Peptides having a cardiac function improving action are as described above, and include peptides having an amino acid sequence represented by the above formula (I), (II), (III) or (IV).
  • Preferred examples of the amino acid sequence represented by (IV) include the sequences of SEQ ID NOs: 1 to 6.
  • the peptide having a cardiac function improving action secreted from the cell sheet for treating heart disease of the present invention preferably contains the amino acid sequence of a secretory signal peptide.
  • the secretory signal peptide means a peptide region that plays a role of allowing a protein or peptide bound to the secretory signal peptide to permeate through the cell membrane. Therefore, by including the amino acid sequence of the secretory signal peptide, it is possible to secrete a peptide having an effect of improving cardiac function out of the cell.
  • the amino acid sequences of such secretory signal peptides and the nucleic acid sequences encoding them are well known and reported in the art (eg, von Heijine G (1988) Biochim. Biohys.
  • the amino acid sequence of the secretory signal peptide and the nucleic acid sequence encoding it can be obtained from a known database (DDBJ / GenBank / EMBL, etc.).
  • the secretory signal peptide suitable for the present invention is a secretory signal peptide that can function in mammalian cells, particularly human cells. For example, an Ig ⁇ chain leader sequence, a honey bee melittin signal sequence, an ⁇ factor secretion signal, and the like.
  • the amino acid arrangement of the secretory signal peptide is preferably arranged on the N-terminal side of the peptide having a cardiac function improving action.
  • the peptide secreted from the cell sheet for treating heart disease of the present invention is preferably a peptide comprising the amino acid sequence represented by SEQ ID NO: 1, 2, or 7 and the amino acid sequence of the secretory signal peptide.
  • the total number of amino acid residues of the secreted peptide is preferably about 100 or less. More preferably, it is about 70 residues or less, More preferably, it is about 50 residues or less, Most preferably, it is about 40 residues or less.
  • the lower limit is not particularly limited, but the lower limit is the number obtained by adding the number of amino acid residues of the secretory signal peptide to the 6 residues that are the lower limit of the peptide having a cardiac function improving action.
  • the cell sheet for treating heart disease of the present invention can be prepared by culturing cells that secrete peptides having a cardiac function improving action.
  • a cell that secretes a peptide having a cardiac function improving action introduces a recombinant expression vector into which a polynucleotide encoding a peptide having a cardiac function improving action (including the amino acid sequence of a secretory signal peptide) is inserted into an appropriate cell.
  • a method for producing a cell secreting a peptide having a cardiac function improving action and a cell sheet for treating heart disease of the present invention will be described.
  • peptide secreting cells are not particularly limited, but cells that have already been used for transplanting cell sheets into the heart are preferred.
  • Myoblasts Ghostine S, Carrion C, Souza LC, Richard P, Bruneval P, Vilquin JT, Pouzet B, Schwartz K, Menasche P, Hagege AA : Long-term efficacy of myoblast alplantfunction card functionplant Circulation.
  • smooth muscle cells Yoo KY, LiRK, Weisel RD, Mickle DAG, Li GM, Kim EJ, Tomita S, Yau TM: Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy.
  • Ann Thorac Surg 70: 859-865, 2000., etc. mesenchymal cells (Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers JM, Pittenger BJ, Pittenger BJ, stem cell implantation in a swine myocardial infarct model: engraftment and functional effects.
  • adipocytes (Valina C, Pinkernell K, Song YH, Bai X, Seaut J, TH, Alt E. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 28: 2667-77, 2007.
  • Recombinant expression vectors can be prepared using known gene recombination techniques.
  • an appropriate expression vector containing a promoter that can function in a host cell may be selected.
  • retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes virus, Sendai virus and other viral vectors animal cell expression plasmids (eg, pA-11, pxT1, pRc / CMV, pRc / RSV, pcDNAI / Neo, etc. ) And the like.
  • a target recombinant expression vector can be prepared.
  • the polynucleotide may be DNA or RNA, or may be a DNA / RNA chimera.
  • the polynucleotide may be double-stranded or single-stranded. Preferred is double-stranded DNA, particularly cDNA.
  • the nucleotide sequence of a polynucleotide encoding a peptide having a cardiac function improving action can be appropriately designed based on the amino acid sequence of the peptide.
  • the polynucleotide can be prepared by chemical synthesis.
  • the method for introducing the recombinant expression vector into the cell is not particularly limited, and a known method can be appropriately selected and used.
  • the cells may be infected with the virus.
  • Peptide-secreting cells are selected from the cells into which the recombinant expression vector has been introduced.
  • the peptide-secreting cell is preferably a cell that stably expresses the target peptide.
  • the cell sheet for treating heart disease of the present invention can be produced by peeling the cells while maintaining the sheet state.
  • the culture is confluent using a culture dish coated with poly-N-isopropylacrylamide, which is a temperature-responsive polymer, and is peeled after low-temperature treatment (Medical History, 195, 203-204 (2000). )reference).
  • a cell sheet having a three-dimensional structure composed of cells and extracellular matrix can be produced by a method using a culture dish coated with the temperature-responsive polymer.
  • the amount of the peptide having a cardiac function improving action secreted by the cell sheet for treating heart disease of the present invention is not particularly limited.
  • the cell sheet for treating heart disease of the present invention can be laminated in a plurality of layers so that the secretion amount of the peptide having an effect of improving cardiac function becomes the target secretion amount.
  • the transplanted cell sheet is thought to gradually fall out of the cell transplant site in about 2 weeks.
  • the SVVYGLR peptide improves the cardiac function in vivo in an amount of 20 to 100 ng. Therefore, a cell sheet capable of secreting 20-100 ng or more of a peptide within 2 weeks after transplantation is preferred.
  • the cell sheet for treating heart disease of the present invention has been demonstrated to overcome the drawbacks of conventional cell sheets and maintain the improvement effect of cardiac function even 8 weeks after cell sheet transplantation (Example 3). And 4).
  • the cell sheet for treating heart disease of the present invention has both a cardiac function improving effect and an angiogenic action, it can be expected that the cardiac function can be improved more continuously. Therefore, it is considered to be extremely useful for treating not only ischemic heart diseases such as myocardial infarction but also cardiomyopathy.
  • the peptide is continuously secreted from the sheet transplantation site, and the effect can be maintained.
  • the injection method is known to induce arrhythmia, but there has been no such report on cell sheet transplantation. Therefore, if the cell sheet for treatment of heart disease of the present invention is used, a peptide having a function of improving cardiac function can be used in combination with the treatment of heart disease using a known cell sheet, and a synergistic treatment effect can be expected.
  • Example 1 Evaluation of peptide using rat myocardial infarction model
  • Experimental method (1-1) Synthesis of peptide A peptide consisting of the amino acid sequence shown in SEQ ID NO: 7 was synthesized by Fmoc method using a multi-item solid phase method automatic peptide synthesizer (PSSM-8; Shimadzu Corporation). did. More specifically, the graft copolymerization range Tentagel (particle size 80 ⁇ m) of polyethylene glycol and polystyrene was used as a support and was synthesized by a high-efficiency solid phase method.
  • PSSM-8 multi-item solid phase method automatic peptide synthesizer
  • the obtained synthetic peptide was tested with a high performance liquid chromatograph mass spectrometer (LCMS; Shimadzu Corporation), and confirmed to be a single component consistent with the theoretical mass value (see FIG. 6).
  • LCMS liquid chromatograph mass spectrometer
  • WiDa the peptide consisting of the amino acid sequence represented by SEQ ID NO: 7 is referred to as “WiDa”.
  • % Fractional shortening % Fractional shortening
  • EF left ventricular ejection fraction
  • FAC left ventricular area change rate
  • LV% FS [(LVDd ⁇ LVDs) / LVDd] ⁇ 100
  • LVEF (%) [(LVDd 3 -LVDs 3) / LVDd 3] ⁇ 100
  • LVFAC (%) [(LVEDA ⁇ LVEDS) / LVEDA] ⁇ 100
  • the section was washed with PBS-T and reacted with a biotinylated labeled anti-Rabbit IgG antibody (Anti-Rabbit Ig, biotinyated species-specific whole antibody, DAKO) as a secondary antibody.
  • Color was developed with DAB (Diamino benzidine) using the LSAB (Labeled Streptavidin Biotinyated Antibody) method with HRP-labeled streptavidin (Streptavidin-Horseradish peroxidase conjugate, GE Healthcare). After staining, 15 fields were randomly selected with an optical microscope ( ⁇ 400), and the number of capillaries having Von Willbrand Factor-positive vascular endothelial cells was counted to obtain the capillary density.
  • the long-term effect of WiDa on ischemic myocardium was evaluated at 6 and 9 weeks after surgery.
  • the left ventricular diameter shortening rate (% FS, FIG. 1 dg) and the ejection fraction (EF, FIG. 1 eh) were evaluated, both the 6-week and 9-week models were significantly higher in the WiDa group than in the Control group.
  • the left ventricular area change rate (FAC, FIG. 1fi) was evaluated, the WiDa group was significantly improved with respect to the Control group in the 9-week model.
  • FIG. 2a-g the left is the HE-stained image and the right is the Sirius red-stained image.
  • the scale bar represents 1000 ⁇ m.
  • FIG. 2a (Sham group) only showed results for 3 weeks.
  • the wall thickness from the left ventricular anterior wall to the posterior wall became thinner and many collagen fibers were observed.
  • the left ventricular wall thickness of the WiDa group was kept thicker than that of the Control group.
  • the left ventricular cavity in the HE-stained images of FIGS. 2b to g, the left ventricular cavity was gradually expanded in the Control group in both the 3-week, 6-week and 9-week models, whereas in the WiDa group, the Control Dilation was suppressed compared to the group.
  • FIG. 3 (B) is a graph showing the analysis result of the myocardial fibrosis rate.
  • the 3-week model no significant difference was observed between the Control group and the WiDa group in the myocardial fibrosis rate (FIG. 3 (B) a).
  • FIGS 4A and 4B show the PAS-stained image and the measurement results of the myocardial cell lateral diameter.
  • A is a PAS-stained image of the infarct boundary, and the scale bar represents 100 ⁇ m.
  • (B) is a graph showing the measurement results of the myocardial cell lateral diameter, white is the result of the left ventricular rear wall, and black is the result of the infarct boundary.
  • the myocardial cell lateral diameter was significantly higher in the Control group and the WiDa group than in the sham group (p ⁇ 0.0001).
  • FIGS. 5 (A) and (B) are an immunohistochemically stained image of the infarct boundary, and the scale bar represents 100 ⁇ m.
  • (B) is a graph showing the measurement result of capillary blood vessel density, white is the result of the left ventricular rear wall, and black is the result of the infarct boundary.
  • HGF has an action for improving angiogenesis in addition to an angiogenesis-promoting action
  • Ueda H, et ai., CardiovascvasRes 2001; 51: 41-50. Ueda H, et ai., CardiovascvasRes 2001; 51: 41-50.
  • the left ventricular function was 4% after treatment, the left ventricular diameter shortening rate (% FS) 20%, ejection fraction (EF) 42% Although an improvement effect was observed, a downward trend was observed thereafter (Miyagawa S. et ai., Circulation 2002; 105: 2556-2561.).
  • the left ventricular function of the 3-week model is the left ventricular diameter shortening rate (% FS) of 25, even though only one administration of WiDa (100 ng / ml) was performed immediately after the creation of the myocardial infarction model.
  • WiDa is a low molecular weight peptide composed of 7 amino acid residues, and its half-life is considered to be short.
  • a single administration of WiDa to the ischemic peripheral myocardium dramatically improved left ventricular function and the effect persisted for a long time. From this, it was found that WiDa has an effect of remarkably improving the cardiac function lost due to ischemia.
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • Rissanen TT et ai., Adv Genet 2004; 52: 117-167.
  • Rissanen TT et ai., The FASEB Journal 2003; 17: 100-102.
  • Hao X et ai., BiochemBiophys Res Commun 2004; 322: 292-6.
  • these factors are concerned about side effects such as edema and inflammatory reaction.
  • WiDa induced more structurally and functionally stabilized trophic blood vessels from ischemic myocardial tissue from the angiogenic action of previous studies. Therefore, it can be said that WiDa is a new factor capable of overcoming side effects such as early regression of new blood vessels and edema. From the above research results, it was considered that WiDa exhibited not only the conventionally known angiogenic action but also some function that markedly improved cardiac function.
  • Example 2 Production of WiDa-secreting myoblast sheet
  • Experimental method (1-1) Myoblast isolation Anterior tibial muscle was collected from 3-week-old Lewis rats, washed with cold HBSS (Hanks balanced salt solution), and trypsin (Invitrogen life Technologies, Carlsbad, CA, USA) was added, and tendons, fibrous tissue, adipose tissue, etc. were carefully removed to prevent mixing of fibroblasts. Mince with trypsin and treated with 0.2% type II collagenase (Worthingto Biochemical corporation, Lakewood, NJ, USA) for 45 minutes.
  • the cells were seeded on a collagen type I (Nitta Gelatin Inc, Osaka, Japan) coat dish (10 ⁇ g / ml) in order to adhere fibroblasts. After incubating at 37 ° C. with 5% CO 2 for 4 hours, the supernatant was seeded again on a collagen type I coat dish (10 ⁇ g / ml). After another 24 hours, the supernatant was matrigel (Becton Dickinson Bioscience, Flanklin Lakes, NJ, USA) Coated dishes (0.5 mg / ml) were reseeded, and the cells adhered here were used as myoblasts.
  • a collagen type I Nita Gelatin Inc, Osaka, Japan
  • FBS fetal bovine serum, Biowest, Minami, FL, USA
  • Antibiotic-Antimytic Invitrogen life Technologies
  • Orgadron Neuronal growth factor (Ga) -containing DMEM (Dulbecco modified Eagle's medium) (Nihonseiyaku , Toky, Japan).
  • DMEM Dulbecco modified Eagle's medium
  • the medium of each dish was replaced with 10% FBS DMEM, and the DNA complex was added to the culture supernatant to introduce the gene. After 12 hours, the medium was replaced with 6 ml of 10% FBS DMEM, and the virus-containing supernatant was collected 48 hours and 72 hours after gene introduction.
  • the collected virus-containing supernatant was passed through a 0.45 ⁇ m filter (Millipore, Billerica, MA, USA) to remove floating cells and the like, and Lenti-XTM Concentrator (Clontech Laboratories, Inc., Mountain View, CA, USA). Concentrated.
  • a virus-containing supernatant (mock) into which a pCS-CG empty vector used as a negative control for expression studies was introduced was also collected.
  • RT-PCR The expression of WiDa mRNA was examined by RT-PCR.
  • the medium was exchanged with 20% FBS DMEM 48 hours after infection, and 1 ml of Sepasol-RNA1 Super G (nacalai tesque, Kyoto, Japan) was added 120 hours after infection. After 5 minutes, the cells were detached with a scraper and transferred to a 1.5 ml tube, and then 200 ⁇ l of chloroform was added and mixed vigorously. It was centrifuged (12000 rpm, 15 minutes, 4 ° C.) and 400 ⁇ l of the supernatant was transferred to a new 1.5 ⁇ l tube.
  • DEPC diethypyrocarbonate
  • AMV buffer 5 ⁇ l, 10 mM dNTP 2 ⁇ l, 50 ⁇ M Oligo dT 1 ⁇ l, RNasion 1 ⁇ l, AMV reverse transcriptase (Sigma) 1 ⁇ l was added, and a reverse transcription reaction was performed under reaction conditions of 42 ° C. for 60 minutes, 65 ° C. for 10 minutes, and 4 ° C.
  • CDNA obtained by reverse transcription was used as a template.
  • the primers used are shown below.
  • GAPDH (Glycelaldehyde-3-phospate dehydrogenase) was used as an internal control.
  • a high HA polyclonal antibody was used as the primary antibody, an HRP-labeled anti-rabbit IgG antibody was used as the secondary antibody, and light was emitted with Super signal West Femto, followed by development and analysis. The image of the film was taken into Image J, and the density of Dot of each well was quantified and examined and evaluated.
  • WiDa mRNA was detected only from WiDa / pCS-CG-infected cells.
  • FIG. (A) is the result of dot blotting in which a known concentration of WiDa-HA peptide is serially diluted
  • (B) is the result of dot blotting of WiDa / pCS-CG-infected cell culture supernatant
  • (C) is (B ) Is a table showing the darkness of the numerical value. From the results shown in FIG. 9, it was confirmed that WiDa was produced and secreted in WiDa / pCS-CG-infected cell culture. Further, from the comparison of the difference in the lightness and the lightness of the serially diluted dots in FIG. 9A, it was calculated that about 3.125 to 6.25 ng / ml WiDa was secreted in 72 hours.
  • Example 3 Evaluation of WiDa secreting myoblast sheet using rat heart failure model I
  • (1) Experimental method (1-1) Preparation of rat heart failure model F344 / NJcl-rnu / rnu rats (8 weeks old, female) were inhaled and anesthetized with isoflurane. Thereafter, endotracheal intubation was performed and intraoperative management was performed under artificial ventilation. A thoracotomy was performed from the heartbeat area, and a visual field was secured using a retractor.
  • the left anterior descending coronary artery was ligated with 7-0 non-absorbable thread (nylon thread) at the height of the left atrial appendage to create a myocardial infarction in the left ventricular anterior wall.
  • Echocardiography was taken 2 weeks after ligation, and left ventricular ejection fraction (EF) of 45-35% was used as a myocardial infarction model rat in the experiment.
  • EF left ventricular ejection fraction
  • a myoblast sheet resuming 2 weeks after ligation and secreting WiDa (hereinafter referred to as “WiDa-rSkM”), a wild type myoblast sheet (hereinafter referred to as “WT-rSkM”) Transplanted to the infarct site.
  • WiDa-rSkM a myoblast sheet resuming 2 weeks after ligation and secreting WiDa
  • WT-rSkM a wild type myoblast sheet Transplanted to the infarct site.
  • a cell sheet that was not transplanted was designated as Control.
  • Each cell sheet was composed of three layers. This model starts treatment at the second week after ligation of the left anterior descending coronary artery. The motility of the left ventricular anterior wall at the second week is reduced, and in the untreated state as it is, the left ventricular wall motion further decreases with time, and the left ventricular wall function is significantly impaired. It can be said that the pressure load on the left ventricular wall also rise
  • left ventricular diameter shortening rate (% Fractional shortening;% FS), left ventricular ejection fraction (EF), left ventricular end-diastolic volume (EDV), left ventricular end systole
  • LV% FS [(LVDd ⁇ LVDs) / LVDd] ⁇ 100
  • LVEF (%) [(LVDd 3 -LVDs 3) / LVDd 3] ⁇ 100
  • EDV (ml) LVIDd 3 ⁇ (0.98 ⁇ LVIDd + 5.9)
  • ESV (ml) LVIDs 3 ⁇ (1.14 ⁇ LVIDs + 4.18)
  • HW / BW Heart weight ratio
  • the heart was removed 8 weeks after the sheet transplantation, and fixed with 10% buffered formalin for 48 hours. After removing both atria, they were embedded in paraffin, sliced and HE stained. Masson trichrome staining was performed to examine left ventricular cavity dilation and left ventricular wall thickness at the infarcted area. The size of the left ventricular cavity was evaluated by the average of the diameters passing through the cavity, and the left ventricular wall thickness was evaluated by the ratio of the left ventricular wall thickness of the infarcted part to the wall thickness of the normal part (left ventricular rear wall). In order to evaluate the myocardial fibrosis rate, Sirius red staining was performed to specifically dye collagen fibers in red.
  • the infarct boundary was observed with an optical microscope at a magnification of 20x, and an image taken in ACT-2U software (NIKON) was analyzed by image analysis software Image J. Evaluation was shown by the fibrosis rate per visual field.
  • Periodic Acid / Schiff reaction (PAS) staining was performed to evaluate the lateral diameter of cardiomyocytes. After staining, observation was performed with an optical microscope at a magnification of 40x, and 100 cells with nuclei were randomly selected at the infarct boundary and the left ventricular posterior wall, and the minor axis crossing the nucleus was defined as the cell transverse diameter. .
  • the section was washed with PBS-T and reacted with a biotinylated labeled anti-Rabbit IgG antibody (Anti-Rabbit Ig, biotinyated species-specific whole antibody, DAKO) as a secondary antibody.
  • Color was developed with DAB (3,3-diaminobenzidine, Sigma, St. Louis, MO, USA) using LSAB (Labeled Streptavidin Biotinyated Antibody) method with HRP-labeled streptavidin (Streptavidin-Horseradish peroxidase conjugate, GE Healthcare).
  • FIG. 10 shows% FS at 2, 4, 6, and 8 weeks after cell sheet transplantation, respectively.
  • EF left ventricular ejection fraction
  • % FS left ventricular diameter shortening rate
  • FIG. 12 shows EDV at 8 weeks after cell sheet transplantation, and 8 weeks after cell sheet transplantation.
  • the ESVs are shown in FIG.
  • EDV the WiDa-rSkM group showed a significant decrease compared to the Control group and the WT-rSkM group.
  • ESV the WiDa-rSkM group showed a significant decrease compared to the Control group and the WT-rSkM group.
  • no significant difference was observed between the Control group and the WT-rSkM group.
  • FIGS. 15 A, B and C.
  • A is a Masson trichrome stained image of the heart, and the scale bar represents 1000 ⁇ m.
  • B is a graph which shows the evaluation result of the left ventricular wall thickness of an infarction part.
  • C is a graph showing the evaluation result of the diameter of the left ventricular cavity.
  • the left ventricular wall at the infarcted site was thinned in the Control group and the WT-rSkM group, whereas the left ventricular wall was kept thick in the WiDa-rSkM group. It was leaning.
  • the left ventricular wall of the infarct was significantly thicker in the WiDa-rSkM group compared to the Control group and the WT-rSkM group (p ⁇ 0.01). There was no significant difference between the Control group and the WT-rSkM group. Further, as is clear from FIGS.
  • the WiDa-rSkM group significantly suppressed the expansion of the left ventricular cavity as compared with the Control group and the WT-rSkM group (p ⁇ 0). .05). There was no significant difference between the Control group and the WT-rSkM group.
  • FIGS. 16 (A) and 16 (B) Histological evaluation of the effect on the myocardial tissue around the infarction
  • Sirius Red staining and the cell lateral diameter by PAS staining Measurements were made.
  • the results of Sirius red stained image and myocardial fibrosis rate are shown in FIGS. 16 (A) and 16 (B).
  • (A) is a Sirius red stained image of the myocardium, and the scale bar represents 100 ⁇ m.
  • (B) is a graph showing the analysis result of the myocardial fibrosis rate.
  • the myocardial fibrosis rate in the WiDa-rSkM group was significantly lower than that in the Control group and the WT-rSkM group (p ⁇ 0.01). There was no significant difference between the Control group and the WT-rSkM group.
  • FIG. 17 (A) and (B) show the PAS-stained image and the measurement results of the cardiomyocyte lateral diameter.
  • (A) is a PAS-stained image of the infarct boundary, and the scale bar represents 50 ⁇ m.
  • (B) is a graph showing the measurement results of the myocardial cell lateral diameter, white is the result of the left ventricular rear wall, and black is the result of the infarct boundary.
  • the myocardial cell transverse diameter at the infarct boundary in the WiDa-rSkM group was significantly lower than that in the Control group and the WT-rSkM group (p ⁇ 0.01). There was no significant difference between the Control group and the WT-rSkM group. There was no significant difference in the cardiomyocyte lateral diameter of the left ventricular posterior wall between any groups.
  • FIGS. 18 Examination of angiogenesis promoting action Immunohistochemical staining was performed using an antibody against Von Willbrand Factor, and the results of counting the number of capillaries are shown in FIGS. 18 (A) and (B).
  • (A) is an immunohistochemically stained image of the infarct boundary, and the scale bar represents 100 ⁇ m.
  • (B) is a graph showing the measurement result of capillary blood vessel density, white is the result of the left ventricular rear wall, and black is the result of the infarct boundary.
  • the number of capillaries at the infarct boundary in the WiDa-rSkM group was significantly increased compared to the Control group and the WT-rSkM group (p ⁇ 0.01). There was no significant difference between the Control group and the WT-rSkM group. Capillary density in the left ventricular posterior wall was not significantly different between any groups.
  • Example 3 (WiDa secretion myoblast cell sheet transplantation), a cell sheet was transplanted two weeks after ligation of the left ventricular descending branch. The second week after ligation of the left ventricular anterior descending branch is a stage in which acute myocardial infarction has progressed and heart failure has occurred. That is, Example 3 evaluates the usefulness of WiDa in the treatment of heart failure.
  • WiDa-secreting myoblasts showed an improvement in cardiac function and an effect of suppressing remodeling in heart failure model rats also at 4, 6, and 8 weeks after the second week after the transplantation. From this, it can be said that WiDa can be a useful therapeutic agent not only for acute myocardial infarction but also for heart failure.
  • Example 4 Evaluation of WiDa secreting myoblast sheet using rat heart failure model II
  • a rat heart failure model was prepared using F344 / NJcl-rnu / rnu rats (8 weeks old, female) in the same manner as in Example 1-1 (1-1). Eight weeks after the transplantation, the heart was removed and fixed with 10% buffered formalin for 48 hours. After removing both atria, they were embedded in paraffin and sliced. In order to examine the distribution of smooth muscle actin (SMA) positive cells, immunohistochemical staining was performed using an anti-smooth muscle actin antibody and observed with an optical microscope.
  • SMA smooth muscle actin
  • FIG. 19 The results are shown in FIG.
  • the upper part of FIG. 19 is a 40 ⁇ observation image, and the scale bar represents 500 ⁇ m.
  • the lower row is a 200-fold observation image, and the scale bar represents 100 ⁇ m.
  • accumulation of SMA positive cells was observed in the infarct region in the WiDa-rSkM group.
  • SMA positive cells such as smooth muscle cells and myofibroblasts have contractility. Therefore, the WiDA peptide secreted from the myoblast cell sheet significantly increases SMA positive cells in the infarct region, and the increased SMA positive cells constrict the infarct wall, thereby significantly improving cardiac function. It is thought that it was connected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 下記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有するペプチドが心機能改善作用を有することを見出した。当該ペプチドまたはその薬学的に許容される塩は心疾患治療薬の有効成分として有用である。また、当該ペプチドを分泌する心疾患治療用細胞シートを心疾患を発症した心臓に移植すれば、当該ペプチドを長期にわたり標的部位に作用させることができる。 X-X-Val-Tyr-X-X (I) X-Val-Tyr-X-X-X (II) Ser-X-X-(Tyr/Phe/Trp)-X-X (III) X-X-(Tyr/Phe/Trp)-X-X-Arg (IV) (式中X、X、X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)

Description

心疾患治療薬および心疾患治療用細胞シート
 本発明は、心疾患治療薬および心疾患治療用細胞シートに関するものである。
 心血管疾患は世界における死亡原因の上位に位置しており、その患者数は今後も増加すると考えられている。心臓のポンプ機能が低下し、体に十分な血液を拍出できなくなる病態をさす心不全は、さまざまな心臓の病気が原因となって引き起こされる。そしてその発病率と有病率は高齢化に伴い年々増加している。薬物治療と外科的治療の進歩にもかかわらず、心不全患者の予後は依然として厳しい状況にあり、新しい治療法の開発が待ち望まれている。虚血性心疾患の一種である心筋梗塞は、心筋を栄養している冠動脈の血流が一定時間以上減少もしくは途断し、その灌流領域の心筋が壊死に陥る疾患である。壊死した部分は最終的には瘢痕組織に置換されるが、瘢痕部分は収縮力がなく、徐々に心機能が低下する。近年、このような病態に対して細胞移植、遺伝子治療、サイトカインや血管新生因子を用いた新たな治療法の研究が進められている。
 しかし、従来から研究・治療に用いられているHGF(hepatocyte growth factor)やVEGF(vascular endothelial growth factor)等の増殖因子は、数百個のアミノ酸からなる抽出タンパク質や組み換えタンパク質であり、感染症や副作用の点で想像し得ない問題をはらんでいる。一方、アミノ酸が10個前後結合したペプチドは、種々の増殖因子と比較して抗原性の点から副作用が起こりにくく、安全性が高く、代謝が容易であり、ペプチドのデザインが簡単で高効率な合成法や検定法が確立されているといった利点を有している。それゆえ、心機能改善能を有するペプチドの発見、開発が期待されている。
 本発明者らは、細胞外基質の一種であるオステオポンチン(OPN)内に存在する7アミノ酸(SVVYGLR)からなるペプチドが、血管新生作用を有していることを明らかにし、その血管新生作用は、血管新生因子の中心的役割を担うVEGFと同等に高いものであることを見出している(特許文献1、非特許文献1および非特許文献2参照)。また、本発明者らは、該ペプチドが間葉系細胞の増殖促進作用を有することを見出している(特許文献2参照)。しかし、該ペプチドが心機能改善能を有することは知られていない。
国際公開第WO2003/030925号 国際公開第WO2008/026634号
Hamada Y, Norihara Y, Okazaki M, Fujitani W, Matsumoto T, Matsuura N and Takahashi J. Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochem Biophys Res Commun 2003; 310: 153-160. Hamada Y, Yuki K, Okazaki M, Fujitani W, Matsumoto T, Hashida K, Kobashi M, Matsuura N and takahashi J. Osteopontin-derivsd peptide SVVYGLR induces angiogenesis in vivo. Dent Mater J 2004; 23: 650-665.
 本発明は、心機能改善能を有するペプチドを見出し、これを有効成分として含有する心疾患治療薬および当該ペプチドを分泌する心疾患治療用細胞シートを提供することを課題とする。
 本発明は、上記課題を解決するために、以下の各発明を包含する。
[1]下記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有し、かつ心機能改善作用を有するペプチド、またはその薬学的に許容される塩を有効成分として含有する心疾患治療薬。
-X-Val-Tyr-X-X (I)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
-Val-Tyr-X-X-X (II)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
Ser-X-X-(Tyr/Phe/Trp)-X-X (III)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
-X-(Tyr/Phe/Trp)-X-X-Arg (IV)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
[2]式(I)、(II)、(III)または(IV)で表されるアミノ酸配列が、配列番号1~6のいずれかで表されるアミノ酸配列である前記[1]に記載の心疾患治療薬。
[3]前記ペプチドが、配列番号1、2もしくは7で表されるアミノ酸配列からなるペプチド、または配列番号1、2もしくは7で表されるアミノ酸配列を有するペプチドである前記[1]または[2]に記載の心疾患治療薬。
[4]前記ペプチドの総アミノ酸残基数が50以下である前記[1]~[3]のいずれかに記載の心疾患治療薬。
[5]前記ペプチドを分泌する細胞を含む前記[1]~[4]のいずれかに記載の心疾患治療薬。
[6]前記ペプチドを分泌する細胞シートを含む前記[1]~[4]のいずれかに記載の心疾患治療薬。
[7]心疾患が、虚血性心疾患または心筋症である前記[1]~[6]のいずれかに記載の心疾患治療薬。
[8]下記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有し、かつ心機能改善作用を有するペプチドを分泌することを特徴とする心疾患治療用細胞シート。
-X-Val-Tyr-X-X (I)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
-Val-Tyr-X-X-X (II)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
Ser-X-X-(Tyr/Phe/Trp)-X-X (III)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
-X-(Tyr/Phe/Trp)-X-X-Arg (IV)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
[9]式(I)、(II)、(III)または(IV)で表されるアミノ酸配列が、配列番号1~6のいずれかで表されるアミノ酸配列である前記[8]に記載の細胞シート。
[10]前記ペプチドが、分泌シグナルペプチドのアミノ酸配列を含む前記[8]または[9]に記載の細胞シート。
[11]前記ペプチドが、配列番号1、2もしくは7で表されるアミノ酸配列および分泌シグナルペプチドのアミノ酸配列を含むペプチドである前記[10]に記載の細胞シート。
[12]細胞が、筋芽細胞、平滑筋細胞、間葉系細胞または脂肪細胞である前記[8]~[11]のいずれかに記載の細胞シート。
[13]心疾患が、虚血性心疾患または心筋症である前記[8]~[12]のいずれかに記載の細胞シート。
 本発明によれば、心機能改善能を有するペプチドを有効成分として含有する心疾患治療薬および当該ペプチドを分泌する心疾患治療用細胞シートを提供することができる。本発明の心疾患治療薬は、有効成分がペプチドであるので、抗原性の点から副作用が起こりにくく、安全性が高いという利点を有する。本発明の心疾患治療用細胞シートは、これを心疾患を発症した心臓に移植すれば、本発明の心疾患治療薬の有効成分であるペプチドを、長期にわたり標的部位に作用させることができる。
術後3、6、9週目の左室内径短縮率(%FS)、駆出率(EF)、左室内腔面積変化率(FAC)を評価した結果を示す図である。 術後3、6、9週目に採取した心臓の左心室のヘマトキシリン・エオジン染色像およびシリウスレッド染色像を示す図である。 術後3、6、9週目の心筋梗塞周辺部の心筋線維化率を評価した結果を示す図であり、(A)は心筋のシリウスレッド染色像であり、(B)は心筋線維化率の解析結果を示す図である。 術後3、6、9週目の心筋梗塞周辺部の心筋細胞横径を測定した結果を示す図であり、(A)はPAS染色像であり、(B)は心筋細胞横径の測定結果を示す図である。 術後3、6、9週目の心筋梗塞周辺部の毛細血管密度を測定した結果を示す図であり、(A)はVon Willbrand Factorに対する抗体を用いた免疫組織化学染色像であり、(B)は毛細血管密度の測定結果を示す図である。 合成したペプチドを高速液体クロマトグラフ質量分析計で検定したチャートである。 単離した筋芽細胞の写真であり、左が位相差顕微鏡画像、右が蛍光顕微鏡画像である。 ペプチド発現用レンチウイルスベクターを感染させた筋芽細胞における目的ペプチドのmRNA発現を確認した結果を示す図である。 ペプチド発現用レンチウイルスベクターを感染させた筋芽細胞における目的ペプチドの発現および分泌を確認した結果を示す図であり、(A)は既知濃度のペプチドを段階希釈したドットブロッティングの結果であり、(B)はペプチド発現用レンチウイルスベクター感染細胞培養上清のドットブロッティングの結果であり、(C)は(B)の濃さを数値化して示した表である。 細胞シート移植後2,4,6および8週目の左室駆出率(EF)を示す図である。 細胞シート移植後2,4,6および8週目の左室内径短縮率(%FS)を示す図である。 細胞シート移植後8週目の左室拡張末期容量(EDV)を示す図である。 細胞シート移植後8週目の左室内径短縮率(%FS)を示す図である。 細胞シート移植後8週目の心体重比(HW/BW)を示す図である。 細胞シート移植後8週目の左心室腔の拡張および梗塞部位の左心室壁厚を評価した結果を示す図であり、(A)は心臓のマッソントリクローム染色像、(B)は左心室腔の径の評価結果を示す図、(C)は梗塞部の左心室壁厚の評価結果を示す図である。 細胞シート移植後8週目の心筋梗塞周辺部の心筋線維化率を評価した結果を示す図であり、(A)は心筋のシリウスレッド染色像であり、(B)は心筋線維化率の解析結果を示す図である。 細胞シート移植後8週目の心筋梗塞周辺部の心筋細胞横径を測定した結果を示す図であり、(A)はPAS染色像であり、(B)は心筋細胞横径の測定結果を示す図である。 細胞シート移植後8週目の心筋梗塞周辺部の毛細血管数をカウントした結果を示す図であり、(A)はVon Willbrand Factorに対する抗体を用いた免疫組織化学染色像であり、(B)は毛細血管密度の測定結果を示す図である。 細胞シート移植後8週目の心室におけるsmooth muscle actin(SMA)陽性細胞の分布を検討した結果を示す図である。
〔心疾患治療薬〕
 本発明の心疾患治療薬は、心機能改善作用を有するペプチドまたはその薬学的に許容される塩を有効成分として含有する。このようなペプチドとしては、下記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有するペプチドが挙げられる。
-X-Val-Tyr-X-X (I)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
-Val-Tyr-X-X-X (II)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
Ser-X-X-(Tyr/Phe/Trp)-X-X (III)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
-X-(Tyr/Phe/Trp)-X-X-Arg (IV)
(式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
 なお、式(III)および(IV)の(Tyr/Phe/Trp)は、TyrまたはPheまたはTrpを意味する。
 式(I)~(IV)において、Xは特に限定されないが、例えば、セリン、アラニン、アルギニン、リシン、ヒスチジン、トリプトファン、フェニルアラニンが好ましい。Xは特に限定されないが、例えば、バリン、アラニン、アルギニン、リシン、ヒスチジン、トリプトファン、フェニルアラニンが好ましい。Xは特に限定されないが、例えば、バリン、アラニン、アルギニン、リシン、ヒスチジン、トリプトファン、フェニルアラニンが好ましい。Xは特に限定されないが、例えば、グリシン、アラニン、アルギニン、リシン、ヒスチジン、トリプトファン、フェニルアラニンが好ましい。Xは特に限定されないが、例えば、ロイシン、アラニン、アルギニン、リシン、ヒスチジン、トリプトファン、フェニルアラニンが好ましい。Xは特に限定されないが、例えば、アルギニン、アラニン、リシン、ヒスチジン、トリプトファン、フェニルアラニンが好ましい。
 式(I)~(IV)で表されるアミノ酸配列として、好ましくは、以下の配列番号1~6の配列が挙げられる。
Ser-Val-Val-Tyr-Gly-Leu(配列番号1)
Val-Val-Tyr-Gly-Leu-Arg(配列番号2)
Ser-Val-Val-Phe-Gly-Leu(配列番号3)
Val-Val-Phe-Gly-Leu-Arg(配列番号4)
Ser-Val-Val-Trp-Gly-Leu(配列番号5)
Val-Val-Trp-Gly-Leu-Arg(配列番号6)
 本発明の心疾患治療薬の有効成分となるペプチドは、上記式(I)~(IV)で表されるいずれかのアミノ酸配列を有するものであればよく、これら以外のアミノ酸配列を有していてもよい。本発明の心疾患治療薬の有効成分となるペプチドのサイズは特に限定されないが、取り扱いの簡便さ、製造効率、抗原性等の副作用の観点から、総アミノ酸残基数が約50以下であることが好ましい。より好ましくは約30残基以下、さらに好ましくは約20残基以下、特に好ましくは約10残基以下である。下限は6残基であり、好ましくは7残基以上である。
 本発明の心疾患治療薬の有効成分となるペプチドとしては、配列番号1~6で表されるアミノ酸配列または以下の配列番号7~9で表されるアミノ酸配列を有し総アミノ酸残基数が20以下のペプチドが好ましい。
Ser-Val-Val-Tyr-Gly-Leu-Arg(配列番号7)
Ser-Val-Val-Phe-Gly-Leu-Arg(配列番号8)
Ser-Val-Val-Trp-Gly-Leu-Arg(配列番号9)
 なかでも、配列番号1、2または7で表されるアミノ酸配列を含み総アミノ酸残基数が20以下のペプチドがより好ましく、配列番号1、2または7で表されるアミノ酸配列からなるペプチドがさらに好ましい。
 本発明のペプチドは、公知の一般的なペプチド合成のプロトコールに従って、固相合成法(Fmoc法、Boc法)または液相合成法により製造することができる。また、本発明のペプチドをコードするDNAを含有する発現ベクターを導入した形質転換体を用いて製造することができる。
 得られたペプチドが心機能改善作用を有することは、例えば、実施例に示すように、心疾患モデルラットを用いて評価することにより確認できる。具体的には、心疾患モデルラットにペプチドを投与して一定期間後に心エコー像を記録し、心機能を評価することにより確認することができる。評価する心機能は特に限定されないが、例えば、左室内径短縮率(%Fractional shortening; %FS)、左室駆出率(Ejection fraction; EF)、左室拡張末期容積(LV end-diastolic volume; EDV)、左室収縮末期容積(LV end-systolic volume; ESV)などが挙げられる。投与後の評価時期は特に限定されないが、約3週間経過以後が好ましく、約4週間経過以後がより好ましく、約5週間経過以後がさらに好ましい。ペプチドを投与していない個体の心機能と比較してペプチドを投与した個体の心機能が改善されていれば、当該ペプチドは心機能改善作用を有すると判断できる。また、例えば、新生児ラットまたはアダルトラットから心筋細胞を単離し、単離心筋細胞にペプチドを添加し、細胞の形態や、肥大マーカーなどのタンパク発現量の変化、心筋細胞の生存性などをin vitroで評価することにより確認できる。
 本発明のペプチドを構成するアミノ酸は、側鎖が任意の置換基で修飾されたものでもよい。置換基は特に限定されないが、例えば、フッ素原子、塩素原子、シアノ基、水酸基、ニトロ基、アルキル基、シクロアルキル基、アルコキシ基、アミノ基などが挙げられる。好ましくは、トリプトファンまたはフェニルアラニンのベンゼン環が置換基で修飾されていることであり、より好ましくは、配列番号1~9で表されるアミノ酸配列中のトリプトファンまたはフェニルアラニンのベンゼン環が置換基で修飾されていることである。
 本発明のペプチドは、C末端がカルボキシル基(-COOH)、カルボキシレート(-COO)、アミド(-CONH)またはエステル(-COOR)の何れであってもよい。エステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソプロピルもしくはn-ブチルなどのC1-6アルキル基、例えば、シクロペンチル、シクロヘキシルなどのC3-8シクロアルキル基、例えば、フェニル、α-ナフチルなどのC6-12アリール基、例えば、ベンジル、フェネチルなどのフェニル-C1-2アルキル基もしくはα-ナフチルメチルなどのα-ナフチル-C1-2アルキル基などのC7-14アラルキル基のほか、経口用エステルとして汎用されるピバロイルオキシメチル基などが挙げられる。本発明のペプチドがC末端以外にカルボキシル基またはカルボキシレートを有している場合、それらの基がアミド化またはエステル化されているものも本発明のペプチドに含まれる。
 さらに、本発明のペプチドには、N末端のメチオニン残基のアミノ基が保護基(例えば、ホルミル基、アセチルなどのC2-6アルカノイル基などのC1-6アシル基など)で保護されているもの、N末端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば、-OH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチルなどのC2-6アルカノイル基などのC1-6アシル基など)で保護されているものも含まれる。
 本発明のペプチドは、薬学的に許容される塩を形成していてもよく、その塩としては、例えば、塩酸、硫酸、燐酸、乳酸、酒石酸、マレイン酸、フマル酸、シュウ酸、リンゴ酸、クエン酸、オレイン酸、パルミチン酸などの酸との塩;ナトリウム、カリウム、カルシウムなどのアルカリ金属もしくはアルカリ土類金属との塩、またはアルミニウムの水酸化物または炭酸塩との塩;トリエチルアミン、ベンジルアミン、ジエタノールアミン、t-ブチルアミン、ジシクロヘキシルアミン、アルギニンなどとの塩などが挙げられる。
 治療対象の心疾患は特に限定されず、心機能の改善により治療効果を奏する心疾患であればよい。具体的には、虚血性心疾患(心筋梗塞、狭心症など)、心筋症(肥大型心筋症、2次性心筋肥大、拡張型心筋症、拘束型心筋症など)、心筋炎、心不全、心内膜炎(細菌性心内膜炎など)、心臓弁膜症(僧帽弁閉鎖不全など)、心膜炎(急性心膜炎、慢性収縮性心膜炎など)、先天性心疾患(心房中隔欠損、心室中隔欠損など)、心臓性喘息、肺性心などが挙げられる。好ましくは虚血性心疾患、心筋症および心不全であり、より好ましくは心筋症および心不全である。
 本発明の心疾患治療薬は、上記の心機能改善作用を有するペプチドを有効成分とし、薬学的に許容される担体または添加剤を適宜配合して製剤化することができる。具体的には錠剤、被覆錠剤、丸剤、散剤、顆粒剤、カプセル剤、液剤、懸濁剤、乳剤等の経口剤;注射剤、輸液、坐剤、軟膏、パッチ剤等の非経口剤とすることができる。担体または添加剤の配合割合については、医薬品分野において通常採用されている範囲に基づいて適宜設定すればよい。配合できる担体または添加剤は特に制限されないが、例えば、水、生理食塩水、その他の水性溶媒、水性または油性基剤等の各種担体;賦形剤、結合剤、pH調整剤、崩壊剤、吸収促進剤、滑沢剤、着色剤、矯味剤、香料等の各種添加剤が挙げられる。
 錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。
 また、本発明の心疾患治療薬は、有効成分の心機能改善作用を有するペプチドをキャリアに結合した形態としてもよい。キャリアとしては、特に限定されるものではなく、人工臓器等に用いられる樹脂、タンパク質等の生体高分子などが挙げられる。さらに、本発明の心疾患治療薬は、有効成分の心機能改善作用を有するペプチドを分泌する細胞を含む形態としてもよい。好ましくは、有効成分の心機能改善作用を有するペプチドを分泌する細胞シートを含む形態である。当該細胞および細胞シートについては後述する。
 このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや他の哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。
 投与量は、投与対象、対象疾患、投与ルートなどにより差異はあるが、例えば、心筋症治療の目的で本発明の心疾患治療薬を経口投与する場合、一般的に成人(体重60kgとして)においては、一日につき有効成分を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、有効成分の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、心筋症治療の目的で本発明の心疾患治療薬を注射剤の形で通常成人(60kgとして)に投与する場合、一日につき有効成分を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好ましい。
 本発明は、さらに以下の発明を包含する。
(a)哺乳動物に対して、上記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有し、かつ心機能改善作用を有するペプチド、またはその薬学的に許容される塩の有効量を投与することを特徴とする心疾患の治療方法。
(b)心疾患治療薬を製造するための、上記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有し、かつ心機能改善作用を有するペプチド、またはその薬学的に許容される塩の使用。
(c)心疾患の治療に使用するための、上記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有し、かつ心機能改善作用を有するペプチド、またはその薬学的に許容される塩。
 本発明の心疾患治療薬は、心筋梗塞モデルラットにおいて、梗塞心筋周囲への単回投与後9週目においても心機能の改善を維持していることが実証されている(実施例1参照)。一方、虚血性心疾患に対して公知の血管新生促進因子であるVEGF、HGF、bFGF(basic fibroblast growth factor)を遺伝子導入し、新生血管を誘導する血管新生療法が構築されているが(Rissanen TT, et al., Adv Genet. 117-167, 2004、Miyagawa S, et al., Transplantation. 81:902-907, 2006、Rissanen TT, et al., FASEB. 10, 2002)、短期間では心機能の改善が認められるものの、長期的にみると十分に心機能を改善できるまでには至っていないのが現状である。したがって、本発明の心疾患治療薬は、心機能改善効果が長期にわたり維持される点で、VEGF、HGF、bFGF等の公知の血管新生促進因子より優れた心疾患治療薬である。
〔心疾患治療用細胞シート〕
 本発明の心疾患治療用細胞シートは、上記した本発明の心疾患治療薬の有効成分である心機能改善作用を有するペプチドを分泌することを特徴とする。心機能改善作用を有するペプチドについては上述のとおりであり、上記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有するペプチドが挙げられ、式(I)~(IV)で表されるアミノ酸配列として、好ましくは、配列番号1~6の配列が挙げられる。
 本発明の心疾患治療用細胞シートから分泌される心機能改善作用を有するペプチドは、分泌シグナルペプチドのアミノ酸配列を含むことが好ましい。分泌シグナルペプチドとは、当該分泌シグナルペプチドに結合されたタンパク質またはペプチドを、細胞膜透過させる役割を担うペプチド領域を意味する。したがって、分泌シグナルペプチドのアミノ酸配列を含むことにより、心機能改善作用を有するペプチドを細胞外に分泌することが可能となる。このような分泌シグナルペプチドのアミノ酸配列およびそれをコードする核酸配列は、当技術分野において周知であり、報告されている(例えば、von Heijine G (1988) Biochim. Biohys. Acra 947: 307-333、von Heijine G (1990) J. Membr. Biol. 115: 195-201など参照)。また、分泌シグナルペプチドのアミノ酸配列およびそれをコードする核酸配列は、公知のデータベース(DDBJ/GenBank/EMBL等)から取得することができる。本発明において好適な分泌シグナルペプチドは、哺乳動物細胞、なかでもヒト細胞で機能し得る分泌シグナルペプチドである。例えば、Igκ鎖リーダー配列、ミツバチメリチンシグナル配列、αファクター分泌シグナルなどが挙げられる。分泌シグナルペプチドのアミノ酸配は、心機能改善作用を有するペプチドのN末端側に配置されることが好ましい。
 本発明の心疾患治療用細胞シートから分泌されるペプチドとしては、配列番号1、2もしくは7で表されるアミノ酸配列および分泌シグナルペプチドのアミノ酸配列を含むペプチドであることが好ましい。分泌されるペプチドの総アミノ酸残基数が約100以下であることが好ましい。より好ましくは約70残基以下、さらに好ましくは約50残基以下、特に好ましくは約40残基以下である。下限は特に限定されないが、心機能改善作用を有するペプチドの下限である6残基に分泌シグナルペプチドのアミノ酸残基数を加えた数が下限となる。
 本発明の心疾患治療用細胞シートは、心機能改善作用を有するペプチドを分泌する細胞を培養することにより作製することができる。心機能改善作用を有するペプチドを分泌する細胞は、心機能改善作用を有するペプチド(分泌シグナルペプチドのアミノ酸配列を含む)をコードするポリヌクレオチドが挿入された組換え発現ベクターを適当な細胞に導入することにより作製することができる。以下、心機能改善作用を有するペプチドを分泌する細胞および本発明の心疾患治療用細胞シートの作製方法について説明する。
 心機能改善作用を有するペプチドを分泌する細胞(以下「ペプチド分泌細胞」という)の作製に用いる細胞は特に限定されないが、既に心臓への細胞シート移植の実績がある細胞が好ましく、具体的には、筋芽細胞(Ghostine S, Carrion C, Souza LC, Richard P, Bruneval P, Vilquin JT, Pouzet B, Schwartz K, Menasche P, Hagege AA:Long-term efficacy of myoblast transplantation on regional structure and function aftermyocardial infarction. Circulation. 106:I-131-I-136, 2002.)、平滑筋細胞(Yoo KY, LiRK, Weisel RD, Mickle DAG, Li GM, Kim EJ, Tomita S, Yau TM:Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann Thorac Surg 70: 859-865, 2000.など)、間葉系細胞(Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ, Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919-25,2002)、脂肪細胞(Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 28:2667-77,2007.)が挙げられる。
 組換え発現ベクターは、公知の遺伝子組み換え技術を用いて作製することができる。発現ベクターは、宿主となる細胞で機能し得るプロモーターを含む適当な発現ベクターを選択すればよい。例えば、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、センダイウイルスなどのウイルスベクター、動物細胞発現プラスミド(例えば、pA-11、pxT1、pRc/CMV、pRc/RSV、pcDNAI/Neoなど)などが挙げられる。このような発現ベクターに、心機能改善作用を有するペプチドをコードするポリヌクレオチドを挿入することにより、目的の組換え発現ベクターが作製できる。ポリヌクレオチドは、DNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよい。また、当該ポリヌクレオチドは二本鎖であっても、一本鎖であってもよい。好ましくは、二本鎖DNA、特にcDNAである。心機能改善作用を有するペプチド(分泌シグナルペプチドのアミノ酸配列を含む)をコードするポリヌクレオチドの塩基配列は、当該ペプチドのアミノ酸配列に基づいて適宜設計することができる。また、当該ポリヌクレオチドは、化学合成により作製することができる。組換え発現ベクターを細胞に導入する方法は特に限定されず、公知の方法を適宜選択して用いることができる。例えば、エレクトロポレーション法、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法などが挙げられる。ウイルスベクターの場合は、細胞にウイルスを感染させればよい。組換え発現ベクターを導入した細胞の中から、ペプチド分泌細胞を選択する。ペプチド分泌細胞は目的ペプチドを安定して発現する細胞であることが好ましい。
 得られたペプチド分泌細胞を適当な培養皿を用いてコンフルエントに培養した後、シート状態を維持したまま細胞を剥がすことにより、本発明の心疾患治療用細胞シートが作製できる。好ましくは、温度応答性高分子であるポリ-N-イソプロピルアクリルアミドを被覆した培養皿を用いてコンフルエントに培養し、低温処理後、剥離する方法である(医学のあゆみ、195、203-204(2000)参照)。当該温度応答性高分子を被覆した培養皿を用いる方法により、細胞および細胞外基質より構成される三次元構造を持った細胞シートを作製することができる。
 本発明の心疾患治療用細胞シートが分泌する心機能改善作用を有するペプチドの量は特に限定されない。本発明の心疾患治療用細胞シートは、心機能改善作用を有するペプチドの分泌量が目的の分泌量となるように、シートを複数層に重ねることができる。移植した細胞シートは約2週間程度で徐々に細胞移植部位から脱落していくと考えられる。また、in vivoにおけるSVVYGLRペプチドの心機能改善作用は20~100ngの量で発揮されることがわかっている。したがって、移植してから2週間以内に20~100ngまたはそれ以上のペプチドを分泌可能な細胞シートが好ましい。
 自己筋芽細胞シートの移植に関しては、種々の心疾患モデル動物を用いた実験で優れた治療成績を示している(Miyagawa S, et al., Transplantation. 80:1586-95, 2005、Memon IA, et al., J Thorac Cardiovasc Surg. 130: 1333, 2005、Kondoh H, et al., Cardiovasc Res. 69: 466, 2006、Hata H, et al., J Thorac Cardiovasc Surg. 132: 918, 2006)。しかし、長期間にわたり術後の心機能を追跡するとその効果が漸減してくることが細胞シート移植の欠点であった。
 本発明の心疾患治療用細胞シートは、従来の細胞シートの欠点を克服し、細胞シート移植後8週目においても心機能の改善効果を維持していることが実証されている(実施例3および4参照)。また、本発明の心疾患治療用細胞シートは、心機能改善効果と血管新生作用の両方を有することから、より持続的に心機能を改善できることが期待できる。したがって、心筋梗塞などの虚血性心疾患のみならず、心筋症の治療に極めて有用であると考えられる。さらに細胞シートを用いることで、インジェクション法による単回投与と異なり、シート移植部位から継続的にペプチドが分泌され、その効果を持続させることができる。また、インジェクション法は不整脈の誘因となることが知られているが、細胞シートの移植ではそのような報告はない。したがって、本発明の心疾患治療用細胞シートを用いれば、周知の細胞シートによる心疾患治療に、心機能改善作用を有するペプチドを併用でき、相乗的な治療効果が期待できる。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
〔実施例1:ラット心筋梗塞モデルを用いたペプチドの評価〕
(1)実験方法
(1-1)ペプチドの合成
 配列番号7で示されるアミノ酸配列からなるペプチドを、多種品目固相法自動ペプチド合成装置(PSSM-8; 島津製作所)を用いてFmoc法により合成した。より詳細には、ポリエチレングリコールとポリスチレンのグラフト共重合レンジTentagel(粒径80μm)を支持体とし、高効率固相法にて合成した。得られた合成ペプチドを、高速液体クロマトグラフ質量分析計(LCMS;島津製作所)にて検定し、質量理論値と一致する単一成分であることを確認した(図6参照)。以下、配列番号7で示されるアミノ酸配列からなるペプチドを「WiDa」と表記する。
(1-2)ラット心筋梗塞モデルの作製
 Sprague-Dawleyラット(8週齢、雄、体重約300g)をイソフルランにより吸入麻酔し、気管内挿管し、人工換気下にて術中管理した。心拍動部肋間より開胸、左冠状動脈前下行枝を確認後、6-0の非吸収糸(ナイロン糸)を用い左心耳の高さにて結紮した。心電図においてST上昇を確認し、梗塞とした。その後PBS(Control)またはWiDa(100ng/ml)0.1mlを梗塞心筋周囲へ投与し、術野を連続縫合にて閉創した。治癒モデルとしてペプチド投与後3週の短期治療モデル、6週および9週の長期治療モデルを設定した。また、WiDa群、Control群(PBS投与)の他に、開胸と閉創のみを行ったSham群を設けた。
(1-3)心機能評価
 術後21日目(3週)、42日目(6週)、そして63日目(9週)に心エコーを用いて左心室機能評価を行った。ラットをイソフルラン吸入麻酔後、超音波診断装置SONOS5500(Aglient Technologies, Palo Alto, CA)を用いて心エコー像を記録し、左室拡張末期径(LVDd)、左室収縮末期径(LVDs)、左室拡張末期内腔面積(LVEDA)、左室収縮末期内腔面積(LVEDS)を得た。これらの値より、左室内径短縮率(%Fractional shortening; %FS)、左室駆出率(Ejection fraction; EF)、左室内腔面積変化率(Fractional area change; FAC)を算出した(Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411-5.)。
 LV%FS=[(LVDd-LVDs)/LVDd]×100
 LVEF(%)=[(LVDd-LVDs)/LVDd]×100
 LVFAC(%)=[(LVEDA-LVEDS)/LVEDA]×100
(1-4)組織学的評価
 術後21日目(3週)、42日目(6週)、そして63日目(9週)に心臓を摘出し、10%緩衝ホルマリンで48時間固定を行った。両心房を除去後、パラフィン包埋し、厚さ3μmに薄切した。薄切した切片をヘマトキシリン・エオジンで染色し、梗塞壁の厚さ比較を行った。
 また心筋線維化率を測定するため、膠原線維を特異的に赤色に染め出すシリウスレッド染色を行った。心筋線維化の測定は梗塞巣境界部を観察し(×200)、ACT-2Uソフトウェア(NIKON)にて画像を取り込んだ。画像はWinRoofソフトウェア(MITANI CORPORATION)により解析した。結果は、1視野あたりの線維化率で表示した。
 また心筋細胞の横経(cell size)を測定することを目的にPeriodic Acid/Schiff reaction(PAS)染色を行った。染色後は光学顕微鏡にて観察を行い(×400)、梗塞境界部と左室後壁部において核を認める100個の細胞を無作為に選択し、ACT-2Uソフトウェアにて画像を取り込み、画像はWinRoofソフトウェアにより解析した。解析法としては、心筋細胞の核を横断する短径を測定し、細胞横径とした。
 血管内皮細胞を有する毛細血管数をカウントするために、血管内皮細胞のマーカーであるVon Willbrand Factorに対する抗体(Anti-Human Von Willebrand factor, DAKO)を用いて免疫組織化学染色を行った。脱パラフィンをした切片をアルコールで脱水し、熱処理を行って、抗原賦活を行った。その後、0.1%過酸化水素液で内因性ペルオキシダーゼを不活性化した。5%スキムミルクでブロッキング後、抗Von Willbrand Factor抗体と4℃で一晩反応させた。
 切片をPBS-Tで洗浄後、二次抗体としてビオチン化標識抗Rabbit IgG抗体(Anti-Rabbit Ig, biotinyated species-specific whole antibody、DAKO)と反応させた。HRP標識streptavidin(Streptavidin-Horseradish peroxidase conjugate、GE Healthcare)によるLSAB(Labeled Streptavidin Biotinyated Antibody)法を用いて、DAB(Diamino benzidine)にて発色させた。染色後、光学顕微鏡(×400)にて無作為に15視野を選択し、Von Willbrand Factor陽性の血管内皮細胞を有する毛細血管数をカウントし、毛細血管密度とした。
(1-5)統計解析
 すべての統計学的数値は、平均値±標準偏差もしくは平均値±標準誤差で表した。これまでの各実験のControlとの結果を比較するため、student-t検定を用い、p<0.05をもって有意とした。
(2)結果
(2-1)心機能評価
 WiDaが左心室機能の回復に与える影響を検討するために、心エコーを用いて左心室機能指標である左室内径短縮率(%FS)、駆出率(EF)、左室内腔面積変化率(FAC)を評価した。結果を図1に示した。
 まずWiDa投与後の短期的効果を術後3週目の時点で評価したところ、左室内径短縮率(%FS、図1a)、駆出率(EF、図1b)、左室内腔面積変化率(FAC、図1c)のすべての項目においてWiDa群はControl群と比較して有意に高かった(%FS;p=0.005、EF;p=0.005、FAC;p=0.002)。続いてWiDaが虚血心筋に与える長期的な効果を術後6週目および9週目の時点で評価した。まず左室内径短縮率(%FS、図1dg)と駆出率(EF、図1eh)の評価を行ったところ、6週および9週モデルともにControl群と比較するとWiDa群で有意に高かった。また、左室内腔面積変化率(FAC、図1fi)の評価を行ったところ、9週モデルでは、Control群に対しWiDa群は有意に改善していた。一方、6週モデルではControl群とWiDa群との間に有意な差は認められなかったものの、WiDa群はControl群と比較し改善傾向がみられた(p=0.145)。
(2-2)組織学的検討
(a)梗塞巣に与える影響
 心筋梗塞とは、心筋を栄養している冠動脈の血流が途断し、その灌流領域の心筋が壊死に陥ることである。壊死した部分は膠原線維に置換され、その結果心機能が低下すると考えられている。そこで、WiDaが梗塞巣にいかなる影響を与えるのか検討するため、各群各週に摘出した心臓の切片にヘマトキシリン・エオジン染色(以下「HE染色」という)および膠原線維を特異的に染め出すシリウスレッド染色を行った。
 結果を図3に示した。図2a~gの各1対の写真のうち、左がHE染色像、右がシリウスレッド染色像である。また、図中、スケールバーは1000μmを表す。図2a(Sham群)は3週の結果のみを示した。図2b~gのシリウスレッド染色像において、3週、6週および9週モデルともにControl群では左室前壁から後壁にかけての壁厚が薄くなり、膠原線維が多く認められていたのに対して、WiDa群の左心室壁厚は、Control群と比較して厚く保たれていた。
 左心室腔の拡張に関しては、図2b~gのHE染色像において、3週、6週および9週モデルともにControl群では左心室腔が徐々に拡張していたのに対して、WiDa群ではControl群と比較して、拡張が抑制されていた。
(b)梗塞境界部の正常心筋組織に与える影響
 心筋梗塞後の治癒過程は、梗塞境界部の正常心筋に負荷がかかり、細胞の肥大や心筋の線維化が進行する。そこでWiDaの心筋梗塞周辺部の正常心筋細胞への影響を検討するために、シリウスレッド染色による心筋線維化率の評価とPAS染色による心筋細胞横径の測定を行った。
 シリウスレッド染色像および心筋線維化率の結果を図3(A)および(B)に示した。(A)は心筋のシリウスレッド染色像であり、スケールバーは100μmを表す。(B)は心筋線維化率の解析結果を示すグラフである。心筋線維化率は3週モデルにおいてはControl群とWiDa群との間に有意差は認められなかった(図3(B)a)。一方6週および9週モデルでは、Control群と比較してWiDa群では有意に低下していた(6週;図3(B)b、p=0.00041、9週;図3(B)c、p=0.00054)。
 PAS染色像および心筋細胞横径の測定結果を図4(A)および(B)に示した。(A)は梗塞境界部のPAS染色像であり、スケールバーは100μmを表す。(B)は心筋細胞横径の測定結果を示すグラフであり、白抜きは左室後壁部の結果、黒塗りは梗塞境界部の結果である。梗塞境界部において3、6および9週モデルのいずれにおいても、心筋細胞横径はsham群と比較してControl群、WiDa群で有意に高かった(p<0.0001)。またControl群とWiDa群との比較では3週モデルでは有意差は認められなかったが、6週および9週モデルではWiDa群が有意に低かった(6週;p=0.0019、9週; p=0.00017)。一方、左室後壁部についても同様の評価を行ったところ3週、6週および9週モデルのいずれにおいてもControl群とWiDa群との比較では、有意な差は認められなかった。
(c)虚血心筋組織における血管新生能の評価
 WiDaによる血管新生が、心筋組織で誘導されているのかを検討するために、毛細血管密度の測定を行った。血管内皮細胞のマーカーであるVon Willbrand Factorに対する抗体を用いて免疫組織化学染色を行い、毛細血管数をカウントした。
 結果を図5(A)および(B)に示した。(A)は梗塞境界部の免疫組織化学染色像であり、スケールバーは100μmを表す。(B)は毛細血管密度の測定結果を示すグラフであり、白抜きは左室後壁部の結果、黒塗りは梗塞境界部の結果である。梗塞境界部において3週、6週および9週モデルのいずれにおいてもSham群およびControl群と比較して、WiDa群では毛細血管密度の著明な増加が認められた(p<0.0001)。一方、Sham群、Control群およびWiDa群の左室後壁部における毛細血管密度に有意な差は認められなかった。
(3)考察
 現在までに虚血性心疾患モデルに対する治療・研究は多数行われおり、種々の効果が報告されている。しかし、心筋梗塞の治療効果を考える上で最も重要なことは、心機能の回復が認められるか否かである。そこで本研究においては、WiDaによる左心室の機能改善効果に注目した。WiDaが、梗塞により失われた心機能を改善させるか否かを心エコーにて評価した結果、3週モデルでは、Control群と比較し、WiDa群で有意な心機能の改善が認められた。またSham群と比較し、Control群、WiDa群では心機能が有意に低かった。この結果から、心機能は心筋梗塞作製後一時的に著しく低下するが、心筋梗塞直後に投与したWiDaが何らかの機能を発揮し、心機能が大きく改善されたと考えられた。さらに6週モデル、9週モデルにおいても同様の効果が認められた。6週および9週の治療長期モデルにおける結果より、WiDaは持続的に心機能低下の抑制に関与することが示唆された。また、心筋梗塞モデルにおいて、投与したWiDaによって、梗塞壁厚のひ薄化、心筋線維化および心筋細胞の肥大が有意に抑制されていた。また、これらは6週および9週の長期モデルにおいても有意な抑制が認められた。心筋梗塞の治癒過程では、梗塞境界部の正常心筋の仕事量が増加し、梗塞周辺部の細胞肥大や心筋線維化が徐々に進行する。本研究の結果から、WIDAが梗塞周辺部の正常細胞への負荷減少に働き、心筋線維化および心筋細胞の肥大を抑制したと考えられ、WiDaが梗塞後の左心室リモデリングの抑制作用を有することが示唆された。
 すでに、血管新生促進作用を有するHGFの心筋梗塞モデルに対する検討が行われており、HGFは血管新生促進作用に加え心機能改善作用も有していることが明らかとなっている([1]Jin, H. et ai., Curr Pharm Des 2004; 10: 2525-33. [2]Chen XH, et ai., J Card Fail 2007; 13: 874-83. [3]Li Y, et ai., Circulation 2003; 107: 2499-506. [4]Ueda H, et ai., Cardiovasc Res 2001; 51: 41-50.)。心筋梗塞モデルに対するHGFを用いた遺伝子治療の治療効果についての報告では、左心室機能が治療後4週の時点では左室内径短縮率(%FS)20%、駆出率(EF)42%と改善効果が認められたが、その後は低下傾向が認められた(Miyagawa S. et ai., Circulation 2002; 105: 2556-2561.)。一方、本研究では、心筋梗塞モデル作製直後にWiDa(100ng/ml)の一回投与のみを行ったにも関わらず、3週モデルの左心室機能は、左室内径短縮率(%FS)25%、駆出率(EF)50%であり、HGF遺伝子治療で得られる効果と同等以上の効果が得られることが明らかになった。さらにこの効果が6週後、9週後まで持続した。WiDaは、7つのアミノ酸残基で構成される低分子ペプチドであり、その半減期は短いと考えられる。しかしながら、虚血部周辺心筋へのWiDaの一回投与により、左心室機能が劇的に改善され、さらにその効果は長期間持続した。このことからも、WiDaは、虚血により失われた心機能を著明に改善させる効果を有していることがわかった。
 急性心筋梗塞モデルに対して、HGF以外にも公知の血管新生促進因子やサイトカイン等を用いた治療研究が数多くなされているが、そのどれもが投与3週目において心機能改善およびリモデリング抑制効果を示す。しかし、投与6週、9週と経時的にその効果を検討すると、治療効果が著しく低下し、十分な治療法となり得ないのが現状である。それに対し、本ペプチドを急性心筋梗塞モデルに投与したところ、投与3週目での心機能改善、リモデリング抑制はもちろんのこと、投与6週目、9週目の評価においても、心機能改善効果およびリモデリング抑制効果が持続されていた。よって、WiDaは急性心筋梗塞に対して投与6週、9週と長期的に治療効果を示す新しいペプチド薬として利用できると期待される。
 また、心筋梗塞モデルにおいても、WiDaの血管新生作用により新生血管が誘導されているのか検討するために、組織学的検討を行った。毛細血管密度を測定したところ、3、6および9週モデルのすべてにおいて、梗塞境界部においてSham群およびControl群に対し、WiDa群で著明に毛細血管数が増加していた。また、6週および9週の長期モデルにおいて認められた毛細血管数の増加は、治療後3週目の短期モデルで認められたものとほぼ同程度の増加であったことから、WiDaにより誘導された新生血管は、構造的、機能的に安定化し、長期的に心筋への栄養血管として残存することが示唆された。現在、虚血性心疾患に対する治療研究で用いられている血管新生因子としては、VEGF、bFGF(basic fibroblast growth factor)などが知られている([1]Hader HKh, et ai., Circ Res 2008; 103: 1300-1308. [2]Rissanen TT, et ai., Adv Genet 2004; 52: 117-167. [3]Rissanen TT, et ai., The FASEB Journal 2003; 17: 100-102. [4]Hao X, et ai., BiochemBiophys Res Commun 2004; 322: 292-6.)。しかしこれらの因子は浮腫や炎症反応などの副作用が懸念されている。今回の心筋梗塞モデルにおいて、WiDaは、虚血心筋組織に対して、先行研究の血管新生作用からさらに構造的、機能的に安定化した栄養血管を誘導した。よってWiDaは、これまでの新生血管の早期退縮や浮腫などの副作用を克服できる新たな因子であるといえる。
 上記の本研究成果から、WiDaは従来公知の血管新生作用のみならず、心機能を著名に改善させる何らかの機能を発揮したものと考えられた。
〔実施例2:WiDa分泌筋芽細胞シートの作製〕
(1)実験方法
(1-1)筋芽細胞単離
 3週齢のLewisラットから前頸骨筋を採取し、冷HBSS(Hanks balanced salt solution)で洗い、トリプシン(Invitrogen life Technologies, Carlsbad, CA, USA)を加えた後、線維芽細胞の混在を防ぐため腱や線維組織、脂肪組織などを丁寧に除去した。トリプシンで細かくミンスし、0.2%タイプIIコラゲナーゼ(Worthingto Biochemical corporation, Lakewood, NJ, USA)で45分酵素処理を行った。遠心・濾過後、線維芽細胞を接着させるためにコラーゲンタイプI(Nitta Gelatin Inc, Osaka, Japan)コートディッシュ(10μg/ml)に播種した。5%CO、37℃で4時間インキュベート後、上清を再度コラーゲンタイプIコートディッシュ(10μg/ml)に播種し、さらに24時間後、上清をマトリゲル(Becton Dickinson Bioscience, Flanklin Lakes, NJ, USA)コートディッシュ(0.5mg/ml)に播種しなおし、ここで接着した細胞を筋芽細胞として用いた。メディウムとして、20%FBS(fetal bovine serum、Biowest, Minami, FL, USA)、1%Antibiotic-Antimyotic(Invitrogen life Technologies)、およびオルガドロン(Nihonoruganon,Osaka, Japan)含有DMEM(Dulbecco modified Eagle’s medium)(Nihonseiyaku, Toky, Japan)を使用した。実験には継代数が1~4までの細胞を用いた。
(1-2)免疫蛍光染色
 前頸骨筋より単離した細胞が筋芽細胞であることを確かめるために、筋肉細胞に存在しているDesminの発現を免疫蛍光染色により確認した。単離細胞をマトリゲルコートの12mm径のカバーガラス(Matsunami Glass IND LTD, Tokyo, Japan)に播種し、細胞接着後、4%PFA(para formaldehyde)/PBS(phosphate buffered solution)溶液で固定、0.5%TritonX-100/PBS溶液で処理し、2%BSA/PBS溶液でブロッキングした。ブロッキング後、一次抗体として抗Desmin抗体(Sigma, St. Louis, MO, USA)を室温1時間、二次抗体としてFITC標識anti-rabbit IgG(DAKO, Glostrup, Denmark)を室温30分間反応させ、DAPI(4',6-diamidino-2-phenylindole)含有水溶性封入剤(Invitrogen life Technologies)で封入した。その後、蛍光顕微鏡(ECLIPSE E600,Nikon)で観察を行った。
(1-3)遺伝子構築
 N末端側に分泌シグナル(Igκ鎖リーダー配列)を、C末端側にHAタグを付加したWiDaをコードするDNAを構築した。すなわち、以下の4つのDNAをDNA合成装置で合成し、これらをつなぎ合わせることで、目的のDNA断片を得た。
foward1; 5’-GCGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGT-3’(配列番号10)
foward2; 5’-TCCACTGGTGACGCGGCCCAGCCGGCCAGTGTGGTTTATGGACTGAGGCTCGAGTACCCATACGATGTTCCAGATTACGCTTAAC-3’(配列番号11)
reverse1; 5’-TCGAGTTAAGCGTAATCTGGAACATCGTATGGGTACTCGAGCCTCAGTCCATAAACCACACT-3’(配列番号12)
reverse2; 5’-GGCCGGCTGGGCCGCGTCACCAGTGGAACCTGGAACCCAGAGCAGCAGTACCCATAGCAGGAGTGTGTCTGTCTCCATGGTGGCG-3’(配列番号13)
 得られたDNA断片を、NheIとXhoIで制限酵素処理したレンチウイルスベクターpCS-CGにライゲーションし、正しい塩基配列のDNA断片が組み込まれていることをシークエンスで確認した。WiDaをコードするDNA組み込んだpCS-CGを、以下「WiDa/pCS-CG」と表記する。
(1-4)遺伝子導入
(i)レンチウイルスの産生
 コラーゲンをコートした10cmディッシュにヒト腎上皮由来細胞HEK293T細胞を80%コンフルエントの状態で用意した。遺伝子導入はリン酸カルシウム法で行った。WiDa/pCS-CG(20μg)、ならびにpMD2.G、pRSV-RevおよびpMDLg/pRRE(各10μg)の3つのパッケージングベクターを滅菌水で450μlに調製した後、2.5M CaClを50μl加え混合した。この溶液を攪拌しながら、500μlの2×HBS(pH7)を加え、室温で10分間インキュベートし、リン酸カルシウムとDNAの複合体を作製した。各ディッシュのメディウムを10%FBS DMEMに交換し、DNA複合体を培養上清中に加え、遺伝子導入した。12時間後にメディウムを10%FBS DMEM 6mlに交換し、遺伝子導入から48時間後と72時間後にウイルス含有上清を回収した。回収したウイルス含有上清を0.45μmのフィルター(Millipore, Billerica, MA, USA)に通して浮遊細胞等を除去し、Lenti-XTM Concentrator(Clontech Laboratories, Inc., Mountain View, CA, USA)で濃縮した。発現検討のネガティブコントロールとして用いるpCS-CGの空ベクターを遺伝子導入したウイルス含有上清(mock)も同様に回収した。
(ii)レンチウイルスベクターの感染
 感染前日に35mmディッシュに単離筋芽細胞を、感染時4×10個/ディッシュになるように播種しておく。感染時に、メディウムをpolybrene(Sigma)8μg/mlを含む無血清DMEM 500μlに交換し、そこに回収したウイルス含有上清を滴下し、4時間後に500μlの20% FBS DMEMを加えた。5%CO、37℃で48時間培養し、感染させた。感染48時間後に各実験に適したメディウムに交換し、96~120時間後に実験に使用した。
(1-5)RT-PCR
 WiDaのmRNAの発現をRT-PCR法で検討した。感染48時間後に20% FBS DMEMにメディウムを交換し、感染120時間後にSepasol-RNA1 Super G(nacalai tesque, Kyoto, Japan)を1ml加えた。5分後、スクレーパーで細胞を剥離し、1.5mlチューブに移した後、クロロホルムを200μl加えて激しく混和した。それを遠心(12000rpm、15分、4℃)し、上清400μlを新しい1.5μlチューブに移した。そこにイソプロパノールを等量加え転倒混和し、室温で10分間インキュベートした後、遠心(12000rpm、10分、4℃)した。遠心後、上清を取り除き、抽出したRNAのペレットを75%エタノールで洗浄し、遠心(8500rpm、5分、4℃)した。遠心後、上清を除き、乾燥させた。得られたトータルRNAをDEPC(diethypyrocarbonate)水20μlに懸濁し、氷上に15分静置し溶解させた。その後260nmにおける吸光度を測定、濃度を求めた。
 RNA量が5μg、液量が15μlになるように調製し、熱処理(95℃ 2分)したものに5×AMV buffer 5μl、10mM dNTP 2μl、50μM Oligo dT 1μl、RNasion 1μl、AMV reverse transcriptase(Sigma)1μlを加え、42℃ 60分、 65℃ 10分、4℃の反応条件で逆転写反応を行った。
 逆転写により得られたcDNAをテンプレートとして用いた。使用したプライマーを以下に示す。なお、インターナルコントロールとしてGAPDH(Glycelaldehyde-3-phospate dehydrogenase)を用いた。
SVVYGLR(forward); 5’-CTAGCGCCACCATGGAGACAGACA-3’(配列番号14)
SVVYGLR(reverse); 5’-AGCGTAATCTGGAACATCGTATGG-3’(配列番号15)
GAPDH(forward); 5’-ACTGGCGTCTTCACCACCAT-3’(配列番号16)
GAPDH(reverse); 5’-AGTGAGCTTCCCGTTCAGCT-3’(配列番号17)
(1-6)WiDa産生および分泌の確認
 感染させた筋芽細胞内でのWiDaの産生・分泌をDot blotting法で検討した。感染48時間後に無血清DMEMにメディウムを交換し、72時間後に培養上清を回収し、遠心(12,000rpm 5分 4℃)した。回収した培養上清とWiDa-HAペプチドを段階希釈(12.5μg/ml~0.2ng/ml)したものそれぞれ100μlを、4℃で1晩マイクロプレートに固相化し、5%スキムミルクでブロッキングを行った。1次抗体として高HAポリクローナル抗体、2次抗体としてHRP標識抗ラビットIgG抗体を用い、Super signal West Femtoで発光させ、現像、解析した。Image Jにフィルムの画像を取り込み、各wellのDotの濃淡を数値化し、検討および評価した。
(1-7)細胞シート作製
 感染72時間後に、35mmの温度応答性培養皿(Cell Seed, Tokyo, Japan)に3×10個/ディッシュの感染細胞を播種し、5%CO、37℃でインキュベートした。細胞を播種してから16時間後にディッシュを室温で30分静置し、細胞をシート状に剥がした。
(2)結果
(2-1)筋芽細胞の確認
 前頸骨筋より単離した細胞が、筋芽細胞であることを確認するため、筋肉細胞に存在しているDesminの発現を免疫蛍光染色により検討した。結果を図7に示した。左が位相差顕微鏡による写真であり、右が蛍光顕微鏡による写真である。蛍光顕微鏡写真では、Desminが緑色に染まり、核が青色に染まる。観察の結果、9割以上の細胞がDesmin陽性であり、高純度の筋芽細胞が単離できたことが確認できた。
(2-2)WiDa mRNAの発現確認
 結果を図8に示した。図8中、WTは野生型(ウイルス非感染)筋芽細胞、mockは空ベクター感染筋芽細胞、WiDa/pCS-CGはWiDa/pCS-CG感染細胞をそれぞれ表す。図8から明らかなように、WiDaのmRNAは、WiDa/pCS-CG感染細胞のみから検出された。
(2-3)WiDa産生および分泌の確認
 結果を図9に示した。(A)は既知濃度のWiDa-HAペプチドを段階希釈したドットブロッティングの結果であり、(B)はWiDa/pCS-CG感染細胞培養上清のドットブロッティングの結果であり、(C)は(B)の濃さを数値化して示した表である。図9に示した結果から、WiDa/pCS-CG感染細胞培養でWiDaが産生され、分泌されていることが確認できた。また、その濃淡度合の差と図9Aの段階希釈したドットの濃淡度合の比較から、72時間で約3.125~6.25ng/mlのWiDaが分泌されていると算定した。
〔実施例3:ラット心不全モデルを用いたWiDa分泌筋芽細胞シートの評価I〕
(1)実験方法
(1-1)ラット心不全モデルの作製
 F344/NJcl-rnu/rnuラット(8週齢、メス)をイソフルランで吸入麻酔し抑制状態とした。その後、気管内挿管し、人工換気下で術中管理した。心拍動部肋間より開胸し、開創器を用いて視野を確保した。肺をガーゼで保護した後、左冠状動脈前下降枝を7-0の非吸収糸(ナイロン糸)で左心耳の高さで結紮し、左室前壁に心筋梗塞を作製した。結紮後2週目に心エコーを撮り、左室駆出率(EF)が45~35%のものを心筋梗塞モデルラットとして実験に用いた。また結紮後2週目に再開胸し、WiDaを分泌する筋芽細胞シート(以下「WiDa-rSkM」と表記する)、野生型の筋芽細胞シート(以下「WT-rSkM」と表記する)を梗塞部位に移植した。細胞シート移植を行わないものをControlとした。細胞シートはいずれも3層で構成した。このモデルは左冠状動脈前下降枝を結紮後2週目に治療を開始するものである。2週目での左心室前壁の運動能は低下しており、このまま未治療状態では、さらに経時的に左心室壁運動が低下し、著しく左心室壁機能が障害される。左心室壁にかかる圧負荷も上昇し、左心室腔も徐々に拡張し、心不全を起こしている状態であると言える。
(1-2)心機能評価
 細胞シート移植後2、4、6および8週目に心エコーを用いて左心室機能評価を行った。ラットをイソフルラン吸入麻酔後、超音波診断装置SONOS5500(Aglient Technologies, Palo Alto, CA)を用いて心エコー像を記録し、左室拡張末期径(LVDd)、左室収縮末期径(LVDs)、左室拡張末期内腔面積(LVEDA)、左室収縮末期内腔面積(LVEDS)を得た。これらの値より、左室内径短縮率(%Fractional shortening; %FS)、左室駆出率(Ejection fraction; EF)、左室拡張末期容積(LV end-diastolic volume; EDV)、左室収縮末期容積(LV end-systolic volume; ESV)を算出した。
 LV%FS=[(LVDd-LVDs)/LVDd]×100
 LVEF(%)=[(LVDd-LVDs)/LVDd]×100
 EDV(ml)=LVIDd×(0.98×LVIDd+5.9)
 ESV(ml)=LVIDs×(1.14×LVIDs+4.18)
(1-3)心体重比(HW/BW)
 細胞シート移植後8週目ラットの体重を測定し、心臓を摘出した。摘出した心臓の重さを測定し、心体重比(heart weight/body weight)を算出した。
(1-4)組織学的評価
 シート移植後8週目に心臓を摘出し、10%緩衝ホルマリンで48時間固定を行った。両心房を除去後、パラフィン包埋し、薄切してHE染色を行った。
 左心室腔の拡張と梗塞部位の左心室壁厚を検討するため、マッソントリクローム染色を行った。左心室腔の大きさは腔を直行する径の平均で評価し、左心室壁厚は梗塞部の左心室壁厚の正常部位(左室後壁部)の壁厚に対する割合で評価した。
 また、心筋線維化率を評価するため、膠原線維を特異的に赤色に染め出すシリウスレッド染色を行った。心筋線維化の測定は梗塞境界部を、光学顕微鏡を用いて対物20倍で観察し、ACT-2Uソフトウェア(NIKON)に取り込んだ画像を画像解析ソフトImage Jにより解析した。評価は、1視野あたりの線維化率で示した。
 心筋細胞の横径を評価するために、Periodic Acid/Schiff reaction(PAS)染色を行った。染色後は光学顕微鏡にて対物40倍で観察を行い、梗塞境界部と左室後壁部において核を認める細胞を無作為に100個選択し、核を横断する短径を細胞横径とした。
 血管内皮細胞を有する毛細血管数をカウントするために、血管内皮細胞のマーカーであるVon Willbrand Factorに対する抗体(Anti-Human Von Willebrand factor, DAKO)を用いて免疫組織化学染色を行った。脱パラフィンをした切片をアルコールで脱水し、熱処理を行って、抗原賦活を行った。その後、0.1%過酸化水素液で内因性ペルオキシダーゼを不活性化した。5%スキムミルクでブロッキング後、抗Von Willbrand Factor抗体と4℃で一晩反応させた。
 切片をPBS-Tで洗浄後、二次抗体としてビオチン化標識抗Rabbit IgG抗体(Anti-Rabbit Ig, biotinyated species-specific whole antibody、DAKO)と反応させた。HRP標識streptavidin(Streptavidin-Horseradish peroxidase conjugate、GE Healthcare)によるLSAB(Labeled Streptavidin Biotinyated Antibody)法を用いて、DAB(3,3-diaminobenzidine、Sigma, St. Louis, MO, USA)にて発色させた。染色後、対物40倍で光学顕微鏡を用いて観察し、梗塞境界部と左室後壁部で無作為に24誌野を選択し、Von Willbrand Factor陽性の血管内皮細胞を有する毛細血管数をカウントした。評価は1視野あたりの血管数(個/high power field)で示した。
(1-5)統計解析
 すべての統計学的数値は、平均値±標準偏差もしくは平均値±標準誤差で表した。
 心機能評価(EF、%FS)に関しては、まず重複測定-分散分析法(repeated meatureANOVA)で解析し、その後、Turkey-Kramer post hoc testを用いて一元配置分散分析法(one-factor ANOVA)で検定を行い、それぞれのタイムポイントにおける有意差を調べた。p<0.05をもって有意とした。
 他の統計学的数値については、student-t検定を用い、p<0.05をもって有意とした。
(2)結果
(2-1)EF(左室駆出率)、%FS(左室内径短縮率)を指標とした心機能評価
 細胞シート移植後2、4、6および8週目のEFを図10に、細胞シート移植後2、4、6および8週目の%FSを図11にそれぞれ示した。細胞シート移植前(図中base line)では各群間のEFおよび%FSに有意な差はなかった。梗塞部への細胞シート移植後2、4、6および8週目で、WT-rSkM群およびWiDa-rSkM群はControl群と比較して、EFおよび%FSともに心機能の有意な改善効果が認められた(p<0.05)。さらに、移植後2、6および8週目では、WiDa-rSkM群はWT-rSkM群と比較して、EFおよび%FSともに心機能の有意な改善効果が認められた(p<0.05)。
(2-2)EDV(左室拡張末期容量)、ESV(左室収縮末期容量)を指標とした心機能評価
 細胞シート移植後8週目のEDVを図12に、細胞シート移植後8週目のESVを図13にそれぞれ示した。EDVでは、WiDa-rSkM群はControl群およびとWT-rSkM群比較して有意な低下が認められた。ESVでも、WiDa-rSkM群はControl群およびとWT-rSkM群比較して有意な低下が認められた。EDVおよびESVともに、Control群とWT-rSkM群の間には、有意な差は認められなかった。
(2-3)心体重比(HW/BW)
 結果を図14に示した。WiDa-rSkM群はControl群およびとWT-rSkM群比較して有意な低下が認められた。Control群とWT-rSkM群の間には、有意な差は認められなかった。
(2-4)組織学的検討
(a)左心室腔の拡張と梗塞部の左心室壁の組織学的評価
 結果を図15(A)、(B)および(C)に示した。(A)は心臓のマッソントリクローム染色像であり、スケールバーは1000μmを表す。(B)は梗塞部の左心室壁厚の評価結果を示すグラフである。(C)は左心室腔の径の評価結果を示すグラフである。
 図15(A)および(B)から明らかなように、Control群およびWT-rSkM群では梗塞部位の左心室壁がひ薄化していたのに対し、WiDa-rSkM群では左心室壁が厚く保たれていた。統計解析を行うと、WiDa-rSkM群はControl群およびWT-rSkM群と比較し有意に梗塞部の左心室壁が厚かった(p<0.01)。Control群とWT-rSkM群の間には有意な差はなかった。
 また、図15(A)および(C)から明らかなように、WiDa-rSkM群はControl群およびWT-rSkM群と比較して、有意に左心室腔の拡張が抑制されていた(p<0.05)。Control群とWT-rSkM群の間には有意な差はなかった。
(b)梗塞周囲部の心筋組織に与える影響の組織学的評価
 梗塞周囲部の正常心筋組織に与える影響を検討するため、シリウスレッド染色による心筋線維化率の評価とPAS染色による細胞横径の測定を行った。
 シリウスレッド染色像および心筋線維化率の結果を図16(A)および(B)に示した。(A)は心筋のシリウスレッド染色像であり、スケールバーは100μmを表す。(B)は心筋線維化率の解析結果を示すグラフである。WiDa-rSkM群の心筋線維化率は、Control群およびWT-rSkM群と比較して有意に低かった(p<0.01)。Control群とWT-rSkM群の間には有意な差はなかった。
 PAS染色像および心筋細胞横径の測定結果を図17(A)および(B)に示した。(A)は梗塞境界部のPAS染色像であり、スケールバーは50μmを表す。(B)は心筋細胞横径の測定結果を示すグラフであり、白抜きは左室後壁部の結果、黒塗りは梗塞境界部の結果である。WiDa-rSkM群の梗塞境界部における心筋細胞横径は、Control群およびWT-rSkM群と比較して有意に低かった(p<0.01)。Control群とWT-rSkM群の間には有意な差はなかった。左室後壁部の心筋細胞横径は、いずれの群間にも有意な差はなかった。
(c)血管新生促進作用の検討
 Von Willbrand Factorに対する抗体を用いて免疫組織化学染色を行い、毛細血管数をカウントした結果を図18(A)および(B)に示した。(A)は梗塞境界部の免疫組織化学染色像であり、スケールバーは100μmを表す。(B)は毛細血管密度の測定結果を示すグラフであり、白抜きは左室後壁部の結果、黒塗りは梗塞境界部の結果である。WiDa-rSkM群の梗塞境界部における毛細血管数は、Control群およびWT-rSkM群と比較して有意に増加していた(p<0.01)。Control群とWT-rSkM群の間には有意な差はなかった。左室後壁部おける毛細血管密度は、いずれの群間にも有意な差はなかった。
(3)考察
 実施例1(インジェクション法によるペプチド投与実験)では、左室前下降枝を結紮した直後にペプチドを投与し、急性心筋梗塞に対する治療効果を評価した。それに対して、実施例3(WiDa分泌筋芽細胞シート移植)では、左室前下降枝結紮後2週間目に細胞シートを移植した。左室前下降枝結紮後2週間目の時点は、急性心筋梗塞が進行し心不全を起こしている段階である。すなわち、実施例3は、心不全治療におけるWiDaの有用性を評価したものである。実施例3と同様に、筋芽細胞シートに公知の血管新生因子であるHGFを遺伝子導入して心不全モデルラットに移植した研究では、リモデリング抑制効果は認められたものの、持続的な心機能の改善は認められなかった(Siltanen A, Kitabayashi K, Lakkisto P, Makela J, Patila T, Ono M, Tikkanen I, Sawa Y, Kankuri E, Harjula A. hHGF Overexpression in Myoblast Sheets Enhances Their Angiogenic Potential in Rat Chronic Heart Failure. PLoS One. 2011,26;6:e19161.)。それに対して、WiDa分泌筋芽細胞シート移植では心不全モデルラットに対してもシート移植後2週目以降の4、6、8週目においても心機能改善、リモデリング抑制効果を示した。このことからWiDaは急性心筋梗塞だけでなく、心不全状態に対しても有用な治療薬になり得るといえる。
〔実施例4:ラット心不全モデルを用いたWiDa分泌筋芽細胞シートの評価II〕
 実施例3の(1-1)と同様にしてF344/NJcl-rnu/rnuラット(8週齢、メス)を用いてラット心不全モデルを作製した。シート移植後8週目に心臓を摘出し、10%緩衝ホルマリンで48時間固定を行った。両心房を除去後パラフィン包埋し、薄切した。smooth muscle actin(SMA)陽性細胞の分布を検討するために、抗smooth muscle actin抗体を用いて免疫組織化学染色を行い、光学顕微鏡で観察した。
 結果を図19に示した。図19の上段は40倍の観察像であり、スケールバーは500μmを表す。下段は200倍の観察像であり、スケールバーは100μmを表す。図19から明らかなように、WiDa-rSkM群で梗塞部にSMA陽性細胞の集積が認められた。一方、control群およびWT-rSkM群ではSMA陽性細胞はほとんど認められなかった。平滑筋細胞や筋線維芽細胞などのSMA陽性細胞は、収縮性を有している。このことから筋芽細胞シートから分泌されたWiDaペプチドにより、梗塞領域にSMA陽性細胞が有意に増加し、増加したSMA陽性細胞が梗塞壁に収縮性を与えることで、心機能の有意な改善につながったと考えられる。
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。

Claims (13)

  1.  下記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有し、かつ心機能改善作用を有するペプチド、またはその薬学的に許容される塩を有効成分として含有する心疾患治療薬。
    -X-Val-Tyr-X-X (I)
    (式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
    -Val-Tyr-X-X-X (II)
    (式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
    Ser-X-X-(Tyr/Phe/Trp)-X-X (III)
    (式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
    -X-(Tyr/Phe/Trp)-X-X-Arg (IV)
    (式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
  2.  式(I)、(II)、(III)または(IV)で表されるアミノ酸配列が、配列番号1~6のいずれかで表されるアミノ酸配列である請求項1に記載の心疾患治療薬。
  3.  前記ペプチドが、配列番号1、2もしくは7で表されるアミノ酸配列からなるペプチド、または配列番号1、2もしくは7で表されるアミノ酸配列を有するペプチドである請求項1または2に記載の心疾患治療薬。
  4.  前記ペプチドの総アミノ酸残基数が50以下である請求項1~3のいずれかに記載の心疾患治療薬。
  5.  前記ペプチドを分泌する細胞を含む請求項1~4のいずれかに記載の心疾患治療薬。
  6.  前記ペプチドを分泌する細胞シートを含む請求項1~4のいずれかに記載の心疾患治療薬。
  7.  心疾患が、虚血性心疾患または心筋症である請求項1~6のいずれかに記載の心疾患治療薬。
  8.  下記式(I)、(II)、(III)または(IV)で表されるアミノ酸配列を有し、かつ心機能改善作用を有するペプチドを分泌することを特徴とする心疾患治療用細胞シート。
    -X-Val-Tyr-X-X (I)
    (式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
    -Val-Tyr-X-X-X (II)
    (式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
    Ser-X-X-(Tyr/Phe/Trp)-X-X (III)
    (式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
    -X-(Tyr/Phe/Trp)-X-X-Arg (IV)
    (式中X、X、XおよびXは、同一または異なって任意のアミノ酸残基を表す。)
  9.  式(I)、(II)、(III)または(IV)で表されるアミノ酸配列が、配列番号1~6のいずれかで表されるアミノ酸配列である請求項8に記載の細胞シート。
  10.  前記ペプチドが、分泌シグナルペプチドのアミノ酸配列を含む請求項8または9に記載の細胞シート。
  11.  前記ペプチドが、配列番号1、2もしくは7で表されるアミノ酸配列および分泌シグナルペプチドのアミノ酸配列を含むペプチドである請求項10に記載の細胞シート。
  12.  細胞が、筋芽細胞、平滑筋細胞、間葉系細胞または脂肪細胞である請求項8~11のいずれかに記載の細胞シート。
  13.  心疾患が、虚血性心疾患または心筋症である請求項8~12のいずれかに記載の細胞シート。
PCT/JP2012/061898 2011-06-13 2012-05-09 心疾患治療薬および心疾患治療用細胞シート WO2012172887A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011130889 2011-06-13
JP2011-130889 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012172887A1 true WO2012172887A1 (ja) 2012-12-20

Family

ID=47356883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061898 WO2012172887A1 (ja) 2011-06-13 2012-05-09 心疾患治療薬および心疾患治療用細胞シート

Country Status (2)

Country Link
JP (1) JPWO2012172887A1 (ja)
WO (1) WO2012172887A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016084935A1 (ja) * 2014-11-27 2017-10-19 国立大学法人大阪大学 Iii型コラーゲン産生促進剤
WO2018230535A1 (ja) * 2017-06-15 2018-12-20 国立大学法人大阪大学 骨格筋の損傷修復促進剤
CN112292157A (zh) * 2018-06-12 2021-01-29 国立大学法人京都大学 细胞移植用组合物和细胞移植方法
WO2022085791A1 (ja) 2020-10-24 2022-04-28 国立大学法人大阪大学 老化により機能低下した骨格筋の筋機能改善剤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094912A1 (ja) * 2004-03-31 2005-10-13 Cardio Incorporated 血管新生作用が強化された移植片
JP2006508773A (ja) * 2002-12-05 2006-03-16 株式会社カルディオ 生体適合性組織片およびその利用
JP2007528755A (ja) * 2003-08-01 2007-10-18 株式会社カルディオ 三次元組織構造体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4338516B2 (ja) * 2001-10-02 2009-10-07 清史 軒原 血管新生剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508773A (ja) * 2002-12-05 2006-03-16 株式会社カルディオ 生体適合性組織片およびその利用
JP2007528755A (ja) * 2003-08-01 2007-10-18 株式会社カルディオ 三次元組織構造体
WO2005094912A1 (ja) * 2004-03-31 2005-10-13 Cardio Incorporated 血管新生作用が強化された移植片

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIYAMA,H. ET AL.: "Genetically engineered angiogenic cell sheets using magnetic force- based gene delivery and tissue fabrication techniques", BIOMATERIALS, vol. 31, no. 6, 2010, pages 1251 - 1259 *
MAYUKA SUZUKI ET AL.: "Kekkan Shinseino o Yusuru SVVYGLR Peptide no Shinkin Kosoku ni Taisuru Sayo", JOURNAL OF ADAPTATION MEDICINE, vol. 11, no. 1, 2007, pages 27 *
RYOICHI SAKIYAMA ET AL.: "Saibo Sheet Kogaku o Mochiita Idenshi Donyu Saibo no Anzen Katsu Takai Ishoku Koritsu no Teian to Saisei Iryo eno Oyo", ABSTRACTS OF AUTUMN MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, vol. 42, 2010, JAPAN, pages L304 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016084935A1 (ja) * 2014-11-27 2017-10-19 国立大学法人大阪大学 Iii型コラーゲン産生促進剤
WO2018230535A1 (ja) * 2017-06-15 2018-12-20 国立大学法人大阪大学 骨格筋の損傷修復促進剤
US11077167B2 (en) 2017-06-15 2021-08-03 Osaka University Agent for promoting skeletal muscle injury repair
CN112292157A (zh) * 2018-06-12 2021-01-29 国立大学法人京都大学 细胞移植用组合物和细胞移植方法
US11648279B2 (en) 2018-06-12 2023-05-16 Kyoto University Composition for cell transplant, and method for cell transplant
WO2022085791A1 (ja) 2020-10-24 2022-04-28 国立大学法人大阪大学 老化により機能低下した骨格筋の筋機能改善剤

Also Published As

Publication number Publication date
JPWO2012172887A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
US8075881B2 (en) Use of multipotent adult stem cells in treatment of myocardial infarction and congestive heart failure
CA2504019C (en) Stromal cell-derived factor-1 mediates stem cell homing and tissue regeneration in ischemic cardiomyopathy
KR101702629B1 (ko) 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도
Mao et al. Mesenchymal stem cells overexpressing integrin-linked kinase attenuate left ventricular remodeling and improve cardiac function after myocardial infarction
JP2002518006A (ja) 心筋瘢痕のための移植
JP2014012702A (ja) 虚血障害の治療方法
ES2949348T3 (es) Un método para inducir la proliferación de cardiomiocitos y tratar enfermedades del corazón
EP3206707B1 (en) Fc-ela-32 and its use in the treatment of cardiac conditions
WO2012172887A1 (ja) 心疾患治療薬および心疾患治療用細胞シート
Lan et al. Xenoextracellular matrix-rosiglitazone complex-mediated immune evasion promotes xenogenic bioengineered root regeneration by altering M1/M2 macrophage polarization
US20230285507A1 (en) Compositions and methods for cardiac tissue repair
JP2009514787A (ja) 虚血性心疾患の治療方法
US20050036994A1 (en) Compounds and methods for downregulating the effects of TGF-beta
TWI263784B (en) Encapsulated cell indicator system
US20200376037A1 (en) Stem cell preparation resisting hypoxia injury, preparation method therefor, and use thereof in preparation of medicament for treating acute myocardial infarction
ES2641198T3 (es) Una estirpe de células madre adultas introducida con un gen de factor de crecimiento de hepatocitos y un gen de factor de transcripción neurogénico con un motivo hélice-bucle-hélice básico y usos de la misma
Li et al. Effects of transplantation of hypoxia-inducible factor-1α gene-modified cardiac stem cells on cardiac function of heart failure rats after myocardial infarction.
JP4736088B2 (ja) Cd9遺伝子からなる心疾患を予防又は治療する医薬
WO2017116569A1 (en) Methods for treating diabetes
VALENCIA Promoting Angiogenesis in Bioartificial Grafts towards enhanced myocardial restoration
Li et al. Trasplantation of Exosomes Derived From CD90 Positive Fibroblasts Reduce Apoptosis of Cardiomyocytes in Mice After Acute Myocardial Infarction
US20020172935A1 (en) Methods of screening for compounds that modulate blood vessel formation from circulating endothelial cell precursors
WO2010012088A1 (en) Apparatus and method for loading and transporting containers
Mattapally et al. Cardiac Regeneration and Repair: Spheroids of cardiomyocytes derived from human-induced pluripotent stem cells improve recovery from myocardial injury in mice
Kara et al. Late-Breaking Basic Science Abstracts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800512

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013520469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800512

Country of ref document: EP

Kind code of ref document: A1