WO2012171295A1 - 一种人造微结构及其应用的人工电磁材料 - Google Patents

一种人造微结构及其应用的人工电磁材料 Download PDF

Info

Publication number
WO2012171295A1
WO2012171295A1 PCT/CN2011/081441 CN2011081441W WO2012171295A1 WO 2012171295 A1 WO2012171295 A1 WO 2012171295A1 CN 2011081441 W CN2011081441 W CN 2011081441W WO 2012171295 A1 WO2012171295 A1 WO 2012171295A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial
artificial microstructure
substrate
microstructure
metal wire
Prior art date
Application number
PCT/CN2011/081441
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
寇超锋
叶金财
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110163799.2A external-priority patent/CN102800973B/zh
Priority claimed from CN201110179890.3A external-priority patent/CN102810760B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Priority to EP11860703.5A priority Critical patent/EP2560235B1/en
Priority to US13/634,826 priority patent/US8974893B2/en
Publication of WO2012171295A1 publication Critical patent/WO2012171295A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • This invention relates to a material, and more particularly to an artificial microstructure and an artificial electromagnetic material for its use. Background technique
  • Metamaterials also known as artificial electromagnetic materials, are a new academic vocabulary in the field of physics in the 21st century, and have appeared in various scientific literatures in recent years. Three important features of metamaterials include:
  • Metamaterials are usually composite materials with novel artificial structures
  • Metamaterials have extraordinary physical properties (this property is often not available in natural materials);
  • metamaterials are often not determined by the intrinsic properties of the constituent materials, but mainly by the artificial structures.
  • the metamaterial is a material in which the artificial microstructure is a basic unit and spatially arranged in a specific manner, and the material is a novel material having a special electromagnetic response, and the electromagnetic response is characterized by its artificial microstructure. The characteristics are determined.
  • Metamaterials include man-made microstructures in which the electromagnetic response of an artificial microstructure is highly dependent on its topology and structural unit size.
  • the metamaterial also includes a dielectric substrate to which the artificial microstructure is attached, which serves as a support for the artificial structure and thus can be any non-metallic material different from the artificial structure.
  • the present invention provides an artificial microstructure comprising two mutually intersecting "work” shaped metal wire structures.
  • the two "work" shaped metal wire structures have different sizes.
  • the two "work"-shaped metal wire structures are arranged side by side, and the two parallel lines of the two "work”-shaped metal wire structures are parallel to each other, and the two middle vertical lines are parallel to each other.
  • the middle vertical lines of the "work” fonts of the two "work” shaped metal wire structures are on the same straight line.
  • the middle vertical line of the "work” shaped metal wire structure also connects two open annular structures with opposite openings.
  • the two "I” shaped metal wire structures of the artificial microstructure have the same size, and the open annular structures on the two "I" shaped metal wire structures have the same size.
  • the two "I” shaped metal wire structures of the artificial microstructure are different in size, and the size of the open annular structure on the two "I" shaped metal wire structures is different.
  • the open annular structure is a rectangular open structure.
  • the artificial microstructure is made of copper wire.
  • the artificial microstructure is made of silver wire.
  • the cross section of the metal wire of the artificial microstructure is selected from one of a rectangular shape, a cylindrical shape, and a flat shape.
  • the size of the artificial microstructure is less than one tenth of the wavelength of the incident electromagnetic wave.
  • embodiments of the present invention also provide an artificial electromagnetic material comprising a substrate and a plurality of the above-described artificial microstructures, the artificial microstructures being attached to the substrate.
  • the artificial microstructures are arranged in an array on the substrate.
  • the substrate is divided into a plurality of arrays of identical rectangular parallelepiped substrate units, each of which is attached with an artificial microstructure.
  • the artificial electromagnetic material includes a plurality of stacked substrates, the artificial microstructure being located between the two stacked substrates.
  • the side length of the substrate unit is less than one tenth of the wavelength of the incident electromagnetic wave.
  • the total length and total width of the artificial microstructure are greater than or equal to one-half of the length and width of the substrate unit.
  • the artificial electromagnetic material is to be responsive to an electromagnetic wave having a frequency of 7.5 GHz, and the rectangular parallelepiped substrate unit has a size of 4 mm X 4 mm x 4 mm.
  • the dimensions of the two "work"-shaped metal wire structures are 1.5 mm 1.5 mm, 2 mm 2 mm, and a line width of 0.1 mm.
  • the artificial electromagnetic material of the present invention has the following beneficial effects:
  • the artificial micro-structure of the present invention makes the artificial electromagnetic material have a high resonance frequency, an effective working frequency bandwidth, and a wide application range.
  • the artificial electromagnetic material embodying the present invention also has a low dielectric constant and has the following beneficial effects:
  • the dielectric constant of the material gradually increases from zero in a certain frequency band, and thus has a small dielectric in a certain frequency band. Constants can be used for specific applications.
  • FIG. 1 is a schematic structural view of an artificial electromagnetic material according to a first embodiment of the present invention
  • Figure 2 is a side elevational view of one of the layers of material of the artificial electromagnetic material of Figure 1;
  • Figure 3 is a schematic view showing the structure of the material layer of Figure 2 taken apart;
  • Figure 4 is a schematic exploded view of one of the material units of the sheet of material shown in Figure 2;
  • Figure 5 is a dielectric constant characteristic curve of a common material
  • FIG. 6 is a schematic structural view of an artificial electromagnetic material in the second embodiment
  • Figure 7 is a schematic structural view of a material unit in the artificial electromagnetic material shown in Figure 6;
  • Figure 8 is a schematic structural view of the first substructure of the artificial electromagnetic material shown in Figure 6;
  • FIG. 9 is a dielectric constant characteristic diagram of an artificial electromagnetic material having the artificial microstructure of FIG. 8;
  • FIG. 10 is a schematic structural view of the first substructure of the third embodiment;
  • FIG. 11 is a dielectric constant characteristic diagram of an artificial electromagnetic material having the artificial microstructure of FIG. 10;
  • FIG. 12 is a schematic structural view of a material unit of the fourth embodiment;
  • Figure 13 is a graph showing the dielectric constant characteristics of an artificial electromagnetic material having the artificial microstructure of Figure 12. detailed description
  • the present invention relates to an artificial electromagnetic material comprising at least one sheet of material, as shown in FIG.
  • the respective material sheets 1 When there are a plurality of material sheets 1, the respective material sheets 1 are superposed in a direction perpendicular to the layers, and are integrally assembled by mechanical connection, welding or bonding, and air can pass between the adjacent material sheets 1
  • the medium such as foam is spaced apart, and the spacing distance may be less than the thickness of the material sheet layer 1, or may be greater than or even several times and ten times the thickness of the material sheet layer 1.
  • Each material sheet 1 may be a single substrate, and an artificial microstructure is attached to one surface of the substrate; as can be seen from FIG. 2 and FIG. 3, each material layer 1 may also include two identical uniformities.
  • the equal thickness of the sheet substrate is the first substrate 31 and the second substrate 32, respectively.
  • the two substrates are opposed to each other, and the artificial microstructure 2 is located between the first substrate 31 and the second substrate 32.
  • a plurality of arrayed artificial microstructures 2 are attached to the surface of the first substrate 31 facing the second substrate 32.
  • the surface of the substrate refers to two planes which are parallel to each other and have the largest area in the outer contour of the substrate, and the direction perpendicular to the plane is defined as the thickness direction of the substrate and the entire artificial electromagnetic material, and the length in the thickness direction of the substrate is the substrate.
  • the thickness, the plane parallel to the thickness direction, is the side edge of the substrate.
  • the substrate is usually made of FR-4 material, or ceramic, PTFE or other materials.
  • the two substrates are virtually divided into a plurality of completely by a plurality of first planes which are equal in spacing and parallel to each other and another plurality of second planes which are perpendicular to the first plane and have the same pitch and are parallel to each other.
  • Each of the grids of the first substrate 31 is a first substrate unit 310
  • each of the grids of the second substrate 32 is a second substrate unit 320
  • an artificial micro is attached to a surface of each of the first substrate units 310.
  • each of the opposing first substrate unit 310 and second substrate unit 320 constitutes a substrate unit
  • each of the substrate unit and the artificial microstructure on the first substrate unit 310 constitutes a material unit 40, as shown in FIG.
  • the entire sheet of material 1 can be regarded as an array of a plurality of material units 40 in one direction and in another direction perpendicular to the direction.
  • each of the rectangular shaped material units 40 preferably has a length, a width, and a thickness of not more than one tenth of the wavelength of the electromagnetic wave; of course, the length, the width, and the thickness of the length are not more than one-fifth of the wavelength of the electromagnetic wave.
  • the specific structure of the material unit 40 includes a first substrate unit 310, an artificial microstructure on the first substrate unit 310, and a second substrate unit 320.
  • the artificial microstructure is a wire arranged in a certain geometric shape or a top shape, and the material of the wire is usually selected from a non-ferrous metal such as silver or copper having good electrical conductivity.
  • the thickness of the material unit 40 (that is, the thickness of the material sheet 1) is equal to that of the first substrate 31.
  • the artificial microstructure is very thin, when there is a certain error in the manufacturing, processing, and assembly process, the artificial microstructure cannot directly adhere to the second substrate 32, but there is a gap, and within a certain range, the gap is Allowed.
  • the thickness of the artificial microstructure is between 0.005 and 0.05 mm, and in the present invention, preferably 0.018 mm, and the distance between the first and second substrates is in the range of 0.005 to 0.5 mm, preferably less than 0.1 mm.
  • the first substrate 31 and the second substrate 32 are clamped, both are in contact with or substantially in contact with the artificial microstructure, so that the artificial microstructure can simultaneously act on the first substrate 31 and the first in response to electromagnetic waves.
  • the equivalent dielectric constant of the material sheet 1 is made significantly higher than the dielectric constants of the first and second substrates 32 themselves.
  • the conventional artificial electromagnetic material has an artificial microstructure which is generally a "work" shape, including two parallel parallel lines and two ends of the two parallel lines and two parallel lines. Connected and perpendicular to the middle vertical line of the parallel line.
  • the artificial microstructure comprises two "work” shaped metal wire structures 20 of different sizes and which do not intersect each other.
  • the two "I” shaped metal wire structures 20 In order to make the two "I” shaped metal wire structures 20 have the same or similar electromagnetic field response to the electromagnetic field, a superposition response effect is formed instead of a mutual elimination. Therefore, preferably, two "work" shapes of each artificial microstructure are formed.
  • the wire structures 20 are arranged side by side, that is, the two pairs of parallel lines of the two are parallel to each other, and the two vertical lines are parallel to each other.
  • the directions of the middle vertical lines of the two "gong"-shaped metal wire structures 20 are on the same straight line so that the two are arranged one above another, as shown in FIG.
  • the total length and the total width of the artificial microstructure should be as large as possible, preferably not less than the first substrate, respectively.
  • the total length of the artificial microstructure here is the distance between the top and bottom two parallel lines; the total width of the artificial microstructure is the longest of the four parallel lines of the two "work" shapes The length of the line.
  • the size of the substrate unit of each rectangular parallelepiped is designed to be 4 mm X 4 mm x 4 mm, and two "work" shaped metal wire structures.
  • the dimensions of 20 are 1.5 mm X 1.5 mm, 2 mm 2 mm, line width 0.1 mm, the total length of the artificial microstructure is 3.8 mm, and the total width is 2 mm. It is true that in the range of 2 to 15 GHz, that is, the bandwidth is 13 GHz, the loss of the refractive index is very small as the frequency is increased, which provides favorable conditions for realizing ultra-wideband effects.
  • the existing artificial microstructure with only one "work" shape the bandwidth is difficult to achieve the above results.
  • the dielectric constant characteristic curve of a common material can be seen from the figure.
  • the dielectric constant is usually greater than 10 in the case of low loss.
  • the artificial electromagnetic material 200 includes three material layers 201 of equal thickness, and a plurality of material layers 201 along the edge.
  • the materials are vertically stacked in the direction perpendicular to the plane of the substrate (z-axis direction), and each of the two material sheets 201 is formed into a whole by a certain packaging process such as welding, riveting, bonding, or the like, or a substance capable of connecting the two by filling.
  • a liquid substrate material which bonds the existing two material sheets 201 after curing, so that the plurality of material sheets 201 are integrally formed.
  • Each material sheet layer 201 includes a substrate and an artificial microstructure 203 attached to the substrate, and the substrate is virtually divided into a plurality of identical columnar substrate units next to each other, the substrate units being aligned in the X-axis direction
  • the y-axis direction perpendicular to the column is arranged in an array in order.
  • each of the substrate units is attached with the artificial microstructure 203 in parallel, and the substrate unit and the artificial microstructure 203 on the substrate unit together constitute a material unit 202, as shown in FIG.
  • the material can be regarded as being arrayed by a plurality of material units 202 arranged in three directions of x, y, and z. wherein the artificial microstructure 203 can be etched, plated, drilled, photolithographically, electronically or ionically etched, etc. The method is attached to the substrate.
  • the artificial microstructure 203 is substantially the same as the artificial microstructure 2 of the first embodiment, except that the first substructure 203a and the second substructure 203b of the artificial microstructure 203 each include the first embodiment.
  • the two open annular structures 203d are open opposite.
  • the artificial microstructure 203 is made of copper wire, and the copper wire has a rectangular cross section with a cross-sectional dimension of 0.1 mm x 0.018 mm, wherein the copper wire has a line width of 0.1 mm and the copper wire has a thickness of 0.018 mm.
  • other metal wires such as silver wires may be used for the metal wires, and the metal wires may have a cylindrical shape, a flat shape, or other shapes.
  • the first substructure 203a and the second substructure 203b have the same shape and size.
  • the upper edge of the artificial microstructure 203 and the distance between the left and right edges and the boundary of the substrate unit to which it is attached are 0.1 mm. Referring to Fig.
  • the corresponding dielectric constant characteristic simulation diagram of electromagnetic wave passing through the material is shown in Fig. 9. As shown by the solid line in Fig.
  • the dielectric constant characteristic of the material has double resonance, and corresponds to the first For the two resonances, the dielectric constant increases gradually from zero in a certain frequency band (18 GHz to 22 GHz), and the dotted line shows that the imaginary part of the corresponding dielectric constant is close to zero in the band with a small dielectric constant, so the loss is also low. Therefore, the material can be applied to applications requiring a small dielectric constant.
  • the artificial microstructure of the third embodiment of the present invention differs from the second embodiment in that the widths of the two substructures of the artificial microstructure are reduced.
  • the corresponding dielectric constant characteristic simulation diagram of electromagnetic wave passing through the material is shown in Fig. 11. It can be seen from the solid line in Fig. 11 that the dielectric constant characteristic of the material has double resonance and corresponds to the second resonance, dielectric constant. In a certain frequency band
  • the resonance peak is shifted backward after the size is reduced. For the same reason, increase the size resonance peak forward.
  • the first substructure and the second substructure have the same size. It should be noted that when the sizes of the two are different, the same characteristics are also obtained, that is, when the size of the artificial microstructure is changed, the size is increased, and the resonance peak is shifted backward. ; Reduce the size and move the resonance peak forward.
  • the difference between the artificial microstructure in the fourth embodiment of the present invention and the second embodiment is that the size of the first sub-structure 403a is reduced, and the size of the second sub-structure 403b is unchanged.
  • Fig. 13 The corresponding dielectric constant characteristic simulation diagram of the wave passing through the material is shown in Fig. 13. As can be seen from the solid line in Fig.
  • the dielectric constant characteristic of the material has multiple resonances, and the dielectric constant is in a certain frequency band (24 GHz ⁇ 30 GHz) gradually increases from zero, and it can be seen from the dotted line that the imaginary part of the corresponding dielectric constant is close to zero in the frequency band with a small dielectric constant, so the loss is also low, so the material can be used in applications requiring a small dielectric constant. .
  • the resonance peak is shifted backward after the size is reduced. For the same reason, increase the size of the resonance peak forward. Therefore, when we need to use low dielectric constant materials in different frequency bands, we only need to change the size of the artificial microstructure.
  • the low dielectric constant can be obtained by using the artificial electromagnetic materials in the second to fourth embodiments, and has the following beneficial effects:
  • the dielectric constant of the material gradually increases from zero in a certain frequency band, and therefore has a certain frequency band.
  • the small dielectric constant can be used for specific applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aerials With Secondary Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

提供了一种人造微结构以及包括所述人造微结构的人工电磁材料。所述人造微结构包括两个互不相交的"工"字形金属线结构。具有本发明的人造微结构的人工电磁材料,其谐振频率高,有效工作频带宽,可应用范围广。

Description

一种人造微结构及其应用的人工电磁材料
本申请要求于 2011年 6月 17日提交中国专利局、申请号为 2011101637992, 发明名称为 "宽频人工电磁材料" 的中国专利申请的优先权, 2011年 6月 29日 提交中国专利局、 申请号为 201110179846.2, 发明名称为 "一种新型超材料" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种材料, 特别是涉及一种人造微结构及其应用的人工电磁材 料。 背景技术
超材料( metamaterial ), 又称人工电磁材料, 是 21世纪物理学领域出现的 一个新的学术词汇, 近年来经常出现在各类科学文献。 超材料的三个重要特征 包括:
( 1 )超材料通常是具有新奇人工结构的复合材料;
( 2 )超材料具有超常的物理性质(这种性质往往是自然界的材料中所不具 备的);
( 3 )超材料的性质往往不决定于构成材料的本征性质, 而主要决定于其中 的人工结构。
即超材料是一种以人造微结构为基本单元并以特定方式进行空间排布的材 料, 且该材料是一种具有特殊电磁响应的新型材料, 其电磁响应的特征是由其 人造微结构的特征所决定。 通过在材料的关键物理尺度上的结构有序设计, 可 以突破某些表观自然规律的限制, 从而获得超出自然界固有的普通性质的超常 材料功能。
超材料包括人造微结构, 其中人造微结构的电磁响应很大程度上取决于其 拓朴特征与结构单元尺寸。
超材料还包括人造微结构所附着的介质基板, 该介质基板对人造结构起到 支撑作用, 因此可为任何与人造结构不同的非金属材料。
该人造微结构和该介质基板的叠加会在空间中产生一个等效介电常数 ξ与 等效磁导率 μ , 而这两个物理参数分别对应了材料的电场响应与磁场响应。 因 此, 超材料人造微结构的设计是超材料领域最关键的环节。 如何实现一种超材 料, 进一步改进现有电磁材料的电磁特性, 并替代现有电磁材料实现应用, 成 为现代技术发展的一大难题。 发明内容
本发明提供一种人造微结构, 所述人造微结构包括两个互不相交的 "工" 字形金属线结构。
其中, 所述两个 "工" 字形金属线结构尺寸不同。
所述两个 "工" 字形金属线结构并排设置, 且所述两个 "工" 字形金属线 结构的两对平行线相互平行, 两中间竖线相互平行。
所述两个 "工" 字形金属线结构的 "工" 字形的中间竖线位于同一直线上。 所述 "工" 字形金属线结构的中间竖线上还连接两个开口相对的开口环形 结构。
所述人造微结构的两个 "工"字形金属线结构的尺寸相同,且所述两个 "工" 字形金属线结构上的开口环形结构的尺寸相同。
所述人造微结构的两个 "工"字形金属线结构的尺寸不同,且所述两个 "工" 字形金属线结构上的开口环形结构的尺寸不同。
所述开口环形结构为矩形开口结构。
所述人造微结构采用铜线制成。
所述人造微结构采用银线制成。
所述人造微结构的金属线的横截面选自长方形、 圓柱状或扁平状中的一种。 所述人造微结构的尺寸小于入射电磁波波长的十分之一。
相应地, 本发明实施例还提供了一种人工电磁材料, 其包括基板及多个上 述的人造微结构, 所述人造微结构附着在所述基板上。
其中, 所述人造微结构在所述基板上成阵列排布。
所述基材划分为多个阵列排布的相同的长方体基板单元, 每个基板单元上 附着有一个人造微结构。
所述人工电磁材料包括叠加的多块基板, 所述人造微结构位于两块相叠加 的所述基板之间。
所述基板单元的边长小于入射电磁波波长的十分之一。 所述人造微结构的总长度及总宽度大于等于所述基板单元的长度及宽度的 二分之一。
所述人工电磁材料将要响应的电磁波频率为 7.5GHz, 所述长方体基板单元 的尺寸为 4mm X 4mm x 4mm。
所述两个"工"字形金属线结构的尺寸分别为 1.5mm 1.5mm, 2mm 2mm, 线宽为 0.1mm。
实施本发明的人工电磁材料, 具有以下有益效果: 采用本发明的人造微结 构, 使得其人工电磁材料的谐振频率高, 有效工作频带宽, 可应用范围广。
另外, 实施本发明的人工电磁材料还具有低介电常数, 并具有以下有益效 果: 该材料的介电常数在一定频段内由零逐渐增大, 因此在一定的频段内具有 较小的介电常数, 可以满足特定场合的应用。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明第一实施例的人工电磁材料的结构示意图;
图 2是图 1所示人工电磁材料的其中一个材料片层的侧视图;
图 3是图 2所示材料片层拆分开来的结构示意图;
图 4是图 2所示材料片层的其中一个材料单元的拆分示意图;
图 5是普通材料介电常数特性曲线;
图 6是实施例二中的人工电磁材料的结构示意图;
图 7是图 6所示人工电磁材料中一个材料单元的结构示意图;
图 8是图 6所示人工电磁材料的第一子结构的结构示意图;
图 9是具有图 8中人造微结构的人工电磁材料的介电常数特性图; 图 10是实施例三中第一子结构的结构示意图;
图 11是具有图 10中人造微结构的人工电磁材料的介电常数特性图; 图 12是实施例四中一个材料单元的结构示意图;
图 13是具有图 12中人造微结构的人工电磁材料的介电常数特性图。 具体实施方式
本发明涉及一种人工电磁材料, 包括至少一个材料片层, 如图 1 所示。 当 材料片层 1有多个时, 各个材料片层 1沿垂直于片层的方向叠加, 并通过机械 连接、 焊接或粘合的方式组装成一体, 相邻材料片层 1 之间可通过空气、 泡沫 等介质间隔开, 间隔距离可以小于材料片层 1 的厚度, 也可大于甚至几倍、 十 几倍于材料片层 1的厚度。
每个材料片层 1 可以为一块单独的基板, 且在这块基板一侧表面上附着有 人造微结构; 参阅图 2、 图 3可知, 每个材料片层 1也可包括两块相同的均匀等 厚的片状基板, 分别为第一基板 31和第二基板 32。 两个基板相向叠加, 人造微 结构 2位于所述第一基板 31和第二基板 32之间。 本实施例中, 第一基板 31的 面向第二基板 32的表面上附着有多个阵列排布的人造微结构 2。 本文中, 基板 的表面特指基板外轮廓中相互平行且面积最大的两个平面, 垂直于该平面的方 向定义为基板和整个人工电磁材料的厚度方向, 则基板厚度方向上的长度为基 板的厚度, 与厚度方向平行的一圏依次连接的平面为基板的侧边缘。 基板通常 选用 FR-4材料, 也可选用陶瓷、 聚四氟乙烯等材料。
用一组间距相等且相互平行的多个第一平面和另一组均垂直于第一平面且 具有同样间距、 相互平行的多个第二平面, 将两个基板分别虚拟地划分为多个 完全相同的方体形网格, 其中第一平面和第二平面相互垂直且同时垂直于基板 的表面。
第一基板 31的每个网格为第一基板单元 310,第二基板 32的每个网格为第 二基板单元 320,并使得每个第一基板单元 310的一表面上附着有一个人造微结 构, 则每个相对的第一基板单元 310和第二基板单元 320构成一个基板单元, 每个基板单元及第一基板单元 310上的人造微结构构成一个材料单元 40, 如图 4所示。 整个材料片层 1可以看作是由多个材料单元 40以一方向为行、 以垂直 于该方向的另一方向为列组成的阵列。
人工电磁材料是应用在一个特定的电磁场环境中的, 该电磁场环境中电磁 波的波长是预先已知或设定的。 本发明中每个方体形材料单元 40, 优选其长、 宽、 厚度的长度不大于上述电磁波波长的十分之一; 当然, 其长、 宽、 厚度的 长度不大于电磁波波长的五分之一均可。 如图 4所示, 材料单元 40的具体结构包括第一基板单元 310、 第一基板单 元 310上的人造微结构和第二基板单元 320。人造微结构是排布成一定几何形状 或拓朴形状的金属丝, 金属丝的材料通常选用电导性良好的银、 铜等有色金属。
由于人造微结构附着在第一基板单元 310 的表面上, 而构成人造微结构的 金属丝具有一定的厚度, 因此材料单元 40的厚度(也即材料片层 1的厚度)等 于第一基板 31的厚度、 第二基板 32的厚度以及金属丝的厚度三者之和。
不过, 由于人造微结构非常薄, 当制造、 加工、 组装过程中存在一定的误 差时,人造微结构不能直接与第二基板 32贴合, 而是存在间隙,在一定范围内, 这种间隙是允许的。
通常,人造微结构的厚度在 0.005~0.05mm之间,本发明中优选为 0.018mm, 则第一、 第二基板的间隔距离在 0.005~0.5mm的范围内, 优选为小于 0.1mm。
本发明中, 由于第一基板 31和第二基板 32夹紧, 使二者均与人造微结构 接触或基本接触, 使得人造微结构在对电磁波产生响应时可以同时作用在第一 基板 31和第二基板 32上, 使得材料片层 1的等效介电常数要明显高于第一、 第二基板 32自身的介电常数。
另外, 本发明的另一发明点在于, 传统的人工电磁材料, 其人造微结构通 常为 "工" 字形, 包括直线型的两条相互平行的平行线和两端分别与两平行线 的中点连接且垂直于平行线的中间竖线。
而本发明的人工电磁材料中, 人造微结构包括两个尺寸不同且互不相交的 "工" 字形金属线结构 20。 为了使两个 "工" 字形金属线结构 20对电磁场具有 相同或相近的电磁场响应, 形成叠加响应效果而非相互 4氏消, 因此, 优选的, 每个人造微结构的两个 "工" 字形金属线结构 20并排设置, 即二者的两对平行 线相互平行, 两中间竖线相互平行。
本发明中, 优选两个 "工" 字形金属线结构 20的中间竖线的方向在同一直 线上, 使得二者一上一下地排布, 如图 4所示。
由于每个材料单元 40的折射率与人造微结构相对于第一基板单元 310表面 所占据的表面比例有关, 因此人造微结构的总长度和总宽度应尽可能大, 优选 分别不小于第一基板单元 310 的长度和宽度的二分之一。 这里的人造微结构的 总长度, 为最上面和最下面两条平行线之间的距离; 人造微结构的总宽度, 为 两个 "工" 字形的四条平行线中最长的那条平行线的线长。 例如, 当本发明的人工电磁材料所要应用的工作环境是在频率为 7.5GHz的 电磁波中,则设计每个长方体的基板单元的尺寸为 4mm X 4mm x 4mm,两个"工" 字形金属线结构 20的尺寸分别为 1.5mm X 1.5mm, 2mm 2mm,线宽为 0.1mm, 人造微结构的总长度为 3.8mm, 总宽度为 2mm。 真可知, 在 2~15GHz范围即带宽为 13GHz内, 随着频率的提高, 折射率的损耗 非常小, 这便为实现超宽频效果提供有利条件。 而现有的只有一个 "工" 字形 的人造微结构, 其带宽则很难达到上述结果。
如图 5 所示是普通材料介电常数特性曲线, 从图中可以看出在低损耗的情 况下介电常数通常大于 10。
请一并参阅图 6及图 7, 是本发明第二实施例提供的人工电磁材料 200, 所 述人工电磁材料 200包括 3块均勾等厚的材料片层 201 ,多块材料片层 201沿垂 直于基板平面的方向(z轴方向)依次堆叠, 每两块材料片层 201之间通过一定 的封装工艺例如焊接、 铆接、 粘接等方式制成为一个整体或者通过填充可连接 二者的物质例如液态基板原料, 其在固化后将已有的两材料片层 201 粘合, 从 而使多块材料片层 201构成一个整体。
每个材料片层 201包括基板和附着在基板上的人造微结构 203 ,将基板虚拟 地划分成多个完全相同的相互紧挨着的柱状基板单元, 这些基板单元以 X轴方 向为行、 以与之垂直的 y 轴方向为列依次阵列排布。 设计基板单元的尺寸为 4mmx2mmx0.818mm , 即
Figure imgf000008_0001
a2=2mm、 a3=0.818mm, 每个基板单元并行 附着人造微结构 203 ,基板单元和基板单元上的人造微结构 203共同构成一个材 料单元 202, 如图 6所示, 本实施例的材料可看作是由多个材料单元 202沿 x、 y、 z三个方向阵列排布而成, 其中, 人造微结构 203可以通过蚀刻、 电镀、 钻 刻、 光刻、 电子刻或离子刻等方式附着于所述基材上。
所述人造微结构 203与第一实施方式的人造微结构 2基本相同, 其不同之 处在于, 所述人造微结构 203的第一子结构 203a及第二子结构 203b均包括第 一实施方式的 "工" 字形金属线结构及连接于 "工" 字形金属线结构的中间连 接线上的两个开口环形结构 203d。 所述两个开口环形结构 203d开口相对。
所述人造微结构 203使用铜线制成, 铜线的横截面为长方形, 横截面的尺 寸为 0.1mmx0.018mm, 其中铜线的线宽为 0.1mm, 铜线的厚度为 0.018mm, 当 然金属线也可以使用银线等其他金属线, 金属线的横截面也可以为圓柱状、 扁 平状或者其他形状。 在本实施例中所述第一子结构 203a及第二子结构 203b的 形状和尺寸均相同。 所述人造微结构 203 的上边缘以及左右边缘与其所附着的 基板单元的边界的距离为 0.1mm。 对照图 8, 第一子结构 203a的各部分的尺寸 分别是: bl=1.8mm、 b2=0.75mm、 b3=0.5mm、 b4=0.15mm; cl=1.9mm、 c2=0.2mm、 c3=0.3mm、 c4=0.3mm; 电磁波通过该材料时对应的介电常数特性仿真图如图 9 所示, 由图 9 中的实线可知, 该材料的介电常数特性具有双谐振, 而且对应于 第二个谐振, 介电常数在一定的频段内 ( 18GHz~22GHz ) 由零逐渐增加, 而且 由虚线可知在介电常数较小的频段内对应介电常数的虚部接近零, 因此损耗也 较低, 所以该材料可以应用在需要介电常数较小的场合。
当在其他频段内需要较小的介电常数时, 可以通过改变材料单元的尺寸或 者第一子结构 203a尺寸或者第二子结构 203b的尺寸来实现, 减小尺寸谐振峰 后移, 尺寸变大谐振峰前移。
请一并参阅图 10-11 , 本发明第三实施例中的人造微结构与第二实施例的区 别是: 所述人造微结构的两个子结构宽度变小了。 所述人造微结构的第一子结 构 303a的各部分的尺寸如图 10分别是: bl=1.2mm、 b2=0.45mm、 b3=0.2mm、 b4=0.15mm; cl=1.9mm、 c2=0.2mm、 c3=0.3mm、 c4=0.3mm; 第二子结构的形 状和尺寸与第一子结构相同, 基板单元的尺寸不变。 电磁波通过该材料时对应 的介电常数特性仿真图如图 11所示, 由图 11 中的实线可知, 该材料的介电常 数特性具有双谐振, 而且对应于第二个谐振, 介电常数在一定的频段内
( 27GHz~32GHz ) 由零逐渐增加, 而且由虚线可知在介电常数较小的频段内对 应介电常数的虚部接近零, 因此损耗也较低, 所以该材料可以应用在需要介电 常数较小的场合。 对比实施例二可知, 缩小尺寸后谐振峰后移。 同理, 增大尺 寸谐振峰前移。 上述实施例中第一子结构和第二子结构的尺寸相同, 需要说明 的是: 当两者尺寸不同时也有相同的特性, 即改变人造微结构的尺寸时, 增大 尺寸, 谐振峰后移; 缩小尺寸, 谐振峰前移。
请一并参阅图 12及图 13 ,本发明第四实施例中的人造微结构与第二实施例 的区别是: 第一子结构 403a的尺寸变小了, 第二子结构 403b的尺寸不变, 第 一子结构 403a 参照图 8 的各部分的尺寸分别是: bl=1.2mm、 b2=0.45mm、 b3=0.2mm、 b4=0.15mm; cl=1.9mm、 c2=0.2mm、 c3=0.3mm、 c4=0.3mm; 电磁 波通过该材料时对应的介电常数特性仿真图如图 13所示, 由图 13 中的实线可 知, 该材料的介电常数特性具有多谐振, 介电常数在一定的频段内 ( 24GHz~30GHz ) 由零逐渐增加, 而且由虚线可知在介电常数较小的频段内对 应介电常数的虚部接近零, 因此损耗也较低, 所以该材料可以应用在需要介电 常数较小的场合。 对比实施例一可知, 缩小尺寸后谐振峰后移。 同理, 增大尺 寸谐振峰前移。 因此当我们需要在不同频段内用到低介电常数的材料时, 只需 要改变人造微结构的尺寸即可实现。
采用第二至第四实施例中的人工电磁材料能够获得低介电常数, 且具有以 下有益效果: 该材料的介电常数在一定频段内由零逐渐增大, 因此在一定的频 段内具有较小的介电常数, 可以满足特定场合的应用。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权 利 要 求
1. 一种人造微结构, 所述人造微结构包括两个互不相交的 "工" 字形金属 线结构。
2. 如权利要求 1所述的人造微结构, 其特征在于, 所述两个 "工" 字形金 属线结构尺寸不同。
3. 如权利要求 2所述的人造微结构, 其特征在于, 所述两个 "工" 字形金 属线结构并排设置, 且所述两个 "工" 字形金属线结构的两对平行线相互平行, 两中间竖线相互平行。
4. 如权利要求 3所述的人造微结构, 其特征在于, 所述两个 "工" 字形金 属线结构的 "工" 字形的中间竖线位于同一直线上。
5. 如权利要求 1所述的人造微结构, 其特征在于, 所述 "工" 字形金属线 结构的中间竖线上还连接两个开口相对的开口环形结构。
6. 如权利要求 5所述的人造微结构, 其特征在于, 所述人造微结构的两个 "工" 字形金属线结构的尺寸相同, 且所述两个 "工" 字形金属线结构上的开 口环形结构的尺寸相同。
7. 如权利要求 5所述的人造微结构, 其特征在于, 所述人造微结构的两个 "工" 字形金属线结构的尺寸不同, 且所述两个 "工" 字形金属线结构上的开 口环形结构的尺寸不同。
8. 如权利要求 4所述的人造微结构, 其特征在于, 所述开口环形结构为矩 形开口结构。
9. 如权利要求 1所述的人造微结构, 其特征在于, 所述人造微结构采用铜 线制成。
10. 如权利要求 1所述的人造微结构, 其特征在于 , 所述人造微结构采用银 线制成。
11. 如权利要求 1所述的人造微结构, 其特征在于, , 所述人造微结构的金属 线的横截面选自长方形、 圓柱状或扁平状中的一种。
12. 如权利要求 1所述的人造微结构, 其特征在于 , 所述人造微结构的尺寸 小于入射电磁波波长的十分之一。
13. 一种人工电磁材料, 其包括基板及多个如权利要求 1-12任一项所述的 人造微结构, 所述人造微结构附着在所述基板上。
14. 如权利要求 13所述的人工电磁材料, 其特征在于, 所述人造微结构在 所述基板上成阵列排布。
15. 如权利要求 13所述的人工电磁材料, 其特征在于, 所述基材划分为多 个阵列排布的相同的长方体基板单元, 每个基板单元上附着有一个人造微结构。
16. 如权利要求 13所述的人工电磁材料, 其特征在于, 所述人工电磁材料 包括叠加的多块基板, 所述人造微结构位于两块相叠加的所述基板之间。
17. 如权利要求 15所述的人工电磁材料, 其特征在于, 所述基板单元的边 长小于入射电磁波波长的十分之一。
18. 如权利要求 17所述的人工电磁材料, 其特征在于, 所述人造微结构的 总长度及总宽度大于等于所述基板单元的长度及宽度的二分之一。
19. 如权利要求 18所述的人工电磁材料, 其特征在于, 所述人工电磁材料 将要响应的电磁波频率为 7.5GHz,所述长方体基板单元的尺寸为 4mm X 4mm X 4mm。
20. 如权利要求 19所述的人工电磁材料, 其特征在于, 所述两个 "工" 字 形金属线结构的尺寸分别为 1.5mm X 1.5mm、 2mm 2mm, 线宽为 0.1mm。
PCT/CN2011/081441 2011-06-17 2011-10-27 一种人造微结构及其应用的人工电磁材料 WO2012171295A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11860703.5A EP2560235B1 (en) 2011-06-17 2011-10-27 Artificial microstructure and artificial electromagnetic material using same
US13/634,826 US8974893B2 (en) 2011-06-17 2011-10-27 Artificial microstructure and artificial electromagnetic material using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110163799.2A CN102800973B (zh) 2011-06-17 2011-06-17 宽频人工电磁材料
CN201110163799.2 2011-06-17
CN201110179890.3 2011-06-29
CN201110179890.3A CN102810760B (zh) 2011-06-29 2011-06-29 一种超材料

Publications (1)

Publication Number Publication Date
WO2012171295A1 true WO2012171295A1 (zh) 2012-12-20

Family

ID=47356530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081441 WO2012171295A1 (zh) 2011-06-17 2011-10-27 一种人造微结构及其应用的人工电磁材料

Country Status (3)

Country Link
US (1) US8974893B2 (zh)
EP (1) EP2560235B1 (zh)
WO (1) WO2012171295A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552542A (zh) * 2016-01-14 2016-05-04 中国矿业大学(北京) 一种k波段电磁双负超材料
CN107404002A (zh) * 2016-05-19 2017-11-28 深圳超级数据链技术有限公司 调节电磁波的方法和超材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023195A2 (en) * 2004-07-23 2006-03-02 The Regents Of The University Of California Metamaterials
US20070215843A1 (en) * 2005-11-14 2007-09-20 Iowa State University Research Foundation Structures With Negative Index Of Refraction
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线
CN102005637A (zh) * 2010-12-14 2011-04-06 哈尔滨工程大学 基于异向介质的小型微带天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938325B2 (en) * 2003-01-31 2005-09-06 The Boeing Company Methods of fabricating electromagnetic meta-materials
US7009565B2 (en) * 2004-07-30 2006-03-07 Lucent Technologies Inc. Miniaturized antennas based on negative permittivity materials
US8271241B2 (en) * 2005-01-18 2012-09-18 University Of Massachusetts Lowell Chiral metamaterials
US7492329B2 (en) * 2006-10-12 2009-02-17 Hewlett-Packard Development Company, L.P. Composite material with chirped resonant cells
US7570432B1 (en) * 2008-02-07 2009-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
AU2009283141C1 (en) * 2008-08-22 2015-10-01 Duke University Metamaterials for surfaces and waveguides
US20100314040A1 (en) * 2009-06-10 2010-12-16 Toyota Motor Engineering & Manufacturing North America, Inc. Fabrication of metamaterials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023195A2 (en) * 2004-07-23 2006-03-02 The Regents Of The University Of California Metamaterials
US20070215843A1 (en) * 2005-11-14 2007-09-20 Iowa State University Research Foundation Structures With Negative Index Of Refraction
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线
CN102005637A (zh) * 2010-12-14 2011-04-06 哈尔滨工程大学 基于异向介质的小型微带天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2560235A4 *

Also Published As

Publication number Publication date
EP2560235B1 (en) 2017-03-22
EP2560235A4 (en) 2014-09-10
US8974893B2 (en) 2015-03-10
US20130164508A1 (en) 2013-06-27
EP2560235A1 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP6555675B2 (ja) マルチビームアンテナアレイアセンブリのためのメタマテリアルに基づくトランスミットアレイ
WO2013016900A1 (zh) 人造微结构及应用其的人工电磁材料
US9208913B2 (en) Wave-absorbing metamaterial
JP2014535176A (ja) 高インピーダンス表面
KR102644502B1 (ko) 신규 중공 경량 렌즈 구조
CN104681981A (zh) 毫米波介质集成短背射天线
WO2012139367A1 (zh) 一种人工电磁材料
WO2012171295A1 (zh) 一种人造微结构及其应用的人工电磁材料
WO2013029326A1 (zh) 基站天线
EP2551960B1 (en) Artificial microstructure and meta-material using same
CN116830386A (zh) 人造介电材料以及由其制成的聚焦透镜
CN102810761B (zh) 夹芯超材料及其制造方法和夹芯超材料天线罩的制造方法
WO2013000223A1 (zh) 一种人工电磁材料
JP2010010420A (ja) 電波吸収体
WO2012171294A1 (zh) 一种人造微结构及其应用的人工电磁材料
CN102810763B (zh) 超材料频选表面及由其制成的超材料频选天线罩和天线系统
US11469519B1 (en) Antenna arrays with three-dimensional radiating elements
WO2012122814A1 (zh) 一种电磁透明的超材料
CN103579771B (zh) 超材料频选表面及由其制成的超材料频选天线罩和天线系统
CN101866088A (zh) 基于平面周期结构的二维左手材料的制造方法
KR101822754B1 (ko) 혼 안테나 및 상기 혼 안테나의 제조 방법
WO2013000222A1 (zh) 一种人造微结构及其应用的人工电磁材料
WO2019082230A1 (ja) 位相制御板
WO2021255811A1 (ja) 電磁結合制御装置
WO2013029322A1 (zh) 基站天线

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13634826

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011860703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011860703

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE