WO2012169588A1 - Gas for plasma generation, plasma generation method, and atmospheric pressure plasma generated thereby - Google Patents

Gas for plasma generation, plasma generation method, and atmospheric pressure plasma generated thereby Download PDF

Info

Publication number
WO2012169588A1
WO2012169588A1 PCT/JP2012/064687 JP2012064687W WO2012169588A1 WO 2012169588 A1 WO2012169588 A1 WO 2012169588A1 JP 2012064687 W JP2012064687 W JP 2012064687W WO 2012169588 A1 WO2012169588 A1 WO 2012169588A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
atmospheric pressure
generation
treatment effect
Prior art date
Application number
PCT/JP2012/064687
Other languages
French (fr)
Japanese (ja)
Inventor
沖野 晃俊
秀一 宮原
良太 佐々木
Original Assignee
国立大学法人 東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京工業大学 filed Critical 国立大学法人 東京工業大学
Publication of WO2012169588A1 publication Critical patent/WO2012169588A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure

Definitions

  • the present invention makes it possible to easily generate a plasma that is difficult to be converted to a plasma under atmospheric pressure, and a plasma generation gas and a plasma generation method for use in various plasma processing (hereinafter referred to as plasma processing).
  • plasma processing a plasma generation gas and a plasma generation method for use in various plasma processing
  • the present invention relates to an atmospheric pressure plasma generated by using this generation method.
  • the plasma generating gas capable of stably generating plasma under atmospheric pressure is limited to only a small part of gas such as helium and argon.
  • gas such as helium and argon.
  • oxygen gas, carbon dioxide gas, nitrogen oxide gas, and the like have high chemical activity when plasma is used, and a good treatment effect can be obtained.
  • Carbon dioxide gas has been used as a gas for extinguishing plasma because it has been particularly difficult to stably generate plasma at atmospheric pressure. Even if such a gas forcibly generates plasma, only plasma with a low concentration can be generated, and it takes a long time for plasma processing, so that it is difficult to put it into practical use. For this reason, it is an object to easily obtain such a plasma that is difficult to be converted into plasma.
  • the present invention for example, a plasma generating gas and a plasma generating capable of easily generating a plasma of a gas that is difficult to be converted into a plasma such as oxygen gas, carbon dioxide gas, and nitrogen oxide gas. It is an object of the present invention to provide a method and an atmospheric pressure plasma generated thereby, and to realize application of plasma processing to many industrial fields using the obtained atmospheric pressure plasma.
  • Another object of the present invention is to improve mass productivity by enabling desired processing at high speed using plasma.
  • a first plasma generating gas is a plasma generating gas used for generating atmospheric pressure plasma, has a processing capability by becoming plasma, and has the above-mentioned plasma. It is characterized by being a mixed gas of a base gas (carrier gas) for transporting the entire generation gas to a plasma source and a treatment effect improving gas for improving the treatment effect of the atmospheric pressure plasma.
  • a base gas carrier gas
  • a plasma having a high processing effect can be obtained.
  • the processing effect improving gas can be obtained.
  • various surface treatments can be efficiently performed.
  • desired processing can be performed at high speed, and mass productivity can be improved.
  • the second plasma generating gas of the present invention uses the atmospheric pressure plasma as a treatment effect improving gas when the surface layer is removed by cleaning or hydrophilizing or etching the surface of the metal material. It is characterized by using at least one selected from gas, carbon dioxide gas, water vapor and nitrogen oxide gas.
  • the treatment effect on the surface of the metal material can be improved, and the practical use of the plasma treatment in the industrial field is realized. can do.
  • the third plasma generating gas of the present invention uses the atmospheric pressure plasma, and when the surface layer is removed by cleaning or hydrophilizing or etching the surface of the polymer material, It is characterized by using at least one selected from carbon dioxide gas, water vapor and nitrogen oxide gas.
  • the treatment effect on the surface of the polymer material can be improved, and the plasma treatment in the industrial field can be put to practical use. Can be realized.
  • the fourth plasma generating gas according to the present invention is characterized in that the mixed gas is further mixed with a generation auxiliary gas for assisting in the formation of plasma.
  • the fifth plasma generation gas of the present invention is characterized in that the generation auxiliary gas is helium gas.
  • the plasma generation gas can be easily converted to plasma even when a gas that is difficult to be converted into plasma is used as the treatment effect improving gas. It is possible to do.
  • the plasma generation method of the present invention is characterized in that plasma is generated by applying an electric field at atmospheric pressure to the plasma generation gas according to any one of the first to fifth aspects.
  • the atmospheric pressure plasma of the present invention is generated by the plasma generation method of the present invention.
  • atmospheric pressure plasma of the present invention by appropriately selecting the treatment effect improving gas in the plasma generating gas according to the purpose of the surface treatment and the kind and characteristics of the object to be treated, Since a wide variety of surface treatments can be performed, it can be applied to various industrial fields.
  • the present invention it is possible to obtain a plasma having a high processing effect as compared with the plasma used in the conventional plasma processing, and it is possible to easily generate a plasma even in a gas that is difficult to be converted into a plasma , Enabling application to various industrial fields.
  • the treatment effect improving gas by mixing the treatment effect improving gas, it is possible to appropriately select the treatment effect improving gas according to the desired surface treatment and the characteristics of the object to be processed and to provide the optimum plasma treatment. .
  • Schematic showing a plasma generation apparatus used in the plasma generation method of the present invention Schematic showing an embodiment of plasma processing using atmospheric pressure plasma of the present invention
  • Graph showing the relationship between the contact rate and the contact angle of water droplets Addition of processing effect improvement gas when hydrophilization is performed using atmospheric pressure plasma generated by plasma generation gas with base gas (carrier gas) as helium gas and processing effect improvement gas as oxygen gas or carbon dioxide gas
  • Graph showing the relationship between the contact rate and the contact angle of water droplets Graph showing the amount of helium gas added as a production auxiliary gas to the base gas and the plasma generation start voltage when the treatment effect improving gas is oxygen gas
  • the plasma generating gas of the present invention is a gas for generating plasma by being introduced into a plasma source and applying an electric field.
  • the first embodiment of the plasma generating gas of the present invention is generated with a base gas (carrier gas) for carrying the entire plasma generating gas to a plasma source while having processing capability by becoming plasma. It is a mixed gas with a treatment effect improving gas for improving the plasma treatment effect.
  • the base gas at least one gas selected from helium gas, neon gas, argon gas, krypton gas, xenon gas, nitrogen gas, and air that can be easily converted into plasma can be used.
  • the treatment effect improving gas it is possible to select and use at least one selected from gases capable of obtaining a very active plasma such as carbon dioxide, water vapor, oxygen gas, hydrogen gas, nitrogen oxide gas.
  • a processing effect improving gas is appropriately selected according to the desired surface treatment and the characteristics of the object to be processed, and an optimum plasma treatment is provided. Is possible.
  • a generation auxiliary gas for assisting the plasma generation of the plasma generating gas is further mixed with the mixed gas in the first embodiment. Has been.
  • helium gas or argon gas can be used as the production auxiliary gas.
  • the plasma generating gas of the second embodiment As described above, it is possible to easily generate plasma even when, for example, a gas that is difficult to be converted into plasma is used as the processing effect improving gas.
  • a metal material when used as an object to be processed, at least one selected from oxygen gas, carbon dioxide gas, water vapor and nitrogen oxide gas is used as the treatment effect improving gas.
  • oxygen gas oxygen gas
  • carbon dioxide gas carbon dioxide gas
  • water vapor and nitrogen oxide gas is used as the treatment effect improving gas.
  • the surface of the object to be processed can be effectively cleaned, hydrophilized, and the surface layer can be removed by etching.
  • a polymer material when used as an object to be processed, it is preferable to select and use at least one of carbon dioxide, water vapor, and nitrogen oxide gas as the treatment effect improving gas.
  • the plasma generating gas used the surface of the object to be processed can be effectively cleaned, hydrophilized, and the surface layer removed by etching.
  • metal materials such as copper, iron, stainless steel and aluminum, polyimide films described later, resin-based materials such as high-density polyethylene, fiber-based materials, organic-based materials
  • resin-based materials such as high-density polyethylene
  • fiber-based materials such as fiber-based materials
  • organic-based materials A polymer material such as can be used.
  • treatment using the plasma generated by the plasma generating gas of the present invention surface cleaning treatment, hydrophilization treatment, water repellency treatment, sterilization treatment, coating treatment and the like can be performed.
  • atmospheric pressure plasma is generated by applying a direct current, an alternating current, or a high frequency electric field to the plasma generation gas of the present invention under atmospheric pressure.
  • Plasma generation may be performed by any method as long as it can generate plasma, and discharge, laser, radiation, ultraviolet rays, shock waves, and the like can be used.
  • the plasma generation apparatus for generating atmospheric pressure plasma of the present invention will be described in detail with reference to FIG.
  • the plasma generator mainly uses arc discharge, and a jet type plasma generator in which the shape of plasma to be injected is a jet type or a line type in which an injection port for injecting plasma using glow discharge is a line type.
  • a plasma generator or a plasma generator using corona discharge can be used.
  • the examples are particularly described using a jet type plasma generation apparatus.
  • a jet type plasma generating apparatus 1 includes a plasma source 2 that generates plasma by applying an electric field to plasma by discharging to a plasma generating gas, and a power source 3 that applies a voltage to the plasma source 2. And a gas supply unit 4 for supplying a plasma generating gas to the plasma source 2.
  • the plasma source 2 includes an outer electrode 6 in which an injection port 6 a for injecting plasma is formed, and a housing 5 and an inner electrode 7 accommodated in the outer electrode 6.
  • the housing 5 is formed with a gas inlet 5a for introducing a plasma generating gas.
  • DC As the power from the power source 3, DC, pulse wave, high frequency, or the like may be used instead of AC voltage.
  • a plasma generation method using the plasma generation apparatus 1 will be described.
  • the plasma generating gas introduced from the gas supply unit 4 to the gas introduction port 5 a of the plasma source 2 is supplied to the discharge unit 8, and is supplied from the power source 3 between the outer electrode 6 and the inner electrode 7.
  • the AC voltage By applying the AC voltage, a uniform discharge is generated in a direction extending radially from the central portion of the spherical portion of the inner electrode 7. And it jets out as jet-shaped plasma from the jet nozzle 6a.
  • FIG. 2 shows a state in which plasma treatment is performed on an object to be processed using a plasma processing apparatus in this example.
  • the plasma processing apparatus 10 is horizontally moved at a constant speed by a motor or the like, and a transfer table 11 that enables a workpiece W placed thereon to be transferred in a transfer direction A (left direction in FIG. 2), and above that
  • the plasma generating apparatus 1 is fixedly arranged so as to face the injection ports 6a for jetting plasma.
  • a jet type plasma generation apparatus 1 as shown in FIG. 1 is used, and is fixed at a position where the distance from the surface of the workpiece W placed on the transfer table 11 is about 3 mm. Arranged.
  • the gas flow rate of the plasma generating gas supplied to the plasma generating apparatus 1 was 5 L / min, and the voltage supplied between the electrodes from the power source was a high frequency voltage of about 5 kV at a frequency of 50 Hz to 50 kHz.
  • the plasma processing apparatus 10 transports the workpiece W in the transport direction A at a predetermined transport speed in a state where the workpiece W is placed on the transport table 11, and Plasma treatment is performed by ejecting plasma from the ejection port 6a and irradiating the surface of the workpiece W with plasma.
  • Plasma treatment was performed using argon gas, helium gas, oxygen gas, nitrogen gas, carbon dioxide gas or air as the plasma generating gas. At this time, the measurement is performed while changing the conveyance speed of the workpiece W from 0 to 300 mm / sec, and the contact angle of the workpiece W after the plasma irradiation is measured.
  • FIG. 1 A schematic diagram of a plasma treatment chamber.
  • plasma generated using nitrogen gas and carbon dioxide gas as plasma generating gas is generally generated using argon gas, helium gas, oxygen gas and air used as plasma generating gas. It can be seen that the effect of hydrophilization treatment is higher than that.
  • Examples 1 to 3 relate to processing effects when plasma processing is performed using a plasma generating gas composed of a mixed gas of a base gas (carrier gas) and a processing effect improving gas. It explains using.
  • Plasma treatment is performed on the workpiece W by plasma generated from plasma generation gas using argon gas or helium gas as a base gas (carrier gas) and oxygen gas or carbon dioxide gas as a processing effect improving gas, respectively.
  • argon gas or helium gas as a base gas (carrier gas)
  • oxygen gas or carbon dioxide gas as a processing effect improving gas
  • the polyimide film was used and the plasma process was performed on the conditions of the conveyance speed of 100 mm / sec.
  • the contact angle rapidly decreases until the addition rate reaches 1% when the base gas (carrier gas) is argon gas.
  • the addition rate increased from 1%, the contact angle gradually decreased with an increase in the addition rate, and the contact angle became the smallest when the addition rate was 90%.
  • the contact angle rapidly decreases until the addition rate reaches 1%, and the addition rate is 10%, which is the minimum. It became a contact angle.
  • the addition rate increased more than that, the contact angle gradually increased with the increase in the addition rate.
  • the base gas (carrier gas) or the processing is performed by using the plasma generating gas in which the base gas (carrier gas) and the processing effect improving gas are mixed. It is possible to achieve a higher processing effect than plasma generated from a single gas of the effect improving gas.
  • Example 2 When a copper plate is used as the workpiece W and the plasma treatment is performed using any one of carbon dioxide gas, nitrogen oxide gas, water vapor and oxygen gas as the treatment effect improvement gas, the addition rate of the treatment effect improvement gas and the amount of water droplets Table 1 shows the measurement results of the contact angle.
  • the values in the table are the values of the contact angle when the addition rate is 0% in the graph of the treatment effect improving gas addition rate and the contact angle as shown in FIG. It shows the addition rate and the value of the contact angle when it becomes smaller.
  • base gas helium gas, argon gas, nitrogen gas and air were used for measurement.
  • the contact angle becomes the smallest at an addition rate of 10%, and when nitrogen oxide gas is used, the contact rate becomes the highest at an addition rate of 15%.
  • the contact angle was the smallest at an addition rate of 5%, and when oxygen gas was used, the contact angle was the smallest at an addition rate of 10%.
  • the contact angle which was 69.9 ° when the addition rate is 0%, decreases to 29.7 ° when the addition rate is 10%.
  • the contact angle was reduced by 57.5% by the addition.
  • the contact angle becomes the smallest when the addition rate is 10%, and when the nitrogen oxide gas is used, the addition rate is 10%.
  • the contact angle was the smallest, with water vapor, the contact angle was the smallest at an addition rate of 20%, and when oxygen gas was used, the contact angle was the smallest at an addition rate of 20%.
  • the effect was particularly recognized when oxygen gas was added at a rate of addition of 20% as the treatment effect improving gas, and the contact angle was reduced by about 30%.
  • the contact angle becomes the smallest when the addition rate is 1%, and when the nitrogen oxide gas is used, the addition rate is 10%.
  • the contact angle was the smallest, when water vapor was used, the contact angle became the smallest when the addition rate was 5%, and when oxygen gas was used, no effect was observed.
  • the treatment effect improving gas in which the effect was recognized was a mixture of carbon dioxide gas at an addition rate of 1%, and the contact angle was reduced by 22.3%.
  • the contact angle becomes the smallest when the addition rate is 0.4%, and when the nitrogen oxide gas is used, the addition rate is 0.
  • the contact angle was the smallest at 0.1%, the contact angle was the smallest at an addition rate of 10% for water vapor, and the contact angle was the smallest at an addition rate of 10% for oxygen gas.
  • the treatment effect improving gas in which the effect was recognized was a mixture of oxygen gas at an addition rate of 10%, and the contact angle was reduced by about 40%.
  • the workpiece W is a metal material such as a copper plate, for example, a plasma generating gas in which any of carbon dioxide, nitrogen oxide gas, water vapor, or oxygen gas is added as a treatment effect improving gas is used. It was revealed that a good hydrophilic effect can be obtained by performing the plasma treatment used.
  • the treatment effect improving gas when a metal material is used as the workpiece W, it is preferable to use any one of carbon dioxide gas, nitrogen oxide gas, water vapor, or oxygen gas as the treatment effect improving gas, and particularly as the base gas (carrier gas). Most preferably, helium gas is used and plasma treatment is performed with a plasma generation gas using carbon dioxide gas as the treatment effect improving gas.
  • Example 3 When a polyimide film is used as the workpiece W and the plasma treatment is performed using any one of carbon dioxide gas, nitrogen oxide gas and water vapor as the treatment effect improving gas, the addition rate of the treatment effect improving gas and the contact angle of the water droplets The measurement results are shown in Table 2.
  • the values in the table are the values of the contact angle when the addition rate is 0% in the graph of the treatment effect improving gas addition rate and the contact angle as shown in FIG. It shows the addition rate and the value of the contact angle when it becomes smaller.
  • base gas helium gas, argon gas, nitrogen gas and air were used for measurement.
  • the contact angle becomes the smallest when the addition rate is 10%, and the contact becomes the highest when the addition rate is 9% when nitrogen oxide gas is used. The angle became smaller, and when water vapor was used, the contact angle became smaller with a slight addition amount.
  • carbon dioxide as a treatment effect improving gas
  • the contact angle of 46.0 ° at an addition rate of 0% becomes 8.7 ° at an addition rate of 10%, and the contact angle is 81.1%. It has become smaller.
  • the contact angle becomes the smallest when the addition rate is 90%, and when the nitrogen oxide gas is used, the addition rate is 6%. In the case of water vapor, the contact angle became the smallest with a slight addition amount.
  • the contact angle becomes the smallest when the addition rate is 100%, and when the nitrogen oxide gas is used, the addition rate is 6%.
  • the contact angle became the smallest, and when water vapor was used, the contact angle became small with a slight addition amount.
  • the contact angle becomes the smallest when the addition rate is 100%, and when the nitrogen oxide gas is used, the addition rate is 100%.
  • the contact angle was the smallest, and when water vapor was used, the contact angle was the smallest at an addition rate of 60%.
  • the object to be processed W is a polymer material such as a polyimide film
  • plasma irradiation using a plasma generating gas to which carbon dioxide gas, nitrogen oxide gas or water vapor is added as a treatment effect improving gas is performed. It was revealed that a good hydrophilic effect can be obtained by performing the treatment.
  • the treatment effect improving gas when a polymer material is used as the workpiece W, it is preferable to use carbon dioxide, nitrogen oxide gas, or water vapor as the treatment effect improving gas, and in particular, argon gas is used as the base gas (carrier gas).
  • the plasma treatment is most preferably performed with a plasma generation gas using carbon dioxide gas as the treatment effect improving gas.
  • Example 4 The mixed gas of base gas (carrier gas) and treatment effect improving gas is mixed with helium gas as a production auxiliary gas, the mixing ratio of helium gas is changed, and the result of measuring the applied voltage at which plasma starts to be generated is shown. It is shown in FIG. 6 and FIG.
  • the total flow rate is 5 L / min, of which 0.15 L / min is the hydrogen gas as the treatment effect improving gas, and 4.85 L / min is the base gas (carrier gas).
  • the experiment was conducted as a mixture in which the mixing amount of helium gas as a production auxiliary gas was changed. In both experiments, the jet plasma generator 1 was used, and the applied voltage was gradually increased to record the applied voltage when plasma generation started.
  • the plasma generation start voltage decreases in proportion to the increase in the gas concentration of the helium gas, and the plasma generation start voltage is about 14 by the addition of 20% helium gas. % Was also low.
  • the plasma generation start voltage is lowered by using the plasma generation gas mixed with the generation auxiliary gas. Therefore, when oxygen gas or hydrogen gas that is difficult to be converted into plasma is used as the treatment effect improving gas. However, it has become clear that a stable plasma can be easily generated.
  • a gas of a substance different from the gas used for the generation auxiliary gas is selected as the base gas (carrier gas) and the processing effect improving gas. preferable.
  • the plasma generating gas of the present invention by using a mixed gas of the base gas (carrier gas) and the treatment effect improving gas, compared with the conventional plasma, Since plasma having a high processing effect can be obtained, plasma processing can be performed on an object to be processed at high speed, and mass productivity can be improved.
  • a gas that is difficult to be converted into a plasma as a processing effect improving gas is obtained by simply mixing the auxiliary gas for generation in the mixed gas of the first embodiment. Even when selected, plasma can be easily generated.

Abstract

[Problem] The purpose of the present invention is to provide a gas for plasma generation that can easily generate a plasma from a gas that does not easily form a plasma such as oxygen, carbon monoxide, or nitric oxide, as well as to provide a plasma generation method and an atmospheric pressure plasma generated thereby. A further purpose is to enable application of plasma processing in many industrial fields by using the resulting atmospheric pressure plasma. [Solution] Provided is a gas for plasma generation used for generating an atmospheric pressure plasma. The gas for plasma generation is a mixed gas comprising a base gas (carrier gas) which not only has processing capability due to formation of a plasma, but also carries the gas for plasma generation as a whole to a plasma source, and a processing effectiveness enhancing gas that enhances the processing effectiveness of the atmospheric pressure plasma. Further, a generation support gas for supporting plasma forming is further mixed into the above mixed gas. The invention also provides a plasma generation method that uses the gas for plasma generation to generate a plasma, and an atmospheric pressure plasma that is generated from the gas for plasma generation.

Description

プラズマ生成用ガスおよびプラズマ生成方法並びにこれにより生成された大気圧プラズマPlasma generating gas, plasma generating method, and atmospheric pressure plasma generated thereby
 本発明は、大気圧下においてプラズマ化が困難なガスを容易にプラズマを生成可能とし、様々なプラズマを用いた処理(以下、プラズマ処理という。)に用いるためのプラズマ生成用ガスおよびプラズマ生成方法並びにこの生成方法を用いて生成された大気圧プラズマに関する。 The present invention makes it possible to easily generate a plasma that is difficult to be converted to a plasma under atmospheric pressure, and a plasma generation gas and a plasma generation method for use in various plasma processing (hereinafter referred to as plasma processing). In addition, the present invention relates to an atmospheric pressure plasma generated by using this generation method.
 従来より、被処理物の表面にプラズマを照射することにより、例えば、表面洗浄処理、親水化処理、撥水化処理、殺菌処理およびコーティング処理等の様々なプラズマ処理が行われている。 Conventionally, various plasma treatments such as surface cleaning treatment, hydrophilization treatment, water repellency treatment, sterilization treatment, and coating treatment have been performed by irradiating the surface of an object to be treated with plasma.
 例えば、プラズマを被処理物の表面に照射すると、表面に付着している有機物が除去されたり、あるいは表面にカルボキシル基(-COOH)やカルボニル基(-C(=O)-)等が生成される。その結果、被処理物の表面が親水化され、接着性や塗装性を向上させることができるため、フラットパネルのクリーニングや自動車部品の接着時の親水化処理にプラズマが利用されている。 For example, when plasma is irradiated on the surface of an object to be processed, organic substances adhering to the surface are removed, or carboxyl groups (—COOH), carbonyl groups (—C (═O) —), etc. are generated on the surface. The As a result, the surface of the object to be processed is hydrophilized, and the adhesiveness and paintability can be improved. Therefore, plasma is used for the hydrophilization treatment when cleaning flat panels and bonding automobile parts.
 また、プラズマ処理は、特許文献1に記載されているように、プラズマ生成用ガスに用いるガスによっても得られる効果が異なり、近年、産業界において、前記プラズマ処理の様々な分野への応用が期待されている。 In addition, as described in Patent Document 1, the effect obtained by the plasma treatment differs depending on the gas used for the plasma generating gas, and in recent years, the application of the plasma treatment to various fields is expected in the industry. Has been.
特開平10-001551号公報JP-A-10-001551
 従来においては、大気圧下で安定にプラズマを生成させることができるプラズマ生成用ガスは、ヘリウム、アルゴン等のごく一部のガスに限られている。しかしながら、プラズマ化が困難であるものの、例えば、酸素ガス、炭酸ガス、窒素酸化物ガスなどはプラズマとされると化学的活性が高く、良好な処理効果が得られることが知られている。炭酸ガスについては大気圧下で安定にプラズマを生成することが特に困難であったことから、プラズマを消火するためのガスとして用いられてきた。このようなガスは、強制的にプラズマを生成したとしても、濃度の薄いプラズマしか生成することができず、プラズマ処理に長い時間を要するために実用化は困難であった。このため、このようなプラズマ化が困難なガスのプラズマ化を容易に得ることが課題とされている。 Conventionally, the plasma generating gas capable of stably generating plasma under atmospheric pressure is limited to only a small part of gas such as helium and argon. However, although it is difficult to convert to plasma, it is known that, for example, oxygen gas, carbon dioxide gas, nitrogen oxide gas, and the like have high chemical activity when plasma is used, and a good treatment effect can be obtained. Carbon dioxide gas has been used as a gas for extinguishing plasma because it has been particularly difficult to stably generate plasma at atmospheric pressure. Even if such a gas forcibly generates plasma, only plasma with a low concentration can be generated, and it takes a long time for plasma processing, so that it is difficult to put it into practical use. For this reason, it is an object to easily obtain such a plasma that is difficult to be converted into plasma.
 また、プラズマ処理は、プラズマ化が可能なガスに対応した数種類の手法に限定されているため、プラズマの用途の多様化が課題とされている。 In addition, since the plasma treatment is limited to several methods corresponding to the gas that can be converted to plasma, diversification of the application of plasma is an issue.
 そこで、本発明はこれらの課題を解決するべく、例えば、酸素ガス、炭酸ガスおよび窒素酸化物ガスなどのプラズマ化が困難なガスのプラズマを容易に生成することができるプラズマ生成用ガスおよびプラズマ生成方法並びにこれにより生成された大気圧プラズマを提供するとともに、得られた大気圧プラズマを用いて多くの産業分野へのプラズマ処理の応用化を実現可能とすることを目的としている。 Therefore, in order to solve these problems, the present invention, for example, a plasma generating gas and a plasma generating capable of easily generating a plasma of a gas that is difficult to be converted into a plasma such as oxygen gas, carbon dioxide gas, and nitrogen oxide gas. It is an object of the present invention to provide a method and an atmospheric pressure plasma generated thereby, and to realize application of plasma processing to many industrial fields using the obtained atmospheric pressure plasma.
 また、本発明は、プラズマを利用して高速に所望の処理を可能とすることよって、量産性の向上を図ることを目的とする。 Another object of the present invention is to improve mass productivity by enabling desired processing at high speed using plasma.
 上記課題を解決するため、本発明の第1のプラズマ生成用ガスは、大気圧プラズマを生成するために用いられるプラズマ生成用ガスであって、プラズマとなることにより処理能力を有するとともに、前記プラズマ生成用ガス全体をプラズマ源に搬送するためのベースガス(キャリアーガス)と、前記大気圧プラズマの処理効果を向上させるための処理効果向上ガスとの混合ガスとされることを特徴とする。 In order to solve the above problems, a first plasma generating gas according to the present invention is a plasma generating gas used for generating atmospheric pressure plasma, has a processing capability by becoming plasma, and has the above-mentioned plasma. It is characterized by being a mixed gas of a base gas (carrier gas) for transporting the entire generation gas to a plasma source and a treatment effect improving gas for improving the treatment effect of the atmospheric pressure plasma.
 このような、本発明の第1のプラズマ生成用ガスとすることにより、処理効果の高いプラズマを得ることができ、例えば、所望の表面処理や被処理物の特性に応じて、処理効果向上ガスを適宜選択することにより、様々な表面処理を効率よく行うことを可能とする。さらに、処理効果の高いプラズマを得られることで、高速に所望の処理を可能として、量産性の向上を図ることができる。 By using such a first plasma generating gas of the present invention, a plasma having a high processing effect can be obtained. For example, depending on the desired surface treatment and the characteristics of the object to be processed, the processing effect improving gas can be obtained. By appropriately selecting, various surface treatments can be efficiently performed. Furthermore, by obtaining plasma having a high processing effect, desired processing can be performed at high speed, and mass productivity can be improved.
 本発明の第2のプラズマ生成用ガスは、前記大気圧プラズマを用いて、金属材料の表面をクリーニングもしくは親水化もしくはエッチングによって表面層の除去を行う際には、前記処理効果向上ガスとして、酸素ガス、炭酸ガス、水蒸気および窒素酸化物ガスから少なくとも1つを選択して用いることを特徴とする。 The second plasma generating gas of the present invention uses the atmospheric pressure plasma as a treatment effect improving gas when the surface layer is removed by cleaning or hydrophilizing or etching the surface of the metal material. It is characterized by using at least one selected from gas, carbon dioxide gas, water vapor and nitrogen oxide gas.
 このような、本発明の第2のプラズマ生成用ガスを用いてプラズマ処理を行うことにより、金属材料の表面への処理効果を向上させることができ、産業分野へのプラズマ処理の実用化を実現することができる。 By performing the plasma treatment using the second plasma generating gas of the present invention, the treatment effect on the surface of the metal material can be improved, and the practical use of the plasma treatment in the industrial field is realized. can do.
 本発明の第3のプラズマ生成用ガスは、前記大気圧プラズマを用いて、高分子材料の表面をクリーニングもしくは親水化若しくはエッチングによって表面層の除去を行う際には、前記処理効果向上ガスとして、炭酸ガス、水蒸気および窒素酸化物ガスから少なくとも1つを選択して用いることを特徴とする。 The third plasma generating gas of the present invention uses the atmospheric pressure plasma, and when the surface layer is removed by cleaning or hydrophilizing or etching the surface of the polymer material, It is characterized by using at least one selected from carbon dioxide gas, water vapor and nitrogen oxide gas.
 このような、本発明の第3のプラズマ生成用ガスを用いてプラズマ処理を行うことにより、高分子材料の表面への処理効果を向上させることができ、産業分野へのプラズマ処理の実用化を実現することができる。 By performing the plasma treatment using the third plasma generating gas of the present invention, the treatment effect on the surface of the polymer material can be improved, and the plasma treatment in the industrial field can be put to practical use. Can be realized.
 本発明の第4のプラズマ生成用ガスは、前記混合ガスに対して、プラズマ化を補助するための生成補助ガスをさらに混合することを特徴とする。また、本発明の第5のプラズマ生成用ガスは、前記生成補助ガスが、ヘリウムガスとされることを特徴とする。 The fourth plasma generating gas according to the present invention is characterized in that the mixed gas is further mixed with a generation auxiliary gas for assisting in the formation of plasma. The fifth plasma generation gas of the present invention is characterized in that the generation auxiliary gas is helium gas.
 このような、本発明の第4および第5のプラズマ生成用ガスとすることにより、処理効果向上ガスとしてプラズマ化が困難なガスを用いた場合においても、前記プラズマ生成用ガスを容易にプラズマ化することを可能とする。 By using the fourth and fifth plasma generation gases of the present invention, the plasma generation gas can be easily converted to plasma even when a gas that is difficult to be converted into plasma is used as the treatment effect improving gas. It is possible to do.
 本発明のプラズマ生成方法は、前記第1から第5のいずれかに記載のプラズマ生成用ガスに対し、大気圧下において電界を印加してプラズマを生成することを特徴とする。また、本発明の大気圧プラズマは、本発明のプラズマ生成方法により生成されたことを特徴とする。 The plasma generation method of the present invention is characterized in that plasma is generated by applying an electric field at atmospheric pressure to the plasma generation gas according to any one of the first to fifth aspects. The atmospheric pressure plasma of the present invention is generated by the plasma generation method of the present invention.
 このような、本発明の大気圧プラズマによれば、表面処理の目的および処理される被処理物の種類や特性に応じて、プラズマ生成用ガス中の処理効果向上ガスを適宜選択することによって、多種多様な表面処理を行えるので、様々な産業分野への応用を可能とする。 According to such atmospheric pressure plasma of the present invention, by appropriately selecting the treatment effect improving gas in the plasma generating gas according to the purpose of the surface treatment and the kind and characteristics of the object to be treated, Since a wide variety of surface treatments can be performed, it can be applied to various industrial fields.
 本発明によれば、従来のプラズマ処理に用いられたプラズマと比較して、処理効果の高いプラズマを得ることができるとともに、プラズマ化が困難なガスにおいても容易にプラズマを生成することができるので、様々な産業分野への応用を可能とする。 According to the present invention, it is possible to obtain a plasma having a high processing effect as compared with the plasma used in the conventional plasma processing, and it is possible to easily generate a plasma even in a gas that is difficult to be converted into a plasma , Enabling application to various industrial fields.
 具体的には、処理効果向上ガスを混合することによって、処理効果向上ガスを所望の表面処理や被処理物の特性に応じて適宜選択して、最適なプラズマ処理を提供することを可能とする。 Specifically, by mixing the treatment effect improving gas, it is possible to appropriately select the treatment effect improving gas according to the desired surface treatment and the characteristics of the object to be processed and to provide the optimum plasma treatment. .
 また、生成補助ガスを混合することによって、処理効果向上ガスとしてプラズマ化が困難なガスを用いる場合においても容易にプラズマを生成することを可能とする。 Further, by mixing the production auxiliary gas, it is possible to easily generate plasma even when a gas that is difficult to be converted into plasma is used as the treatment effect improving gas.
 さらに、処理効果の高いプラズマを得られることにより、所望の処理を高速に施すことができ、量産性の向上を図ることができる。 Furthermore, by obtaining a plasma having a high treatment effect, it is possible to perform a desired treatment at high speed and to improve mass productivity.
本発明のプラズマ生成方法に用いられるプラズマ生成装置を示す概略図Schematic showing a plasma generation apparatus used in the plasma generation method of the present invention 本発明の大気圧プラズマを用いたプラズマ処理の実施形態を示す概略図Schematic showing an embodiment of plasma processing using atmospheric pressure plasma of the present invention アルゴンガス、窒素ガス、空気、酸素ガス、ヘリウムガスおよび炭酸ガスを用いて親水化処理を施した場合における処理速度と接触角との関係を示すグラフA graph showing the relationship between the treatment speed and the contact angle when hydrophilic treatment is performed using argon gas, nitrogen gas, air, oxygen gas, helium gas and carbon dioxide gas ベースガス(キャリアーガス)をアルゴンガスとし、処理効果向上ガスを酸素ガスまたは炭酸ガスとしたプラズマ生成用ガスにより生成した大気圧プラズマを用いて親水化処理を行った際の処理効果向上ガスの添加率と水滴の接触角との関係を示すグラフAddition of treatment effect improvement gas when hydrophilization treatment is performed using atmospheric pressure plasma generated by plasma generation gas with base gas (carrier gas) as argon gas and treatment effect improvement gas as oxygen gas or carbon dioxide gas Graph showing the relationship between the contact rate and the contact angle of water droplets ベースガス(キャリアーガス)をヘリウムガスとし、処理効果向上ガスを酸素ガスまたは炭酸ガスとしたプラズマ生成用ガスにより生成した大気圧プラズマを用いて親水化処理を行った際の処理効果向上ガスの添加率と水滴の接触角との関係を示すグラフAddition of processing effect improvement gas when hydrophilization is performed using atmospheric pressure plasma generated by plasma generation gas with base gas (carrier gas) as helium gas and processing effect improvement gas as oxygen gas or carbon dioxide gas Graph showing the relationship between the contact rate and the contact angle of water droplets 処理効果向上ガスを酸素ガスとした場合における、ベースガスに対する生成補助ガスとしてのヘリウムガスの添加量とプラズマ生成開始電圧を示すグラフGraph showing the amount of helium gas added as a production auxiliary gas to the base gas and the plasma generation start voltage when the treatment effect improving gas is oxygen gas 処理効果向上ガスを水素ガスとした場合における、ベースガスに対する生成補助ガスとしてのヘリウムガスの添加量とプラズマ生成開始電圧を示すグラフGraph showing the amount of helium gas added as a production auxiliary gas to the base gas and the plasma generation start voltage when the treatment effect improving gas is hydrogen gas
 以下、本発明のプラズマ生成用ガスおよびプラズマ生成方法並びにこれにより生成された大気圧プラズマの実施形態を図1乃至図7を用いて説明する。 Hereinafter, embodiments of the plasma generating gas and the plasma generating method and the atmospheric pressure plasma generated thereby will be described with reference to FIGS. 1 to 7.
 本発明のプラズマ生成用ガスは、プラズマ源に導入され、電界を印加されることによりプラズマを生成するためのガスである。 The plasma generating gas of the present invention is a gas for generating plasma by being introduced into a plasma source and applying an electric field.
 本発明のプラズマ生成用ガスの第1の実施形態は、プラズマとなることにより処理能力を有するとともに、プラズマ生成用ガス全体をプラズマ源へ搬送するためのベースガス(キャリアーガス)と、生成されるプラズマの処理効果を向上させるための処理効果向上ガスとの混合ガスとされている。 The first embodiment of the plasma generating gas of the present invention is generated with a base gas (carrier gas) for carrying the entire plasma generating gas to a plasma source while having processing capability by becoming plasma. It is a mixed gas with a treatment effect improving gas for improving the plasma treatment effect.
 ベースガス(キャリアーガス)としては、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、窒素ガスおよび空気などのプラズマ化が容易なガスから少なくとも1つを選択して用いることができる。 As the base gas (carrier gas), at least one gas selected from helium gas, neon gas, argon gas, krypton gas, xenon gas, nitrogen gas, and air that can be easily converted into plasma can be used.
 処理効果向上ガスとしては、炭酸ガス、水蒸気、酸素ガス、水素ガス、窒素酸化物ガスなどの非常に活性の高いプラズマを得ることができるガスから少なくとも1つを選択して用いることができる。 As the treatment effect improving gas, it is possible to select and use at least one selected from gases capable of obtaining a very active plasma such as carbon dioxide, water vapor, oxygen gas, hydrogen gas, nitrogen oxide gas.
 このような、第1の実施形態のプラズマ生成用ガスとすることにより、処理効果向上ガスを所望の表面処理や被処理物の特性に応じて適宜選択して、最適なプラズマ処理を提供することを可能とする。 By using the plasma generating gas of the first embodiment as described above, a processing effect improving gas is appropriately selected according to the desired surface treatment and the characteristics of the object to be processed, and an optimum plasma treatment is provided. Is possible.
 また、本発明のプラズマ生成用ガスの第2の実施形態は、前記第1の実施形態における混合ガスに対して、前記プラズマ生成用ガスのプラズマ化を補助するための生成補助ガスをさらに混合するようにされている。 In the second embodiment of the plasma generating gas of the present invention, a generation auxiliary gas for assisting the plasma generation of the plasma generating gas is further mixed with the mixed gas in the first embodiment. Has been.
 生成補助ガスとしては、ヘリウムガスまたはアルゴンガスを用いることができる。 As the production auxiliary gas, helium gas or argon gas can be used.
 このような、第2の実施形態のプラズマ生成用ガスとすることにより、例えば、処理効果向上ガスとしてプラズマ化が困難なガスを用いる場合においても容易にプラズマを生成することを可能とする。 By using the plasma generating gas of the second embodiment as described above, it is possible to easily generate plasma even when, for example, a gas that is difficult to be converted into plasma is used as the processing effect improving gas.
 本発明の具体的な実施の態様としては、被処理物として金属材料を用いる際には、処理効果向上ガスとして酸素ガス、炭酸ガス、水蒸気および窒素酸化物ガスから少なくとも1つを選択して用いることが好ましく、このような処理効果向上ガスを用いたプラズマ生成用ガスとすることにより、被処理物の表面を効果的にクリーニング、親水化およびエッチングによる表面層の除去などを施すことができる。 As a specific embodiment of the present invention, when a metal material is used as an object to be processed, at least one selected from oxygen gas, carbon dioxide gas, water vapor and nitrogen oxide gas is used as the treatment effect improving gas. Preferably, by using a plasma generating gas using such a treatment effect improving gas, the surface of the object to be processed can be effectively cleaned, hydrophilized, and the surface layer can be removed by etching.
 また、被処理物として高分子材料を用いる際には、処理効果向上ガスとして炭酸ガス、水蒸気および窒素酸化物ガスから少なくとも1つを選択して用いることが好ましく、このような処理効果向上ガスを用いたプラズマ生成用ガスとすることにより、被処理物の表面を効果的にクリーニング、親水化およびエッチングによる表面層の除去などを施すことができる。 Further, when a polymer material is used as an object to be processed, it is preferable to select and use at least one of carbon dioxide, water vapor, and nitrogen oxide gas as the treatment effect improving gas. By using the plasma generating gas used, the surface of the object to be processed can be effectively cleaned, hydrophilized, and the surface layer removed by etching.
 被処理物としては、上記に記載したものも含めて、銅、鉄、ステンレス、アルミニウムなどの金属材料、後述するポリイミドフィルムを始め、高密度ポリエチレンなどの樹脂系材料、繊維系材料、有機系材料などの高分子材料を用いることができる。 As objects to be processed, including those described above, metal materials such as copper, iron, stainless steel and aluminum, polyimide films described later, resin-based materials such as high-density polyethylene, fiber-based materials, organic-based materials A polymer material such as can be used.
 また、本発明のプラズマ生成用ガスにより生成されたプラズマを用いた処理としては、表面洗浄処理、親水化処理、撥水化処理、殺菌処理およびコーティング処理などを施すことができる。 Further, as the treatment using the plasma generated by the plasma generating gas of the present invention, surface cleaning treatment, hydrophilization treatment, water repellency treatment, sterilization treatment, coating treatment and the like can be performed.
 本発明のプラズマ生成方法は、大気圧下において、本発明のプラズマ生成用ガスに対し、直流、交流または高周波の電界を印加して大気圧プラズマを生成するようにされている。 In the plasma generation method of the present invention, atmospheric pressure plasma is generated by applying a direct current, an alternating current, or a high frequency electric field to the plasma generation gas of the present invention under atmospheric pressure.
 プラズマ発生は、プラズマを生成可能とするものであればいかなる方法でも良く、放電、レーザー、放射線、紫外線、衝撃波などを用いることができる。 Plasma generation may be performed by any method as long as it can generate plasma, and discharge, laser, radiation, ultraviolet rays, shock waves, and the like can be used.
 本発明の大気圧プラズマを生成するためのプラズマ生成装置について、図1を用いて詳しく説明する。 The plasma generation apparatus for generating atmospheric pressure plasma of the present invention will be described in detail with reference to FIG.
 前記プラズマ生成装置としては、主にアーク放電を利用し、噴射されるプラズマの形状がジェット状のジェット型プラズマ生成装置あるいは、グロー放電を利用し、プラズマを噴射する噴射口がライン状のライン型プラズマ生成装置、あるいは、コロナ放電を利用したプラズマ生成装置を用いることができる。なお、本実施形態では、特に、ジェット型プラズマ生成装置を用いて実施例の説明を行う。 The plasma generator mainly uses arc discharge, and a jet type plasma generator in which the shape of plasma to be injected is a jet type or a line type in which an injection port for injecting plasma using glow discharge is a line type. A plasma generator or a plasma generator using corona discharge can be used. In the present embodiment, the examples are particularly described using a jet type plasma generation apparatus.
 ジェット型プラズマ生成装置1は、図1に示すように、プラズマ生成用ガスに放電することによりプラズマに電界を印加してプラズマを生成するプラズマ源2と、プラズマ源2に電圧を印加する電源3と、プラズマ源2へプラズマ生成用ガスを供給するガス供給部4とからなる。 As shown in FIG. 1, a jet type plasma generating apparatus 1 includes a plasma source 2 that generates plasma by applying an electric field to plasma by discharging to a plasma generating gas, and a power source 3 that applies a voltage to the plasma source 2. And a gas supply unit 4 for supplying a plasma generating gas to the plasma source 2.
 プラズマ源2は、プラズマを噴射する噴射口6aが形成された外側電極6と、筐体5および外側電極6内に収容された内側電極7とを備えている。 The plasma source 2 includes an outer electrode 6 in which an injection port 6 a for injecting plasma is formed, and a housing 5 and an inner electrode 7 accommodated in the outer electrode 6.
 筐体5にはプラズマ用生成ガスを導入するためのガス導入口5aが形成されている。 The housing 5 is formed with a gas inlet 5a for introducing a plasma generating gas.
 前記電源3からの電力としては、交流電圧の代わりに、直流、パルス波、高周波等を用いてもよい。 As the power from the power source 3, DC, pulse wave, high frequency, or the like may be used instead of AC voltage.
 上記のプラズマ生成装置1を用いたプラズマ生成方法について説明する。プラズマ生成装置1においては、ガス供給部4からプラズマ源2のガス導入口5aに導入されたプラズマ生成用ガスが放電部8に供給され、外側電極6と内側電極7との間に電源3から交流電圧が印加されることにより、内側電極7の球状部の中心部から放射状に延びる方向に均一な放電が発生する。そして、噴射口6aからジェット状のプラズマとして噴出されるようになっている。 A plasma generation method using the plasma generation apparatus 1 will be described. In the plasma generating apparatus 1, the plasma generating gas introduced from the gas supply unit 4 to the gas introduction port 5 a of the plasma source 2 is supplied to the discharge unit 8, and is supplied from the power source 3 between the outer electrode 6 and the inner electrode 7. By applying the AC voltage, a uniform discharge is generated in a direction extending radially from the central portion of the spherical portion of the inner electrode 7. And it jets out as jet-shaped plasma from the jet nozzle 6a.
<各ガスのプラズマ処理効果の測定>
 本実施例において、被処理物に対し、プラズマ処理装置を用いてプラズマ照射処理を行う様子を図2に示す。プラズマ処理装置10は、モータ等によって一定の速度で水平移動し、上部に載置した被処理物Wを搬送方向A(図2における左方向)に搬送可能とする搬送台11と、その上方にプラズマを噴出する噴射口6aを対向させるようにして固定配置されたプラズマ生成装置1とからなる。プラズマ生成装置1としては、図1に示したようなジェット型プラズマ生成装置1を用い、搬送台11に載置された被処理物Wの表面との距離が約3mmとなるような位置に固定配置した。なお、プラズマ生成装置1に供給するプラズマ生成用ガスのガス流量は5L/min、電源から電極間に供給する電圧は周波数50Hz~50kHzで約5kVの高周波電圧とした。
<Measurement of plasma treatment effect of each gas>
FIG. 2 shows a state in which plasma treatment is performed on an object to be processed using a plasma processing apparatus in this example. The plasma processing apparatus 10 is horizontally moved at a constant speed by a motor or the like, and a transfer table 11 that enables a workpiece W placed thereon to be transferred in a transfer direction A (left direction in FIG. 2), and above that The plasma generating apparatus 1 is fixedly arranged so as to face the injection ports 6a for jetting plasma. As the plasma generation apparatus 1, a jet type plasma generation apparatus 1 as shown in FIG. 1 is used, and is fixed at a position where the distance from the surface of the workpiece W placed on the transfer table 11 is about 3 mm. Arranged. The gas flow rate of the plasma generating gas supplied to the plasma generating apparatus 1 was 5 L / min, and the voltage supplied between the electrodes from the power source was a high frequency voltage of about 5 kV at a frequency of 50 Hz to 50 kHz.
 本実施例におけるプラズマ処理装置10は、被処理物Wを搬送台11に載置した状態で、当該搬送台11を搬送方向Aに所定の搬送速度で搬送させるとともに、ジェット型プラズマ生成装置1の噴射口6aからプラズマを噴出させて、被処理物Wの表面にプラズマを照射することによりプラズマ処理を行う。 The plasma processing apparatus 10 according to the present embodiment transports the workpiece W in the transport direction A at a predetermined transport speed in a state where the workpiece W is placed on the transport table 11, and Plasma treatment is performed by ejecting plasma from the ejection port 6a and irradiating the surface of the workpiece W with plasma.
 また、プラズマ処理装置10による被処理物Wの表面への親水化効果を検討するべく、プラズマ処理後の被処理物Wの表面に水滴を滴下し、接触角測定器を用いて被処理物Wの表面に対する水滴の接触角を測定した。この時、接触角が小さいほど被処理物Wの表面への水のぬれ性が高く、より親水性であることを示し、接触角が大きくなるほど被処理物Wの表面が水滴を弾いており、親水性が低いことを示す。 Moreover, in order to examine the hydrophilic effect on the surface of the workpiece W by the plasma processing apparatus 10, water drops are dropped on the surface of the workpiece W after the plasma treatment, and the workpiece W is measured using a contact angle measuring device. The contact angle of the water droplet with respect to the surface of was measured. At this time, the smaller the contact angle, the higher the wettability of water on the surface of the workpiece W, indicating more hydrophilic, the larger the contact angle, the surface of the workpiece W is repelling water droplets, Indicates that the hydrophilicity is low.
 まず、プラズマ生成用ガスとして、単体の物質からなるガスを用いてプラズマ処理を施し、各々の親水性処理効果を検討した結果について説明する。 First, the results of examining each hydrophilic treatment effect by performing plasma treatment using a gas made of a single substance as the plasma generating gas will be described.
 プラズマ生成用ガスとして、アルゴンガス、ヘリウムガス、酸素ガス、窒素ガス、炭酸ガスまたは空気を用い、プラズマ処理を行った。この時、被処理物Wの搬送速度を0から300mm/secの間で変化させて測定を行い、プラズマ照射後の被処理物Wの接触角をそれぞれ測定した結果を図3に示す。 Plasma treatment was performed using argon gas, helium gas, oxygen gas, nitrogen gas, carbon dioxide gas or air as the plasma generating gas. At this time, the measurement is performed while changing the conveyance speed of the workpiece W from 0 to 300 mm / sec, and the contact angle of the workpiece W after the plasma irradiation is measured. FIG.
 アルゴンガス、ヘリウムガス、酸素ガスおよび空気のいずれかを用いた場合には、被処理物Wの搬送速度が速くなるほど接触角は大きくなり、親水化効果が極端に低下した。これに対し、炭酸ガスを用いた場合には、搬送速度を速くしても、接触角には殆ど変化はみられず、本実験の最高速度である搬送速度300mm/secとした場合においても接触角25°と、良好な親水性が得られた。 When any one of argon gas, helium gas, oxygen gas and air was used, the contact angle increased as the conveying speed of the workpiece W increased, and the hydrophilization effect was extremely reduced. On the other hand, when carbon dioxide gas is used, even if the conveyance speed is increased, the contact angle hardly changes, and even when the conveyance speed is 300 mm / sec, which is the maximum speed of this experiment, the contact angle is not changed. Good hydrophilicity was obtained with an angle of 25 °.
 また、窒素ガスおよび炭酸ガスを用いた場合には、搬送速度100mm/secにおいて良好な親水化効果を示した。それ以上の搬送速度においては、炭酸ガスを用いた場合が最も良好な親水性を示す結果となった。 Further, when nitrogen gas and carbon dioxide gas were used, a good hydrophilic effect was exhibited at a conveyance speed of 100 mm / sec. At higher transport speeds, the best hydrophilicity was obtained when carbon dioxide was used.
 この結果から、プラズマ生成用ガスとして窒素ガスおよび炭酸ガスを用いて生成されたプラズマは、一般的にプラズマ生成用ガスとして用いられるアルゴンガス、ヘリウムガス、酸素ガスおよび空気を用いて生成されたプラズマよりも親水化処理効果が高いことが分かる。 From this result, plasma generated using nitrogen gas and carbon dioxide gas as plasma generating gas is generally generated using argon gas, helium gas, oxygen gas and air used as plasma generating gas. It can be seen that the effect of hydrophilization treatment is higher than that.
 以下に、本発明のプラズマ生成用ガスを用いて生成された本発明の大気圧プラズマの処理効果を実施例1乃至実施例4を用いて詳しく説明する。 Hereinafter, the processing effect of the atmospheric pressure plasma of the present invention generated using the plasma generating gas of the present invention will be described in detail with reference to Examples 1 to 4.
 本発明の第1態様として、ベースガス(キャリアーガス)と処理効果向上ガスとの混合ガスからなるプラズマ生成用ガスを用いてプラズマ処理を行った場合の処理効果について実施例1乃至実施例3を用いて説明する。 As a first aspect of the present invention, Examples 1 to 3 relate to processing effects when plasma processing is performed using a plasma generating gas composed of a mixed gas of a base gas (carrier gas) and a processing effect improving gas. It explains using.
<実施例1>
 ベースガス(キャリアーガス)としてアルゴンガスまたはへリムガス、処理効果向上ガスとして酸素ガスまたは炭酸ガスをそれぞれ用いたプラズマ生成用ガスから生成されたプラズマによって被処理物Wに対してプラズマ処理を施し、処理後の被処理物Wの表面に対する水滴の接触角を測定した結果を図4および図5に示す。
<Example 1>
Plasma treatment is performed on the workpiece W by plasma generated from plasma generation gas using argon gas or helium gas as a base gas (carrier gas) and oxygen gas or carbon dioxide gas as a processing effect improving gas, respectively. The results of measuring the contact angle of the water droplet with the surface of the subsequent workpiece W are shown in FIGS.
 なお、被処理物Wとしては、ポリイミドフィルムを用い、搬送速度100mm/secの条件下でプラズマ処理を行った。 In addition, as the to-be-processed object W, the polyimide film was used and the plasma process was performed on the conditions of the conveyance speed of 100 mm / sec.
 第1に、処理効果向上ガスとして酸素ガスを用いた場合には、アルゴンガス、ヘリウムガスのいずれにおいても、処理効果向上ガスの添加率が10%となるまでは、添加率の増加に比例して接触角が小さくなり、添加率が10%より増加すると、反対に接触角が大きくなった。 First, when oxygen gas is used as the treatment effect improving gas, in both argon gas and helium gas, until the addition rate of the treatment effect improving gas reaches 10%, it is proportional to the increase in the addition rate. As the contact angle decreased and the addition rate increased from 10%, the contact angle increased.
 第2に、処理効果向上ガスとして炭酸ガスを用いた場合には、ベースガス(キャリアーガス)がアルゴンガスとされたものにおいて、添加率が1%となるまでは急激に接触角が小さくなった。添加率が1%よりも増加すると、添加率の増加に伴って、緩やかに接触角が小さくなり、添加率が90%の時に接触角が最も小さくなった。 Second, when carbon dioxide gas is used as the treatment effect improving gas, the contact angle rapidly decreases until the addition rate reaches 1% when the base gas (carrier gas) is argon gas. . When the addition rate increased from 1%, the contact angle gradually decreased with an increase in the addition rate, and the contact angle became the smallest when the addition rate was 90%.
 また、図5に示すように、ベースガス(キャリアーガス)がヘリウムガスとされたものにおいては、添加率が1%となるまでは急激に接触角が小さくなり、添加率が10%で最小の接触角となった。それよりも添加率が増加すると、添加率の増加に伴って、緩やかに接触角が大きくなった。 Further, as shown in FIG. 5, in the case where the base gas (carrier gas) is helium gas, the contact angle rapidly decreases until the addition rate reaches 1%, and the addition rate is 10%, which is the minimum. It became a contact angle. When the addition rate increased more than that, the contact angle gradually increased with the increase in the addition rate.
 これらの図3から図5に示す接触角の値を比較すると、ベースガス(キャリアーガス)単体からなるプラズマ生成用ガスまたは処理効果向上ガス単体からなるプラズマ生成用ガスからそれぞれ生成したプラズマの処理能力(図3参照)よりも、酸素ガスや炭酸ガスなどの活性の高い処理効果向上ガスをベースガス(キャリアーガス)に混合したプラズマ生成用ガスとすることによって、得られたプラズマの処理能力(図4および図5参照)の向上が可能であることが明らかとなった。 Comparing the values of the contact angles shown in FIGS. 3 to 5, the processing ability of the plasma generated from the plasma generating gas consisting of the base gas (carrier gas) alone or the plasma generating gas consisting of the processing effect improving gas alone, respectively. Compared to (see FIG. 3), the processing ability of the plasma obtained (FIG. 3) is obtained by using a gas for generating plasma mixed with a base gas (carrier gas), such as oxygen gas and carbon dioxide gas having a higher activity. 4 and FIG. 5) was found to be possible.
 したがって、本発明のプラズマ生成用ガスの第1の実施形態によれば、ベースガス(キャリアーガス)と処理効果向上ガスを混合したプラズマ生成用ガスとすることにより、ベースガス(キャリアーガス)または処理効果向上ガスの単体のガスから生成されたプラズマよりも高い処理効果を奏することを可能とする。 Therefore, according to the first embodiment of the plasma generating gas of the present invention, the base gas (carrier gas) or the processing is performed by using the plasma generating gas in which the base gas (carrier gas) and the processing effect improving gas are mixed. It is possible to achieve a higher processing effect than plasma generated from a single gas of the effect improving gas.
 次に、被処理物Wの種類とプラズマ生成用ガスとの関係について実施例2および実施例3において詳しく説明する。 Next, the relationship between the type of the workpiece W and the plasma generation gas will be described in detail in Example 2 and Example 3.
<実施例2>
 被処理物Wとして銅板を用い、処理効果向上ガスに炭酸ガス、窒素酸化物ガス、水蒸気および酸素ガスのいずれかを用いてプラズマ処理を施した際の、処理効果向上ガスの添加率と水滴の接触角の測定結果を表1に示す。なお、表中の値は、図4または図5に示すような処理効果向上ガスの添加率と接触角とのグラフにおいて、添加率が0%の時の接触角の値と、最も接触角が小さくなった際の添加率および接触角の値を示すものである。
<Example 2>
When a copper plate is used as the workpiece W and the plasma treatment is performed using any one of carbon dioxide gas, nitrogen oxide gas, water vapor and oxygen gas as the treatment effect improvement gas, the addition rate of the treatment effect improvement gas and the amount of water droplets Table 1 shows the measurement results of the contact angle. The values in the table are the values of the contact angle when the addition rate is 0% in the graph of the treatment effect improving gas addition rate and the contact angle as shown in FIG. It shows the addition rate and the value of the contact angle when it becomes smaller.
 ベースガス(キャリアーガス)としては、ヘリウムガス、アルゴンガス、窒素ガスおよび空気をそれぞれ用いて測定を行った。 As the base gas (carrier gas), helium gas, argon gas, nitrogen gas and air were used for measurement.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ベースガス(キャリアーガス)をヘリウムガスとし、処理効果向上ガスを炭酸ガスとした際には、添加率10%で最も接触角が小さくなり、窒素酸化物ガスの時には、添加率15%で最も接触角が小さくなり、水蒸気の時には、添加率5%で最も接触角が小さくなり、酸素ガスの時には、添加率10%で最も接触角が小さくなった。 When the base gas (carrier gas) is helium gas and the treatment effect improving gas is carbon dioxide gas, the contact angle becomes the smallest at an addition rate of 10%, and when nitrogen oxide gas is used, the contact rate becomes the highest at an addition rate of 15%. When the water vapor was used, the contact angle was the smallest at an addition rate of 5%, and when oxygen gas was used, the contact angle was the smallest at an addition rate of 10%.
 特に、処理効果向上ガスを炭酸ガスとした際には、添加率0%の時に69.9°であった接触角が、添加率10%の時には、29.7°まで小さくなり、炭酸ガスを添加することで接触角が57.5%も小さくなった。 In particular, when carbon dioxide gas is used as the treatment effect improving gas, the contact angle, which was 69.9 ° when the addition rate is 0%, decreases to 29.7 ° when the addition rate is 10%. The contact angle was reduced by 57.5% by the addition.
 また、ベースガス(キャリアーガス)をアルゴンガスとし、処理効果向上ガスを炭酸ガスとした際には、添加率10%で最も接触角が小さくなり、窒素酸化物ガスの時には、添加率10%で最も接触角が小さくなり、水蒸気の時には、添加率20%で最も接触角が小さくなり、酸素ガスの時には、添加率20%で最も接触角が小さくなった。特に効果が認められたのは、処理効果向上ガスとして酸素ガスを添加率20%で添加したものであり、接触角が30%程度小さくなった。 Further, when the base gas (carrier gas) is argon gas and the treatment effect improving gas is carbon dioxide gas, the contact angle becomes the smallest when the addition rate is 10%, and when the nitrogen oxide gas is used, the addition rate is 10%. The contact angle was the smallest, with water vapor, the contact angle was the smallest at an addition rate of 20%, and when oxygen gas was used, the contact angle was the smallest at an addition rate of 20%. The effect was particularly recognized when oxygen gas was added at a rate of addition of 20% as the treatment effect improving gas, and the contact angle was reduced by about 30%.
 さらに、ベースガス(キャリアーガス)を窒素ガスとし、処理効果向上ガスを炭酸ガスとした際には、添加率1%で最も接触角が小さくなり、窒素酸化物ガスの時には、添加率10%で最も接触角が小さくなり、水蒸気の時には、添加率5%で最も接触角が小さくなり、酸素ガスの時には、効果が認められなかった。特に効果が認められた処理効果向上ガスは、炭酸ガスを添加率1%で混合したものであり、接触角が22.3%小さくなった。 Furthermore, when the base gas (carrier gas) is nitrogen gas and the treatment effect improving gas is carbon dioxide gas, the contact angle becomes the smallest when the addition rate is 1%, and when the nitrogen oxide gas is used, the addition rate is 10%. When the contact angle was the smallest, when water vapor was used, the contact angle became the smallest when the addition rate was 5%, and when oxygen gas was used, no effect was observed. The treatment effect improving gas in which the effect was recognized was a mixture of carbon dioxide gas at an addition rate of 1%, and the contact angle was reduced by 22.3%.
 またさらに、ベースガス(キャリアーガス)を空気とし、処理効果向上ガスを炭酸ガスとした際には、添加率0.4%で最も接触角が小さくなり、窒素酸化物ガスの時には、添加率0.1%で最も接触角が小さくなり、水蒸気の時には、添加率10%で最も接触角が小さくなり、酸素ガスの時には、添加率10%で最も接触角が小さくなった。同様に、特に効果が認められた処理効果向上ガスは、酸素ガスを添加率10%で混合したものであり、接触角が40%程度小さくなった。 Furthermore, when the base gas (carrier gas) is air and the treatment effect improving gas is carbon dioxide, the contact angle becomes the smallest when the addition rate is 0.4%, and when the nitrogen oxide gas is used, the addition rate is 0. The contact angle was the smallest at 0.1%, the contact angle was the smallest at an addition rate of 10% for water vapor, and the contact angle was the smallest at an addition rate of 10% for oxygen gas. Similarly, the treatment effect improving gas in which the effect was recognized was a mixture of oxygen gas at an addition rate of 10%, and the contact angle was reduced by about 40%.
 これらの結果から、被処理物Wが例えば銅板のような金属材料の場合には、処理効果向上ガスとして炭酸ガス、窒素酸化物ガス、水蒸気または酸素ガスのいずれかを添加したプラズマ生成用ガスを用いたプラズマ処理を行うことにより、良好な親水化効果が得られることが明らかとなった。 From these results, when the workpiece W is a metal material such as a copper plate, for example, a plasma generating gas in which any of carbon dioxide, nitrogen oxide gas, water vapor, or oxygen gas is added as a treatment effect improving gas is used. It was revealed that a good hydrophilic effect can be obtained by performing the plasma treatment used.
 したがって、被処理物Wとして金属材料を用いる場合には、処理効果向上ガスとして炭酸ガス、窒素酸化物ガス、水蒸気または酸素ガスのいずれかを用いることが好ましく、特に、ベースガス(キャリアーガス)としてヘリウムガスを用い、処理効果向上ガスとして炭酸ガスを用いたプラズマ生成用ガスによりプラズマ処理を施すことが最も好ましい。 Therefore, when a metal material is used as the workpiece W, it is preferable to use any one of carbon dioxide gas, nitrogen oxide gas, water vapor, or oxygen gas as the treatment effect improving gas, and particularly as the base gas (carrier gas). Most preferably, helium gas is used and plasma treatment is performed with a plasma generation gas using carbon dioxide gas as the treatment effect improving gas.
<実施例3>
 被処理物Wとしてポリイミドフィルムを用い、処理効果向上ガスに炭酸ガス、窒素酸化物ガスおよび水蒸気のいずれかを用いてプラズマ処理を施した際の、処理効果向上ガスの添加率と水滴の接触角の測定結果を表2に示す。なお、表中の値は、図4または図5に示すような処理効果向上ガスの添加率と接触角とのグラフにおいて、添加率が0%の時の接触角の値と、最も接触角が小さくなった際の添加率および接触角の値を示すものである。
<Example 3>
When a polyimide film is used as the workpiece W and the plasma treatment is performed using any one of carbon dioxide gas, nitrogen oxide gas and water vapor as the treatment effect improving gas, the addition rate of the treatment effect improving gas and the contact angle of the water droplets The measurement results are shown in Table 2. The values in the table are the values of the contact angle when the addition rate is 0% in the graph of the treatment effect improving gas addition rate and the contact angle as shown in FIG. It shows the addition rate and the value of the contact angle when it becomes smaller.
 ベースガス(キャリアーガス)としては、ヘリウムガス、アルゴンガス、窒素ガスおよび空気をそれぞれ用いて測定を行った。 As the base gas (carrier gas), helium gas, argon gas, nitrogen gas and air were used for measurement.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ベースガス(キャリアーガス)をヘリウムガスとし、処理効果向上ガスを炭酸ガスとした際には、添加率10%で最も接触角が小さくなり、窒素酸化物ガスの時には、添加率9%で最も接触角が小さくなり、水蒸気の時には、微量な添加量で接触角が小さくなった。特に、処理効果向上ガスとして炭酸ガスを混合することにより、添加率0%で接触角46.0°であったものが、添加率10%で8.7°となり、接触角が81.1%小さくなった。 When helium gas is used as the base gas (carrier gas) and carbon dioxide gas is used as the treatment effect improving gas, the contact angle becomes the smallest when the addition rate is 10%, and the contact becomes the highest when the addition rate is 9% when nitrogen oxide gas is used. The angle became smaller, and when water vapor was used, the contact angle became smaller with a slight addition amount. In particular, by mixing carbon dioxide as a treatment effect improving gas, the contact angle of 46.0 ° at an addition rate of 0% becomes 8.7 ° at an addition rate of 10%, and the contact angle is 81.1%. It has become smaller.
 また、ベースガス(キャリアーガス)をがアルゴンガスとし、処理効果向上ガスを炭酸ガスとした際には、添加率90%で最も接触角が小さくなり、窒素酸化物ガスの時には、添加率6%で最も接触角が小さくなり、水蒸気の時には、微量な添加量で接触角が小さくなった。 Further, when the base gas (carrier gas) is argon gas and the treatment effect improving gas is carbon dioxide, the contact angle becomes the smallest when the addition rate is 90%, and when the nitrogen oxide gas is used, the addition rate is 6%. In the case of water vapor, the contact angle became the smallest with a slight addition amount.
 さらに、ベースガス(キャリアーガス)を窒素ガスとし、処理効果向上ガスを炭酸ガスとした際には、添加率100%で最も接触角が小さくなり、窒素酸化物ガスの時には、添加率6%で最も接触角が小さくなり、水蒸気の時には、微量な添加量で接触角が小さくなった。 Furthermore, when the base gas (carrier gas) is nitrogen gas and the treatment effect improving gas is carbon dioxide gas, the contact angle becomes the smallest when the addition rate is 100%, and when the nitrogen oxide gas is used, the addition rate is 6%. The contact angle became the smallest, and when water vapor was used, the contact angle became small with a slight addition amount.
 またさらに、ベースガス(キャリアーガス)を空気とし、処理効果向上ガスを炭酸ガスとした際には、添加率100%で最も接触角が小さくなり、窒素酸化物ガスの時には、添加率100%で最も接触角が小さくなり、水蒸気の時には、添加率60%で最も接触角が小さくなった。 Furthermore, when the base gas (carrier gas) is air and the treatment effect improving gas is carbon dioxide, the contact angle becomes the smallest when the addition rate is 100%, and when the nitrogen oxide gas is used, the addition rate is 100%. The contact angle was the smallest, and when water vapor was used, the contact angle was the smallest at an addition rate of 60%.
 これらの結果から、被処理物Wが例えばポリイミドフィルムのような高分子材料の場合には、処理効果向上ガスとして炭酸ガス、窒素酸化物ガスまたは水蒸気を添加したプラズマ生成用ガスを用いたプラズマ照射処理を行うことにより、良好な親水化効果が得られることが明らかとなった。 From these results, when the object to be processed W is a polymer material such as a polyimide film, plasma irradiation using a plasma generating gas to which carbon dioxide gas, nitrogen oxide gas or water vapor is added as a treatment effect improving gas is performed. It was revealed that a good hydrophilic effect can be obtained by performing the treatment.
 したがって、被処理物Wとして高分子材料を用いる場合には、処理効果向上ガスとして、炭酸ガス、窒素酸化物ガスまたは水蒸気を用いることが好ましく、特に、ベースガス(キャリアーガス)としてアルゴンガスを用い、処理効果向上ガスとして炭酸ガスを用いたプラズマ生成用ガスによりプラズマ処理を施すことが最も好ましい。 Therefore, when a polymer material is used as the workpiece W, it is preferable to use carbon dioxide, nitrogen oxide gas, or water vapor as the treatment effect improving gas, and in particular, argon gas is used as the base gas (carrier gas). The plasma treatment is most preferably performed with a plasma generation gas using carbon dioxide gas as the treatment effect improving gas.
 本発明の第2態様として、前記混合ガスに対して、生成補助ガスを混合したプラズマ生成用ガスを用いてプラズマ処理を行った場合にについて実施例4を用いて説明する。 As a second aspect of the present invention, a case where a plasma treatment is performed on the mixed gas using a plasma generating gas obtained by mixing a generation auxiliary gas will be described with reference to Example 4.
<実施例4>
 ベースガス(キャリアーガス)と処理効果向上ガスの混合ガスに生成補助ガスとしてヘリウムガスを混合し、ヘリウムガスの混合率を変化させるとともに、その際にプラズマが生成し始める印加電圧を測定した結果を図6および図7に示す。
<Example 4>
The mixed gas of base gas (carrier gas) and treatment effect improving gas is mixed with helium gas as a production auxiliary gas, the mixing ratio of helium gas is changed, and the result of measuring the applied voltage at which plasma starts to be generated is shown. It is shown in FIG. 6 and FIG.
 処理効果向上ガスとして酸素ガスまたは水素ガスを用い、ベースガス(キャリアーガス)としてアルゴンガス、窒素ガスまたは空気のいずれかを用いて、生成補助ガスとしてのヘリウムガスを混合しプラズマ生成用ガスとして測定を行った。また、図6に示すグラフは、プラズマ生成用ガスの総流量を5L/minとし、そのうち、3L/minを処理効果向上ガスとしての酸素ガス、2L/minをベースガス(キャリアーガス)に対して生成補助ガスとしてのヘリウムガスの混合量を変化させた混合物として実験を行った。同様に、図7に示すグラフは、総流量を5L/minとし、そのうち、0.15L/minを処理効果向上ガスとしての水素ガス、4.85L/minをベースガス(キャリアーガス)に対して生成補助ガスとしてのヘリウムガスの混合量を変化させた混合物として実験を行った。なお、2つの実験は共にジェット型プラズマ生成装置1を用い、印加する電圧を徐々に増加して、プラズマの生成が開始した際の印加電圧を記録したものである。 Using oxygen gas or hydrogen gas as treatment effect improving gas, argon gas, nitrogen gas or air as base gas (carrier gas), mixing helium gas as production auxiliary gas and measuring as plasma generating gas Went. The graph shown in FIG. 6 shows that the total flow rate of the plasma generating gas is 5 L / min, of which 3 L / min is oxygen gas as the treatment effect improving gas, and 2 L / min is the base gas (carrier gas). The experiment was conducted as a mixture in which the mixing amount of helium gas as a production auxiliary gas was changed. Similarly, in the graph shown in FIG. 7, the total flow rate is 5 L / min, of which 0.15 L / min is the hydrogen gas as the treatment effect improving gas, and 4.85 L / min is the base gas (carrier gas). The experiment was conducted as a mixture in which the mixing amount of helium gas as a production auxiliary gas was changed. In both experiments, the jet plasma generator 1 was used, and the applied voltage was gradually increased to record the applied voltage when plasma generation started.
 図6に示すように、ベースガス(キャリアーガス)として窒素ガスを用いた場合には、ヘリウムガスのガス濃度が0%から20%までは印加電圧に変化は認められず、それ以上のガス濃度とされることにより、濃度の増加に伴ってプラズマ生成開始電圧が下がった。 As shown in FIG. 6, when nitrogen gas is used as the base gas (carrier gas), no change is observed in the applied voltage when the gas concentration of the helium gas is 0% to 20%, and the gas concentration higher than that. As a result, the plasma generation start voltage decreased as the concentration increased.
 ベースガス(キャリアーガス)として空気を用いた場合には、ヘリウムガスのガス濃度の増大に比例して、プラズマ生成開始電圧が下がり、20%のヘリウムガスの添加によって、プラズマ生成開始電圧が約14%も低くなった。 When air is used as the base gas (carrier gas), the plasma generation start voltage decreases in proportion to the increase in the gas concentration of the helium gas, and the plasma generation start voltage is about 14 by the addition of 20% helium gas. % Was also low.
 また、図7に示すように、ベースガス(キャリアーガス)としてアルゴンガスを用いた場合には、ヘリウムガスのガス濃度を増加しても、プラズマ生成開始電圧にほとんど変化は認められなかった。 Further, as shown in FIG. 7, when argon gas was used as the base gas (carrier gas), the plasma generation start voltage was hardly changed even when the gas concentration of helium gas was increased.
 また、図7に示すようにベースガスとして窒素ガスおよび空気を用いた場合には、どちらの場合においても、ヘリウムガスのガス濃度が増加するのに伴って、プラズマ生成開始電圧が下がった。 Also, as shown in FIG. 7, when nitrogen gas and air were used as the base gas, in either case, the plasma generation start voltage decreased as the gas concentration of helium gas increased.
 これらの結果から、生成補助ガスを混合したプラズマ生成用ガスとすることにより、プラズマ生成開始電圧が低くなることから、プラズマ化が困難な酸素ガスや水素ガスを処理効果向上ガスとして用いた際にも、容易に安定なプラズマを生成可能であることが明らかとなった。 From these results, the plasma generation start voltage is lowered by using the plasma generation gas mixed with the generation auxiliary gas. Therefore, when oxygen gas or hydrogen gas that is difficult to be converted into plasma is used as the treatment effect improving gas. However, it has become clear that a stable plasma can be easily generated.
 また、生成補助ガスを混合したプラズマ生成用ガスを用いる際には、ベースガス(キャリアーガス)および処理効果向上ガスとして、生成補助ガスに用いられるガスと異なる物質のガスが選択されていることが好ましい。 In addition, when a plasma generation gas mixed with a generation auxiliary gas is used, a gas of a substance different from the gas used for the generation auxiliary gas is selected as the base gas (carrier gas) and the processing effect improving gas. preferable.
 上述のように、本発明のプラズマ生成用ガスの第1の実施形態によれば、ベースガス(キャリアーガス)と処理効果向上ガスとの混合ガスとすることにより、従来のプラズマと比較して、処理効果の高いプラズマを得られるため、被処理物に対するプラズマ処理を高速に行って、量産性の向上を図ることができる。 As described above, according to the first embodiment of the plasma generating gas of the present invention, by using a mixed gas of the base gas (carrier gas) and the treatment effect improving gas, compared with the conventional plasma, Since plasma having a high processing effect can be obtained, plasma processing can be performed on an object to be processed at high speed, and mass productivity can be improved.
 また、本発明のプラズマ生成用ガスの第2の実施形態によれば、第1の実施形態の混合ガスに単に生成補助ガスを混合することにより、処理効果向上ガスとしてプラズマ化が困難なガスを選択した際にも、容易にプラズマを生成することを可能とする。 Further, according to the second embodiment of the plasma generating gas of the present invention, a gas that is difficult to be converted into a plasma as a processing effect improving gas is obtained by simply mixing the auxiliary gas for generation in the mixed gas of the first embodiment. Even when selected, plasma can be easily generated.
 本発明は、上記の実施形態に限定されるものではなく、必要に応じて種々の変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made as necessary.
 1 プラズマ生成装置
 2 プラズマ源
 3 電源
 4 ガス供給部
 5 ハウジング
 5a ガス導入口
 6 外側電極
 6a 噴射口
 7 内側電極
 8 放電部
 9 搬送台
 W 被処理物
 A 搬送方向
DESCRIPTION OF SYMBOLS 1 Plasma generator 2 Plasma source 3 Power supply 4 Gas supply part 5 Housing 5a Gas inlet 6 Outer electrode 6a Injecting port 7 Inner electrode 8 Discharge part 9 Carriage W W To-be-processed object A Transport direction

Claims (7)

  1.  大気圧プラズマを生成するために用いられるプラズマ生成用ガスであって、
     プラズマとなることにより処理能力を有するとともに、前記プラズマ生成用ガス全体をプラズマ源に搬送するためのベースガス(キャリアーガス)と、
     前記大気圧プラズマの処理効果を向上させるための処理効果向上ガスとの混合ガスとされることを特徴とするプラズマ生成用ガス。
    A plasma generating gas used to generate atmospheric pressure plasma,
    A base gas (carrier gas) for carrying the entire plasma generating gas to a plasma source while having processing capability by becoming plasma.
    A plasma generating gas characterized by being a mixed gas with a treatment effect improving gas for improving the treatment effect of the atmospheric pressure plasma.
  2.  前記大気圧プラズマを用いて、金属材料の表面をクリーニングもしくは親水化もしくはエッチングによって表面層の除去を行う際には、
     前記処理効果向上ガスとして、酸素ガス、炭酸ガス、水蒸気および窒素酸化物ガスから少なくとも1つを選択して用いることを特徴とする請求項1に記載のプラズマ生成用ガス。
    When removing the surface layer by cleaning or hydrophilizing or etching the surface of the metal material using the atmospheric pressure plasma,
    The plasma generating gas according to claim 1, wherein at least one selected from oxygen gas, carbon dioxide gas, water vapor and nitrogen oxide gas is used as the treatment effect improving gas.
  3.  前記大気圧プラズマを用いて、高分子材料の表面をクリーニングもしくは親水化若しくはエッチングによって表面層の除去を行う際には、
     前記処理効果向上ガスとして、炭酸ガス、水蒸気および窒素酸化物ガスから少なくとも1つを選択して用いることを特徴とする請求項1に記載のプラズマ生成用ガス。
    When removing the surface layer by cleaning or hydrophilizing or etching the surface of the polymer material using the atmospheric pressure plasma,
    2. The gas for generating plasma according to claim 1, wherein at least one selected from carbon dioxide, water vapor, and nitrogen oxide gas is used as the treatment effect improving gas.
  4.  前記混合ガスに対して、プラズマ化を補助するための生成補助ガスをさらに混合することを特徴とする請求項1乃至請求項3のいずれか1項に記載のプラズマ生成用ガス。 The plasma generation gas according to any one of claims 1 to 3, wherein a generation auxiliary gas for assisting in the plasma formation is further mixed with the mixed gas.
  5.  前記生成補助ガスが、ヘリウムガスとされることを特徴とする請求項4に記載のプラズマ生成用ガス。 The plasma generation gas according to claim 4, wherein the generation auxiliary gas is helium gas.
  6.  請求項1乃至請求項5のいずれか1項に記載のプラズマ生成用ガスに対し、大気圧下において電界を印加してプラズマを生成することを特徴とするプラズマ生成方法。 6. A plasma generation method comprising: generating plasma by applying an electric field to the plasma generation gas according to any one of claims 1 to 5 under atmospheric pressure.
  7.  請求項6に記載のプラズマ生成方法により生成されたことを特徴とする大気圧プラズマ。 An atmospheric pressure plasma generated by the plasma generation method according to claim 6.
PCT/JP2012/064687 2011-06-08 2012-06-07 Gas for plasma generation, plasma generation method, and atmospheric pressure plasma generated thereby WO2012169588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011128588A JP2012256501A (en) 2011-06-08 2011-06-08 Plasma generation gas, method for generating plasma, and atmospheric pressure plasma generated by the method
JP2011-128588 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169588A1 true WO2012169588A1 (en) 2012-12-13

Family

ID=47296143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064687 WO2012169588A1 (en) 2011-06-08 2012-06-07 Gas for plasma generation, plasma generation method, and atmospheric pressure plasma generated thereby

Country Status (2)

Country Link
JP (1) JP2012256501A (en)
WO (1) WO2012169588A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841681A (en) * 2013-04-16 2014-06-04 杜志刚 Plasma nitrogen high pressure gas heating device
CN103648200A (en) * 2013-12-06 2014-03-19 阳泉市新鑫科技研究所有限责任公司 Plasma xenon high-pressure gas heating device
CN103648199A (en) * 2013-12-06 2014-03-19 阳泉市新鑫科技研究所有限责任公司 Plasma helium and carbon dioxide high-pressure gas heating device
CN104878180B (en) * 2015-05-25 2017-04-12 马钢(集团)控股有限公司 Electrical steel plasma stable suspension device and preparation method thereof
JP7448120B2 (en) 2019-11-14 2024-03-12 国立研究開発法人農業・食品産業技術総合研究機構 Method for introducing genome editing enzymes into plant cells using plasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159845A (en) * 2000-11-22 2002-06-04 Konica Corp Surface treatment method
JP2011023244A (en) * 2009-07-16 2011-02-03 Panasonic Electric Works Co Ltd Plasma processing apparatus
JP2011512616A (en) * 2008-02-01 2011-04-21 フジフィルム マニュファクチュアリング ヨーロッパ ビー.ヴィ. Method and apparatus for plasma surface treatment of moving substrate
JP2011517368A (en) * 2008-02-29 2011-06-02 アプライド マテリアルズ インコーポレイテッド Method and apparatus for removing polymer from a substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159845A (en) * 2000-11-22 2002-06-04 Konica Corp Surface treatment method
JP2011512616A (en) * 2008-02-01 2011-04-21 フジフィルム マニュファクチュアリング ヨーロッパ ビー.ヴィ. Method and apparatus for plasma surface treatment of moving substrate
JP2011517368A (en) * 2008-02-29 2011-06-02 アプライド マテリアルズ インコーポレイテッド Method and apparatus for removing polymer from a substrate
JP2011023244A (en) * 2009-07-16 2011-02-03 Panasonic Electric Works Co Ltd Plasma processing apparatus

Also Published As

Publication number Publication date
JP2012256501A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2012169588A1 (en) Gas for plasma generation, plasma generation method, and atmospheric pressure plasma generated thereby
US11384420B2 (en) Method and device for promoting adhesion of metallic surfaces
JP2002237480A (en) Method of treating base material with discharge plasma
WO2007063987A1 (en) Method for processing/washing with ultra-pure water plasma foams and apparatus for the method
KR101807002B1 (en) Apparatus for spraying liquid plasma jet
JP4296523B2 (en) Plasma generator
JP2002151494A (en) Normal pressure plasma processing method and device therefor
KR101899177B1 (en) Method and apparatus for treating film surface
JP4341149B2 (en) Surface treatment method
JP2002151480A (en) Processing method for semiconductor element and device therefor
JP5126983B2 (en) Plasma generator
KR20020071694A (en) Method and apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma
JP2002020514A (en) Method for modifying surface of fluororesin
JP2004211161A (en) Plasma generating apparatus
WO2022196580A1 (en) Surface modification method
JP2002151476A (en) Method and apparatus for removing resist
JP2002151543A (en) Method for removing oxide film of metal electrode
JP2004055301A (en) Plasma treatment device and the plasma treatment method
JP2003154256A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using the same
JP2003089726A (en) Method for hydrophilization treatment of polyimide base material
JP4420116B2 (en) Plasma processing apparatus and plasma processing method
JP2004121939A (en) Method for cleaning surface of ito glass and apparatus therefor
TWI599271B (en) A device for coating nano-particles on a substrate and a method for manufacturing the same
JP2003022900A (en) Plasma processing method for atmospheric pressure pulse
JP2005332783A (en) Plasma treatment device and plasma treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796043

Country of ref document: EP

Kind code of ref document: A1