WO2012169244A1 - 車両のパーキングロック制御装置および制御方法 - Google Patents

車両のパーキングロック制御装置および制御方法 Download PDF

Info

Publication number
WO2012169244A1
WO2012169244A1 PCT/JP2012/055526 JP2012055526W WO2012169244A1 WO 2012169244 A1 WO2012169244 A1 WO 2012169244A1 JP 2012055526 W JP2012055526 W JP 2012055526W WO 2012169244 A1 WO2012169244 A1 WO 2012169244A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking lock
vehicle
lock mechanism
control device
parking
Prior art date
Application number
PCT/JP2012/055526
Other languages
English (en)
French (fr)
Inventor
長谷川 淳一
山内 康弘
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/110,802 priority Critical patent/US9233671B2/en
Priority to CN201280022437.4A priority patent/CN103517838A/zh
Priority to EP12797341.0A priority patent/EP2719591A4/en
Publication of WO2012169244A1 publication Critical patent/WO2012169244A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/005Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles by locking of wheel or transmission rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/122Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger for locking of reverse movement

Definitions

  • the present invention relates to a parking lock control for locking wheels.
  • each wheel has a parking lock mechanism, and when a parking lock request is output, the wheel is locked by operating the parking lock mechanism of each wheel. ing.
  • An object of the present invention is to provide a parking lock control device for a vehicle that can suppress power consumption.
  • the first parking lock mechanism including a part of the plurality of parking lock mechanisms is operated and the first parking lock is operated.
  • the movement of the vehicle in a state where only the lock mechanism is operated is estimated or detected.
  • the second parking lock mechanism is further operated.
  • the vehicle does not move, by operating only the first parking lock mechanism, power consumption can be suppressed and the cruising distance can be increased. Further, when the vehicle moves or is likely to move when only the first parking lock mechanism is operated, the second parking lock mechanism for another drive wheel is operated in any situation. The movement of the vehicle can be suppressed.
  • 1 is an overall system diagram of a vehicle including a parking lock control device according to an embodiment. It is a flowchart showing the parking lock mechanism control process implemented in the parking lock controller of an Example. It is the schematic showing the content of the one-wheel / two-wheel lock determination process of an Example. It is the schematic showing the motion of the vehicle by the action
  • FIG. 1 is an overall system diagram of a vehicle equipped with a parking lock control device of an embodiment.
  • the vehicle according to the embodiment is a rear wheel drive type electric vehicle, and includes front wheels FR and FL that are driven wheels, and rear wheels RR and RL that are drive wheels.
  • the rear wheel RR on the right side of the vehicle has an in-wheel type drive motor MR (right motor) that directly drives the rear wheel RR, a parking lock mechanism PLR that can lock the rotation shaft of the drive motor MR on the vehicle body side, And a resolver NR (vehicle behavior detecting means) for detecting the rotation speed (or rotation angle) of the drive motor MR.
  • MR right motor
  • PLR parking lock mechanism
  • resolver NR vehicle behavior detecting means
  • the rear wheel RL on the left side of the vehicle has an in-wheel drive motor ML (left motor) that directly drives the rear wheel RL, and a parking lock mechanism that can lock the rotation shaft of the drive motor ML on the vehicle body side.
  • a PLL and a resolver NL (vehicle behavior detecting means) for detecting the rotation speed (or rotation angle) of the drive motor ML are included.
  • the parking lock mechanisms PLR and PLL are systems that lock the rotation by engaging the parking pawl with the parking gear, and the parking pawl is configured to be operable by an electromagnetic actuator. The details of these electromagnetic parking lock mechanisms are well known in the art and will not be described.
  • an inclination detection means 1 (vehicle behavior detection means) for detecting the inclination of the vehicle, a current position detection means 2 (vehicle behavior detection means) for detecting the current position, and a steering angle detection means 3 for detecting the steering angle.
  • the inclination detecting means 1 is specifically a longitudinal G sensor for detecting the longitudinal acceleration of the vehicle, a lateral G sensor for detecting the lateral acceleration of the vehicle, and the like, and not only the acceleration acting on the traveling vehicle. In the situation where the vehicle is stopped or near the vehicle stop, the road surface inclination of the place where the current vehicle is located can be detected.
  • the current position detecting means 2 is specifically a navigation system using GPS or the like, and is configured to be able to recognize road surface inclination information of the current position.
  • the steering wheel angle detection means 3 is a steering angle sensor that detects a steering angle that is an operation amount of the steering wheel 4 and detects a value corresponding to a tire corner angle of the front wheels FR and FL at the present time. In addition, you may provide the sensor (for example, sensor which detects a rack movement etc.) etc. which can detect a tire turning angle.
  • the vehicle has a parking lock controller PLCU, information on the slope of the road surface on which the vehicle is detected by the inclination detection means 1, road surface inclination information at the current position of the vehicle detected by the current position detection means 2, and a steering angle.
  • An operation command is output to the parking lock mechanisms PLR and PLL based on the steering angle detected by the detection means 3 and the rear wheel speed detected by the resolvers NR and NL provided to the rear wheels RR and RL.
  • both the rear wheels are provided with the parking lock mechanisms PLR and PLL, respectively, and when the parking lock mechanism is operated, an operation command is output to both, It is possible to lock.
  • an electric actuator is used for the operation of the parking lock mechanism, power consumption increases. If the vehicle is simply locked on a flat road, the object of prohibiting vehicle movement can be achieved by locking only one wheel without locking both wheels. Therefore, in the embodiment, if the environment is basically a flat road and the vehicle does not move even if left as it is, the lock command is output to only one wheel. Thereby, the electric power consumed by the electric actuator of the parking lock mechanism can be suppressed, and the cruising distance can be improved.
  • the operation command to the parking lock mechanism basically operates based on a signal that the driver has operated the shift lever of the transmission and shifted to the parking range. Therefore, it does not necessarily operate after the vehicle stops, and may operate in a state where the vehicle has a slight vehicle speed. At that time, if only one wheel is locked, the inertia of the vehicle causes other wheels to roll while the locked wheel is stopped, and the vehicle turns around the locked wheel, resulting in vehicle behavior. There was a problem of being disturbed.
  • the embodiment is based on a control configuration that outputs a lock command only to one side if it is a flat road, and on that basis, there is a possibility that the behavior of the vehicle may be disturbed by the operation of one parking lock mechanism, or it is actually disturbed Both parking lock mechanisms are activated when there is a risk of moving from a stopped state or when the vehicle actually moves.
  • the control configuration will be described.
  • FIG. 2 is a flowchart showing a parking lock mechanism operation control process performed in the parking lock controller of the embodiment.
  • step S1 it is determined whether or not there is a request for operating the parking lock mechanism. If it is determined that there is an operation request, the process proceeds to step S2, and otherwise, this step is repeated.
  • the operation request of the parking lock mechanism indicates a case where the position of the shift lever operated by the driver is in the parking range. Even if the parking lock mechanism is activated during traveling at a certain vehicle speed, the parking pawl is only in a so-called ratcheting state where it is repelled by the parking gear. Also accept. However, the operation request of the parking lock mechanism may be canceled due to other conditions and the like is not particularly limited.
  • FIG. 3 is a schematic diagram showing the contents of the one-wheel / two-wheel lock determination process of the embodiment.
  • a vehicle acceleration region in which it can be determined that the vehicle does not move due to an inclination is set on a plane having the vehicle longitudinal acceleration as the vertical axis and the vehicle lateral acceleration as the horizontal axis. Then, it is determined whether or not the detected acceleration is within this region for a predetermined diagnosis time. If it is determined that the detected acceleration is within this region for the diagnosis time, it is determined that the vehicle does not move due to the inclination. (See FIG. 3B). In this case, the process proceeds to step S5. On the other hand, when a scene outside this area is detected during the diagnosis time, it is determined that the vehicle may move on an inclination (see FIG. 3C). In this case, the process proceeds to step S3.
  • the longitudinal acceleration area may be set wider than the lateral acceleration area, or may be set not only by a circular area but also by a linear diamond. Further, if it is determined that the vehicle is out of the region even once during the diagnosis time, it may be determined that the vehicle may move, or if the vehicle is determined to be out of the region continuously for a predetermined time. May be determined to move.
  • step S3 an operation command is output to both parking lock mechanisms PLR and PLL.
  • step S5 if it can be determined that there is no fear that the vehicle will move due to the one-wheel lock at this time, the process proceeds to step S5.
  • step S4 the number of times each of the right and left parking lock mechanisms is activated is counted up. For example, when both parking lock mechanisms are activated, both are counted up, and when one parking lock mechanism is activated, one is counted up.
  • step S5 a determination process for determining the parking lock mechanism on the side that outputs the parking lock command is performed. Here, it determines based on the count-up value of a steering angle and the frequency
  • the steering direction is confirmed based on the steering angle detected by the steering angle detection means 3.
  • an operation command is output to the parking lock mechanism PLL of the left rear wheel.
  • An operation command is output to the parking lock mechanism PLR of the rear wheel.
  • FIG. 4 is a schematic diagram illustrating movement of the vehicle due to the operation of the parking lock mechanism when the vehicle is steered to the left side in the vehicle of the embodiment. If the parking lock mechanism PLL of the left rear wheel is operated in a state where the vehicle is steered to the left side, the vehicle may rotate about the left rear wheel as shown by x in FIG. Cannot be prohibited. On the other hand, as shown by a circle in FIG. 4, when the parking lock mechanism PLR for the right rear wheel is operated, the rotational movement of the vehicle can be inhibited and the movement of the vehicle is effectively prohibited. Can do. The same applies to the case of turning to the right. As described above, by determining the parking lock mechanism to be operated according to the steering angle, the movement of the vehicle can be effectively suppressed.
  • step S6 an operation command is output to the parking lock mechanism on the side determined in step S5.
  • step S7 after outputting an operation command for the parking lock mechanism, it is determined whether or not the vehicle is moving. If it is determined that the vehicle is likely to move, the process proceeds to step S8, and the parking lock mechanism on the unlocked side is An operation command is output, and the process proceeds to step S4 to count up both parking lock mechanisms. On the other hand, when it is determined that there is no possibility that the vehicle will move, the process proceeds to step S4, and the activated parking lock mechanism is counted up.
  • step S2 it is determined whether or not the detected acceleration is within this region for a predetermined diagnosis time. Note that this determination has already been made in step S2. However, if the vehicle is tilted in the middle when moving on a ferry, for example, both parking locks can be determined even if the vehicle is stopped. Can operate the mechanism.
  • FIG. 5 is a schematic diagram illustrating a vehicle movement determination process according to the embodiment.
  • FIG. 5A is a time chart showing determination based on the motor rotation speed or the motor rotation angle. Since the motor rotation speed and the motor rotation angle are substantially the same, only the motor rotation speed will be described below. If the absolute value of the motor rotational speed is less than the predetermined rotational speed, it is determined that there is no problem with the one-wheel lock, and if the absolute value of the motor rotational speed is equal to or greater than the predetermined rotational speed, it is determined that the two-wheel lock is necessary.
  • the predetermined number of revolutions is a number of revolutions of the motor that can be determined that the vehicle does not move due to the inclination, and is a preset value. Therefore, when the forward movement is the positive rotation speed, for example, the backward rotation speed is the negative rotation speed. Therefore, it is determined whether or not the absolute value of the motor rotation speed is less than the predetermined rotation speed. In FIG. 5, not the absolute value but also the sign of the rotational speed is included, but it is expressed by the positive side predetermined rotational speed or the negative side predetermined rotational speed.
  • the resolver that detects the rotation angle required for motor control can detect a slight change in rotation as well as the rotation direction, and the wheel speed sensor used for anti-lock brake control etc. cannot detect the rotation direction. And the resolution is lower than that of the resolver. Therefore, by using the resolver, it is possible to detect even a slight movement or moving direction of the vehicle, and it is possible to make a highly accurate determination. In the example shown in FIG. 5A, the determination is made based on how much it changes during a predetermined diagnosis time. However, the diagnosis may be performed continuously or periodically. Good.
  • FIG. 5B is a time chart showing the determination based on the accumulated motor rotation speed. If the absolute value of the accumulated motor speed (ie, travel distance) is less than the predetermined cumulative motor speed, it is determined that there is no problem with single-wheel locking, and the absolute value of the cumulative motor speed is When it exceeds the predetermined cumulative motor speed, it is determined that the two-wheel lock is necessary.
  • the cumulative motor rotation speed is used when both wheels are slowly moving continuously while avoiding the case where it is determined that both wheels need to be locked excessively due to slight back and forth shaking of the vehicle. It is necessary to lock. Note that both the determination based on the motor rotation speed and the determination based on the accumulated motor rotation speed may be determined simultaneously, or only one of them may be determined.
  • FIG. 6 is a flowchart for operating the drive motor when an operation command is output to the unlocked parking lock mechanism based on the motor speed of the embodiment. This process is started when the motor rotation speed exceeds a predetermined rotation speed.
  • step S11 rotation speed feedback control is performed on the unlocked drive motor so that the target motor rotation speed becomes 0 or a predetermined value less than the predetermined rotation speed. Note that a predetermined torque set in advance may be applied.
  • step S12 it is determined whether or not the absolute value of the motor rotation speed of the drive motor on the unlocked side is less than a predetermined rotation speed. If it is less than the predetermined rotation speed, it is determined that the motor rotation speed has converged below the predetermined rotation speed. Proceed to step S14.
  • step S13 it is determined that the motor rotational speed is equal to or higher than the predetermined rotational speed, and the process proceeds to step S13.
  • the diagnostic timer for determining the motor rotational speed convergence is reset and the process returns to step S11 to continue the rotational speed feedback control.
  • step S14 the diagnostic timer for determining the motor rotation speed convergence is counted up.
  • step S15 it is determined whether or not the count value of the diagnosis timer has passed a diagnosis time in which it can be determined that the motor rotation speed has converged. An operation command is output to the parking lock mechanism. On the other hand, when the diagnosis time has not elapsed, the process returns to step S11 to continue the motor rotational speed control and continue to monitor the convergence state of the motor rotational speed.
  • FIG. 7 is a time chart for operating the drive motor when an operation command is output to the unlocked parking lock mechanism of the embodiment. Note that the initial state of this time chart is a state in which the vehicle is stopped while only the right side parking lock mechanism PLR is operated.
  • FIG. 8 is a flowchart for operating the drive motor when an operation command is output to the unlocked parking lock mechanism based on the cumulative motor rotation speed of the embodiment. This process is started when the accumulated motor rotational speed exceeds a predetermined cumulative motor rotational speed.
  • step S21 the rotational speed feedback control is performed on the unlocked drive motor so that the target motor rotational speed becomes 0 or a predetermined value less than the predetermined rotational speed. Note that a predetermined torque set in advance may be applied.
  • step S22 it is determined whether or not the cumulative motor rotation speed absolute value of the drive motor on the unlocked side is less than a value obtained by adding the cumulative difference motor rotation speed to the predetermined cumulative motor rotation speed. It is determined that the movement of the vehicle is suppressed, and the process proceeds to step S23.
  • the cumulative difference motor rotation speed is a value by which it can be determined that the movement of the vehicle has converged due to torque application of the drive motor.
  • it is determined that the accumulated motor rotational speed is equal to or greater than the new threshold value and the vehicle movement cannot be suppressed even by rotational speed feedback control, and the process proceeds to step S25.
  • An operation command is output to the lock mechanism. This forcibly suppresses vehicle movement.
  • step S23 the diagnostic timer for determining the accumulated motor rotation speed is counted up.
  • step S24 it is determined whether the count value of the diagnosis timer has passed a diagnosis time that can be determined that the accumulated motor rotation speed has converged. If it is determined that the time has elapsed, the process proceeds to step S25 and the unlocked side An operation command is output to the parking lock mechanism. On the other hand, when the diagnosis time has not elapsed, the process returns to step S21 to continue the motor rotational speed control and continue to monitor the convergence state of the accumulated motor rotational speed.
  • FIG. 9 is a time chart for operating the drive motor when outputting an operation command to the unlocked parking lock mechanism based on the cumulative motor rotation speed of the embodiment. Note that the initial state of this time chart is a state in which the vehicle is stopped while only the right side parking lock mechanism PLR is operated.
  • the diagnostic time for determining the cumulative motor rotational speed convergence is set, and the cumulative differential motor rotational speed is added to the predetermined cumulative motor rotational speed and set as a new threshold value. Then, during the diagnosis time for determining the cumulative motor rotational speed convergence, it is continuously determined whether or not the cumulative motor rotational speed absolute value of the drive motor ML is less than a new threshold value.
  • a right parking lock mechanism PLR (first parking lock mechanism) which is any one of a plurality of parking lock mechanisms provided on a plurality of drive wheels of a vehicle, a right parking lock mechanism PLR,
  • the left parking lock mechanism PLL (second parking lock mechanism), which is a parking lock mechanism provided on another drive wheel, and one of the right and left parking locks when a parking lock operation command is output
  • Parking lock controller PLCU parking lock mechanism control means for operating the mechanism
  • inclination detecting means 1 current position detecting means 2, resolver NL
  • NR vehicle behavior detection means
  • a parking lock controller PLCU Moving estimates or detects a, when the movement of the estimated or detected vehicle is the predetermined or more, it was decided to operate the other of the parking lock mechanism.
  • step S2 of the embodiment the vehicle behavior is estimated based on the value of the acceleration sensor. Therefore, both parking lock mechanisms can be operated before the vehicle actually moves, and movement of the vehicle can be avoided.
  • step S7 of the above embodiment the vehicle behavior is detected based on the values of the resolvers NR and NL that detect the rotational speeds of the right and left drive motors MR and ML. Therefore, even if the vehicle cannot be estimated at the beginning, even if the vehicle moves afterwards, the movement of the vehicle can be suppressed by operating both parking lock mechanisms.
  • the present invention has been described based on the embodiments. However, the present invention is not limited to the above embodiments, and other configurations can be included in the scope of the present invention.
  • the description has been given of the rear-wheel drive type electric vehicle.
  • the front-wheel drive type or the four-wheel drive type electric vehicle may have a configuration in which each wheel is provided with a parking lock mechanism.
  • a parking lock mechanism on one of the left and right sides of the front wheel may be combined with a parking lock mechanism on the other side of the left and right of the rear wheel,
  • a parking lock mechanism for the front wheel and a parking lock mechanism for the rear wheel located on the same side in the direction may be combined.
  • first parking lock mechanism may include a plurality of parking lock mechanisms
  • second parking lock mechanism may include a plurality of parking lock mechanisms.
  • each of the first parking lock mechanism and the second parking lock mechanism may include one or a plurality of parking lock mechanisms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 電力消費を抑制するために、本発明の車両のパーキングロック制御装置では、パーキングロック作動指令が出力されたときに、左右のパーキングロック機構のうち、何れか一方のパーキングロック機構を作動させる。一方のパーキングロック機構のみを作動させた場合に車両が移動すると推定又は検出されたときは、他方のパーキングロック機構を作動させる。

Description

車両のパーキングロック制御装置および制御方法
 本発明は、車輪をロックするパーキングロックの制御に関する。
 従来、各輪にモータを備えた車両において、各輪にパーキングロック機構を備え、パーキングロック要求が出力されたときは、各輪のパーキングロック機構を作動させることで車輪をロックする構成が開示されている。
 しかしながら、複数のパーキングロック機構を作動させる場合、電力消費量が多いという問題があった。
特開2007-314036号公報
 本発明は、電力消費を抑制可能な車両のパーキングロック制御装置を提供することを目的とする。
 本発明の車両のパーキングロック制御装置では、パーキングロック作動指令が出力されたときは、複数のパーキングロック機構のうちの一部からなる第1のパーキングロック機構を作動させるとともに、この第1のパーキングロック機構のみを作動させた状態の車両の移動を推定又は検出し、車両が移動すると推定又は検出されたときは、さらに第2のパーキングロック機構を作動させる。
 よって、特に車両が移動しない場合には、第1のパーキングロック機構のみを作動させることで、電力消費を抑制することができ、航続距離を長くすることができる。また、第1のパーキングロック機構のみを作動させた場合に車両が移動するとき、もしくは移動するおそれがあるときは、さらに別の駆動輪に対する第2のパーキングロック機構を作動させるため、いかなる状況でも車両の移動を抑制することができる。
実施例のパーキングロック制御装置を備えた車両の全体システム図である。 実施例のパーキングロックコントローラにおいて実施されるパーキングロック機構制御処理を表すフローチャートである。 実施例の片輪/両輪ロック決定処理の内容を表す概略図である。 実施例の車両において左側に転舵した場合におけるパーキングロック機構の作動による車両の動きを表す概略図である。 実施例の車両移動判断処理を表す概略図である。 実施例のモータ回転数に基づいて未ロック側パーキングロック機構に作動指令を出力するときに駆動モータを作動させるタイムチャートである。 実施例の未ロック側パーキングロック機構に作動指令を出力するときに駆動モータを作動させるタイムチャートである。 実施例の累積モータ回転数に基づいて未ロック側パーキングロック機構に作動指令を出力するときに駆動モータを作動させるフローチャートである。 実施例の累積モータ回転数に基づいて未ロック側パーキングロック機構に作動指令を出力するときに駆動モータを作動させるタイムチャートである。
 図1は実施例のパーキングロック制御装置を備えた車両の全体システム図である。実施例の車両は、後輪駆動型電気自動車であり、従動輪である前輪FR,FLと、駆動輪である後輪RR,RLとを有する。車両右側の後輪RRには、この後輪RRを直接駆動するインホイール型の駆動モータMR(右側モータ)と、駆動モータMRの回転軸を車体側に係止可能なパーキングロック機構PLRと、駆動モータMRの回転数(もしくは回転角)を検出するレゾルバNR(車両挙動検出手段)とを有する。同様に、車両左側の後輪RLには、この後輪RLを直接駆動するインホイール型の駆動モータML(左側モータ)と、駆動モータMLの回転軸を車体側に係止可能なパーキングロック機構PLLと、駆動モータMLの回転数(もしくは回転角)を検出するレゾルバNL(車両挙動検出手段)とを有する。パーキングロック機構PLR,PLLは、パーキングギヤにパーキングポールが噛み合うことで回転をロックする方式であり、パーキングポールは電磁アクチュエータにより作動可能に構成されている。尚、これら電磁式のパーキングロック機構の詳細については公知技術であるため、説明を省略する。
 また、車両の傾きを検知する傾き検知手段1(車両挙動検出手段)と、現在位置を検出する現在位置検出手段2(車両挙動検出手段)と、ハンドル切れ角を検知するハンドル切れ角検知手段3とを有する。尚、傾き検知手段1とは、具体的には車両の前後加速度を検出する前後Gセンサや、車両の左右加速度を検出する横Gセンサ等であり、走行中の車両に作用する加速度のみならず、車両停止中もしくは車両停止に近い状況において、現在の車両が位置する場所の路面傾斜を検知可能に構成されている。また、現在位置検出手段2とは、具体的にはGPSを用いたナビゲーションシステム等であり、現在位置の路面傾斜情報等を認識可能に構成されている。ハンドル切れ角検知手段3とは、ステアリングホイール4の操作量である操舵角を検出する操舵角センサであり、現時点の前輪FR,FLのタイヤ切れ角に相当する値を検出する。尚、他にタイヤ切れ角を検出可能なセンサ(例えばラック移動等を検知するセンサ)等を備えていてもよい。
 また、パーキングロックコントローラPLCUを有し、傾き検知手段1により検知された車両が位置する路面の勾配情報や、現在位置検出手段2により検出された車両の現在位置における路面傾斜情報や、ハンドル切れ角検知手段3により検知された操舵角、及び後輪RR,RLに備えられたレゾルバNR,NLにより検出された後輪回転数に基づいてパーキングロック機構PLR,PLLに作動指令を出力する。
 ここで、実施例の特徴について説明する。上述したように、実施例の電気自動車にあっては、後輪の両方にそれぞれパーキングロック機構PLR,PLLを備えており、パーキングロック機構を作動させる場合、両方に作動指令を出力し、両輪共にロックすることが考えられる。しかし、このパーキングロック機構の作動には電気的アクチュエータを用いることから、電力消費が多くなる。また、単に平坦路においてロックするだけならば、両輪をロックせずとも、片輪だけロックすれば、車両移動の禁止という目的は達成される。そこで、実施例では、基本的に平坦路であって、そのまま放置しても車両移動が起きない環境であれば、片輪だけにロック指令を出力することとした。これにより、パーキングロック機構の電気的アクチュエータが消費する電力を抑制することができ、航続距離の向上を図ることができる。
 ここで、上述したように平坦路であれば一方のみをロックしたとしても問題ないが、傾斜路面等に車両が位置した状態(例えば、傾斜した駐車場等)で、片輪にのみロックがかかったまま車両を放置すると、ロックのかかった輪を中心として他の輪が転がってしまい、車両が若干動いてしまうという問題があった。また、パーキングロック機構への作動指令は、基本的にドライバが変速機のシフトレバー操作を行いパーキングレンジにシフトした信号に基づいて作動するものである。よって、車両停車後に作動するとは限らず、車両が若干の車速を持っている状態で作動する場合もある。そのとき、片輪だけロックすると、車両のイナーシャによって、ロックのかかった輪が停止した状態で他の輪が転がってしまい、ロックのかかった輪を中心として車両が回動することにより車両挙動が乱れるという問題があった。
 そこで、実施例では、平坦路であれば片方だけにロック指令を出力する制御構成を基本とし、その上で、片方のパーキングロック機構の作動により車両挙動が乱れるおそれがある場合や実際に乱れたとき、もしくは車両が停止状態から移動するおそれがある場合や実際に移動したときに、両方のパーキングロック機構を作動させることとした。以下、上記制御構成について説明する。
 図2は、実施例のパーキングロックコントローラにおいて実施されるパーキングロック機構作動制御処理を表すフローチャートである。
 ステップS1では、パーキングロック機構の作動要求があるか否かを判断し、作動要求があると判断したときはステップS2へ進み、それ以外のときは本ステップを繰り返す。ここで、パーキングロック機構の作動要求とは、運転者が操作するシフトレバーの位置がパーキングレンジに位置している場合を示す。尚、ある程度の車速を有する走行中にパーキングロック機構が作動したとしても、パーキングポールがパーキングギヤにはじかれる所謂ラチェッティング状態となるだけであるため、作動要求は基本的にどのタイミングであっても受け入れるものとする。但し、他の条件等によりパーキングロック機構の作動要求をキャンセルするようにしてもよく特に限定しない。
 ステップS2では、片輪/両輪ロックの決定を行なう。図3は実施例の片輪/両輪ロック決定処理の内容を表す概略図である。図3(a)に示すように、車両前後加速度を縦軸、車両横加速度を横軸とする平面において、傾斜で車両が移動しないと判断できる車両加速度領域が設定されている。そして、検知された加速度が所定の診断時間の間、この領域内にあるか否かを判断し、診断時間の間、この領域内にあると判断したときは傾斜で車両が移動しないと判断する(図3(b)参照)。この場合は、ステップS5へ進む。一方、診断時間の間、この領域外にある場面が検出されたときは傾斜で車両が移動するおそれがあると判断する(図3(c)参照)。この場合は、ステップS3へ進む。
 尚、車両加速度領域については、前後加速度領域のほうを横加速度領域より広く設定してもよいし、円形で領域を設定するだけでなく直線的なひし形等で設定してもよい。また、診断時間の間に一度でも領域外であると判断された場合に車両が移動するおそれがあると判断しても良いし、所定時間継続的に領域外であると判断された場合に車両が移動するおそれがあると判断しても良い。
 また、現在位置検出手段2により検出された車両の現在位置における路面傾斜情報が勾配路や傾斜路であり、その勾配等が片輪ロックでは車両が移動するおそれがあると判断できる場合には、ステップS3に進み、両方のパーキングロック機構PLR,PLLに対して作動指令を出力する。一方、現時点において片輪ロックで車両が移動するおそれがないと判断できる場合には、ステップS5に進む。
 ステップS4では、右側および左側のパーキングロック機構が作動した各々の回数のカウントアップを行なう。例えば、両方のパーキングロック機構が作動した場合は両方のカウントアップを行い、片方のパーキングロック機構が作動した場合には、片方のカウントアップを行なう。
 ステップS5では、パーキングロック指令を出力する側のパーキングロック機構を決定する決定処理を実施する。ここでは、操舵角及びロック回数のカウントアップ値に基づいて決定する。
 (操舵角に基づく判断処理)
 まず、ハンドル切れ角検知手段3により検知された操舵角に基づいて、操舵方向を確認する。そして、右側に所定操舵角以上操舵されていると判断したときは、左後輪のパーキングロック機構PLLに作動指令を出力し、左側に所定操舵角以上操舵されていると判断したときは、右後輪のパーキングロック機構PLRに作動指令を出力する。
 ここで、操舵角に応じてパーキングロック機構のどちらを作動させるかを切り分ける理由について説明する。図4は実施例の車両において左側に転舵した場合におけるパーキングロック機構の作動による車両の動きを表す概略図である。左側に転舵した状態で左後輪のパーキングロック機構PLLを作動させると、図4の×で示すように、左後輪を中心に車両が回転運動するおそれがあり、車両の移動を効果的に禁止することができない。これに対し、図4の○で示すように、右後輪のパーキングロック機構PLRを作動させた場合には、車両の回転運動を阻害することができ、車両の移動を効果的に禁止することができる。これは、右側に転舵した場合についても同様である。以上より、操舵角に応じて作動させるパーキングロック機構を決定することで、車両の移動を効果的に抑制できる。
 (ロック回数に基づく判断処理)
次に、ハンドル切れ角検知手段3により検知された操舵角が、左右側にいずれも所定角未満の切れ角である略中立位置であると判断された場合、特に車両挙動の観点からは左右に優劣はないため、各々のロック回数に基づいて左右を決定する。カウントされたロック回数が一方に偏ると、一方のパーキングギヤやパーキングポールの耐久性を過度に確保する必要があるからである。よって、操舵角が略中立位置であると判断された場合には、ロック回数の少ないパーキングロック機構に対して作動指令を出力する。尚、操舵角が所定角以上の場合には、仮に上述のロック回数に基づく判断処理を実施したとしても、操舵角に基づく判断結果を優先する。車両の移動を抑制することが耐久性等以上に重要だからである。
 ステップS6では、ステップS5にて決定された側のパーキングロック機構に対して作動指令を出力する。
 ステップS7では、パーキングロック機構の作動指令を出力後、車両が動くか否かを判断し、車両が動くおそれがあると判断したときはステップS8に進み、未ロック側のパーキングロック機構に対して作動指令を出力し、ステップS4に進んで両方のパーキングロック機構のカウントアップを行なう。一方、車両が動くおそれがないと判断したときはステップS4に進み、作動させたパーキングロック機構のカウントアップを行なう。
 ここで、パーキングロック機構の作動指令出力後における判断について説明する。まず、ステップS2で行なったのと同様、検知された加速度が所定の診断時間の間、この領域内にあるか否かを判断する。尚、ステップS2で既にこの判断を行なっているが、車両停止中も継続して判断することで、例えばフェリー等で移動を行なっている場合に途中で車両が傾いたとしても、両方のパーキングロック機構を作動できる。
 次に、左右各輪の回転数をレゾルバNR,NLにより検出し、これら回転数に基づいて車両の動きを判断する。図5は実施例の車両移動判断処理を表す概略図である。図5(a)はモータ回転数もしくはモータ回転角に基づく判断を表すタイムチャートである。モータ回転数もモータ回転角も実質的に同じであるため、以後、モータ回転数についてのみ説明する。モータ回転数の絶対値が所定回転数未満であれば片輪ロックで問題ないと判断し、モータ回転数の絶対値が所定回転数以上となる場合には両輪ロックが必要と判断する。
 ここで、所定回転数とは、傾斜により車両が移動しないと判断できるモータ回転数であり、予め設定された値である。よって、前方に移動する場合を例えばプラス側の回転数とすると、後方に移動する場合はマイナス側の回転数となるため、モータ回転数の絶対値が所定回転数未満か否かを判断する。尚、図5では、絶対値ではなく回転数の符号も含めて表記しているが、正側の所定回転数、もしくは負側の所定回転数によって表記している。
 また、モータ制御に必要とされる回転角を検出するレゾルバは、回転方向と共に僅かな回転変化を検出できるものであり、アンチロックブレーキ制御等に使用される車輪速センサは回転方向を検出できない場合があると共に分解能がレゾルバよりも低い。よって、レゾルバを使用することで、僅かな車両の動きや移動方向をも検知でき、精度の高い判断が可能である。尚、図5(a)に示す例では、所定の診断時間の間にどの程度変化するかに基づいて判断しているが、継続的に診断してもよいし、定期的に診断してもよい。
 図5(b)は累積モータ回転数に基づく判断を表すタイムチャートである。モータ回転数を積算し、この累積モータ回転数(すなわち移動距離)の絶対値が所定累積モータ回転数未満の範囲であれば片輪ロックで問題ないと判断し、累積モータ回転数の絶対値が所定累積モータ回転数以上となる場合には両輪ロックが必要と判断する。ここで、累積モータ回転数を使用するのは、車両の僅かな前後の揺れ等によって過剰に両輪ロックが必要と判断する場合を回避しつつ、ゆっくりと継続的に動いている場合には両輪をロックする必要があるからである。尚、モータ回転数に基づく判断と累積モータ回転数に基づく判断とは、両方を同時に判断してもよいし、どちらか一方のみを判断してもよい。
 ここで、車両が動きだしたと判断し、未ロック側のパーキングロック機構に作動指令を出力するときに、即座に未ロック側のパーキングロック機構を作動させると、パーキングポールがパーキングギヤに噛み合うときに加速度の急激な変化を招き、運転者に違和感を与えるおそれがある。また、パーキングポールやパーキングギヤの耐久性の低下を招くおそれもある。そこで、未ロック側の駆動モータにより移動方向と反対側に作用するトルクを出力した状態で駆動輪の回転数変化を抑制し、その上でパーキングロック機構を作動させ、これにより加速度の急激な変化を抑制している。以下、未ロック側のパーキングロック機構を作動させる際の制御処理について説明する。
 図6は実施例のモータ回転数に基づいて未ロック側パーキングロック機構に作動指令を出力するときに駆動モータを作動させるフローチャートである。尚、この処理は、モータ回転数が所定回転数を越えたときに開始するものとする。
 ステップS11では、未ロック側駆動モータを、目標モータ回転数が0もしくは所定回転数未満の所定値となるように回転数フィードバック制御を行う。尚、予め設定した所定トルクを付与するように構成してもよい。
 ステップS12では、未ロック側の駆動モータのモータ回転数絶対値が所定回転数未満か否かを判断し、所定回転数未満のときはモータ回転数が所定回転数未満に収束したと判断してステップS14に進む。それ以外のときはモータ回転数が所定回転数以上であると判断してステップS13に進み、モータ回転数収束判断用の診断タイマをリセットするとともにステップS11に戻って回転数フィードバック制御を継続する。
 ステップS14では、モータ回転数収束判断用の診断タイマのカウントアップを行なう。そして、ステップS15では、診断タイマのカウント値が、モータ回転数が収束したと判断できる診断時間を経過したか否かを判断し、経過したと判断したときはステップS16に進んで未ロック側のパーキングロック機構に作動指令を出力する。一方、診断時間が経過していないときは、ステップS11に戻り、モータ回転数制御を継続すると共にモータ回転数の収束状態の監視を継続する。
 図7は実施例の未ロック側パーキングロック機構に作動指令を出力するときに駆動モータを作動させるタイムチャートである。尚、このタイムチャートの初期状態は、右側のパーキングロック機構PLRのみを作動させた状態で車両停止した状態である。
 時刻t1において、予め設定された車両の停止状態を診断する診断時間の間に左側のモータ回転数の絶対値が所定回転数未満か否かを監視する。時刻t2において、左後輪RLのモータ回転数の絶対値が所定回転数以上となると、未ロック側の左側駆動モータMLにトルクを付与し、左側の後輪RLの回転速度が小さくなるように制御する。そして、時刻t3において、左側の駆動モータMLのモータ回転数が所定回転数未満となると、モータ回転数収束判断用の診断時間が設定され、その間、継続的に駆動モータMLのモータ回転数絶対値が所定回転数未満となっているか否かを判断する。
 時刻t4において、モータ回転数収束判断用の診断時間の間、継続的にモータ回転数の絶対値が所定回転数未満となると、左側のパーキングロック機構PLLに作動指令を出力し、左後輪RLがロックされる。このとき、パーキングロックとパーキングポールが噛み合う際にも回転がほとんど停止した状態であるため、運転者に違和感を与えることがない。
 次に、累積モータ回転数に基づく処理について説明する。図8は実施例の累積モータ回転数に基づいて未ロック側パーキングロック機構に作動指令を出力するときに駆動モータを作動させるフローチャートである。尚、この処理は、累積モータ回転数が所定累積モータ回転数を越えたときに開始するものとする。
 ステップS21では、未ロック側駆動モータを、目標モータ回転数が0もしくは所定回転数未満の所定値となるように回転数フィードバック制御を行う。尚、予め設定した所定トルクを付与するように構成してもよい。
 ステップS22では、未ロック側の駆動モータの累積モータ回転数絶対値が所定累積モータ回転数に累積差分モータ回転数を加算した値未満か否かを判断し、加算した新たな閾値未満のときは車両の移動は抑制されていると判断してステップS23に進む。尚、累積差分モータ回転数とは、駆動モータのトルク付与により車両の移動が収束したと判断できる値である。一方、それ以外のときは累積モータ回転数が新たな閾値以上であり、回転数フィードバック制御によっても車両の移動を抑制できない状態であると判断してステップS25に進み、即座に未ロック側のパーキングロック機構に作動指令を出力する。これにより、車両移動を強制的に抑制する。
 ステップS23では、累積モータ回転数収束判断用の診断タイマのカウントアップを行なう。そして、ステップS24では、診断タイマのカウント値が、累積モータ回転数が収束したと判断できる診断時間を経過したか否かを判断し、経過したと判断したときはステップS25に進んで未ロック側のパーキングロック機構に作動指令を出力する。一方、診断時間が経過していないときは、ステップS21に戻り、モータ回転数制御を継続すると共に累積モータ回転数の収束状態の監視を継続する。
 図9は実施例の累積モータ回転数に基づいて未ロック側パーキングロック機構に作動指令を出力するときに駆動モータを作動させるタイムチャートである。尚、このタイムチャートの初期状態は、右側のパーキングロック機構PLRのみを作動させた状態で車両停止した状態である。
 時刻t1において、予め設定された診断時間の間に左側の累積モータ回転数の絶対値が所定回転数未満か否かを監視する。時刻t2において、左後輪RLの累積モータ回転数の絶対値が所定回転数以上となると、未ロック側の左側駆動モータMLにトルクを付与し、左側の後輪RLの回転速度が小さくなるように制御する。このとき、累積モータ回転数収束判断用の診断時間が設定されると共に、累積差分モータ回転数が所定累積モータ回転数に加算され、新たな閾値として設定される。そして、累積モータ回転数収束判断用の診断時間の間、継続的に駆動モータMLの累積モータ回転数絶対値が新たな閾値未満となっているか否かを判断する。
 そして、累積モータ回転数収束判断用の診断時間が経過した時刻t3において、累積モータ回転数の絶対値が新たな閾値未満となると、左側のパーキングロック機構PLLに作動指令を出力し、左後輪RLがロックされる。このとき、パーキングロックとパーキングポールが噛み合う際にも回転がほとんど停止した状態であるため、運転者に違和感を与えることがない。
 以上説明したように、実施例にあっては下記の作用効果を得ることができる。
 (1)車両の複数の駆動輪に設けられた複数のパーキングロック機構のうちの何れかのパーキングロック機構である右側パーキングロック機構PLR(第1のパーキングロック機構)と、右側パーキングロック機構PLRとは別の駆動輪に設けられたパーキングロック機構である左側パーキングロック機構PLL(第2のパーキングロック機構)と、パーキングロック作動指令が出力されたときは、右側もしくは左側のうちの一方のパーキングロック機構を作動させるパーキングロックコントローラPLCU(パーキングロック機構制御手段)と、一方のパーキングロック機構のみを作動させた場合の車両挙動を推定又は検出する傾き検知手段1,現在位置検出手段2,レゾルバNL,NR(車両挙動検出手段)と、を有し、パーキングロックコントローラPLCUは、車両の移動を推定又は検出し、推定又は検出された車両の移動が所定以上であるときは、他方のパーキングロック機構を作動させることとした。
 よって、特に車両が移動しない場合には、一方のみのパーキングロック機構を作動させることで、電力消費を抑制することができ、航続距離を長くすることができる。また、一方のみパーキングロック機構を作動させた場合に車両が移動するとき、もしくは移動するおそれがあるときは、両方のパーキングロック機構を作動させるため、いかなる状況でも車両の移動を抑制することができる。
 (2)前記実施例のステップS2では、加速度センサの値に基づいて車両挙動を推定する。よって、実際に車両が移動してしまう前に両方のパーキングロック機構を作動させることができ、車両の移動を回避することができる。
 (3)前記実施例のステップS7では、右側及び左側駆動モータMR,MLの回転数を検出するレゾルバNR,NLの値に基づいて車両挙動を検出する。よって、当初は移動が推定できなかった場合に、事後的に車両が移動してしまったとしても、両方のパーキングロック機構を作動させることで、車両の移動を抑制することができる。
 以上、本発明を実施例に基づいて説明してきたが、上記実施例に限らず、他の構成であっても本発明の範囲に含まれ得る。例えば、実施例では、後輪駆動型の電気自動車について説明したが、前輪駆動型や4輪駆動型の電気自動車において、それぞれの輪にパーキングロック機構を備えた構成であればよい。また、例えば4輪それぞれにパーキングロック機構を備えている場合、前輪の左右の一方側のパーキングロック機構と、後輪の左右の他方側のパーキングロック機構とを組み合わせてもよいし、車両の左右方向で同じ側に位置する前輪のパーキングロック機構と後輪のパーキングロック機構とを組み合わせてもよい。
 また、第1のパーキングロック機構として複数のパーキングロック機構を含むようにしてもよく、同様に、第2のパーキングロック機構として複数のパーキングロック機構を含むようにしてもよい。つまり、第1のパーキングロック機構および第2のパーキングロック機構は、それぞれ、1つあるいは複数のパーキングロック機構を含み得る。

Claims (7)

  1.  車両の複数の駆動輪に各々設けられた複数のパーキングロック機構のうちの一部のパーキングロック機構である第1のパーキングロック機構と、
     前記第1のパーキングロック機構とは別の駆動輪に設けられたパーキングロック機構である第2のパーキングロック機構と、
     パーキングロック作動指令が出力されたときは、前記第1のパーキングロック機構を作動させるパーキングロック機構制御手段と、
     前記第1のパーキングロック機構のみを作動させた場合の車両の移動を推定又は検出する車両挙動検出手段と、
     を有し、
     前記パーキングロック機構制御手段は、前記推定又は検出された車両の移動が所定以上であるときは、さらに前記第2のパーキングロック機構を作動させる車両のパーキングロック制御装置。
  2.  請求項1に記載の車両のパーキングロック制御装置において、
     前記車両挙動検出手段は、加速度センサの値に基づいて車両の移動を推定する車両のパーキングロック制御装置。
  3.  請求項1に記載の車両のパーキングロック制御装置において、
     前記車両挙動検出手段は、前記駆動輪に接続された駆動モータの回転数を検出するレゾルバの値に基づいて車両の移動を検出する車両のパーキングロック制御装置。
  4.  請求項1に記載の車両のパーキングロック制御装置において、
     前記第1のパーキングロック機構は、車両の右側の駆動輪および左側の駆動輪のいずれか一方に設けられたパーキングロック機構であり、
     前記第2のパーキングロック機構は、他方に設けられたパーキングロック機構である車両のパーキングロック制御装置。
  5.  請求項1に記載の車両のパーキングロック制御装置において、
     前記第1のパーキングロック機構は、車両の前側の駆動輪および後側の駆動輪のいずれか一方に設けられたパーキングロック機構であり、
     前記第2のパーキングロック機構は、他方に設けられたパーキングロック機構である車両のパーキングロック制御装置。
  6.  請求項1に記載の車両のパーキングロック制御装置において、
     前記複数の駆動輪は、各々駆動モータを備え、該駆動モータによって個々に駆動される、車両のパーキングロック制御装置。
  7.  複数の駆動輪に各々設けられた複数のパーキングロック機構を含む車両において、
     パーキングロック作動指令が出力されたときに、前記複数のパーキングロック機構のうちの一部のパーキングロック機構である第1のパーキングロック機構を作動させ、
     この第1のパーキングロック機構が作動している状態での車両の移動を推定又は検出し、
     前記推定又は検出された車両の移動が所定以上であれば、さらに、前記第1のパーキングロック機構とは別の駆動輪に設けられた第2のパーキングロック機構を作動させる車両のパーキングロック制御方法。
PCT/JP2012/055526 2011-06-07 2012-03-05 車両のパーキングロック制御装置および制御方法 WO2012169244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/110,802 US9233671B2 (en) 2011-06-07 2012-03-05 Parking lock control device for vehicle and control method
CN201280022437.4A CN103517838A (zh) 2011-06-07 2012-03-05 车辆的驻车锁定控制装置及控制方法
EP12797341.0A EP2719591A4 (en) 2011-06-07 2012-03-05 PARKING SPRING CONTROL DEVICE FOR A VEHICLE AND CONTROL PROCEDURE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-127194 2011-06-07
JP2011127194 2011-06-07
JP2011201515 2011-09-15
JP2011-201515 2011-09-15
JP2012028465A JP2013075651A (ja) 2011-06-07 2012-02-13 車両のパーキングロック制御装置
JP2012-028465 2012-02-13

Publications (1)

Publication Number Publication Date
WO2012169244A1 true WO2012169244A1 (ja) 2012-12-13

Family

ID=47295818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055526 WO2012169244A1 (ja) 2011-06-07 2012-03-05 車両のパーキングロック制御装置および制御方法

Country Status (5)

Country Link
US (1) US9233671B2 (ja)
EP (1) EP2719591A4 (ja)
JP (1) JP2013075651A (ja)
CN (1) CN103517838A (ja)
WO (1) WO2012169244A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2548102B (en) * 2016-03-07 2018-07-25 Jaguar Land Rover Ltd Braking control system
JP6380468B2 (ja) * 2016-06-21 2018-08-29 マツダ株式会社 四輪駆動車の制御装置
CN106347350B (zh) * 2016-11-15 2018-12-21 安徽江淮汽车集团股份有限公司 自动驻车方法及系统
CN107968990A (zh) * 2018-01-12 2018-04-27 上海到客网络科技有限公司 一种基于车位锁的远程控制方法及系统
DE102019200600B3 (de) 2018-10-15 2020-06-18 Vitesco Technologies Germany Gmbh Verfahren zur Prädiktion einer Störung an einem Aktuator in einem Fahrzeug und applikationsspezifischer Schaltkreis zur Umsetzung eines solchen Verfahrens
DE202021104326U1 (de) 2020-09-04 2021-12-10 Hofer Powertrain Innovation Gmbh Elektromotorischer Kfz-Antrieb mit zwei Parksperren
DE102021122531A1 (de) 2020-09-04 2022-03-10 Hofer Powertrain Innovation Gmbh Blockartiger elektromotorischer Kfz-Antrieb für Einzelradantriebe, insbesondere mit zwei Parksperren
JP2022154163A (ja) * 2021-03-30 2022-10-13 株式会社クボタ 自走作業車
US20230106755A1 (en) * 2021-10-01 2023-04-06 Ford Global Technologies, Llc Methods and apparatus to extend brake life cycle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044458A (ja) * 2004-08-04 2006-02-16 Toyota Motor Corp パーキングロック装置
JP2006231954A (ja) * 2005-02-22 2006-09-07 Honda Motor Co Ltd 電動ブレーキ装置
JP2007314036A (ja) 2006-05-25 2007-12-06 Mitsubishi Motors Corp パーキングロック機構
JP2011051443A (ja) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd 車両のパークロック装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690737A (en) 1970-12-07 1972-09-12 Gen Motors Corp Anti-lock brake system
US3893528A (en) 1974-09-17 1975-07-08 Gen Motors Corp Front brake steering assist
JPS61119457A (ja) * 1984-11-14 1986-06-06 Nippon Denso Co Ltd 車両用自動ブレ−キシステム
JP3612091B2 (ja) * 1994-08-08 2005-01-19 曙ブレーキ工業株式会社 車両用停止維持装置
JPH08295212A (ja) * 1995-04-26 1996-11-12 Mitsubishi Motors Corp 駐車ブレーキ安全装置
DE10052259B4 (de) 2000-10-19 2009-10-15 Deere & Company, Moline Notentriegelungseinrichtung für die Parksperre eines Kraftfahrzeugs
US7026922B1 (en) 2002-08-07 2006-04-11 Ford Global Technologies, Llc Method and apparatus for automatically identifying the location of pressure sensors in a tire pressure monitoring system
US20040159474A1 (en) 2003-02-13 2004-08-19 Moor Halley Ray Vehicular powered tracks
US20040212196A1 (en) * 2003-04-23 2004-10-28 Marcoz James R. Vehicle movement detection circuit
DE112005001484T5 (de) 2004-09-01 2007-08-02 Toyota Jidosha Kabushiki Kaisha, Toyota Kraftfahrzeug und Steuerverfahren dafür
US9878693B2 (en) * 2004-10-05 2018-01-30 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
JP2007181289A (ja) * 2005-12-27 2007-07-12 Toyota Motor Corp 4輪駆動車両の制御装置
JP4959233B2 (ja) 2006-06-13 2012-06-20 富士重工業株式会社 車両の操舵制御装置
DE102007001708A1 (de) * 2007-01-11 2008-07-17 Wabco Gmbh Verfahren und Einrichtung zum Betreiben einer Kraftfahrzeugbremseinrichtung
ES2366283T3 (es) * 2007-12-10 2011-10-18 Siemens Sas Dispositivo de medición del desplazamiento de un vehículo autoguiado.
CA2710275A1 (en) * 2007-12-21 2009-07-09 Richard Oliver Vehicle immobilization system
CN101925885A (zh) 2008-01-29 2010-12-22 松下电器产业株式会社 存储器存取定时调整装置以及存储器存取定时调整方法
EP2406111B1 (en) 2009-03-09 2014-01-01 Nissan Motor Co., Ltd. Parking lock device
DE102011004786A1 (de) * 2011-02-25 2012-08-30 Robert Bosch Gmbh Verfahren zum Einstellen der von einer Feststellbremse ausgeübten Klemmkraft in einem Fahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044458A (ja) * 2004-08-04 2006-02-16 Toyota Motor Corp パーキングロック装置
JP2006231954A (ja) * 2005-02-22 2006-09-07 Honda Motor Co Ltd 電動ブレーキ装置
JP2007314036A (ja) 2006-05-25 2007-12-06 Mitsubishi Motors Corp パーキングロック機構
JP2011051443A (ja) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd 車両のパークロック装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2719591A4

Also Published As

Publication number Publication date
JP2013075651A (ja) 2013-04-25
EP2719591A4 (en) 2015-10-21
US9233671B2 (en) 2016-01-12
US20140032075A1 (en) 2014-01-30
CN103517838A (zh) 2014-01-15
EP2719591A1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5703979B2 (ja) 車両のパーキングロック制御装置
WO2012169244A1 (ja) 車両のパーキングロック制御装置および制御方法
WO2012169246A1 (ja) 車両のパーキングロック制御装置および制御方法
EP2406111B1 (en) Parking lock device
CN104619530A (zh) 用于三轮车辆的转向和控制系统
JP4797160B2 (ja) 轍脱出のための車両制御システム及びそのシステムを有する自動車
CN107914771B (zh) 转向系统方向盘角度确定
JP6098352B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP5012604B2 (ja) 車両用制御装置
JP5098674B2 (ja) 車体速度演算装置
EP3037333B1 (en) Automatic three-wheeled vehicle
WO2015002033A1 (ja) 駆動トルク制御装置
JP2010215191A (ja) 車両用操舵装置及び車両用操舵方法
JP2005343256A (ja) 車両の挙動制御装置
JP2006182050A (ja) 4輪独立駆動車の制駆動力制御装置
JP4973195B2 (ja) 車両状態判定装置
JP5910265B2 (ja) 車両制御装置
JP5971554B2 (ja) 操舵補助装置
JP2008089092A (ja) トルク伝達制御装置
JP2010234820A (ja) 車両の後輪操舵制御装置
JPS63184575A (ja) 自動車用後輪操舵装置の制御方法
CN117022436A (zh) 一种电动车辆的转向控制方法及电动车辆
JP2010058571A (ja) 電動パワーステアリングの制御装置
JP2005231400A (ja) 車両用操舵装置
JP2006112463A (ja) デファレンシャル装置の差動ロック制御装置及び差動ロック制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14110802

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012797341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012265633

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE