WO2012169236A1 - 蛍光センサおよび蛍光センサの製造方法 - Google Patents

蛍光センサおよび蛍光センサの製造方法 Download PDF

Info

Publication number
WO2012169236A1
WO2012169236A1 PCT/JP2012/055038 JP2012055038W WO2012169236A1 WO 2012169236 A1 WO2012169236 A1 WO 2012169236A1 JP 2012055038 W JP2012055038 W JP 2012055038W WO 2012169236 A1 WO2012169236 A1 WO 2012169236A1
Authority
WO
WIPO (PCT)
Prior art keywords
indicator
fluorescence
sensor
light
fluorescent
Prior art date
Application number
PCT/JP2012/055038
Other languages
English (en)
French (fr)
Inventor
貴平 時本
憲治 宮田
松本 淳
Original Assignee
オリンパス株式会社
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社, テルモ株式会社 filed Critical オリンパス株式会社
Publication of WO2012169236A1 publication Critical patent/WO2012169236A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Definitions

  • the present invention relates to a fluorescence sensor for measuring the concentration of an analyte in an aqueous solution and a method for producing the fluorescence sensor, and more particularly, to a fluorescence sensor comprising an indicator composed of an analyte and a hydrogel that generates fluorescence by excitation light, and the fluorescence.
  • the present invention relates to a method for manufacturing a sensor.
  • Fluorescent sensors that measure the concentration of analytes in liquids, that is, substances to be measured have been developed.
  • the fluorescence sensor has an indicator that generates fluorescence with a light amount corresponding to the amount of analyte, and a photoelectric conversion element that detects fluorescence from the indicator.
  • the fluorescent sensor 110 disclosed in US Pat. No. 5,039,490 can be manufactured using MEMS technology and can be miniaturized.
  • the fluorescence sensor 110 includes a transparent substrate 111 that can transmit the excitation light E, a photoelectric conversion element 112 that converts the fluorescence F into an electrical signal, and a condensing light that collects the excitation light E. It is composed of a transparent intermediate layer 115 having a functional part 115A, an indicator 119 that emits a fluorescence F having a light amount corresponding to the amount of analyte by the action of the analyte 2 and the excitation light E, and a light shielding layer 118.
  • U.S. Pat. No. 7,181,096 discloses a fluorescent sensor using hydrogel as an indicator. Since the hydrogel is easy for the analyte 2 to enter, the fluorescent sensor using the hydrogel as the indicator has good sensitivity.
  • a fluorescent sensor using hydrogel as an indicator may change over time after manufacture until use. For this reason, a known fluorescent sensor using hydrogel as an indicator may not be able to easily measure the analyte concentration accurately.
  • An object of the present invention is to provide a fluorescent sensor capable of accurate measurement and a method for manufacturing the fluorescent sensor.
  • a fluorescent sensor includes a photoelectric conversion element that converts fluorescence into an electrical signal, and an indicator space in which an indicator composed of an analyte and a hydrogel that generates fluorescence by excitation light is accommodated in a dry state.
  • a sensor frame configured to cover the photoelectric conversion element; a filter that transmits the fluorescence and blocks the excitation light; a light-emitting element that generates the excitation light; and a sensor frame that is disposed in the sensor frame.
  • a transparent intermediate layer disposed on the light emitting element, which constitutes the lower surface of the indicator space, and an upper surface of the indicator space, which shields outside light and the excitation light, and the analyte A light shielding layer through which a body fluid containing can pass.
  • the manufacturing method of the fluorescence sensor of another aspect of the present invention includes a substrate manufacturing step of manufacturing a substrate having a photoelectric conversion element that converts fluorescence into an electrical signal, and the photoelectric conversion element disposed so as to cover the photoelectric conversion element.
  • a filter production process for producing a filter that transmits fluorescence and blocks the excitation light, a light emission element arrangement process for arranging the light emitting element that generates the excitation light, and a lower surface of the indicator space is formed on the light emission element
  • a transparent intermediate layer disposing step for disposing a transparent intermediate layer, and an indicator arrangement for accommodating an indicator made of hydrogel that generates fluorescence by means of an analyte and excitation light in the indicator space having a sensor frame on a side surface.
  • a light shielding layer disposed step of disposing a comprises a a drying step of drying the
  • the fluorescence sensor 10 detects glucose in a body fluid of a subject.
  • the fluorescent sensor 10 has a structure in which a substrate 11, a filter 13, a light emitting element 14, a transparent intermediate layer 15, an indicator 19, and a light shielding layer 18 are laminated in order. is there.
  • the lower surface is the transparent intermediate layer 15, the upper surface is the light shielding layer 18, and the side surface is the sensor frame 17.
  • the shape of the indicator space 16 is a rectangular parallelepiped (square column shape), but may be a columnar shape, a polygonal column shape, or the like.
  • the substrate 11 has a photodiode element (hereinafter referred to as “PD element”) 12 which is a photoelectric conversion element that converts the fluorescence F into an electrical signal.
  • the filter 13 disposed so as to cover the PD element 12 transmits the fluorescence F and blocks the excitation light E.
  • the light emitting element 14 disposed on the filter 13 generates excitation light E.
  • the indicator 19 is made of a hydrogel having a fluorescent dye that generates fluorescence F by the excitation light E and the analyte 2 that has entered after passing through the light shielding layer 18. In the fluorescence sensor 10, glucose is the analyte 2.
  • the excitation light E generated by the light emitting element 14 is efficiently irradiated to the indicator 19. Further, in the fluorescence sensor 10, a part of the fluorescence F generated by the indicator 19 passes through the PD element 12 and the filter 13 and enters the PD element 12. For this reason, the fluorescence sensor 10 is more sensitive than the conventional fluorescence sensor 110 already described.
  • the inventor has found that the change over time of the characteristics of the fluorescence sensor using hydrogel does not occur when the hydrogel (indicator) is in a dry state. That is, if the indicator is in a dry state before use and is in a water-containing state at the start of use, the characteristics of the fluorescent sensor at the time of use are stable even after long-term storage.
  • the indicator 19 is in a dry state before use. That is, before use, the indicator space 16 is occupied by a dry indicator 19 and a gas such as air. Then, as shown in FIG. 5, when inserted into the body at the start of use, the indicator 19 swells by absorbing body fluid such as blood, that is, water through the light shielding layer 18.
  • the indicator 19 may be swollen in advance by immersing the fluorescent sensor 10 in physiological saline or the like before insertion into the body. However, it is preferable that the indicator 19 is swollen with a body fluid containing an analyte because a stable measurement state can be obtained earlier.
  • Fluorescent sensor 10 can measure the analyte concentration continuously for a predetermined period, for example, one week after being inserted into the body. However, the collected bodily fluid or the bodily fluid circulating in the body through the flow path outside the body may be brought into contact with the fluorescence sensor 10 outside the body without inserting the fluorescence sensor 10 into the body.
  • the substrate 11 has a PD element 12.
  • a semiconductor substrate of silicon or the like is suitable when the PD element 12 is formed on the substrate by a semiconductor manufacturing technique, but a glass substrate or the like may be used depending on the manufacturing method or arrangement position of the PD element 12.
  • a photoconductor, a phototransistor, or the like may be used as the photoelectric conversion element.
  • the filter 13 is disposed so as to cover the PD element 12 which is a light receiving unit.
  • the filter 13 blocks, for example, the excitation light E having a wavelength of 375 nm generated by the light emitting element 14 disposed on the filter 13, but transmits the fluorescence F having a wavelength of 460 nm generated by the indicator 19.
  • the filter 13 may be a multiple interference filter, but is preferably a light absorption filter, for example, a single layer made of silicon, silicon carbide, silicon oxide, silicon nitride, or an organic material, or the single layer It is a multilayer layer formed by laminating.
  • the filter 13 may be disposed on the PD element 12 via a transparent protective layer made of, for example, silicon oxide or silicon nitride.
  • the filter 13 is preferably disposed as close as possible to the PD element 12 in order to prevent light from entering from the side surface of the protective layer. Further, if there is a space between the PD element 12 and the filter 13, an optical loss occurs and the transmittance decreases. For this reason, it is particularly preferable that the filter 13 is disposed in close contact with the PD element 12.
  • an element that transmits fluorescence F is selected from light emitting elements that emit desired excitation light E such as an LED element, an organic EL element, an inorganic EL element, or a laser diode element.
  • the light emitting element 14 is an LED element from the viewpoints of fluorescence transmittance, light generation efficiency, wide wavelength selectivity of the excitation light E, and generation of only light other than the wavelength having the excitation action. preferable. Further, among LED elements, an ultraviolet LED element made of a gallium nitride-based compound semiconductor formed on a sapphire substrate having high fluorescence F transmittance is particularly preferable.
  • the transparent intermediate layer 15 disposed on the light emitting element 14 is required to have good electrical insulation, moisture barrier properties, light transmittance with respect to excitation light E and fluorescence F, and the like. Further, as a characteristic of the transparent intermediate layer 15, it is important that the generation of the fluorescence F is small even when the excitation light E is irradiated, that is, it is difficult to emit autofluorescence.
  • quartz, glass, silicone resin, or transparent amorphous fluororesin is preferably used, and among them, silicone resin or transparent amorphous fluororesin is particularly preferable.
  • the transparent intermediate layer 15 may not be provided, and the upper surface of the light emitting element 14 may constitute the lower surface of the indicator space 16. That is, the sapphire substrate or the like on which the light emitting element is formed may have a function as the transparent intermediate layer 15.
  • the indicator 19 is made of a hydrogel having a fluorescent dye that generates fluorescence F having a wavelength longer than that of the excitation light E by the analyte 2 and the excitation light E.
  • the indicator 19 is composed of a hydrogel that contains the fluorescent dye that generates the fluorescence F with a light amount corresponding to the analyte concentration in the sample and that allows the excitation light E and the fluorescence F to pass therethrough satisfactorily.
  • the indicator 19 may be the analyte 2 itself in which the fluorescent dye that does not contain the fluorescent dye and generates the fluorescent F exists in the solution.
  • Hydrogel is water such as acrylic hydrogel prepared by polymerizing monomers such as polysaccharides such as methylcellulose or dextran, acrylamide, methylol acrylamide, hydroxyethyl acrylate, or urethane hydrogel prepared from polyethylene glycol and diisocyanate. It is formed by encapsulating a fluorescent dye in a material that is easy to contain.
  • the hydrogel has a size that does not leave the sensor through the light shielding layer 18.
  • the hydrogel has a molecular weight of 1 million or more, or when the light shielding layer 18 has a porous structure, it is in the form of particles having a diameter larger than the pore diameter, for example, 50 nm or larger, or crosslinked. A form that does not flow is preferred.
  • phenylboronic acid derivatives having a fluorescent residue are suitable as fluorescent dyes.
  • the fluorescent dye is prevented from detaching from the sensor by using a high molecular weight material or chemically fixing to a hydrogel.
  • the indicator is produced by polymerizing a phosphoric acid buffer containing a fluorescent dye, a gel skeleton-forming material, and a polymerization initiator in a nitrogen atmosphere for 1 hour.
  • a fluorescent dye 9,10-bis [N- [2- (5,5-dimethylborinan-2-yl) benzyl] -N- [6 ′-[(acryloyl polyethylene glycol-3400) carbonylamino ] -N-hexylamino] methyl] -2-acetylanthracene (F-PEG-AAm), acrylamide as the gel skeleton-forming material, sodium peroxodisulfate and N, N, N ′ as the polymerization initiator N'-tetramethylethylenediamine is used.
  • the fluorescent sensor 10 since the indicator 19 that has been polymerized is in a water-containing state, after being dried until it reaches a predetermined dry state, the fluorescent sensor 10 becomes a finished product.
  • the indicator 19 in the dry state has little change with time, even when the fluorescent sensor 10 is stored for a long period of time, characteristics such as sensitivity during use do not change.
  • the light shielding layer 18 forms an upper surface of the indicator space 16 in which the indicator 19 is accommodated, and prevents the excitation light E and the fluorescence F from leaking to the outside of the fluorescence sensor, and at the same time, external light enters the inside of the fluorescence sensor. To prevent that. Further, the light shielding layer 18 has biocompatibility, and the basic structure portion is hydrophilic so as not to prevent passage of a body fluid containing the analyte 2.
  • the light shielding layer 18 is made of, for example, a porous metal or ceramic, or a composite material in which a hydrogel used for the indicator 19 is mixed with fine particles that do not transmit light such as carbon black or carbon nanotubes.
  • the sensor frame 17 has a function of protecting the sensor main body and a light shielding function, that is, a function of preventing external light from entering and preventing light from leaking from the inside of the sensor to the outside of the sensor.
  • the sensor frame 17 is made of a highly rigid material in order to protect the sensor body.
  • the sensor frame 17 is made of a resin material such as silicon, glass or metal having a Young's modulus of several tens to several hundreds of GPa, or polypropylene or polystyrene having a Young's modulus of about 1 GPa to 5 GPa. In order to improve the light shielding function, black is used when glass or a resin material is used. As will be described later, the sensor frame 17 may be manufactured from a part of the substrate by processing the substrate 11.
  • the indicator 19 in the dry state is accommodated in the indicator space 16.
  • the capacity of the indicator space 16 is substantially the same as the capacity of the swollen indicator 19, for example, 90% to 110% of the capacity of the swollen indicator 19. That is, as shown in FIG. 5, the indicator space 16 is almost filled with the swollen indicator 19 except for the residual gas region. That is, the indicator 19 swells in the shape of the indicator space 16.
  • the size of the indicator space 16 is, for example, about 0.20 ⁇ 1.00 mm and a depth of about 0.05 mm when a commercially available small LED (size: 0.12 ⁇ 0.06 mm) is used as the light emitting element 14.
  • a commercially available small LED size: 0.12 ⁇ 0.06 mm
  • Such an indicator space 16 can be easily manufactured using a semiconductor manufacturing technique, as will be described later.
  • the indicator 19 is accommodated in the indicator space 16 in a dry state before use. For this reason, the fluorescence sensor 10 can be stored for a long time.
  • the indicator 19, that is, the hydrogel in a dry state does not mean that the moisture content is 0 wt%, and the indicator 19 contains water in such an amount that the change over time of the indicator 19 does not cause a practical problem as a sensor. Also good.
  • the water content is the weight of the indicator (water content 100%) which has been immersed in water for 1 hour and swelled, and the indicator heated at 100 ° C. for 12 hours in dry air or nitrogen (water content 0%). And the weight of the indicator to be measured (water content X%).
  • the weights of the indicators excluding water are different, correction is performed so that the weights are the same.
  • the moisture content is 30 wt%.
  • the indicator 19 of the fluorescent sensor 10 before use preferably has a water content of 1 wt% to 25 wt%, particularly preferably 5 wt% to 10 wt%. If it is more than the said range, the water absorption speed
  • Hydrogel swells when it absorbs water, that is, its volume increases. In other words, the hydrous hydrogel shrinks when dried.
  • a water-containing hydrogel having a polymer component of about 10% will have a volume of 50% to 10% of the water content when dried.
  • the indicator 19 when the fluorescent sensor 10 in which the hydrogel, ie, the indicator 19 is in a dry state, is inserted into the specimen for use, the indicator 19 contacts the body fluid and the like, and the indicator 19 absorbs the body fluid and expands.
  • the gas in the indicator space 16 is gradually absorbed into the body fluid, but the gas that cannot be absorbed by the body fluid stays at the edge portion of the indicator space 16 as shown in FIG. That is, when the indicator 19 absorbs the body fluid and swells, the gas in the indicator space 16 moves to the edge portion of the indicator space 16. The staying gas is gradually absorbed into the body fluid.
  • the characteristics of the fluorescent sensor during use are stable, and an accurate analyte concentration can be measured.
  • Step S10> Substrate Fabrication Process PD element 12 that converts fluorescence into an electrical signal is fabricated on substrate 11 by semiconductor manufacturing technology.
  • the sensor frame 17 is arranged on the substrate 11 so that the PD element 12 is arranged inside.
  • Step S Light-Emitting Element Arrangement Step
  • the light-emitting element 14 that generates excitation light is arranged in the sensor frame 17.
  • the sensor frame 17 may be disposed after the light emitting element 14 is disposed.
  • Step S15 Indicator Arrangement Step
  • the sensor frame 17 is filled with a phosphate buffer containing fluorescent molecules, acrylamide, and a polymerization initiator.
  • the light shielding layer 18 is joined to the sensor frame 17, whereby the indicator space 16 is sealed. And by leaving it for 1 hour in nitrogen atmosphere, the hydrogel in the indicator space 16 superposes
  • a plurality of PD elements 12 are formed on a silicon wafer, and a filter 13, a sensor frame 17, a light emitting element 14, a transparent intermediate layer 15, an indicator 19, and a light shielding layer 18 are disposed on each PD element 12 and dried.
  • the plurality of fluorescent sensors 10 may be manufactured in a lump by cutting them into pieces.
  • the fluorescent sensor 10 capable of accurately measuring the analyte concentration can be manufactured.
  • the fluorescent sensor 10A of the second embodiment and the method for manufacturing the fluorescent sensor 10A will be described. Since the fluorescence sensor 10A is similar to the fluorescence sensor 10, the same components are denoted by the same reference numerals and description thereof is omitted.
  • gas remains in the indicator space 16 above the PD element 12, which is a fluorescence detection region, due to the position of the indicator 19 in the indicator space 16 or uneven swelling due to local water absorption of the indicator 19. there is a possibility. Then, the fluorescence intensity emitted in the indicator space 16 is affected, and there is a possibility that the accurate fluorescence intensity, that is, the analyte concentration cannot be detected, or the detection sensitivity is lowered.
  • the indicator 19 includes a part of the light shielding layer 18 (coupling region 18 ⁇ / b> C) constituting the upper surface of the indicator space 16 and the side surface of the indicator space 16. It is fixed to a part of the sensor frame 17 (the coupling region 17C). For this reason, the position of the dry indicator 19 in the indicator space 16 is always the same.
  • the absorbed indicator 19 When the body fluid containing the analyte enters the indicator space 16 through the light shielding layer 18, the absorbed indicator 19 always expands as shown in FIG. That is, the indicator 19 fixed to the coupling region 18C of the light shielding layer 18 and the coupling region 17C of the sensor frame 17 in the dry state always swells in the same manner. For this reason, as shown in FIG. 10, the gas in the indicator space 16 moves to the edge portion of the indicator space 16 on the periphery of the PD element 12, and the center of the indicator space 16 on the PD element 12. There is no remaining in the department. Therefore, the PD element 12 can detect the fluorescence intensity, that is, the analyte concentration with high accuracy and high sensitivity.
  • the fluorescence sensor 10A can be stably measured in a short time at the start of use.
  • the indicator 19 only needs to be fixed to at least a part of one of the surfaces constituting the indicator space 16.
  • the indicator 19 is in a dry state until just before the start of use, and therefore does not deteriorate with time.
  • a covalent bond is a chemical bond formed by sharing an electron pair between two atoms, and has high bonding strength. A covalent bond can be easily formed during the polymerization reaction of the indicator 19.
  • the indicator 19 is produced in the indicator space 16 by a polymerization reaction. If there is a monomer on a part of the wall surface of the indicator space 16 during the polymerization reaction, the indicator 19 is polymerized with the monomer layer.
  • the monomer is a low molecular weight substance having a double bond for forming a covalent bond with acrylamide constituting the indicator 19.
  • the indicator 19 can join with the indicator 19 by a covalent bond.
  • the fluorescence sensor 10A has the effect of the fluorescence sensor 10, and can measure the analyte concentration more accurately.
  • Step S20 to Step S24> This is the same as steps S10 to S14 in FIG.
  • Step S25> Pretreatment process for forming covalent bond
  • the inner surface of the sensor frame 17 and the surface of the transparent intermediate layer 15 are modified with a silane coupling agent having an amino group, for example, ⁇ -aminopropyltriethoxysilane.
  • a monomer having a double bond is formed by reacting acryloyl chloride with the amino group of the silane coupling agent.
  • a bonding region 18C in which a monomer having a double bond is bonded is also formed in the light shielding layer 18 by the same method.
  • the sensor frame 17 is filled with a phosphate buffer containing fluorescent molecules, acrylamide, and a polymerization initiator.
  • the light shielding layer 18 is joined to the sensor frame 17. Then, the gel is allowed to stand in a nitrogen atmosphere for 1 hour, whereby the hydrogel is polymerized and the indicator 19 is produced. At this time, the monomers in the bonding region 17C and the bonding region 18C also form a covalent bond with the hydrogel.
  • the covalent bond formation pretreatment step, the indicator disposition step, and the light shielding layer disposition step include the indicator 19 of the sensor frame 17 constituting the side surface of the indicator space 16 and the light shielding layer 18 constituting the upper surface of the indicator space 16. It is also an indicator fixing process for fixing each part.
  • Step S28> Drying Step The same as step S17 in FIG. However, in the fluorescence sensor 10A, the indicator 19 fixed to the sensor frame 17 and the light shielding layer 18 in the coupling region 17C and the coupling region 18C is always contracted to the shape shown in FIGS. 7 and 8, and the contracted indicator 19 is The indicator space 16 is disposed at the same position.
  • the fluorescent sensor 10A capable of accurately measuring the analyte concentration can be manufactured.
  • the fluorescence sensors 10B, 10C, and 10D according to the third to fifth embodiments will be described. Since the fluorescence sensors 10B, 10C, and 10D are similar to the fluorescence sensor 10A, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the fluorescent sensor 10B of the third embodiment is different from the fluorescent sensor 10A of the second embodiment in the fixing position and fixing method of the indicator 19 in the indicator space 16.
  • the indicator 19 is fixed via a part of the sensor frame 17 and a spacer 21. That is, the indicator 19 is fixed to the spacer 21, and the spacer 21 is fixed to the sensor frame 17 with an adhesive.
  • the indicator 19 is manufactured in a state of being fixed to the spacer 21, and after being dried, it is adhered to the sensor frame 17 of the indicator space 16.
  • a monomer for covalent bonding can be bonded to the surface via a coupling agent, such as glass, quartz, silicon, silicon having an oxide film formed on the surface, alumina, or resin.
  • a coupling agent such as glass, quartz, silicon, silicon having an oxide film formed on the surface, alumina, or resin.
  • the spacer 21 may be fixed to a plurality of surfaces of the indicator space 16. However, in the case of fixing to the light shielding layer 18, a through hole is formed or the entire surface of the light shielding layer 18 is not covered with the spacer 21 in order to secure passages of body fluid and gas.
  • the fluorescent sensor 10B has the effects that the fluorescent sensor 10A has, and is easy to manufacture / inspect because the state of the indicator 19 with the spacer 21, that is, the characteristic inspection of the indicator 19 can be performed during the manufacturing.
  • the indicator 19 is a fluorescent sensor fixed to at least a part of the sensor frame 17, the same effect as the fluorescent sensor 10B can be obtained.
  • the fluorescence sensor 10C according to the fourth embodiment will be described with reference to FIG.
  • the indicator 19 is fixed to the central portion of the light shielding layer 18, that is, on the PD element 12 by covalent bonding or the like.
  • the indicator 19 is fixed only to a part of the light shielding layer 18.
  • the polymerization reaction of the indicator 19 may be performed in the indicator space 16 sealed with the light shielding layer 18 partially containing the monomer, or the indicator 19 with the light shielding layer 18 is joined to the sensor frame 17. May be.
  • the surface of the light shielding layer 18 is irradiated with ultraviolet rays other than the central portion after the surface modification with the silane coupling agent / the formation of the monomer having a double bond.
  • the indicator 19 with the light shielding layer 18 is produced by fixing and light-polymerizing the light shielding layer 18 on the upper surface of the glass container containing the phosphoric acid buffer containing fluorescent molecule, acrylamide, and a polymerization initiator.
  • the indicator 19 with the light shielding layer 18 is joined to the sensor frame 17 after the drying process.
  • the indicator 19 swells toward the lower part and the edge part in the indicator space 16 as body fluid or the like enters from the central part of the light shielding layer 18.
  • the gas in the indicator space 16 is accommodated in the edge portion of the light shielding layer 18.
  • the junction area between the light shielding layer 18 and the indicator 19 can be increased. For this reason, body fluid is easily absorbed by the indicator 19 at the start of use.
  • the fluorescence sensor 10C has the effect of the fluorescence sensor 10A and the like, and can measure the analyte concentration more accurately.
  • the indicator 19 is a fluorescent sensor fixed to at least a part of the light shielding layer 18, the same effect as the fluorescent sensor 10C can be obtained.
  • the fluorescence sensor 10D of the fifth embodiment will be described with reference to FIG.
  • the upper surface of the transparent intermediate layer 15D that is, the bottom surface (lower surface) of the indicator space 16D is inclined. That is, the indicator space 16D has a narrower space on the side facing the coupling region 17C than on the coupling region 17C side.
  • gray scale exposure and dry etching which are one of photolithography techniques, are used.
  • a photoresist is applied to the surface by spin coating.
  • a resist pattern whose thickness changes continuously by gray scale exposure is formed.
  • the resist pattern is thick on the side facing the coupling region 17C.
  • the resist When dry etching is performed, the resist is removed first. Since the resist having a small thickness is removed in a short time, the transparent intermediate layer 15D is etched if etching is performed for a longer time. For this reason, the region of the transparent intermediate layer 15D covered with the thin resist is thinner than the region of the transparent intermediate layer 15D covered with the thick resist. That is, the upper surface of the transparent intermediate layer 15D is inclined.
  • the fluorescent sensor 10D has the effect of the fluorescent sensor 10A, and the gas pushed out by the swelling of the indicator 19 can be more reliably accommodated in the edge portion of the indicator space 16D.
  • the fluorescence sensor 10 ⁇ / b> E has a gas accommodating portion 22 in the indicator space 16.
  • the gas accommodating portion 22 is disposed at the edge portion of the indicator space 16 that is not easily affected by light scattering and the like, and accommodates the gas pushed out by the expansion of the indicator 19.
  • the gas storage unit 22 is, for example, a porous block made of silica or silicon, or a block made of activated carbon or the like made hydrophobic with a silane coupling agent.
  • the fluorescence sensor 10E since gas is accommodated in the gas accommodating portion 22, no gas remains in the central portion of the indicator space 16 above the PD element 12. Further, the fluorescence generated by the indicator 19 is reflected by the wall surface of the gas storage unit 22 and enters the PD element 12. That is, when the surface of the gas storage unit 22 is covered with, for example, a metal film having a through hole so as to reflect the fluorescence, more fluorescence enters the PD element 12, and thus the detection of the fluorescence sensor 10E. High sensitivity.
  • the arrangement position and the number of the gas storage units 22 can be selected as appropriate.
  • four gas accommodating portions 22 are arranged at the four corners of the edge portion of the indicator space 16.
  • Fluorescent sensors 10E and 10F have the effect of fluorescent sensor 10A and can measure the analyte concentration more accurately.
  • the light shielding layer 28 of the fluorescence sensor 10G shields external light and excitation light in the same manner as the light shielding layer 18 of the fluorescence sensor 10A, allows body fluids including analytes to pass through, and discharges the gas in the indicator space 16 to the outside. Is possible.
  • the light shielding layer 28 is made of a layer having a through hole or a porous body. Further, the light shielding layer 28 includes a hydrophilic portion 28A through which a body fluid containing an analyte passes and a hydrophobic portion 28B through which a gas passes.
  • the coupling region 28C of the light shielding layer 28 to which the indicator 19 is fixed is the hydrophilic portion 28A, the body fluid is likely to come into contact with the indicator 19.
  • the indicator 19 that is gradually swollen is set at a position that does not hinder the discharge of gas from the hydrophobic portion 28B.
  • the coupling region 28C of the light shielding layer 28 is the hydrophilic portion 28A, and the coupling region 17C of the sensor frame 17 is located farthest from the hydrophobic portion 28B.
  • the arrangement positions of the hydrophilic portion 28A and the hydrophobic portion 28B of the light shielding layer 28 are not limited to the above arrangement as long as the gas is quickly discharged from the indicator space 16 to the outside.
  • the body fluid containing the analyte 2 is absorbed by the indicator 19 (hydrogel) in the indicator space 16 through the hydrophilic portion 28A.
  • the hydrophobic part 28B comes into contact with the body fluid, the body fluid does not enter and is secured as a gas discharge path.
  • gas such as air is completely discharged from the indicator space 16, and the indicator space 16 is filled with the indicator 19 swollen by body fluid.
  • the indicator space 16 is in a uniform state, there is no local change in surface reflectance, light scattering, or transmittance, and the residual gas is incident on the detection region (PD element 12) of the fluorescence F generated by the indicator 19. There will be no disturbance. Further, the residual gas does not adversely affect the intensity of the fluorescence F generated by the indicator 19. Therefore, the PD element 12 below the indicator space 16 can detect the fluorescence intensity, that is, the analyte concentration with high accuracy and high sensitivity.
  • Fluorescent sensor 10G can measure the analyte concentration more accurately. Note that gas may remain in the indicator space 16 as long as the volume and position do not hinder measurement.
  • the fluorescence sensor 10H of the eighth embodiment will be described. Since the fluorescence sensor 10H is similar to the fluorescence sensor 10A of the second embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the position of the PD element 12H is different in the fluorescence sensor 10H compared to the fluorescence sensor 10A and the like.
  • the side surface of the indicator space 16 is a filter 13H disposed on the inner surface of the sensor frame 17H.
  • the sensor frame will be described as constituting the side surface of the indicator space 16.
  • the PD element 12H of the fluorescence sensor 10H is formed on the side surface side of the indicator space 16, and the filter 13H constitutes the side surface of the indicator space 16. That is, the sensor frame 17H is made of a semiconductor such as silicon, and the PD element 12H is formed on the inner surface thereof. A transparent intermediate layer 15 or a transparent protective layer may be further formed on the filter 13H.
  • the indicator 19 is fixed to the filter 13H covering the PD element 12H with four surfaces. For this reason, as shown in FIG. 19, the indicator 19 contracted by the drying process has a concave shape at the center.
  • the fluorescence F generated by the irradiation of the excitation light E by the indicator 19 swollen by the body fluid containing the analyte 2 is incident on the PD element 12H disposed so as to surround the indicator space 16.
  • the fluorescence F generated by the indicator 19 since the fluorescence F generated by the indicator 19 is not easily affected by the residual gas, it stably and efficiently enters the PD element 12H disposed around.
  • Fluorescent sensor 10H has the effects of fluorescent sensor 10 and the like, and further, because the PD element has a large light receiving area, it detects analyte with higher sensitivity.
  • the PD elements 12H are arranged on four sides in a frame shape so as to surround the indicator space 16.
  • the PD element 12 ⁇ / b> H may be on at least one of the four surfaces of the indicator space 16.
  • the coupling region 17C may be only the formation surface of the PD element 12H.
  • all the areas of all the faces constituting the indicator space 16 may be combined areas.
  • the light shielding layer 18 when the indicator 19 contracts due to the drying process, the light shielding layer 18 is deformed into a concave shape. That is, since the light shielding layer 18 is elastic, it deforms as the indicator 19 contracts and expands, and the volume of the indicator space 16 changes. For example, the light shielding layer 18 may be deformed into a convex shape when the indicator 19 is expanded.
  • a fluorescence sensor 10J according to the ninth embodiment will be described. Since the fluorescence sensor 10J of the present embodiment is similar to the fluorescence sensor 10H of the eighth embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • PD elements 12J are formed on four side surfaces of a recess formed in a substrate 11J made of a semiconductor such as silicon, and a light emitting element 14 is disposed on the bottom surface of the recess.
  • the opening surface of the recess is wider than the bottom surface, and the side surface is not perpendicular to the bottom surface but is inclined at a predetermined angle ⁇ .
  • substrate 11J which has a recessed part may be produced by joining the frame-shaped sensor frame board
  • a dried indicator 19 is disposed at the center of the concave portion formed of the transparent intermediate layer 15J covering the PD element 12J and the filter 13J.
  • a light shielding layer 28 having a hydrophobic portion 28B at the center and a hydrophilic portion 28A at the edge forms the upper surface of the indicator space 16J.
  • a gas accommodating portion 22J is disposed in contact with the hydrophobic portion 28B.
  • the dried indicator 19 is fixed by covalent bonding in the bottom surface of the concave portion made of the transparent intermediate layer 15J and the bonding region 15C made of four side surfaces.
  • the dried indicator 19 is also fixed to the bonding region 28C other than the central portion of the light shielding layer 28 by covalent bonding. That is, the dried indicator has a concave portion at the center, and the gas accommodating portion 22J is disposed inside the concave portion. Note that the outer surface of the gas accommodating portion 22J is covered with a reflective layer made of a metal having a through hole.
  • the body fluid containing the analyte is absorbed by the indicator 19 through the hydrophilic portion 28A.
  • the expanded indicator 19 accommodates the gas in the indicator space 16J in the gas accommodating portion 22J in the upper center portion, and is discharged to the outside from the hydrophobic portion 28B through the gas accommodating portion 22J.
  • Fluorescence radiated to the gas container 22J side is reflected by the reflective layer on the surface and enters the PD element 12J.
  • the fluorescence sensor 10J will be briefly described. In addition, although it may manufacture for every one fluorescent sensor 10J, it is preferable to manufacture many sensors collectively as a wafer process.
  • a mask layer having a plurality of mask portions on the first main surface of a silicon wafer having an area where a plurality of elements can be manufactured is manufactured. Then, a plurality of recesses having a bottom surface parallel to the first main surface is formed by an etching method.
  • etching method a wet etching method using a tetramethylammonium hydroxide (TMAH) aqueous solution, a potassium hydroxide (KOH) aqueous solution, or the like is preferable, but dry etching such as reactive ion etching (RIE) or chemical dry etching (CDE) is used.
  • TMAH tetramethylammonium hydroxide
  • KOH potassium hydroxide
  • CDE chemical dry etching
  • the PD element 12J is formed on the four side surfaces of each recess by a known semiconductor process.
  • the concave portion whose side surface is inclined has not only a large area where the PD element 12 can be formed, but also the formation of the PD element 12J on the side surface is easier than the concave portion whose vertical side surface is vertical. Hard to remain. If the inclination angle of the side surface is 30 to 70 degrees, the above effect is remarkable.
  • the filter 13J is disposed on the side PD element 12J.
  • the light emitting elements 14 are respectively disposed on the bottom surfaces of the plurality of recesses.
  • a buffer solution serving as the indicator 19 is filled in the recess.
  • the light shielding layer 18 that is hydrophobic and does not have the covalent bond forming monomer layer is bonded to the central portion where the gas accommodating portion 22J is bonded so as to close the opening of the recess.
  • the silicon wafer on which the plurality of sensors are formed is separated into pieces, and the fluorescence sensor 10J is completed.
  • the drying process may be performed in a wafer state or after being separated into individual pieces.
  • the fluorescent sensor 10J has the same effects as the fluorescent sensors 10A, 10E, 10G, 10H, etc., and is manufactured because the substrate 11J also serves as a frame and the side surface of the concave portion that is the PD element forming surface is inclined. Is easy.
  • the shape of the whole fluorescence sensor demonstrated in the said several embodiment was a right-angled column shape, it is a trapezoid shape, the shape where the side surface curved, or the needle-type fluorescence sensor etc. which extended one direction of the sensor side surface etc. There may be.
  • a sensor that detects saccharides such as glucose has been described as an example.
  • a fluorescent sensor can be used for various applications such as an enzyme sensor, a pH sensor, an immunosensor, or a microorganism sensor by selecting a fluorescent dye. .
  • the present invention is not limited to the above-described embodiment or modification, and various changes and modifications can be made without departing from the scope of the present invention.
  • the reflective film described in the second embodiment may be used for the imaging device 1 of the first embodiment, or the imaging device 1 of the first embodiment may be mounted on the endoscope of the third embodiment. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

蛍光センサ10は、PD素子12と、アナライトおよび励起光により蛍光を発生するハイドロゲルからなるインジケータ19が乾燥状態で収容されたインジケータ空間16の側面を構成するセンサ枠17と、蛍光を透過し励起光を遮るフィルタ13と、励起光を発生する発光素子14と、インジケータ空間16の下面を構成する透明中間層15と、インジケータ空間16の上面を構成するとともに、外光および励起光を遮り、かつ、前記アナライトを含む体液が通過可能な遮光層18と、を具備する。

Description

蛍光センサおよび蛍光センサの製造方法
 本発明は、水溶液中のアナライトの濃度を計測する蛍光センサおよび前記蛍光センサの製造方法に関し、特に、アナライトおよび励起光により蛍光を発生するハイドロゲルからなるインジケータを具備する蛍光センサおよび前記蛍光センサの製造方法に関する。
 液体中のアナライトすなわち被計測物質の濃度を測定する蛍光センサが開発されている。蛍光センサは、アナライトの量に応じた光量の蛍光を発生するインジケータと、インジケータからの蛍光を検出する光電変換素子を有している。
 例えば、米国特許第5039490号明細書に開示されている蛍光センサ110は、MEMS技術を利用して作製できるとともに小型化が可能である。図1および図2に示すように、蛍光センサ110は、励起光Eを透過可能な透明基板111と、蛍光Fを電気信号に変換する光電変換素子112と、励起光Eを集光する集光機能部115Aを有する透明中間層115と、アナライト2および励起光Eの作用によりアナライト量に応じた光量の蛍光Fを発光するインジケータ119と、遮光層118と、から構成されている。
 なお、蛍光センサ110では、透明基板111の下面から入射した励起光Eのうち、光電変換素子112と光電変換素子基板112Aとの隙間112Bを通過した励起光E2だけが、インジケータ119に入射する。
 一方、米国特許第7181096号明細書には、インジケータにハイドロゲルを用いた蛍光センサが開示されている。ハイドロゲルはアナライト2が進入しやすいため、インジケータにハイドロゲルを用いた蛍光センサは感度がよい。
 しかし、インジケータにハイドロゲルを用いた蛍光センサは、製造後、使用までの時間の経過により特性が変化することがあった。このため、インジケータにハイドロゲルを用いた公知の蛍光センサは、正確なアナライト濃度の測定が容易ではないことがあった。
 本発明は、正確な測定が可能な蛍光センサおよび前記蛍光センサの製造方法を提供することを目的とする。
 本発明の一態様の蛍光センサは、蛍光を電気信号に変換する光電変換素子と、アナライトおよび励起光により前記蛍光を発生するハイドロゲルからなるインジケータが乾燥状態で収容されたインジケータ空間の側面を構成するセンサ枠と、前記光電変換素子を覆うように配設された、前記蛍光を透過し前記励起光を遮るフィルタと、前記励起光を発生する発光素子と、前記センサ枠内に配設された、前記インジケータ空間の下面を構成する、前記発光素子の上に配設された透明中間層と、前記インジケータ空間の上面を構成するとともに、外光および前記励起光を遮り、かつ、前記アナライトを含む体液が通過可能な遮光層と、を具備する。
 また本発明の別の一態様の蛍光センサの製造方法は、蛍光を電気信号に変換する光電変換素子を有する基板を作製する基板作製工程と前記光電変換素子を覆うように配設された、前記蛍光を透過し前記励起光を遮るフィルタを作製するフィルタ作製工程と、前記励起光を発生する発光素子を配設する発光素子配設工程と、前記発光素子の上に、インジケータ空間の下面を構成する透明中間層を配設する透明中間層配設工程と、アナライトおよび励起光により前記蛍光を発生するハイドロゲルからなるインジケータを、側面がセンサ枠で構成される前記インジケータ空間に収容するインジケータ配設工程と、前記インジケータ空間の上面を構成するとともに、外光および前記励起光を遮り、かつ、前記アナライトを含む体液が通過可能な遮光層を配設する遮光層配設工程と、前記インジケータを乾燥する乾燥工程と、を具備する。
従来の蛍光センサの断面構造を示した説明図である。 従来の蛍光センサの構造を示した分解図である。 第1実施形態の蛍光センサの構造を示した分解図である。 第1実施形態の蛍光センサの断面構造を示した説明図である。 第1実施形態の蛍光センサの断面構造を示した説明図である。 第1実施形態の蛍光センサの製造方法を説明するためのフローチャートである。 第2実施形態の蛍光センサの断面構造を示した説明図である。 第2実施形態の蛍光センサのインジケータ空間の構造を示した説明図である。 第2実施形態の蛍光センサの断面構造を示した説明図である。 第2実施形態の蛍光センサの断面構造を示した説明図である。 第2実施形態の蛍光センサの製造方法を説明するためのフローチャートである。 第3実施形態の蛍光センサの断面構造を示した説明図である。 第4実施形態の蛍光センサの断面構造を示した説明図である。 第5実施形態の蛍光センサの断面構造を示した説明図である。 第6実施形態の蛍光センサの断面構造を示した説明図である。 第6実施形態の蛍光センサのインジケータ空間の構造を示した説明図である。 第6実施形態の変形例の蛍光センサのインジケータ空間の構造を示した説明図である。 第7実施形態の蛍光センサの断面構造を示した説明図である。 第8実施形態の蛍光センサの断面構造を示した説明図である。 第9実施形態の蛍光センサの断面構造を示した説明図である。 第9実施形態の蛍光センサのインジケータ空間の構造を示した説明図である。
<第1実施形態>
 本発明の第1実施形態の蛍光センサ10は、被検体の体液中のグルコースを検出する。図3および図4に示すように、蛍光センサ10は、基板11と、フィルタ13と、発光素子14と、透明中間層15と、インジケータ19と、遮光層18と、が順に積層された構造である。インジケータ19が内部に収容されているインジケータ空間16は、下面が透明中間層15であり、上面が遮光層18であり、側面がセンサ枠17である。インジケータ空間16の形状は直方体(四角柱状)であるが、円柱状、または多角柱状等であってもよい。
 基板11は、蛍光Fを電気信号に変換する光電変換素子であるフォトダーオード素子(以下「PD素子」という)12を有する。PD素子12を覆うように配設されたフィルタ13は、蛍光Fを透過し励起光Eを遮る。フィルタ13の上に配設された発光素子14は、励起光Eを発生する。インジケータ19は、励起光Eと遮光層18を通過して進入したアナライト2とにより蛍光Fを発生する蛍光色素を有するハイドロゲルからなる。蛍光センサ10ではグルコースがアナライト2である。
 蛍光センサ10では、発光素子14が発生した励起光Eは効率良くインジケータ19に照射される。さらに、蛍光センサ10では、インジケータ19が発生した蛍光Fの一部は、PD素子12およびフィルタ13を通過してPD素子12に入射する。このため、蛍光センサ10は、既に説明した従来の蛍光センサ110よりも高感度である。
 そして、発明者は、ハイドロゲルを用いた蛍光センサの特性の使用前経時変化が、ハイドロゲル(インジケータ)が乾燥状態では発生しないことを見出した。すなわち、インジケータを使用前は乾燥状態とし、使用開始時に含水状態とすると、長期保管しても、使用時の蛍光センサの特性は安定している。
 蛍光センサ10では、インジケータ19は使用前には乾燥状態である。すなわち、使用前には、インジケータ空間16は、乾燥状態のインジケータ19と空気等の気体とで占められている。そして、図5に示すように、使用開始時に体内に挿入されると、インジケータ19は、遮光層18を介して、血液等の体液、すなわち水を吸収し膨潤する。
 なお、体内に挿入前に、蛍光センサ10を生理食塩水等に浸積して、予めインジケータ19を膨潤しておいてもよい。しかし、アナライトを含む体液によりインジケータ19を膨潤した方が、より早く安定した測定状態となるために、好ましい。
 蛍光センサ10は体内に挿入後、所定期間、例えば、1週間、継続してアナライト濃度を測定可能である。しかし、蛍光センサ10を体内に挿入しないで、採取した体液、または体外の流路を介して体内と循環する体液を、体外において蛍光センサ10と接触させてもよい。
 次に、蛍光センサ10の構成要素について詳細に説明する。
 基板11は、PD素子12を有する。基板としては、半導体製造技術により基板にPD素子12を形成する場合にはシリコン等の半導体基板が適しているが、PD素子12の製造方法または配設位置によってはガラス基板等でもよい。また、光電変換素子として、フォトコンダクタまたはフォトトランジスタ等を用いてもよい。
 フィルタ13は、受光部であるPD素子12を覆うように配設されている。フィルタ13は、フィルタ13の上に配設された発光素子14が発生する例えば波長375nmの励起光Eを遮断するが、インジケータ19が発生する波長460nmの蛍光Fは透過する。
 フィルタ13は、多重干渉型フィルタでもよいが、好ましくは、光吸収型フィルタであり、例えばシリコン、炭化シリコン、酸化シリコン、窒化シリコン、もしくは有機材料等からなる単層層、または、前記単層層を積層してなる多層層である。
 なお、フィルタ13は、例えば酸化シリコンまたは窒化シリコン等からなる透明保護層を介してPD素子12上に配設されていてもよい。しかし、保護層の側面からの光の進入を防止するために、フィルタ13はPD素子12にできるだけ近接して配設するのが好ましい。またPD素子12とフィルタ13との間に空間があると光学的なロスが生じ透過率が低下する。このため、フィルタ13はPD素子12に密着した状態で配設されていることが特に好ましい。
 発光素子14としては、LED素子、有機EL素子、無機EL素子、またはレーザーダイオード素子等の所望の励起光Eを発光する発光素子の中から、蛍光Fを透過する素子が選択される。
 そして、発光素子14としては、蛍光透過率、光発生効率、励起光Eの波長選択性の広さ、および励起作用のある波長以外の光を僅かしか発生しないこと等の観点から、LED素子が好ましい。さらにLED素子の中でも、蛍光Fの透過率が高いサファイア基板上に形成された窒化ガリウム系化合物半導体よりなる紫外LED素子が、特に好ましい。
 発光素子14の上に配設された透明中間層15には、電気的絶縁性と、水分遮断性と、励起光Eおよび蛍光Fに対する光透過率等と、が良好なことが要求される。さらに、透明中間層15の特性としては、励起光Eが照射されても蛍光Fの発生が小さいこと、つまり自己蛍光を発しにくいことが重要である。
 透明中間層15には、石英、ガラス、シリコーン樹脂、または透明非晶性フッ素樹脂が好ましく用いられ、中でもシリコーン樹脂または透明非晶性フッ素樹脂が特に好ましい。
 なお、透明中間層15を具備しておらず、発光素子14の上面が、インジケータ空間16の下面を構成していてもよい。すなわち、発光素子が形成されているサファイア基板等が透明中間層15としての機能を有していてもよい。
 インジケータ19は、アナライト2および励起光Eにより、励起光Eよりも長波長の蛍光Fを発生する蛍光色素を有するハイドロゲルからなる。すなわちインジケータ19は、試料中のアナライト濃度に応じた光量の蛍光Fを発生する蛍光色素が含まれる、励起光Eおよび蛍光Fが良好に透過するハイドロゲルから構成されている。なお、インジケータ19が蛍光色素を含まず、蛍光Fを発生する蛍光色素が溶液中に存在するアナライト2そのものでもよい。
 ハイドロゲルは、メチルセルロースもしくはデキストラン等の多糖類、アクリルアミド、メチロールアクリルアミド、ヒドロキシエチルアクリレート等のモノマーを重合して作製するアクリル系ハイドロゲル、またはポリエチレングリコールとジイソシアネートから作製するウレタン系ハイドロゲル等の水を含みやすい材料に蛍光色素を内包することにより形成されている。
 ハイドロゲルは、遮光層18を介してセンサ外に離脱することがない大きさであることが好ましい。このため、ハイドロゲルは、構成する分子が分子量100万以上であるか、または遮光層18が有孔構造の場合には、その孔径以上の例えば径50nm以上の粒子状であるか、または架橋され流動しない形態であることが好ましい。
 一方、蛍光色素としては、グルコース等の糖類を測定する場合には、蛍光残基を有するフェニルボロン酸誘導体等が適している。蛍光色素は、高分子量材料としたり、または、ハイドロゲルに化学的に固定したりすることにより、センサ外に離脱することが防止されている。
 蛍光色素と、ゲル骨格形成材と、重合開始剤と、を含むリン酸緩衝液を、窒素雰囲気下で1時間放置し、重合することにより、インジケータは作製される。例えば、蛍光色素としては、9、10-ビス[N-[2-(5,5-ジメチルボリナン-2-イル)ベンジル]-N-[6‘-[(アクリロイルポリエチレングリコール-3400)カルボニルアミノ]-n-ヘキシルアミノ]メチル]-2-アセチルアントラセン(F-PEG-AAm)を、ゲル骨格形成材としては、アクリルアミドを、重合開始剤としては、ペルオキソ二硫酸ナトリウムおよびN、N、N’、N‘-テトラメチルエチレンジアミンを用いる。
 なお、重合が完了したインジケータ19は含水状態であるために、所定の乾燥状態となるまで乾燥された後、蛍光センサ10は、完成品となる。
 乾燥状態のインジケータ19は経時変化が少ないために、蛍光センサ10は、長期間、保管しても、使用時の感度等の特性が変化しない。
 遮光層18は、インジケータ19が収容されるインジケータ空間16の上面を形成し、励起光Eおよび蛍光Fが蛍光センサの外部へ漏光するのを防止すると同時に、外光が蛍光センサの内部に進入することを防止する。また、遮光層18は、生体適合性を有するとともに、アナライト2を含む体液の通過を妨げないように、基本構造部は親水性である。
 遮光層18には、例えば多孔質の金属もしくはセラミックス、またはインジケータ19に用いるハイドロゲルにカーボンブラックもしくはカーボンナノチューブなど光を通さない微粒子を混合した複合材料を用いる。
 センサ枠17は、センサ本体を保護する機能と、遮光機能、すなわち、外光の進入を防止し、センサ内からセンサ外への光の漏れを防止する機能と、を有する。センサ枠17はセンサ本体を保護するために、高剛性材料を用いて作製される。
 センサ枠17には、ヤング率が数十GPaから数百GPaのシリコン、ガラスもしくは金属等、または、ヤング率が1GPa~5GPaの程度のポリプロピレンもしくはポリスチレン等の樹脂材料を用いる。なお、遮光機能向上のため、ガラスまたは樹脂材料を用いる場合には、黒色とする。なお、後述するように、基板11の加工により基板の一部からセンサ枠17を作製してもよい。
 以上の説明のように、蛍光センサ10では、乾燥状態のインジケータ19は、インジケータ空間16に収容されている。なお、インジケータ空間16の容量は、膨潤したインジケータ19の容量と略同一、例えば、膨潤したインジケータ19の容量の90%~110%である。つまり、図5に示すように、膨潤したインジケータ19によりインジケータ空間16は、残留気体の領域を除いて、ほぼ満たされる。すなわち、インジケータ19はインジケータ空間16の形状に膨潤する。
 インジケータ空間16のサイズは、例えば、発光素子14として市販の小型LED(サイズ:0.12×0.06mm)を用いる場合、0.20×1.00mm、深さ0.05mm程度である。このようなインジケータ空間16は、後述するように、半導体製造技術を用いて容易に製作できる。
 次に、蛍光センサ10の使用開始時の変化について説明する。既に説明したように、蛍光センサ10では、使用前には、インジケータ19は乾燥状態でインジケータ空間16に収容されている。このため、蛍光センサ10は長期保存が可能である。
 なお、インジケータ19、すなわち、ハイドロゲルが乾燥状態とは含水率0wt%を意味するものではなく、インジケータ19の経時変化が、センサとして実用上、問題とならない程度の量の水を含有していてもよい。ここで、含水量は、水中に1時間浸積し膨潤したインジケータ(含水率100%)の重量と、100℃で12時間、乾燥空気中または窒素中で加熱処理したインジケータ(含水率0%)の重量と、測定するインジケータの重量(含水率X%)と、から算出される。もちろん、水を除くインジケータの重量が異なる場合には同じ重量となるように補正を行う。
 例えば含水率0%と含水率100%のインジケータの重量差が100mgのときに、測定するインジケータと含水率0%のインジケータとの重量差が30mgの場合、含水率は30wt%となる。
 使用前の蛍光センサ10のインジケータ19は、含水率1wt%~25wt%が好ましく、特に好ましくは、5wt%~10wt%である。前記範囲以上であれば、インジケータの吸水速度および発光特性が低下することがなく、前記範囲以下であれば、経時変化が問題とはならない。
 ハイドロゲルは、水を吸収すると膨潤、すなわち体積が増加する。言い換えれば、含水ハイドロゲルは乾燥すると収縮する。例えば、ポリマー成分が10%程度の含水ハイドロゲルは、乾燥すると体積が含水時の50%~10%になる。
 そして、ハイドロゲルつまりインジケータ19が乾燥状態の蛍光センサ10が、使用のために、検体内に挿入されると、体液等と接触し、インジケータ19は体液を吸水し膨張する。
 インジケータ19が膨張するにしたがい、インジケータ空間16の気体は、徐々に体液に吸収されるが、図5に示すように、体液が吸収しきれなかった気体はインジケータ空間16のエッジ部に滞留する。すなわち、インジケータ19が体液を吸収し膨潤すると、インジケータ空間16の気体は、インジケータ空間16のエッジ部に移動する。なお、滞留気体も徐々に体液に吸収されていく。
 以上の説明のように、蛍光センサ10は、長期保管しても、使用時の蛍光センサの特性は安定しており、正確なアナライト濃度の測定が可能である。
 次に、図6のフローチャートに沿って、蛍光センサ10の製造方法を簡単に説明する。
<ステップS10>基板作製工程
 基板11に、蛍光を電気信号に変換するPD素子12が半導体製造技術により作製される。
<ステップS11>フィルタ配設工程
 PD素子12を覆うように、蛍光を透過し励起光を遮る、光吸収型のフィルタ13が配設される。必要に応じて酸化シリコン等からなる透明保護層がフィルタ13上に配設される。
<ステップS12>センサ枠配設工程
 PD素子12が内部に配置されるように、センサ枠17が基板11上に配設される。
<ステップS13>発光素子配設工程
 励起光を発生する発光素子14が、センサ枠17内に配設される。なお、発光素子14を配設後にセンサ枠17を配設してもよい。
<ステップS14>透明中間層配設工程
 センサ枠17の内部、すなわち、前記発光素子14の上に、透明非晶性フッ素樹脂からなる透明中間層15が配設される。
<ステップS15>インジケータ配設工程
 センサ枠17内に、蛍光分子とアクリルアミドと重合開始剤とを含むリン酸緩衝液が満たされる。
<ステップS16>遮光層配設工程
 遮光層18がセンサ枠17に接合されることにより、インジケータ空間16が密閉される。そして、窒素雰囲気下で1時間放置することにより、インジケータ空間16内のハイドロゲルが重合し、インジケータ19が作製される。
<ステップS17>乾燥工程
 作製されたインジケータ19は含水状態であるために、蛍光センサ10は洗浄後、インジケータ19が所望の含水量以下となるまで乾燥される。乾燥によりインジケータ19は収縮し、体積がインジケータ空間16の例えば50%以下になる。
 なお、シリコンウエハに複数のPD素子12を形成し、それぞれのPD素子12に、フィルタ13、センサ枠17、発光素子14、透明中間層15、インジケータ19、および遮光層18を配設し、乾燥処理後に、切断し個片化することにより、複数の蛍光センサ10を一括して製造してもよい。
 本実施形態の蛍光センサの製造方法によれば、正確なアナライト濃度の測定が可能な蛍光センサ10を製造できる。
<第2実施形態>
 次に、第2実施形態の蛍光センサ10Aおよび蛍光センサ10Aの製造方法について説明する。蛍光センサ10Aは蛍光センサ10と類似しているので、同じ構成要素には同じ符号を付し、説明は省略する。
 蛍光センサ10では、インジケータ19のインジケータ空間16における位置、または、インジケータ19の局所的な吸水による不均一な膨潤等によって、蛍光検出領域であるPD素子12の上のインジケータ空間16にも気体が残る可能性がある。すると、インジケータ空間16で放出される蛍光強度が影響を受けるとともに、正確な蛍光強度、すなわちアナライト濃度の検出ができなくなったり、または検出感度が低下してしまったりするおそれがある。
 これに対して、図7および図8に示すように、蛍光センサ10Aでは、インジケータ19は、インジケータ空間16の上面を構成する遮光層18の一部(結合領域18C)およびインジケータ空間16の側面を構成するセンサ枠17の一部(結合領域17C)と固定されている。このため、インジケータ空間16における乾燥したインジケータ19の位置は常に同じである。
 アナライトを含む体液が遮光層18を介してインジケータ空間16に進入すると、吸水したインジケータ19は、常に図9に示すように膨張していく。すなわち、乾燥状態で遮光層18の結合領域18Cおよびセンサ枠17の結合領域17Cと固定されているインジケータ19は、常に同じように膨潤する。このため、図10に示すように、インジケータ空間16にあった気体は、PD素子12の周辺部上であるインジケータ空間16のエッジ部に移動し、PD素子12の上であるインジケータ空間16の中央部に残ることがない。このため、PD素子12は、蛍光強度すなわちアナライト濃度を精度良くかつ高感度に検出可能である。
 また、体液の進入経路である遮光層18と乾燥したインジケータ19とが接合されていると、体液が、インジケータ19に吸収されやすい。このため、蛍光センサ10Aは使用開始時に短時間で安定した測定が可能となる。
 なお、後述するように、インジケータ19は、インジケータ空間16を構成するいずれかの面の少なくとも一部と固定されていれば、よい。
 また、蛍光センサ10Aでは、インジケータ19は使用開始直前まで乾燥状態であるために、経時劣化することがない。
 遮光層18およびセンサ枠17と、インジケータ19との接合には、孔等へのインジケータ19の進入によるアンカー効果を用いたり、接着剤を用いたりしてもよいが、信頼性および製造工程の簡略化の観点から、共有結合を介した接合が好ましい。共有結合は、電子対が2つの原子に共有されて形成する化学結合であり、接合強度が大きい。また共有結合は、インジケータ19の重合反応時に容易に形成できる。
 すなわち、既に説明したようにインジケータ19はインジケータ空間16内において重合反応により作製される。この重合反応のときにインジケータ空間16の壁面の一部にモノマーがあると、インジケータ19はモノマー層と重合する。ここで、モノマーとはインジケータ19を構成するアクリルアミドと共有結合を形成するための二重結合を有する低分子量体である。なお、例えば、シランカップリング剤を介することで、直接、モノマー層を形成できない表面であっても、インジケータ19と共有結合による接合を行うことができる。
 以上の説明のように、蛍光センサ10Aは、蛍光センサ10が有する効果を有し、より正確なアナライト濃度の測定が可能である。
 次に、図11のフローチャートに沿って、蛍光センサ10Aの製造方法を簡単に説明する。なお、図6を用いて説明した蛍光センサ10の製造方法と類似している工程の説明は省略する。
<ステップS20~ステップS24>
 図5のステップS10~S14と同じである。
<ステップS25>共有結合形成前処理工程
 センサ枠17の内面および透明中間層15の表面が、アミノ基を有するシランカップリング剤、例えばγ-アミノプロピルトリエトキシシランにより修飾される。続いて、アクリロイルクロライドを、シランカップリング剤のアミノ基と反応させることで、二重結合を有するモノマーが形成される。
 次に、メタルマスクを介して結合領域17C以外に真空紫外線が照射されると、結合領域17C以外のモノマーが分解される。
 一方、遮光層18にも同様の方法により、二重結合を有するモノマーが結合された結合領域18Cが形成される。
<ステップS26>インジケータ配設工程
 センサ枠17内に、蛍光分子とアクリルアミドと重合開始剤とを含むリン酸緩衝液が満たされる。
<ステップS27>遮光層配設工程
 遮光層18がセンサ枠17に接合される。そして、窒素雰囲気下で1時間放置することにより、ハイドロゲルが重合し、インジケータ19が作製される。このとき、結合領域17Cおよび結合領域18Cのモノマーもハイドロゲルと共有結合を形成する。
 すなわち、共有結合形成前処理工程、インジケータ配設工程および遮光層配設工程は、インジケータ19を、インジケータ空間16の側面を構成するセンサ枠17およびインジケータ空間16の上面を構成する遮光層18の、それぞれの一部と固定するインジケータ固定工程でもある。
<ステップS28>乾燥工程
 図6のステップS17と同じである。ただし、蛍光センサ10Aでは、結合領域17Cおよび結合領域18Cにおいてセンサ枠17および遮光層18と固定されているインジケータ19は、常に図7および図8に示す形状に収縮し、かつ収縮したインジケータ19はインジケータ空間16の同じ位置に配置される。
 本実施形態の蛍光センサの製造方法によれば、正確なアナライト濃度の測定が可能な蛍光センサ10Aを製造できる。
<第3実施形態~第5実施形態>
 次に、第3実施形態~第5実施形態の蛍光センサ10B、10C、10Dについて説明する。蛍光センサ10B、10C、10Dは、蛍光センサ10Aと類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 図12に示すように第3実施形態の蛍光センサ10Bは、インジケータ19のインジケータ空間16における固定位置および固定方法が第2実施形態の蛍光センサ10Aと異なる。
 図12に示すように、蛍光センサ10Bでは、インジケータ19は、センサ枠17の一部とスペーサー21を介して固定されている。すなわち、インジケータ19はスペーサー21に固定されており、スペーサー21が接着剤によりセンサ枠17に固定されている。
 蛍光センサ10Bでは、インジケータ19をスペーサー21と固定した状態で作製し、乾燥した後に、インジケータ空間16のセンサ枠17に接着する。
 スペーサー21の材料としては、共有結合のためのモノマーを、カップリング剤を介して表面に結合可能な、例えば、ガラス、石英、シリコン、表面に酸化膜を形成したシリコン、アルミナ、または樹脂等を用いる。
 例えば、角柱状のシリコンの一面の一部をシランカップリング剤により表面修飾した後に、蛍光分子とアクリルアミドと重合開始剤とを含むリン酸緩衝液を入れたガラス容器の壁面に固定することで、スペーサー21付きインジケータ19が作製される。
 なお、スペーサー21はインジケータ空間16の複数の面と固定されていてもよい。ただし、遮光層18と固定する場合は、体液および気体の通路を確保するために、貫通孔を形成したり、遮光層18の全面がスペーサー21で覆われないように配設したりする。
 蛍光センサ10Bでは、蛍光センサ10Aが有する効果を有し、さらにスペーサー21付きインジケータ19の状態、すなわち製造途中で、インジケータ19の特性検査等を行えるために製造/検査が容易である。
 なお、インジケータ19が、センサ枠17の少なくとも一部と固定されている蛍光センサであれば、蛍光センサ10Bと同様の効果が得られる。
 次に、図13を用いて第4実施形態の蛍光センサ10Cについて説明する。蛍光センサ10Cではインジケータ19は、遮光層18の中央部、すなわちPD素子12の上、に共有結合等により固定されている。
 蛍光センサ10Cではインジケータ19は、遮光層18の一部とのみ固定されている。蛍光センサ10Cの製造方法では、部分的にモノマーを有する遮光層18で密閉されたインジケータ空間16内でインジケータ19の重合反応を行ってもよいし、遮光層18付きインジケータ19をセンサ枠17に接合してもよい。
 遮光層18付きインジケータ19の作製では、遮光層18の表面に、シランカップリング剤による表面修飾/二重結合を有するモノマー形成の後に中央部以外に紫外線照射が行われる。そして蛍光分子とアクリルアミドと重合開始剤とを含むリン酸緩衝液を入れたガラス容器の上面に遮光層18を固定し重合することで遮光層18付きインジケータ19が作製される。遮光層18付きインジケータ19は、乾燥処理後に、センサ枠17に接合される。
 蛍光センサ10Cでは、遮光層18の中央部からの体液等の進入にともない、インジケータ19はインジケータ空間16で下部およびエッジ部に向かって膨潤していく。そして、インジケータ空間16の気体は、遮光層18のエッジ部に収容される。
 また、蛍光センサ10Cでは、遮光層18とインジケータ19との接合面積を広くできる。このため使用開始時に体液がインジケータ19に吸収されやすい。
 このため、蛍光センサ10Cは蛍光センサ10A等が有する効果を有し、より正確なアナライト濃度の測定が可能である。
 なお、インジケータ19が、遮光層18の少なくとも一部と固定されている蛍光センサであれば、蛍光センサ10Cと同様の効果が得られる。
 次に、図14を用いて第5実施形態の蛍光センサ10Dについて説明する。蛍光センサ10Dでは、透明中間層15Dの上面、すなわち、インジケータ空間16Dの底面(下面)が傾斜している。すなわち、インジケータ空間16Dは、結合領域17C側に比べて、結合領域17Cと対向する側の空間が狭い。
 透明中間層15Dの上面を傾斜状態とするには、フォトリソグラフィー技術の一つであるグレースケール露光とドライエッチングとを用いる。上面が平坦な透明中間層15を作製した後に、表面にフォトレジストをスピンコートで塗布する。そして、グレースケール露光により厚さが連続的に変化するレジストパターンを形成する。レジストパターンは、結合領域17Cと対向する側のレジストが厚い。
 ドライエッチングを行うと、最初はレジストが除去される。厚さが薄いレジストは短い時間で除去されるため、それ以上の時間、エッチングが行われると、透明中間層15Dがエッチングされる。このため、厚さが薄いレジストで覆われていた透明中間層15Dの領域は、厚さが厚いレジストで覆われていた透明中間層15Dの領域よりも、薄くなる。すなわち、透明中間層15Dの上面は傾斜状態となる。
 蛍光センサ10Dは蛍光センサ10Aが有する効果を有し、さらにインジケータ19の膨潤によって、押し出される気体を、より確実にインジケータ空間16Dのエッジ部に収容することができる。
<第6実施形態、第6実施形態の変形例>
 次に、第6実施形態の蛍光センサ10Eおよび第6実施形態の変形例の蛍光センサ10Fについて説明する。蛍光センサ10E、10Fは、蛍光センサ10Aと類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 図15および図16に示すように、蛍光センサ10Eは、インジケータ空間16に、気体収容部22を有する。気体収容部22は、光の散乱等の影響を生じにくいインジケータ空間16のエッジ部に配設されており、インジケータ19の膨張により押し出された気体を収容する。
 気体収容部22は、例えば、シリカもしくはシリコンからなる多孔質、または活性炭等をシランカップリング剤により疎水性にしたブロックである。
 蛍光センサ10Eでは気体が気体収容部22に収容されるために、PD素子12の上のインジケータ空間16の中央部に気体が残留することがない。またインジケータ19が発生した蛍光は気体収容部22の壁面に反射されてPD素子12に入射する。すなわち、気体収容部22の表面が、蛍光を反射するように、例えば貫通孔のある金属膜等で覆われていると、より多くの蛍光がPD素子12に入射するため、蛍光センサ10Eの検出感度が高い。
 気体収容部22の配設位置、配設個数は適宜、選択可能である。例えば、図17に示す第6実施形態の変形例の蛍光センサ10Fでは、気体収容部22が4個、インジケータ空間16のエッジ部の四隅に配設されている。
 蛍光センサ10E、10Fは、蛍光センサ10Aが有する効果を有し、より正確なアナライト濃度の測定が可能である。
<第7実施形態>
 次に、第7実施形態の蛍光センサ10Gについて説明する。蛍光センサ10Gは、蛍光センサ10Aと類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 蛍光センサ10Gの遮光層28は蛍光センサ10Aの遮光層18と同様に外光および励起光を遮り、かつ、アナライトを含む体液が通過可能であり、さらに、インジケータ空間16の気体を外部に排出可能である。
 すなわち、図18に示すように、遮光層28は、貫通孔のある層または多孔質体等からなる。さらに遮光層28は、アナライトを含む体液が通過する親水性部28Aと、気体が通過する疎水性部28Bと、からなる。
 そして、インジケータ19が固定される遮光層28の結合領域28Cは、親水性部28Aであるため、体液がインジケータ19と接触しやすい。一方、インジケータ19が固定されるセンサ枠17の結合領域17Cは、徐々に膨潤していくインジケータ19が、疎水性部28Bからの気体の排出を妨げない位置に設定されている。
 すなわち、遮光層28の結合領域28Cは、親水性部28Aであり、センサ枠17の結合領域17Cは、疎水性部28Bから最も離れた位置にある。なお、遮光層28の親水性部28Aおよび疎水性部28Bの配設位置は、インジケータ空間16から、気体が速やかに外へ排出されるようであれば、上記配置に限定されるものではない。
 図18に示すように、遮光層28の親水性部28Aからインジケータ空間16に体液が進入しインジケータ19が膨張すると、疎水性部28Bからインジケータ空間16の気体が排出される。
 すなわち、蛍光センサ10Gでは、生体内に挿入され、遮光層28が体液と接触すると、アナライト2を含む体液は、親水性部28Aを通ってインジケータ空間16のインジケータ19(ハイドロゲル)に吸収される。一方、疎水性部28Bは体液と接触しても体液が進入することはなく、気体の排出経路として確保されている。
 蛍光センサ10Gでは、インジケータ空間16から空気等の気体が完全に排出され、体液により膨潤したインジケータ19によりインジケータ空間16が満たされる。インジケータ空間16は均一の状態となり、表面反射率、光散乱または透過率の局部的な変化はなく、さらに残留気体が、インジケータ19が発生する蛍光Fの検出領域(PD素子12)への入射を乱すこともない。また、残留気体が、インジケータ19が発生する蛍光Fの強度に悪影響を与えることもない。このため、インジケータ空間16の下にある、PD素子12は、蛍光強度すなわちアナライト濃度を精度良くかつ高感度に検出可能である。
 蛍光センサ10Gは、より正確なアナライト濃度の測定が可能である。なお、測定に支障が出ない、体積および位置、であれば、インジケータ空間16に気体が残留していてもよい。
<第8実施形態>
 次に、第8実施形態の蛍光センサ10Hについて説明する。蛍光センサ10Hは、第2実施形態の蛍光センサ10Aと類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 蛍光センサ10Hは、蛍光センサ10A等と比べると、PD素子12Hの位置が異なる。また、蛍光センサ10Hでは、インジケータ空間16の側面は、センサ枠17Hの内面に配設されたフィルタ13Hである。
 なお上記構成のように、インジケータ空間16の側面が、厳密には、センサ枠上に形成された機能層等の場合も、センサ枠がインジケータ空間16の側面を構成するものとして説明する。
 図19に示すように、蛍光センサ10HのPD素子12Hは、インジケータ空間16の側面側に形成されており、フィルタ13Hがインジケータ空間16の側面を構成している。すなわち、センサ枠17Hがシリコン等の半導体からなり、その内面にPD素子12Hが形成されている。なお、フィルタ13H上に、さらに透明中間層15または透明保護層が形成されていてもよい。
 そして、インジケータ19は、PD素子12Hを覆うフィルタ13Hと4面で固定されている。このため、図19に示すように、乾燥処理により収縮したインジケータ19は、中央部が凹形状となる。
 蛍光センサ10Hでは、アナライト2を含む体液により膨潤したインジケータ19が励起光Eの照射により発生する蛍光Fは、インジケータ空間16を囲むように配設されたPD素子12Hに入射する。
 蛍光センサ10Hでは、インジケータ19が発生した蛍光Fは、残留気体の影響を受けにくいため、周囲に配設されたPD素子12Hに安定して効率的に入射する。
 蛍光センサ10Hは、蛍光センサ10等が有する効果を有し、さらに、PD素子の受光面積が広いため、より高感度でアナライトを検出する。
 なお、蛍光センサ10Hでは、PD素子12Hがインジケータ空間16を囲むように額縁状に4面に配設されている。しかし、PD素子12Hは、インジケータ空間16の4面のうち少なくとも一面にあればよい。このとき結合領域17CはPD素子12Hの形成面のみでよい。
 逆に、インジケータ空間16を構成する全ての面の全ての領域を結合領域としてもよい。この場合には、乾燥処理によりインジケータ19が収縮すると、遮光層18が凹形状に変形する。すなわち遮光層18は弾性があるため、インジケータ19の収縮および膨張にともない変形し、インジケータ空間16の体積は変化する。例えば、インジケータ19が膨張したときに遮光層18は凸形状に変形することもある。
<第9実施形態>
 次に、第9実施形態の蛍光センサ10Jについて説明する。本実施形態の蛍光センサ10Jは、第8実施形態の蛍光センサ10H等と類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 図20に示すように、蛍光センサ10Jでは、シリコン等の半導体からなる基板11Jに形成された凹部の4側面にPD素子12Jが形成され、凹部の底面に発光素子14が配設されている。なお、凹部の開口面は底面よりも広く、側面は、底面に対して垂直ではなく所定の角度θで傾斜している。なお、凹部となる額縁形状のセンサ枠基板と平面基板とを接合することにより、凹部を有する基板11Jが作製されていてもよい。
 また、PD素子12Jおよびフィルタ13Jを覆う透明中間層15Jからなる凹部の中央部に乾燥したインジケータ19が配設されている。そして、中央部に疎水性部28Bを、エッジ部に親水性部28Aを有する遮光層28が、インジケータ空間16Jの上面を形成している。さらに、インジケータ空間16Jの中央部の上面には、疎水性部28Bに接して気体収容部22Jが配設されている。
 図21に示すように、乾燥したインジケータ19は、透明中間層15Jからなる凹部の底面および4側面からなる結合領域15Cにおいて共有結合により固定されている。乾燥したインジケータ19は、さらに遮光層28の中央部以外の結合領域28Cとも共有結合により固定されている。すなわち、乾燥したインジケータは中央部が凹部となっており、その凹部の内部に気体収容部22Jが配設されている。なお、気体収容部22Jの外面は貫通孔のある金属からなる反射層により覆われている。
 蛍光センサ10Jは体内に挿入されると、アナライトを含む体液が親水性部28Aを介してインジケータ19に吸収される。膨張したインジケータ19によりインジケータ空間16Jの気体は中央部上部の気体収容部22Jに収容されるとともに、気体収容部22Jを介して疎水性部28Bから外部に排出される。
 また、気体収容部22J側に放射された蛍光は、表面の反射層により反射され、PD素子12Jに入射する。
 次に、蛍光センサ10Jの製造方法について簡単に説明する。なお、1個の蛍光センサ10J毎に製造してもよいが、ウエハプロセスとして一括して多数のセンサを製造することが好ましい。
 すなわち、最初に、複数の素子が作製可能な面積を有するシリコンウエハの第1の主面に複数のマスク部を有するマスク層が作製される。そして、エッチング法により、第1の主面と平行な底面のある複数の凹部が形成される。
 エッチング法としては、水酸化テトラメチルアンモニウム(TMAH)水溶液、水酸化カリウム(KOH)水溶液などを用いるウエットエッチング法が望ましいが、反応性イオンエッチング(RIE)、ケミカルドライエッチング(CDE)などのドライエッチング法も用いることができる
 例えば、シリコンウエハとしてシリコン(100)面を用いた場合には、(111)面のエッチング速度が(100)面に比べて遅い異方性エッチングとなるため、凹部の側面は(111)面となり、(100)面(底面)との角度は、54.7度となる。
 次に、それぞれの凹部の4側面にPD素子12Jが公知の半導体プロセスにより形成される。側面が傾斜している凹部は、側面が垂直な凹部に比べてPD素子12を形成できる面積が広いだけでなく、側面へのPD素子12Jの形成が容易であり、さらにインジケータ空間16Jに気体が残留しにくい。なお側面の傾斜角度が30~70度であれば、上記効果が顕著である。
 次に、側面のPD素子12J上にフィルタ13Jが配設される。次に、複数の凹部の底面に、それぞれ発光素子14が配設される。さらに透明中間層15Jおよび共有結合形成用モノマー層を形成後に、凹部内にインジケータ19となる緩衝溶液が充填される。さらに、凹部の開口を塞ぐように、気体収容部22Jが接合された中央部が疎水性かつ共有結合形成用モノマー層を有しない遮光層18が接合される。そして複数のセンサが形成されたシリコンウエハが個片化され蛍光センサ10Jが完成する。なお乾燥処理はウエハ状態で行ってもよいし個片化してから行ってもよい。
 蛍光センサ10Jは蛍光センサ10A、10E、10G、10H等と同様の効果を有し、さらに基板11Jが枠部を兼ねており、かつPD素子形成面である凹部の側面が傾斜しているため製造が容易である。
 なお、複数の上記実施形態において説明した蛍光センサ全体の形状は直角柱形状であったが、台形形状、側面が湾曲した形状、またはセンサ側面の一方向を延設した針型の蛍光センサ等であってもよい。
 また、グルコース等の糖類を検出するセンサを例に説明したが、蛍光センサは、蛍光色素の選択によって、酵素センサ、pHセンサ、免疫センサ、または微生物センサ等の多様な用途に対応することができる。
 本発明は上述した実施形態または変形例等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等ができる。例えば、第2実施形態で説明した反射膜を第1実施形態の撮像装置1に用いてもよいし、第1実施形態の撮像装置1を第3実施形態の内視鏡に搭載してもよい。
 本出願は、2011年6月8日に日本国に出願された特願2011-128630号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (15)

  1.  蛍光を電気信号に変換する光電変換素子と、
     アナライトおよび励起光により前記蛍光を発生するハイドロゲルからなるインジケータが乾燥状態で収容されたインジケータ空間の側面を構成するセンサ枠と、
     前記光電変換素子を覆うように配設された、前記蛍光を透過し前記励起光を遮るフィルタと、
     前記励起光を発生する発光素子と、
     前記センサ枠内に配設された、前記インジケータ空間の下面を構成する、前記発光素子の上に配設された透明中間層と、
     前記インジケータ空間の上面を構成するとともに、外光および前記励起光を遮り、かつ、前記アナライトを含む体液が通過可能な遮光層と、を具備することを特徴とする蛍光センサ。
  2.  前記インジケータが、前記インジケータ空間を構成するいずれかの面の少なくとも一部と固定されていることを特徴とする請求項1に記載の蛍光センサ。
  3.  前記インジケータが、共有結合により固定されていることを特徴とする請求項2に記載の蛍光センサ。
  4.  前記遮光層が、前記アナライトを含む体液が前記インジケータ空間に進入可能な親水性部と、前記インジケータ空間の気体を排出可能な疎水性部と、からなることを特徴とする請求項1に記載の蛍光センサ。
  5.  前記インジケータ空間に、気体を収容する気体収容部を有することを特徴とする請求項1に記載の蛍光センサ。
  6.  前記インジケータ空間の底面が傾斜していることを特徴とする請求項1に記載の蛍光センサ。
  7.  前記光電変換素子が前記センサ枠の内壁に形成されていることを特徴とする請求項1に記載の蛍光センサ。
  8.  基板に形成された凹部の外周部が前記センサ枠であることを特徴とする請求項7に記載の蛍光センサ。
  9.  生体内に留置され、含水した前記インジケータが発生する前記蛍光の強度をもとに、前記体液のアナライト濃度を継続して測定することを特徴とする請求項1に記載の蛍光センサ。
  10.  蛍光を電気信号に変換する光電変換素子を有する基板を作製する基板作製工程と
     前記光電変換素子を覆うように配設された、前記蛍光を透過し前記励起光を遮るフィルタを作製するフィルタ作製工程と、
     前記励起光を発生する発光素子を配設する発光素子配設工程と、
     前記発光素子の上に、インジケータ空間の下面を構成する透明中間層を配設する透明中間層配設工程と、
     アナライトおよび励起光により前記蛍光を発生するハイドロゲルからなるインジケータを、側面がセンサ枠で構成される前記インジケータ空間に収容するインジケータ配設工程と、
     前記インジケータ空間の上面を構成するとともに、外光および前記励起光を遮り、かつ、前記アナライトを含む体液が通過可能な遮光層を配設する遮光層配設工程と、
     前記インジケータを乾燥する乾燥工程と、を具備することを特徴とする蛍光センサの製造方法。
  11.  前記インジケータが、前記インジケータ空間を構成する面の少なくともいずれかの一部と固定されることを特徴とする請求項10に記載の蛍光センサの製造方法。
  12.  前記インジケータが、共有結合により固定されることを特徴とする請求項11に記載の蛍光センサの製造方法。
  13.  前記基板作製工程において、前記光電変換素子が前記基板の上部を構成するセンサ枠の内壁に形成されることを特徴とする請求項10に記載の蛍光センサの製造方法。
  14.  前記基板に形成された凹部の外周部が前記センサ枠であることを特徴とする請求項13に記載の蛍光センサの製造方法。
  15.  前記蛍光センサが、生体内に留置され、含水した前記インジケータが発生する前記蛍光の強度をもとに、前記体液のアナライト濃度を継続して測定することを特徴とする請求項10に記載の蛍光センサの製造方法。
PCT/JP2012/055038 2011-06-08 2012-02-29 蛍光センサおよび蛍光センサの製造方法 WO2012169236A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-128630 2011-06-08
JP2011128630 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169236A1 true WO2012169236A1 (ja) 2012-12-13

Family

ID=47295810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055038 WO2012169236A1 (ja) 2011-06-08 2012-02-29 蛍光センサおよび蛍光センサの製造方法

Country Status (1)

Country Link
WO (1) WO2012169236A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162490A1 (ja) * 2013-04-01 2014-10-09 テルモ株式会社 高分子ゲルの接着方法と、蛍光センサ及びその製造方法
JP2016168259A (ja) * 2015-03-13 2016-09-23 テルモ株式会社 センサ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643965B2 (ja) * 1986-04-23 1994-06-08 ア−・フアウ・エル ア−・ゲ− 物質濃度を測定するためのセンサ素子
JP2001525930A (ja) * 1997-05-13 2001-12-11 コルビン,アーサー・イー・ジュニア 改良された蛍光検出デバイス
WO2004071291A2 (en) * 2003-02-13 2004-08-26 Medtronic, Inc. Implantable chemical sensor
JP2007526273A (ja) * 2004-03-03 2007-09-13 スイッチ バイオテック アーゲー キセロゲルまたはフィルムの形態での局所使用のための医薬組成物および製造方法
JP2010046249A (ja) * 2008-08-21 2010-03-04 Nippon Dental Univ 硬組織補填材
WO2010119916A1 (en) * 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643965B2 (ja) * 1986-04-23 1994-06-08 ア−・フアウ・エル ア−・ゲ− 物質濃度を測定するためのセンサ素子
JP2001525930A (ja) * 1997-05-13 2001-12-11 コルビン,アーサー・イー・ジュニア 改良された蛍光検出デバイス
WO2004071291A2 (en) * 2003-02-13 2004-08-26 Medtronic, Inc. Implantable chemical sensor
JP2007526273A (ja) * 2004-03-03 2007-09-13 スイッチ バイオテック アーゲー キセロゲルまたはフィルムの形態での局所使用のための医薬組成物および製造方法
JP2010046249A (ja) * 2008-08-21 2010-03-04 Nippon Dental Univ 硬組織補填材
WO2010119916A1 (en) * 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOAZ VILOZNY ET AL.: "Multiwell plates loaded with fluorescent hydrogel sensors for measuring pH and glucose concentration", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 21, 7 June 2011 (2011-06-07), pages 7589 - 7595 *
NEESHMA DAVE ET AL.: "Regenerable DNA-Functionalized Hydrogels for Ultrasensitive, Instrument-Free Mercury(II) Detection and Removal in Water", J.AM.CHEM.SOC., vol. 132, no. 36, 2010, pages 12668 - 12673 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162490A1 (ja) * 2013-04-01 2014-10-09 テルモ株式会社 高分子ゲルの接着方法と、蛍光センサ及びその製造方法
JP2016168259A (ja) * 2015-03-13 2016-09-23 テルモ株式会社 センサ

Similar Documents

Publication Publication Date Title
JP4558448B2 (ja) 光導波路およびこの光導波路を用いた蛍光センサ
US8920729B2 (en) Porous membrane waveguide sensors and sensing systems therefrom for detecting biological or chemical targets
US7269308B2 (en) Optical waveguide type biochemical sensor chip and method of manufacturing the same
FI76432C (fi) Foerfarande och anordning foer bestaemning av element i loesning med en ljusledare.
US9442067B2 (en) Plasmon sensor and manufacturing method therefor, and method for inserting sample into plasmon sensor
US20080233008A1 (en) Chemical sensor with an indicator dye
CN103917858A (zh) 葡萄糖传感器
JPH07181132A (ja) 多面エバネッセント波検出装置
CN110799822B (zh) 光学组件的气密性测试
JP2013040797A (ja) 蛍光センサ
US20140233039A1 (en) Physical/chemical sensor, physical/chemical phenomenon sensing device, and method for manufacturing same
US9046484B2 (en) Plasmon sensor
JP2008224524A (ja) 光導波路型抗体チップ
JP6087337B2 (ja) 蛍光センサおよびセンサシステム
WO2012169236A1 (ja) 蛍光センサおよび蛍光センサの製造方法
US20140299750A1 (en) Chemical sensor, chemical sensor module, chemical detection apparatus, and chemical detection method
EP1769232A1 (en) Method and apparatus for sensing a target substance by analysing time series of said target substance
JP2012255707A (ja) 蛍光センサ
JP4823330B2 (ja) 光導波路型バイオケミカルセンサチップ及びその測定対象物の測定方法
JP2012255708A (ja) 蛍光センサ
WO2012169230A1 (ja) 蛍光センサ
JP2019007824A (ja) 光音響測定プローブ
WO2013039065A1 (ja) 蛍光センサーおよびアナライト成分測定方法
EP4049003B1 (en) Refractive index sensor
WO2014162490A1 (ja) 高分子ゲルの接着方法と、蛍光センサ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP