WO2012169098A1 - Rc発振回路 - Google Patents

Rc発振回路 Download PDF

Info

Publication number
WO2012169098A1
WO2012169098A1 PCT/JP2012/001435 JP2012001435W WO2012169098A1 WO 2012169098 A1 WO2012169098 A1 WO 2012169098A1 JP 2012001435 W JP2012001435 W JP 2012001435W WO 2012169098 A1 WO2012169098 A1 WO 2012169098A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
variable
film
circuit
capacitor
Prior art date
Application number
PCT/JP2012/001435
Other languages
English (en)
French (fr)
Inventor
雄 西谷
幸広 金子
上田 路人
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280004487XA priority Critical patent/CN103283143A/zh
Priority to JP2012540977A priority patent/JP5158294B2/ja
Priority to US13/614,498 priority patent/US8773212B2/en
Publication of WO2012169098A1 publication Critical patent/WO2012169098A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/20Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/20Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
    • H03B5/24Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator active element in amplifier being semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/004Circuit elements of oscillators including a variable capacitance, e.g. a varicap, a varactor or a variable capacitance of a diode or transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/02Varying the frequency of the oscillations by electronic means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/02Varying the frequency of the oscillations by electronic means
    • H03B2201/0208Varying the frequency of the oscillations by electronic means the means being an element with a variable capacitance, e.g. capacitance diode

Definitions

  • the present invention relates to an RC oscillation circuit.
  • FIG. 5 shows a conventional RC oscillation circuit as disclosed in Patent Document 1 (particularly, FIG. 2B).
  • This conventional RC oscillation circuit includes an amplifier 1 and a phase shift circuit 2.
  • the phase shift circuit 2 includes at least three RC circuit elements including one resistor and one capacitor.
  • a first RC circuit element 31a, a second RC circuit element 31b, and a third RC circuit element 31c are provided.
  • the first to third RC circuit elements 31a to 31c include first to third resistors 41a to 41c and first to third capacitors 51a to 51c.
  • the output terminal of the amplifier 1 is connected to one terminal of the first capacitor 51a.
  • the other terminal of the first capacitor 51a is connected to one terminal of the second capacitor 51b via the first node 61a.
  • One terminal of the first resistor 41a is connected to the first node 61a.
  • the other terminal of the first resistor 41a is grounded.
  • the other terminal of the second capacitor 51b is connected to one terminal of the third capacitor 51c via the second node 61b.
  • One terminal of the second resistor 41b is connected to the second node 61b.
  • the other terminal of the second resistor 41b is grounded.
  • the other terminal of the third capacitor 51c is connected to the input terminal of the amplifier 1 through the third node 61c.
  • One terminal of the third resistor 41c is connected to the third node 61c.
  • the other terminal of the third resistor 41c is grounded.
  • the RC oscillation circuit oscillates at an oscillation frequency corresponding to the resistance values of the resistors 41a to 41c and the capacitance values of the capacitors 51a to 51c.
  • Patent Document 2 (corresponding to US Patent Application Publication No. 2008/0150646) discloses an RC oscillator using a variable resistor and a variable capacitor.
  • An object of the present invention is to provide a novel and nonvolatile RC oscillation circuit capable of modulating the oscillation frequency over a wide range.
  • the RC oscillation circuit of the present invention is an RC oscillation circuit comprising an amplifier and a phase shift circuit, the amplifier comprising an output terminal and an input terminal, and the phase shift circuit comprising at least Three RC circuit elements are provided.
  • Each of the RC circuit elements includes a resistor and a capacitor. The capacitor is connected in series between the output terminal and the input terminal.
  • At least one RC circuit element among the RC circuit elements is a variable RC circuit element including a variable resistor and a variable capacitor.
  • the variable RC circuit element includes a first electrode, a second electrode, a third electrode, a fourth electrode, and a fifth electrode, a ferroelectric film, a semiconductor film, and a paraelectric film.
  • the Z axis is the normal direction of the ferroelectric film
  • the X axis is a direction orthogonal to the Z axis.
  • the ferroelectric film and the semiconductor film are stacked along the Z axis, and the first electrode, the second electrode, and the paraelectric film are disposed on the front side surface of the semiconductor film, and along the X axis.
  • the second electrode is sandwiched between the first electrode and the paraelectric film.
  • a fourth electrode and a fifth electrode are arranged on the back surface of the ferroelectric film, and the fourth electrode is electrically insulated from the fifth electrode. In the perspective view along the Z-axis, the fourth electrode is sandwiched between the first electrode and the second electrode.
  • the variable resistor is formed of the first electrode, the second electrode, a part of the ferroelectric film, a part of the semiconductor film, and the fourth electrode.
  • the other part of the ferroelectric film, the other part of the semiconductor film, and the paraelectric film are sandwiched between the third electrode and the fifth electrode.
  • the variable capacitor is formed of the second electrode, the third electrode, the fifth electrode, another part of the ferroelectric film, another part of the semiconductor film, and a paraelectric film.
  • FIG. 1 is a schematic diagram of an RC oscillation circuit according to an embodiment.
  • FIG. 2A shows a cross-sectional view of a variable RC circuit element according to an embodiment.
  • FIG. 2B shows a perspective view along the Z-axis of the variable RC circuit element according to the embodiment.
  • FIG. 2C shows an equivalent circuit diagram of the variable RC circuit element.
  • FIG. 3A shows a procedure for setting the resistance value of the variable resistor to a predetermined value in the embodiment.
  • FIG. 3B shows a procedure for setting the resistance value of the variable resistor to a predetermined value in the embodiment.
  • FIG. 4A shows a procedure for setting the capacitance value of the variable capacitor to a predetermined value in the embodiment.
  • FIG. 4B shows a procedure for setting the capacitance value of the variable capacitor to a predetermined value in the embodiment.
  • FIG. 5 shows a schematic diagram of a conventional RC oscillation circuit.
  • FIG. 1 is a schematic diagram of an RC oscillation circuit according to an embodiment.
  • This RC oscillation circuit includes an amplifier 1 and a phase shift circuit 2.
  • the phase shift circuit 2 includes three or more RC circuit elements. Among these, one or more RC circuit elements are the variable RC circuit elements 3.
  • the other RC circuit element may be an RC circuit element having a fixed resistance value and capacitance value.
  • all RC circuit elements included in the phase shift circuit 2 can be variable RC circuit elements 3.
  • the three variable RC circuit elements 3 are represented as 3a, 3b, and 3c.
  • the phase shift circuit 2 includes a first variable RC circuit element 3a, a second variable RC circuit element 3b, and a third variable RC circuit element 3c.
  • the first to third variable RC circuit elements 3a to 3c include first to third variable resistors 4a to 4c and first to third variable capacitors 5a to 5c.
  • the output terminal of the amplifier 1 is connected to one terminal of the first variable capacitor 5a.
  • the other terminal of the first variable capacitor 5a is connected to one terminal of the second variable capacitor 5b via the first node 6a.
  • One terminal of the first variable resistor 4a is connected to the first node 6a.
  • the other terminal of the first variable resistor 4a is grounded.
  • the other terminal of the second variable capacitor 5b is connected to one terminal of the third variable capacitor 5c via the second node 6b.
  • One terminal of the second variable resistor 4b is connected to the second node 6b.
  • the other terminal of the second variable resistor 4b is grounded.
  • the other terminal of the third variable capacitor 5c is connected to the input terminal of the amplifier 1 through the third node 6c.
  • One terminal of the third variable resistor 4c is connected to the third node 6c.
  • the other terminal of the third variable resistor 4c is grounded.
  • variable capacitors 5a to 5c are electrically connected in series between the output terminal and the input terminal of the amplifier 1.
  • variable RC circuit element 3 Next, the structure of the variable RC circuit element 3 will be described in detail.
  • the variable RC circuit element 3 includes a first electrode 17, a second electrode 18, a third electrode 19, a fourth electrode 12, a fifth electrode 13, a ferroelectric film 14, a semiconductor film 15, and a paraelectric film 16. It has.
  • the Z axis is the normal direction of the ferroelectric film 14.
  • the X axis is a direction orthogonal to the Z axis.
  • the Y axis is a direction orthogonal to both the Z axis and the X axis.
  • An example of the first electrode 17 to the fifth electrode 13 is a laminate composed of a platinum film and a titanium film.
  • Examples of the material of the ferroelectric film 14 are Pb (Zr, Ti) O 3 , Sr (Bi, Ta) O, or Bi 12 TiO 20 .
  • An example of the material of the semiconductor film 15 is ZnO, GaN, or InGaZnO.
  • the ferroelectric film 14 and the semiconductor film 15 are laminated along the Z axis.
  • a first electrode 17, a second electrode 18, and a paraelectric film 16 are disposed on the front surface of the semiconductor film 15.
  • the second electrode 18 is sandwiched between the first electrode 17 and the paraelectric film 16 along the X axis.
  • the fourth electrode 12 and the fifth electrode 13 are arranged on the back surface of the ferroelectric film 14. In the perspective view along the Z axis, the fourth electrode 12 is sandwiched between the first electrode 17 and the second electrode 18.
  • variable resistor 4 is formed of the first electrode 17, the second electrode 18, a part of the ferroelectric film 14, a part of the semiconductor film 15, and the fourth electrode 12.
  • variable capacitor 5 is formed by the second electrode 18, the third electrode 19, the fifth electrode 13, another part of the ferroelectric film 14, another part of the semiconductor film 15, and the paraelectric film 16. Yes.
  • the RC oscillation circuit causes the oscillation frequency f 0 represented by the following (Equation 1) according to the resistance values of the variable resistors 4a to 4c and the capacitance values of the variable capacitors 5a to 5c. It oscillates at.
  • R 1 , R 2 and R 3 represent resistance values of the variable resistors 4a, 4b and 4c, respectively.
  • C 1 , C 2 , and C 3 represent capacitance values of the variable capacitors 5a, 5b, and 5c, respectively.
  • the resistance value of the variable resistor 4 corresponds to the value of the resistance formed between the first electrode 17 and the second electrode 18.
  • the capacitance value of the variable capacitor 5 corresponds to the value of the capacitance formed between the second electrode 18 and the third electrode 19.
  • modulation of the oscillation frequency is achieved by adjusting the resistance values of the variable resistors 4a to 4c and the capacitance values of the variable capacitors 5a to 5c.
  • FIG. 3A a positive potential is applied to the fourth electrode 12 with respect to at least one electrode selected from the first electrode 17 and the second electrode 18, and the direction of the spontaneous polarization 20 of the ferroelectric film 14 is changed to the semiconductor film.
  • the state toward the 15 side is shown. In this state, electrons 22 are accumulated at the interface formed between the ferroelectric film 14 and the semiconductor film 15 by coupling with the spontaneous polarization 20. As a result, the resistance value between the first electrode 17 and the second electrode 18 becomes small.
  • a negative potential is applied to the fourth electrode 12 with respect to at least one electrode selected from the first electrode 17 and the second electrode 18, and the direction of the spontaneous polarization 20 is directed to the fourth electrode 12 side.
  • the amount of accumulated electrons 22 varies continuously. This means that the resistance value changes continuously according to the value of the applied potential. In this manner, a potential difference is applied between the fourth electrode 12 and at least one electrode selected from the first electrode 17 and the second electrode 18 based on the resistance value required for the variable resistor 4.
  • variable resistor 4 is non-volatile.
  • FIG. 4A a positive potential is applied to the fifth electrode 13 with respect to at least one electrode selected from the second electrode 18 and the third electrode 19, and the direction of the spontaneous polarization 21 of the ferroelectric film 14 is set to the semiconductor film.
  • the state toward the 15 side is shown.
  • electrons 23 are accumulated at the interface formed between the ferroelectric film 14 and the semiconductor film 15 by coupling with the spontaneous polarization 21. Since the accumulated electrons 23 work like an electrode, the virtual area of the second electrode 18 is increased. It is well known that the capacitance value of a capacitor increases as the area of the electrode provided in the capacitor increases. As a result, the capacitance value between the second electrode 18 and the third electrode 19 increases.
  • a negative potential is applied to the fifth electrode 13 with respect to at least one electrode selected from the second electrode 18 and the third electrode 19, and the direction of the spontaneous polarization 21 is directed to the fifth electrode 13 side.
  • the amount of accumulated electrons 23 changes continuously. This means that the capacitance value changes continuously according to the applied potential. In this manner, a potential difference is applied between at least one electrode selected from the second electrode 18 and the third electrode 19 and the fifth electrode 13 based on the capacitance value required for the variable capacitor 5.
  • variable capacitor 5b is non-volatile.
  • the resistance value and the capacitance value are adjusted independently. As will be apparent from the embodiments described later, the resistance value is adjusted first to roughly modulate the oscillation frequency. Next, the capacitance value is adjusted to accurately modulate the oscillation frequency.
  • the fourth electrode 12 needs to be electrically insulated from the fifth electrode 13. If the fourth electrode 12 is electrically connected to the fifth electrode 13, the resistance value and the variable value cannot be adjusted independently. This results in the oscillation frequency not being adjusted to the desired value.
  • the first electrode 17 needs to be electrically insulated from the second electrode 18 through the resistor 4 as shown in FIG. 2C. If the first electrode 17 is electrically connected to the second electrode 18 without using a resistor, the resistor 4 does not function.
  • a ferroelectric film 14 made of lead zirconate titanate (Pb (Zr, Ti) O 3 , hereinafter referred to as PZT) having a thickness of 450 nm is deposited on the SRO by using the PLD method. did. Thereafter, the temperature of the substrate was lowered to 400 ° C. Next, a semiconductor film 15 made of zinc oxide (ZnO) having a thickness of 30 nm was deposited.
  • PZT lead zirconate titanate
  • a laminate composed of a titanium film having a thickness of 5 nm and a platinum film having a thickness of 30 nm was deposited by an electron beam evaporation method at room temperature. After the deposition, the first electrode 17 and the second electrode 18 were formed by a lift-off method.
  • a paraelectric film 16 made of silicon nitride having a thickness of 100 nm was deposited on the semiconductor film 15, the first electrode 17, and the second electrode 18 by high-frequency sputtering at room temperature. Thereafter, unnecessary portions were removed by photolithography and dry etching. After forming a patterned resist on the paraelectric film 16, a laminate of a 5 nm thick Ti layer and a 30 nm thick Pt film was deposited by electron beam evaporation at room temperature. After the deposition, the third electrode 19 was formed by a lift-off method. In this way, a variable RC circuit element 3 was obtained.
  • the value of the resistance 4 generated between the first electrode 17 and the second electrode 18 after applying 0 volts, 0 volts, and +5 volts to the first electrode 17, the second electrode 18, and the fourth electrode, respectively. was measured.
  • the obtained resistance value was 2.52 kOhm.
  • the capacitance 5 generated between the second electrode 18 and the third electrode 19 after 0 volts, 0 volts, and ⁇ 10 volts are applied to the second electrode 18, the third electrode 19, and the fifth electrode 13, respectively.
  • the value of was measured.
  • the obtained capacitance value was 3.62 picofarad.
  • the oscillation frequency is roughly set to a value ranging from several Hz to several MHz by first adjusting the resistance values of the variable resistors 4a to 4c. Next, the oscillation frequency is finely adjusted by adjusting the capacitance values of the variable capacitors 5a to 5c.
  • the RC oscillation circuit according to the present invention can be used as a reference clock for a microcomputer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本発明のRC発振回路は、増幅器と移相回路を具備する。移相回路は、1つの抵抗および1つのキャパシタから構成される少なくとも3つのRC回路素子を具備する。RC回路素子のうち少なくとも1つは、1つの可変抵抗と1つの可変キャパシタから構成される。可変抵抗は、第1電極、第2電極、半導体膜の一部、強誘電体膜の一部、および第4電極から形成されている。可変キャパシタは、第2電極、第3電極、第5電極、強誘電体膜の他の一部、半導体膜の他の一部、および常誘電体膜によって形成されている。

Description

RC発振回路
 本発明はRC発振回路に関する。
 図5は、特許文献1(特に図2(b))にも開示されているような、従来のRC発振回路を示す。この従来のRC発振回路は、増幅器1および移相回路2を具備する。移相回路2は、1つの抵抗および1つのキャパシタから構成されるRC回路素子を少なくとも3つ具備する。図5では、第1RC回路素子31a、第2RC回路素子31b、および第3RC回路素子31cが設けられている。図5に示されるように、第1~第3RC回路素子31a~31cは、第1~第3抵抗41a~41cおよび第1~第3キャパシタ51a~51cを具備する。
 増幅器1の出力端子は、第1キャパシタ51aの一方の端子に接続されている。第1キャパシタ51aの他方の端子は、第1ノード61aを介して、第2キャパシタ51bの一方の端子に接続されている。第1ノード61aに第1抵抗41aの一方の端子が接続されている。第1抵抗41aの他方の端子は、接地されている。
 第2キャパシタ51bの他方の端子は、第2ノード61bを介して、第3キャパシタ51cの一方の端子に接続されている。第2ノード61bに第2抵抗41bの一方の端子が接続されている。第2抵抗41bの他方の端子は、接地されている。
 第3キャパシタ51cの他方の端子は、第3ノード61cを介して、増幅器1の入力端子に接続されている。第3ノード61cに第3抵抗41cの一方の端子が接続されている。第3抵抗41cの他方の端子は、接地されている。
 増幅器1の電源を入れると、RC発振回路は、各抵抗41a~41cの抵抗値および各キャパシタ51a~51cの容量値に応じた発振周波数で発振する。
 特許文献2(米国特許出願公開第2008/0150646号公報に対応する)は、可変抵抗および可変キャパシタを用いたRC発振器を開示する。
特開2002-258880号公報 特開2008-160798号公報
 本発明の目的は、発振周波数を広範囲に変調可能である新規かつ不揮発なRC発振回路を提供することにある。
 この目的を達成するために、本発明のRC発振回路は、増幅器、および移相回路、を具備するRC発振回路であって、増幅器は出力端子および入力端子を具備し、移相回路は、少なくとも3つのRC回路素子を具備する。RC回路素子の各々は、抵抗およびキャパシタを具備する。キャパシタは、出力端子および入力端子の間に直列に接続される。RC回路素子のうち少なくとも1つのRC回路素子は、可変抵抗と可変キャパシタから構成された可変RC回路素子である。可変RC回路素子は、第1電極、第2電極、第3電極、第4電極、および第5電極、強誘電体膜、半導体膜、および常誘電体膜を具備する。Z軸は強誘電体膜の法線方向であり、X軸はZ軸に直交する方向である。強誘電体膜および半導体膜はZ軸に沿って積層されており、半導体膜の表側の面に、第1電極、第2電極、および常誘電体膜が配置されており、X軸に沿って、第2電極は第1電極および常誘電体膜の間に挟まれている。強誘電体膜の裏側の面に、第4電極および第5電極が配置されており、第4電極は、第5電極から電気的に絶縁されている。Z軸に沿った透視図において、第4電極は、第1電極および第2電極の間に挟まれている。可変抵抗は、第1電極、第2電極、強誘電体膜の一部、半導体膜の一部、および第4電極から形成されている。強誘電体膜の他の一部、半導体膜の他の一部、および常誘電体膜が、第3電極および第5電極の間に挟まれている。可変キャパシタは、第2電極、第3電極、第5電極、強誘電体膜の他の一部、半導体膜の他の一部、および常誘電体膜によって形成されている。
 本発明によれば、発振周波数を広範囲に変調可能である新規かつ不揮発なRC発振回路を提供することができる。
図1は、実施の形態によるRC発振回路の概略図を示す。 図2Aは、実施の形態による可変RC回路素子の断面図を示す。 図2Bは、実施の形態による可変RC回路素子のZ軸に沿った透視図を示す。 図2Cは、可変RC回路素子の等価回路図を示す。 図3Aは、実施の形態における可変抵抗の抵抗値を所定の値に設定する手順を示す。 図3Bは、実施の形態における可変抵抗の抵抗値を所定の値に設定する手順を示す。 図4Aは、実施の形態における可変キャパシタの容量値を所定の値に設定する手順を示す。 図4Bは、実施の形態における可変キャパシタの容量値を所定の値に設定する手順を示す。 図5は、従来のRC発振回路の概略図を示す。
 (実施の形態)
 以下、本発明の実施の形態によるRC発振回路を、図面を参照しながら説明する。
 図1は、実施の形態によるRC発振回路の概略図を示す。このRC発振回路は増幅器1および移相回路2を具備する。移相回路2は、3つ以上のRC回路素子を具備する。これらのうち、1以上のRC回路素子が、可変RC回路素子3である。他のRC回路素子は、固定された抵抗値および容量値を有するRC回路素子であり得る。図1に示されるように、移相回路2に具備される全てのRC回路素子が、可変RC回路素子3であり得る。ここでは、3つの可変RC回路素子3を3a、3b、3cと表す。
 図1では、移相回路2は、第1可変RC回路素子3a、第2可変RC回路素子3b、および第3可変RC回路素子3cを具備する。図1に示されるように、第1~第3可変RC回路素子3a~3cは、第1~第3可変抵抗4a~4cおよび第1~第3可変キャパシタ5a~5cを具備する。
 増幅器1の出力端子は、第1可変キャパシタ5aの一方の端子に接続されている。第1可変キャパシタ5aの他方の端子は、第1ノード6aを介して、第2可変キャパシタ5bの一方の端子に接続されている。第1ノード6aに第1可変抵抗4aの一方の端子が接続されている。第1可変抵抗4aの他方の端子は、接地されている。
 第2可変キャパシタ5bの他方の端子は、第2ノード6bを介して、第3可変キャパシタ5cの一方の端子に接続されている。第2ノード6bに第2可変抵抗4bの一方の端子が接続されている。第2可変抵抗4bの他方の端子は、接地されている。
 第3可変キャパシタ5cの他方の端子は、第3ノード6cを介して、増幅器1の入力端子に接続されている。第3ノード6cに第3可変抵抗4cの一方の端子が接続されている。第3可変抵抗4cの他方の端子は、接地されている。
 図1に示されるように、可変キャパシタ5a~5cは増幅器1の出力端子および入力端子の間に電気的に直列に接続される。
 次に、可変RC回路素子3の構造を詳細に説明する。
 図2A、図2B、および図2Cは、それぞれ、可変RC回路素子3の断面図、Z軸に沿った透視図、等価回路図を示す。可変RC回路素子3は、第1電極17、第2電極18、第3電極19、第4電極12、および第5電極13、強誘電体膜14、半導体膜15、および常誘電体膜16を具備する。Z軸は強誘電体膜14の法線方向である。X軸はZ軸に直交する方向である。Y軸はZ軸およびX軸の両方に直交する方向である。
 第1電極17~第5電極13の例は、白金膜およびチタン膜から構成される積層体である。
 強誘電体膜14の材料の例は、Pb(Zr、Ti)O、Sr(Bi,Ta)O、またはBi12TiO20である。
 半導体膜15の材料の例は、ZnO、GaN、またはInGaZnOである。
 強誘電体膜14および半導体膜15はZ軸に沿って積層されている。半導体膜15の表側の面に、第1電極17、第2電極18、および常誘電体膜16が配置されている。X軸に沿って、第2電極18は第1電極17および常誘電体膜16の間に挟まれている。強誘電体膜14の裏側の面に、第4電極12および第5電極13が配置されている。Z軸に沿った透視図において、第4電極12は、第1電極17および第2電極18の間に挟まれている。
 可変抵抗4は、第1電極17、第2電極18、強誘電体膜14の一部、半導体膜15の一部、および第4電極12から形成されている。
 強誘電体膜14の他の一部、半導体膜15の他の一部、および常誘電体膜16が、第3電極19および第5電極13の間に挟まれている。可変キャパシタ5は、第2電極18、第3電極19、第5電極13、強誘電体膜14の他の一部、半導体膜15の他の一部、および常誘電体膜16によって形成されている。
 増幅器1の電源を入れると、RC発振回路は、各可変抵抗4a~4cの抵抗値および各可変キャパシタ5a~5cの容量値に応じて、以下の(数1)によって表される発振周波数fで発振する。
Figure JPOXMLDOC01-appb-M000001
 R、R、Rはそれぞれ可変抵抗4a、4b、4cの抵抗値を表す。
 C、C、Cはそれぞれ可変キャパシタ5a、5b、5cの容量値を表す。
 図2Cに示すように、可変抵抗4の抵抗値は、第1電極17および第2電極18の間に形成される抵抗の値に相当する。可変キャパシタ5の容量値は、第2電極18および第3電極19の間に形成された容量の値に相当する。
 (数1)に基づいて、各可変抵抗4a~4cの抵抗値および各可変キャパシタ5a~5cの容量値を調整することで、発振周波数を変調することが達成される。
 次に、可変抵抗4の抵抗値と可変キャパシタ5の容量値を、所定の値に調整する具体的な手順を詳細に説明する。
 図3Aは、第1電極17および第2電極18から選択される少なくとも一方の電極に対して正の電位を第4電極12に印加し、強誘電体膜14の自発分極20の方向を半導体膜15側に向けた状態を示す。この状態では、自発分極20とのカップリングにより強誘電体膜14および半導体膜15の間に形成された界面に電子22が蓄積される。この結果、第1電極17と第2電極18の間の抵抗値は小さくなる。
 一方、図3Bは、第1電極17および第2電極18から選択される少なくとも一方の電極に対して負の電位を第4電極12に印加し、自発分極20の方向を第4電極12側に向けた状態を示す。この状態では、自発分極20および電子との間に生じる斥力によって、強誘電体膜14および半導体膜15の間に形成された界面が空乏化する。この結果、第1電極17と第2電極18の間の抵抗値は大きくなる。
 全ての自発分極20のうち半導体膜15側に向いている自発分極の割合に依存して、蓄積される電子22の量は連続的に変化する。これは、印加された電位の値により、抵抗値は連続的に変化することを意味する。このようにして、可変抵抗4に必要とされる抵抗値に基づいて、第1電極17および第2電極18から選択される少なくとも一方の電極と第4電極12との間に電位差を印加する。
 印加された電位差が取り除かれた後も、強誘電体膜14の不揮発性のため自発分極20の方向は変化しない。従って、抵抗値は保持される。これは、可変抵抗4が不揮発性であることを意味している。
 図4Aは、第2電極18および第3電極19から選択される少なくとも一方の電極に対して正の電位を第5電極13に印加し、強誘電体膜14の自発分極21の方向を半導体膜15側に向けた状態を示す。この状態では、自発分極21とのカップリングにより、強誘電体膜14および半導体膜15の間に形成される界面に電子23が蓄積される。蓄積された電子23は電極のごとく働くため、第2電極18の仮想的な面積を増やす。キャパシタに具備される電極の面積が大きいほど、キャパシタの容量値は大きくなることは周知である。その結果、第2電極18と第3電極19の間の容量値は大きくなる。
 一方、図4Bは、第2電極18および第3電極19から選択される少なくとも一方の電極に対して負の電位を第5電極13に印加し、自発分極21の方向を第5電極13側に向けた状態を示す。この状態では、自発分極21および電子との間に生じる斥力により強誘電体膜14および半導体膜15の間に形成される界面は空乏化する。その結果、容量値は小さくなる。
 全ての自発分極21のうち半導体膜15側に向いている自発分極の割合に依存して、蓄積される電子23の量は連続的に変化する。これは、印加された電位により、容量値は連続的に変化することを意味する。このようにして、可変キャパシタ5に必要とされる容量値に基づいて、第2電極18および第3電極19から選択される少なくとも一方の電極と第5電極13との間に電位差を印加する。
 印加された電位差が取り除かれた後も、強誘電体膜14の不揮発性のため自発分極21の方向は変化しない。従って、容量値は保持される。これは可変容量5bが不揮発であることを意味している。
 以上の説明のように、独立して抵抗値および容量値が調整される。後述される実施例からも明らかなように、先に抵抗値を調整し、発振周波数を大まかに変調する。次に、容量値を調整し、発振周波数を正確に変調する。
 図2Aに示されるように、抵抗4およびキャパシタ5が第2電極18を共有するため、第4電極12は第5電極13から電気的に絶縁されている必要がある。万一、第4電極12が第5電極13に電気的に接続されていると、独立して抵抗値および可変値が調整されない。これは、発振周波数を所望の値に調整されないことをもたらす。
 第1電極17は、図2Cに示されるように、抵抗4を介して第2電極18から電気的に絶縁されている必要がある。万一、第1電極17が、抵抗を用いずに電気的に第2電極18に接続されていると、抵抗4が機能しなくなる。
 (実施例)
 以下の実施例を参照しながら本発明をより詳細に説明する。
 (可変RC回路素子3の作製)
 厚さ30nmのルテニウム酸ストロンチウム(SrRuO、以下SRO)からなる酸化物導電膜を、チタン酸ストロンチウム(SrTiO)からなる(001)単結晶基板上に、パルスレーザデポジション(以下PLD)法によって堆積した。堆積時の基板の温度は700℃であった。堆積後、フォトリソグラフィおよびイオンミリング法によって第4電極12および第5電極13を形成した。
 基板の温度が700℃である状態で、PLD法を用いてSRO上に厚さ450nmのジルコニウム酸チタン酸鉛(Pb(Zr,Ti)O、以下PZT)からなる強誘電体膜14を堆積した。その後、基板の温度を400℃まで下げた。次いで、厚さ30nmの酸化亜鉛(ZnO)からなる半導体膜15を堆積した。
 半導体膜15上にパターニングされたレジストを形成した後、厚さ5nmのチタン膜と、厚さ30nmの白金膜から構成される積層体を、室温下で電子ビーム蒸着法によって堆積した。堆積後、リフトオフ法によって第1電極17と第2電極18を形成した。
 半導体膜15、第1電極17、及び第2電極18の上に、厚さ100nmの窒化珪素からなる常誘電体膜16を室温下での高周波スパッタリング法によって堆積した。その後、フォトリソグラフィおよびドライエッチングによって不要部を除去した。常誘電体膜16上にパターニングされたレジストを形成した後、厚さ5nmのTi層と厚さ30nmのPt膜の積層体を室温下で電子ビーム蒸着法によって堆積した。堆積後、リフトオフ法によって第3電極19を形成した。このようにして、可変RC回路素子3を得た。
 (可変RC回路素子3の評価)
 0ボルト、0ボルト、および-5ボルトを、それぞれ、第1電極17、第2電極18、および第4電極12に印加した後に、第1電極17および第2電極18の間に生じた抵抗4の値を測定した。得られた抵抗値は、10.6ギガオームであった。
 0ボルト、0ボルト、および+5ボルトを、それぞれ、第1電極17、第2電極18、および第4電極に印加した後に、第1電極17および第2電極18の間に生じた抵抗4の値を測定した。得られた抵抗値は、2.52キロオームであった。
 0ボルト、0ボルト、および-10ボルトを、それぞれ、第2電極18、第3電極19、および第5電極13に印加した後に、第2電極18および第3電極19の間に生じた容量5の値を測定した。得られた容量値は、3.62ピコファラッドであった。
 第2電極18、第3電極19、および第5電極13に、それぞれ、0ボルト、0ボルト、および+10ボルトを印加した後に、第2電極18および第3電極19の間に生じた容量5の値を測定した。得られた容量値は、6.79ピコファラッドであった。
 (RC発振回路の作製および評価)
 このようにして得られた3つの可変RC回路素子3a、3b、3cおよび増幅器1を用いて、図1に示すRC発振回路を得た。表1に示されるように抵抗値および容量値を変化させた後、増幅器1の電源を入れた。得られた発振周波数を(表1)に示す。
Figure JPOXMLDOC01-appb-T000001
 (表1)から明らかなように、まず各可変抵抗4a~4cの抵抗値を調整することで、数Hzから数MHzまでの範囲の値に発振周波数を大まかに設定する。次に各可変キャパシタ5a~5cの容量値を調整することで、発振周波数の微調整をする。
 本発明によるRC発振回路は、マイクロコンピュータの基準クロックとして用いられ得る。
 1  増幅器
 2  移相回路
 3a-3c  可変RC回路素子
 4a-4c  可変抵抗
 5a-5c  可変キャパシタ
 6a-6c  ノード
 31a-31c  RC回路素子
 41a-41c  抵抗
 51a-51c  キャパシタ
 61a-61c  ノード
 12  第4電極
 13  第5御電極
 14  強誘電体膜
 15  半導体膜
 16  常誘電体膜
 17  第1電極
 18  第2電極
 19  第3電極
 20  強誘電体膜14の一部の、自発分極
 21  強誘電体膜14の他の一部の、自発分極
 22  強誘電体膜14と半導体膜15との界面の一部に蓄積される電子
 23  強誘電体膜14と半導体膜15との界面の他の一部に蓄積される電子

Claims (4)

  1.  増幅器、および
     移相回路、を具備するRC発振回路であって、
     前記増幅器は出力端子および入力端子を具備し、
     前記移相回路は、少なくとも3つのRC回路素子を具備し、
     前記各RC回路素子は、抵抗およびキャパシタを具備し、
     前記キャパシタは、前記出力端子および前記入力端子の間に直列に接続され、
     前記RC回路素子のうち少なくとも1つのRC回路素子は、可変抵抗と可変キャパシタから構成された可変RC回路素子であり、
     前記可変RC回路素子は、第1電極、第2電極、第3電極、第4電極、および第5電極、強誘電体膜、半導体膜、および常誘電体膜を具備し、
     Z軸は前記強誘電体膜の法線方向であり、
     X軸は前記Z軸に直交する方向であり、
     前記強誘電体膜および前記半導体膜は前記Z軸に沿って積層されており、
     前記半導体膜の表側の面に、前記第1電極、前記第2電極、および前記常誘電体膜が配置されており、
     前記X軸に沿って、前記第2電極は前記第1電極および前記常誘電体膜の間に挟まれており、
     前記強誘電体膜の裏側の面に、前記第4電極および前記第5電極が配置されており、
     前記第4電極は、前記第5電極から電気的に絶縁されており、
     前記Z軸に沿った透視図において、前記第4電極は、前記第1電極および前記第2電極の間に挟まれており、
     前記可変抵抗は、前記第1電極、前記第2電極、前記強誘電体膜の一部、前記半導体膜の一部、および前記第4電極から形成されており、
     前記強誘電体膜の他の一部、前記半導体膜の他の一部、および前記常誘電体膜が、前記第3電極および前記第5電極の間に挟まれており、
     前記可変キャパシタは、前記第2電極、前記第3電極、前記第5電極、前記強誘電体膜の前記他の一部、前記半導体膜の前記他の一部、および前記常誘電体膜によって形成されている、
     前記RC発振回路。
  2.  RC発振回路を発振させる方法であって、
     請求項1に記載された前記RC発振回路を用意する工程(a)、および
     前記増幅器の電源を入れ、前記可変抵抗の抵抗値および前記可変キャパシタの容量値に応じた発振周波数で前記RC発振回路を発振させる工程(b)、
     を具備する方法。
  3.  RC発振回路を発振させる方法であって、
     請求項1に記載された前記RC発振回路を用意する工程(a)、
     前記第1電極および前記第2電極から選択される少なくとも一方の電極と、前記第4電極の間に電位差を印加して、前記可変抵抗の抵抗値を所定の値に設定する工程(b)、
     前記第2電極および前記第3電極から選択される少なくとも一方の電極と、前記第5電極の間に電位差を印加して、前記可変キャパシタの容量値を所定の値に設定する工程(c)、および
     前記増幅器の電源を入れ、前記工程(b)で設定された前記抵抗値および前記工程(c)で設定された前記容量値に応じた発振周波数で前記RC発振回路を発振させる工程(d)、
     を具備する方法。
  4.  RC発振回路の発振周波数を設定する方法であって、
     請求項1に記載された前記RC発振回路を用意する工程(a)、
     前記第1電極および前記第2電極から選択される少なくとも一方の電極と、前記第4電極の間に電位差を印加して、前記可変抵抗の抵抗値を所定の値に設定する工程(b)、および
     前記第2電極および前記第3電極から選択される少なくとも一方の電極と、前記第5電極の間に電位差を印加して、前記可変キャパシタの容量値を所定の値に設定する工程(c)、
     を具備する方法。
PCT/JP2012/001435 2011-06-06 2012-03-02 Rc発振回路 WO2012169098A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280004487XA CN103283143A (zh) 2011-06-06 2012-03-02 Rc振荡电路
JP2012540977A JP5158294B2 (ja) 2011-06-06 2012-03-02 Rc発振回路
US13/614,498 US8773212B2 (en) 2011-06-06 2012-09-13 Resistance-capacitance oscillation circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-125977 2011-06-06
JP2011125977 2011-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/614,498 Continuation US8773212B2 (en) 2011-06-06 2012-09-13 Resistance-capacitance oscillation circuit

Publications (1)

Publication Number Publication Date
WO2012169098A1 true WO2012169098A1 (ja) 2012-12-13

Family

ID=47295691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001435 WO2012169098A1 (ja) 2011-06-06 2012-03-02 Rc発振回路

Country Status (4)

Country Link
US (1) US8773212B2 (ja)
JP (1) JP5158294B2 (ja)
CN (1) CN103283143A (ja)
WO (1) WO2012169098A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10725987B2 (en) * 2014-11-25 2020-07-28 Sap Se Forced ordering of a dictionary storing row identifier values
CN108419348A (zh) * 2018-04-28 2018-08-17 广东格林莱光电科技有限公司 它激式高频电子镇流器及灯具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336806A (ja) * 1989-07-04 1991-02-18 Matsushita Electric Ind Co Ltd 移相型rc発振装置
JPH03178205A (ja) * 1989-12-07 1991-08-02 Matsushita Electric Ind Co Ltd 移相型cr発振装置
JP2009212168A (ja) * 2008-02-29 2009-09-17 Sony Corp 可変容量素子、可変容量素子の調整方法、可変容量デバイス、及び電子機器
JP2009295255A (ja) * 2008-06-09 2009-12-17 Panasonic Corp 半導体記憶装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0561560A1 (en) 1992-03-18 1993-09-22 Security Tag Systems, Inc. Frequency divider with variable capacitance
JP2002258880A (ja) 2001-03-06 2002-09-11 Sekiguchi Kikai Hanbai Kk 電波放出装置
US7295081B2 (en) * 2005-08-29 2007-11-13 Micron Technology, Inc. Time delay oscillator for integrated circuits
KR100782796B1 (ko) * 2006-10-31 2007-12-05 삼성전기주식회사 발진 주파수의 조정이 가능한 rc 발진회로와 그 발진방법
TW200828781A (en) 2006-12-21 2008-07-01 Holtek Semiconductor Inc Variable and multi-combination RC oscillator
US8004871B2 (en) 2008-05-26 2011-08-23 Panasonic Corporation Semiconductor memory device including FET memory elements
JP2010267705A (ja) 2009-05-13 2010-11-25 Panasonic Corp 半導体メモリセルおよびその製造方法
US8860519B2 (en) * 2009-10-15 2014-10-14 Hewlett-Packard Development Company, L.P. Device having inductor and memcapacitor
US8339208B2 (en) * 2010-06-08 2012-12-25 The Hong Kong University Of Science And Technology Method and apparatus for tuning frequency of LC-oscillators based on phase-tuning technique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336806A (ja) * 1989-07-04 1991-02-18 Matsushita Electric Ind Co Ltd 移相型rc発振装置
JPH03178205A (ja) * 1989-12-07 1991-08-02 Matsushita Electric Ind Co Ltd 移相型cr発振装置
JP2009212168A (ja) * 2008-02-29 2009-09-17 Sony Corp 可変容量素子、可変容量素子の調整方法、可変容量デバイス、及び電子機器
JP2009295255A (ja) * 2008-06-09 2009-12-17 Panasonic Corp 半導体記憶装置

Also Published As

Publication number Publication date
US20130009713A1 (en) 2013-01-10
JPWO2012169098A1 (ja) 2015-02-23
CN103283143A (zh) 2013-09-04
JP5158294B2 (ja) 2013-03-06
US8773212B2 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
JP5158293B2 (ja) Rc発振回路
US8194387B2 (en) Electrostrictive resonance suppression for tunable capacitors
JP4756461B2 (ja) 窒化アルミニウム薄膜およびそれを用いた圧電薄膜共振子
US20030205948A1 (en) Film bulk acoustic device with integrated tunable and trimmable device
US7310029B2 (en) Bulk acoustic resonator with matched resonance frequency and fabrication process
US20210219430A1 (en) Electronic component and its manufacturing method
JP5158294B2 (ja) Rc発振回路
US20070040198A1 (en) Semiconductor device and manufacturing method thereof, and thin film device
CH618298A5 (ja)
JP4191959B2 (ja) 薄膜積層デバイス、回路および薄膜積層デバイスの製造方法
US20060011961A1 (en) Thin film capacitor
JP5531448B2 (ja) 容量可変素子およびフィルタ回路
JP2003347613A (ja) 圧電体薄膜素子
JP6973745B2 (ja) Pzt薄膜積層体の製造方法
Akai et al. (Na, Bi) TiO3 based lead-free ferroelectric thin films on Si substrate for pyroelectric infrared sensors
JP7356085B2 (ja) 圧電振動子及びその製造方法
JPH07226648A (ja) 共振周波数可変型共振子
KR20090023031A (ko) 가변형 캐패시터 및 그 제조방법
JPH08306865A (ja) ビスマス系層状強誘電体を用いたキャパシタとその製造方法
Vorobiev et al. Intrinsically switchable bulk acoustic wave resonators based on paraelectric films
KR100801200B1 (ko) 반도체 장치와 그 제조 방법, 및 박막 장치
Berge Switchable and tunable bulk acoustic wave resonators based on BaxSr1-xTiO3 thin films
JPH03110861A (ja) 強誘電体薄膜の製造方法
JP2011044579A (ja) 圧電薄膜素子及びその製造方法
Cheng et al. Effect of substrate temperature on ferroelectric properties of (Pb1− xLax) Ti1− x/4O3/SrRuO3 thin films

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012540977

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797294

Country of ref document: EP

Kind code of ref document: A1