WO2012167470A1 - 一种实现锂电池电芯内部温度控制的方法 - Google Patents

一种实现锂电池电芯内部温度控制的方法 Download PDF

Info

Publication number
WO2012167470A1
WO2012167470A1 PCT/CN2011/077007 CN2011077007W WO2012167470A1 WO 2012167470 A1 WO2012167470 A1 WO 2012167470A1 CN 2011077007 W CN2011077007 W CN 2011077007W WO 2012167470 A1 WO2012167470 A1 WO 2012167470A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
temperature
lithium battery
temperature control
battery cell
Prior art date
Application number
PCT/CN2011/077007
Other languages
English (en)
French (fr)
Inventor
蔡英
Original Assignee
智晖有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智晖有限公司 filed Critical 智晖有限公司
Priority to CN201180072510.4A priority Critical patent/CN103733420A/zh
Publication of WO2012167470A1 publication Critical patent/WO2012167470A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery cooling technology, and more particularly to a method for realizing internal temperature control of a lithium battery cell. Background technique
  • the temperature of the battery core may rise due to the external heat dissipation mechanism.
  • a large amount of data indicates that when the cell temperature is maintained at 60 degrees Celsius for a long time, its lifetime can be reduced to 1/14 at 25 degrees Celsius. Therefore, temperature control is the core of the widespread application of lithium battery technology, and it is also the key to reducing the cost of its use.
  • the purpose of battery thermal management is to ensure that the battery operates within a certain temperature range, to prevent damage to the battery or reduce the battery life due to excessive battery temperature; and to maintain the balance of each unit cell temperature as much as possible to improve battery use. Performance and longevity.
  • the current research is more concerned about how the battery packs dissipate heat.
  • the battery storage energy is reduced, and it is also necessary to consider how to improve the temperature of the battery itself through the battery preheating technology, thereby ensuring the performance of the battery at low temperatures.
  • the current common methods for battery temperature control are: thermal resistance heating, gas, fluid circulation heating, and the like.
  • the present invention has the main purpose of cooling the battery cells, it also has the function of keeping the battery warm in a low temperature environment, so it is specifically pointed out here.
  • the battery cooling system uses air and liquid media to ventilate and cool, as well as The heat storage method using an insulating material such as a phase change material. Therefore, the cooling method is mainly divided into heat transfer medium: gas cooling, liquid cooling and phase change material cooling.
  • Gas cooling can be divided into natural convection cooling and forced air convection cooling.
  • Natural convection Cooling usually refers to the direct use of natural wind to remove the heat generated by the battery during use without any external auxiliary energy. The method is simple and easy, and the cost is low. However, a large heat dissipation area is required in the design of the battery and the package, and the cooling effect is poor.
  • Forced air convection cooling is accomplished by installing a local heat sink or fan at a suitable location inside the battery housing and controlling the fan's switching and speed based on battery temperature and temperature rise for real-time battery cooling. This method is practical and efficient, but for large-scale lithium batteries, since a large number of cells are closely arranged to greatly reduce the heat dissipation area, it is not enough to use only air cooling.
  • Liquid cooling because the commonly used coolant has a much higher heat transfer coefficient than air, and the liquid boundary layer is thinner and has a higher conductivity. Experiments have shown that liquid cooling not only significantly reduces the excessive temperature of the battery, but also makes the temperature distribution of the battery mold more uniform.
  • the phase change material is cooled by filling the phase change material between the fully enclosed module cells and using the phase change material cooling mechanism to work.
  • the gasification process of the refrigerant at low pressure or low temperature or the melting process or sublimation process of the solid at a low temperature absorbs heat to the object to be cooled to achieve the purpose of cooling. It also stores the heat generated during discharge in the form of latent heat and releases it when working in a charged or cold environment. At present, this cooling method is only applied to cylindrical cells, and the application on square cells has not been seen.
  • PCM - Phase Change Material is a type of energy storage material that can be used in a certain form. It is mainly composed of a main heat storage agent, a phase change point adjusting agent, an anti-superheating agent, a phase separation preventing agent, a phase change accelerator and the like.
  • phase change materials There are many kinds of phase change materials. From the characteristics of stored energy, they are divided into two types: heat storage materials and cold storage materials. From the way of energy storage energy storage, it can be divided into three categories: sensible heat storage, latent heat storage and chemical reaction energy storage. Among them, latent heat storage is the use of phase change latent heat of phase change materials to store heat, high energy storage density, simple heat storage device, small volume, and heat storage material during heat storage. Approximate constant temperature, it is easier to achieve constant temperature control at room temperature, especially suitable for building insulation and energy saving.
  • High-temperature phase change materials are mainly molten salts and metal alloys; medium-temperature phase change materials are mainly hydrated salts, organic materials and polymer materials; low-temperature phase change materials are mainly water and hydrogels.
  • inorganic phase change materials mainly include inorganic substances such as hydrated hydrated salts, molten salts and metal alloys; organic phase change materials mainly include paraffin wax (Paraffin Wax), carboxylic acids, esters, polyols and other organic substances; mixed phase change materials are mainly A mixture of organic and inorganic infused phase change materials.
  • inorganic phase change materials mainly include inorganic substances such as hydrated hydrated salts, molten salts and metal alloys
  • organic phase change materials mainly include paraffin wax (Paraffin Wax), carboxylic acids, esters, polyols and other organic substances
  • mixed phase change materials are mainly A mixture of organic and inorganic infused phase change materials.
  • Solid-liquid phase change materials mainly include hydrated salts and paraffin waxes, etc., which are more than solid-gas phase change materials and liquid-gas phase change materials in engineering applications but less than solid phase change materials.
  • Solid-set phase change materials mainly include high-density polyethylene, polyols, and organometallic compounds having a "layered perovskite" crystal structure. Solid-set phase change materials have been widely used in energy conservation, textiles, and military applications in industrial and civil construction and air conditioning.
  • the core components are composed of a positive electrode, a positive terminal, a negative electrode, a negative electrode terminal, a separator paper, an electrolyte, and an outer packaging material.
  • the cylindrical battery core is formed by laminating a positive electrode, a separator paper, and a negative electrode, and then tightly winding into a cylindrical shape, which is placed in a cylindrical casing and filled with an electrolyte to seal, as shown in FIG.
  • the electrode overlap of the square housing and the square soft battery can be as shown in Figure 2.
  • a sheet-shaped electrode separator paper winding type, a sheet-shaped electrode laminated type, a whole-plate electrode winding type, and the like, and the stacked electrodes are placed in a metal case or a soft polymer bag and filled with an electrolyte to seal.
  • the role of separator paper in lithium ion batteries is to isolate the positive and negative materials.
  • the quality of the diaphragm directly affects the safety performance and capacity of the battery.
  • diaphragm paper There are two types of diaphragm paper: First, polypropylene PP, polyethylene PE, polypropylene PP three-layer diaphragm paper is used. This type of diaphragm paper is characterized by cost reduction, but the manufacturing process is complicated and its quality is relatively stable.
  • the multi-layer composite diaphragm combines the advantages of PE and PP to provide better mechanical strength. PE sandwiches between two layers of PP to act as a fuse and provides better safety for the battery.
  • the single-layer polyolefin separator which is a single layer, has a high production cost, but is particularly suitable for the manufacture of ultra-thin membranes of 16 ⁇ m or less.
  • the process of coating silicate (ceramic) material on diaphragm paper has been adopted internationally, which can greatly improve the high temperature resistance of the separator paper.
  • the invention relates to this field.
  • Embodiments of the present invention provide a method for realizing internal temperature control of a lithium battery cell, to stabilize the internal temperature of the battery cell, and to apply any point on the electrode without consuming any energy.
  • the temperature is maintained within the set temperature and the internal temperature of the cell is stabilized for a long time at the set temperature of the selected phase change material.
  • an embodiment of the present invention provides a method for implementing internal temperature control of a lithium battery cell, including:
  • the type of the phase change material is selected according to the set phase change point temperature and mixed with the silicate material to be applied to the separator paper or the negative electrode.
  • the core temperature of the battery core is stabilized.
  • the phase change material can absorb a large amount of heat energy, so that the inside of the battery core The temperature is stable for a long time at the set temperature of the selected phase change material.
  • the system also has the advantage of keeping the battery pack warm in a low temperature environment.
  • the unique feature of the present invention is that the endothermic material is applied to all of the electrode planes that may generate heat, thereby ensuring that the temperature difference anywhere in the multilayer wound or overlapping electrode plates is minimized for a certain period of time. This is currently not possible with all other cell cooling methods.
  • FIG. 1 is a schematic view showing the structure of a cylindrical electric core in the prior art
  • FIG. 2 is a schematic view showing the structure of a square electric core in the prior art
  • FIG. 3 is a schematic diagram of a method for realizing internal temperature control of a lithium battery cell according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing the position of a separator paper according to an embodiment of the present invention.
  • the phase change point temperature is set, and the type of the micro-rubber phase change material is selected according to the phase change temperature, and mixed with the silicate (ceramic) material on the separator paper or the negative electrode.
  • the microcapsule phase change material in the coating will change from solid to liquid, and absorb a large amount of heat during the phase change, so that no energy is consumed.
  • the temperature at any point on the electrode is kept within the set temperature until all of the microcapsule phase change material absorbs heat at the phase change point to reach saturation.
  • An embodiment of the present invention provides a method for implementing internal temperature control of a lithium battery cell.
  • the specific implementation steps shown in FIG. 3 include:
  • Step S1 Select the phase change material according to the needs of the battery cell and set the phase change point temperature.
  • the present invention adopts a novel micro-glue tamping/liquid phase change material. Since the optimum operating temperature of the lithium battery is between 15 and 40 degrees, the temperature of the phase change material is set within the above temperature range.
  • Step S2 selecting the type of the micro-rubber phase change material according to the temperature of the phase change material set in step S1 and mixing with the silicate (ceramic) material to form a mixture of the two.
  • the phase change material and the silicate (ceramic) material are mixed in an appropriate ratio so as not to affect the safety performance of the battery core. The higher the proportion of the phase change material in the mixture, the better the thermal stability of the battery core. The current experimental results The ratio can reach between 15% and 35%.
  • Step S3 A phase change material and a silicate (ceramic) mixture are coated on the separator paper or the negative electrode.
  • the mixing ratio with other silicate (ceramic) materials is determined experimentally according to the method step S2, and then the final mixture is thoroughly mixed and coated by stirring, vibration, or the like. The cloth is adsorbed on the separator paper or coated on the negative electrode.
  • Step S4 A separator paper coated with a phase change material is used to make a battery cell. Making the battery core can follow the normal battery assembly procedure, but at the end of the adjustment of the electrolyte filling time and filling amount, due to different battery capacity and shape, the specific adjustment amount should be determined according to the experimental data.
  • the core temperature of the battery core is stabilized.
  • the phase change material can absorb a large amount of heat energy, so that the inside of the battery core The temperature is stable for a long time at the set temperature of the selected phase change material.
  • the system also has the advantage of keeping the battery pack warm in a low temperature environment.
  • phase change material in the internal temperature control of the lithium battery cell in the first embodiment will be described below.
  • the mixing ratio of the phase change material to the silicate (ceramic) and the method of coating the mixture are explained in further detail.
  • the microencapsulated phase change material encapsulates the phase change material (PCM) in a dense and elastic polymer shell by microcapsule preparation technology.
  • the particle size of the MEPCM particles is 1 ⁇ 100 ⁇ ⁇
  • MEPCM's outer casing separates the solid/liquid core material (PCM) from foreign matter, and it is a new phase change material that can withstand the volume change (expansion/contraction) caused by the phase transition of the core material. . Since the solid/liquid phase change adsorbent is encapsulated in the micro-adhesive, it is still micro-granular after the phase change, and does not dissolve into the electrolyte as the ordinary phase change material is liquefied.
  • the set temperature of the phase change material can be set in this range.
  • the invention should be applicable to any phase change adsorbent material located within this temperature range.
  • the size of the selected micro-adhesive cartridge is as small as possible (less than 10um), sometimes warm The setting of the degree can be changed according to the existing finished model.
  • the proportion of the phase change material does not affect this fundamental. It is achieved under the premise of the purpose. Of course, the higher the proportion of phase change material in the mixture, the better the thermal stability of the cell. According to the current experimental results, the ratio can reach between 15% and 35%. With the continuous improvement of silicate (ceramic) materials and the development of new electrolytes, this ratio is also subject to change, so the present invention should be applied to any mixing ratio greater than zero.
  • Coating method of phase change material and silicate (ceramic) mixture on diaphragm paper After selecting the micro-rubber phase change material, and determining the mixing ratio with other silicate (ceramic) materials according to experiments The final mixture can be thoroughly mixed, coated, and adsorbed on the separator paper by stirring, vibration, etc., as shown in FIG.
  • the coating method includes dipping, adsorption, spraying, roll coating, blade coating, and the like. After the coating, the separator paper is subjected to subsequent treatment. Since the separator paper has been coated with the micro-rubber phase change material, the drying process in the subsequent treatment should avoid high-temperature heat drying. Also pay attention to the thickness of the coating.
  • the thickness of the coated diaphragm should be between 10 and 100 4 mm.
  • phase change materials and silicate (ceramic) mixtures can also be directly applied to the positive and negative electrode materials by spraying, roller coating, knife coating, etc., in combination with ordinary diaphragm paper, and even the coating can be used to completely replace the diaphragm. paper. Since the phase change endothermic material is applied to all of the electrode planes that may generate heat, it is ensured that the temperature difference at any portion between the multilayered or overlapped electrode plates is minimized for a certain period of time.
  • the core temperature of the battery core is stabilized.
  • the phase change material can absorb a large amount of heat energy, so that the inside of the battery core The temperature is stable for a long time at the set temperature of the selected phase change material.
  • the system also has the advantage of keeping the battery pack warm in a low temperature environment.
  • a new concept of using a phase change material as a square core for energy-free temperature control is created, and the safety and service life of the square large-capacity battery core are increased. Life, expanding the ambient temperature range of cell core applications, has broad application prospects in civil, aerospace, military and other fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种实现锂电池电芯内部温度控制的方法,该方法的特点在于采用新型相变材料涂布于电芯负极板表面或隔膜纸上的方式来稳定电芯内核温度,当电极温度达到相变温度时,相变材料可大量吸收热能,使电芯内部温度长时间稳定在所选相变材料的设定温度上。与此同时,本系统还具有在低温环境下为电芯组保温的优点。通过本发明的实施,开创了用相变材料为方形电芯进行无能耗温度控制的全新理念,增加了方形大容量电芯的安全性和使用寿命,扩展了电芯应用的环境温度区间,在民用,航天,军工等方面具有广泛的应用前景。

Description

一种实现锂电池电芯内部温度控制的方法 本申请要求于 2011 年 6 月 9 日提交中国专利局, 申请号为 201110153479.9, 发明名称为 "一种实现锂电池电芯内部温度控制的 方法"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域
本发明涉及电池冷却技术领域,尤其涉及一种实现锂电池电芯内 部温度控制的方法。 背景技术
1、 电芯寿命与温度的关系
由于电芯在充放电过程中会产生大量热能,在没有外在散热机制 的情况下会造成电芯温度不断攀升的后果。大量数据表明在电芯温度 长期保持在摄氏 60度时, 其寿命可降到摄氏 25度时的 1/14。 所以温 度控制是锂电池技术得以广泛应用的核心,也是降低其使用成本的关 键。
电池热管理的目的是确保电池在一定的温度范围内运行使 用, 防止因电池温度过高而损坏电池或降低电池的使用寿命; 并且 保持各单体电芯温度尽可能达到均衡, 提高电池的使用性能和寿命。
2. 电池温度控制系统及冷却方式
在电池的热管理系统中, 目前研究较为关注的是电芯组如何散 热的问题。 然而在环境温度较低情况下, 电池储能降低, 同样需要考 虑如何通过电池预热技术提升电池自身温度的问题, 从而保证电池 在低温下的使用性能。 目前电池温度控制的常用方法有: 热电阻加热 法、 气体、 流体循环加热法等。 本发明虽然以电芯冷却为主要目的, 但也具有在低温环境下为电池保温的功能, 所以在此特意指出。
电池冷却系统可利用空气和液体介质来通风、冷却, 另外还可使 用绝缘材料的储热方式如使用相变材料。 因此, 其冷却方式按传热介 质来分主要有: 气体冷却、 液体冷却和相变材料冷却。
气体冷却可以分为自然对流冷却和强迫空气对流冷却。 自然对流 冷却法通常是指在不使用任何外部辅助能量直接利用自然风将电池 的使用过程产生的热量带走。 该方法简单易行, 成本低。 但是在电池 和外壳封装设计上需要较大的散热面积, 而且冷却效果较差。 强迫空 气对流冷却是通过在电池壳体内部合适的位置安装局部散热器或风 扇, 并可以 据电池温度和升温状况控制风扇的开关和转速进行电 池实时冷却。 该方法实用性强, 效率高, 但是对于大规模的锂电池来 说, 由于大量电芯紧密排列在一起, 大大减少了散热面积, 因此仅用 空气冷却是不够的。
液体冷却, 由于常用的冷却液其传热系数比空气高得多, 且液 体边界层更薄, 有更高的传导率。 实验证明, 液体冷却不仅能显著 降低电池过高的温度, 还可以使电池模温度分布更加均匀。
相变材料冷却 ,其方法主要是在全封闭的模块电池单体之间填充 相变材料, 利用相变材料冷却机理来工作。 制冷剂在低压、 低温下 的气化过程或固体在低温下熔化过程或升华过程 , 向被冷却的物体 吸收热量, 以达到冷却的目的。 它还可以把放电时发出的热量以潜热 的形式储存起来, 在充电或很冷的环境下工作时进行释放。 目前这 一冷却方法只应用于圆柱型电芯, 还未见到在方型电芯上的应用。
3.相变材料
相变材料 (PCM - Phase Change Material)是可将一定形式的能 以利用的储能材料。 它主要由主储热剂、 相变点调整剂、 防过热剂、 防相分离剂、 相变促进剂等组分组成。
相变材料种类很多,从所储能量的特点看,分为储热材料和储冷 材料两类。 从储能材料储能的方式看,可分为显热储能、 潜热储能和 化学反应储能 3类。 其中, 潜热储能是利用相变材料的相变潜热来储 热,储能密度大,储热装置简单、 体积小, 而且储热过程中储热材料 近似恒温,可以较容易地实现室温的定温控制, 特别适用于建筑保温 节能领域。
从蓄热的温度范围看,可分为高温、 中温和低温 3 类。 高温相变 材料主要是一些熔融盐、 金属合金;中温相变材料主要是一些水合盐、 有机物和高分子材料;低温相变材料主要是水和水凝胶。
从材料的化学组成看, 可分为无机 (Inorganic)相变材料、 有机 ( Organic )相变材料和混合相变材料三类。 无机相变材料主要包括 结晶水合盐(Hydrated )、 熔融盐、金属合金等无机物;有机相变材料 主要包括石蜡 (Paraffin Wax)、 羧酸、 酯、 多元醇等有机物; 混合相变 材料主要是有机和无机共融相变材料的混合物。
从蓄热过程中材料相态看, 可分为固液相变材料、 固固相变材 料、 固气相变材料和液气相变材料。 由于后两种相变方式在相变过程 中伴随有大量气体的存在,使材料体积变化较大, 因此尽管它们有很 大的相变焓,但在工程应用中很少被使用。 固液相变材料主要包括水 合盐和石蜡等,其在工程应用中多于固气相变材料和液气相变材料但 少于固固相变材料。 目前国际上对固液相变材料微胶嚢的开发使得固 液相变材料的应用领域不断扩大,本发明便是采用这一最新技术来实 现对电芯的冷却。 固固相变材料相变时不发生相态的转变, 而是相变 材料的晶型发生了变化,在晶型变化过程中有热量的吸收和放出。 固 固相变材料主要包括高密度聚乙烯、多元醇和具有 "层状钙钛矿 "晶体 结构的金属有机化合物。 固固相变材料已被广泛用于工业与民用建 筑和空调的节能、 纺织品以及军事等领域。
4、 锂电池电芯的构成
锂电池电芯的物理结构主要有三种: 圆柱形、 方形壳体、 方形软 体。 无论哪种形状, 其核心部件均由正极、 正极端、 负极、 负极端、 隔膜纸、 电解液及外包装材料组成。
圆柱形电芯是将正极、 隔膜纸、 负极重叠在一起后紧密卷绕成圆 筒状, 放入圆柱形外壳中充入电解液密封而成, 如图 1所示。
方形壳体和方形软体电芯的电极重叠可有多种方式如图 2所示, 如: 片状电极隔膜纸卷绕式、 片状电极层叠式、 整片电极卷绕式等, 再将重叠好的电极放入金属外壳或软体聚合物袋中充入电解液密封 而成。
锂电池可选用的正、 负极和电解液的材料有很多种, 在此不再赘 述。
隔膜纸在锂离子电池中的作用是把正负极材料隔离。隔膜纸的质 量直接地影响了电池的安全性能及容量等。 隔膜纸通常有两种类型: 其一, 选用聚丙烯 PP、 聚乙烯 PE、 聚丙烯 PP三层合拼隔膜纸, 此类 型隔膜纸特点在于降低成本, 但制造工艺复杂, 其质量比较稳定。 多 层复合隔膜结合了 PE和 PP的优点, 具有更好的机械强度, PE夹在两 层 PP之间可以起到熔断保险丝的作用 , 为电池提供了更好的安全保 护。 其二, 单层聚烯烃隔膜, 此类型隔膜纸由于是单层, 故生产成本 较高, 但对制造超薄 16um以下隔膜尤为有条件。 目前国际上已开始 采用在隔膜纸上涂布硅酸盐(陶瓷)材料的工艺, 可以大大提高隔膜 纸的耐高温性能。 本发明即涉及到这一领域。
( 1 ) 大容量电芯在快速充放电过程中会在较短时间内产生大量 热能, 而这一热能由于多层电极和隔膜纸的重叠或缠绕无法及时散 出, 造成电芯核心部分的温度高于外壳温度, 降低电池的使用寿命。
( 2 ) 目前所有电池温控的方法全部集中在电芯外部散热, 没有 任何实用的方法来实现电芯内部温控, 这就使得大容量电芯, 尤其是 方形壳体电芯的核心部分的降温变得比较困难,造成了同一电芯的内 外温差, 减小了电池荷电状态值的计算精度, 进而影响电池的整体使 用性能和稳定性。 发明内容
本发明实施例提供了一种实现锂电池电芯内部温度控制的方法, 以稳定电芯内部温度,在不耗用任何能量的条件下将电极上任何一点 温度保持在设定温度以内并使电芯内部温度长时间稳定在所选相变 材料的设定温度。
为达到上述目的,本发明实施例一方面提供了一种实现锂电池电 芯内部温度控制的方法, 包括:
根据电芯的需要选择相变材料并设定相变点温度;
根据所述设定的相变点温度选定相变材料的型号并与硅酸盐材 料混合涂布于隔膜纸或负极上。
通过对本发明采用新型相变材料涂布于电芯负极板表面或隔膜 纸上的方式来稳定电芯内核温度, 当电极温度达到相变温度时,相变 材料可大量吸收热能,使电芯内部温度长时间稳定在所选相变材料的 设定温度上。 与此同时, 本系统还具有在低温环境下为电芯组保温的 优点。本发明的独特之处在于吸热材料是涂布于全部可能产生热量的 电极平面上的,因此可以保证一定时间内在多层缠绕或重叠的电极板 间任何部位的温度差为最小。这是目前所有其它电芯冷却法所不能达 到的。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面将对实施例描 述中所需要使用的附图作简单的介绍, 显而易见的, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中圆柱形电芯结构示意图;
图 2为现有技术中方形电芯结构示意图;
图 3 为本发明实施例的一种实现锂电池电芯内部温度控制方法 步骤图;
图 4为本发明实施例隔膜纸位置示意图;
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、 完整的描述, 显然所描述的实施例仅是本发明的一部分 实施例, 不是全部的实施例, 基于本发明中的实施例, 本领域普通技 术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属 于本发明保护的范围。
大容量电芯在快速充放电过程中会在较短时间内产生大量热能, 而这一热能由于多层电极和隔膜纸的重叠或缠绕无法及时散出 ,造成 电芯核心部分的温度高于外壳温度。根据背景技术 1中所述电芯寿命 与温度的关系可知上述电芯核心部分的温度高于外壳温度这一现象 会降低电池的使用寿命, 而根据背景技术 2所述的现有降温方法, 又 无法有效地降低大容量电芯核心部分的温度,所以我们在这里提出了 采用了新型固 /液态相变敖胶嚢的方式来实现核心部分的温控。 才艮据 电芯的需要设定相变点温度,再根据该相变温度选定微胶嚢相变材料 的型号, 并与硅酸盐(陶瓷)材料混合涂布于隔膜纸或负极上。 当电 芯内部温度达到设定点时 ,该涂层中的微胶嚢相变材料即会由固态转 为液态, 并在相变过程中吸收大量热量, 这样可在不耗用任何能量的 条件下将电极上任何一点温度保持在设定温度以内,直到所有微胶嚢 相变材料在相变点吸热达到饱和。
本发明的实施例一方面提供了一种实现锂电池电芯内部温度控 制的方法, 如图 3所示具体实现步骤包括:
步骤 S1 : 根据电芯的需要选择相变材料并设定相变点温度。 本 发明采用新型的微胶嚢固 /液态相变材料 , 由于锂电池最适宜的工作 温度在 15至 40度之间 ,故将相变材料的温度设定在上述温度的区间 内。
步骤 S2: 根据步骤 S1中设定的相变材料的温度选定微胶嚢相变 材料的型号并与硅酸盐(陶瓷)材料混合形成二者的混合物。 相变材 料与硅酸盐(陶瓷)材料是按适当比例混合才不影响电芯的安全性能, 混合物中相变材料所占比例越高电芯的热稳定性就越好, 目前的实验 结果该比例可达到 15%至 35%之间。 步骤 S3 : 将相变材料与硅酸盐 (陶瓷) 混合物涂布于隔膜纸或 负极上。 根据上述方法步骤 S1选定微胶嚢相变材料后, 再根据方法 步骤 S2通过实验确定与其它硅酸盐(陶瓷)材料的混合比例, 然后 将最终混合物通过搅拌、振动等方式充分混合并涂布、吸附于隔膜纸 上或涂布于负极上。
步骤 S4: 将涂有相变材料的隔膜纸制作电芯。 制作电芯可遵守 正常电芯组装程序, 但在最后要调整电解液充浸时间和充入量, 由于 不同电芯容量和形状不同, 具体调整量需根据实验数据来决定。
通过对本发明采用新型相变材料涂布于电芯负极板表面或隔膜 纸上的方式来稳定电芯内核温度, 当电极温度达到相变温度时,相变 材料可大量吸收热能,使电芯内部温度长时间稳定在所选相变材料的 设定温度上。 与此同时, 本系统还具有在低温环境下为电芯组保温的 优点。
下面将对实施例一中的实现锂电池电芯内部温度控制中的相变 材料的选择。 相变材料与硅酸盐(陶瓷)混合比例以及混合物涂布的 方法做进一步更为详细的说明。
1、 相变材料的选择
ί股嚢相变材料 (microencapsulated phase change material, MEPCM)是通过微胶嚢制备技术将相变材料 (PCM)封装在质密且具 有一定弹性的聚合物外壳内, MEPCM颗粒的粒径为 1〜100 μ πι, MEPCM的外壳能够将固 /液态的芯材 (PCM)与外界物质分隔开, 并且 它是一种能承受芯材相变引起的体积变化 (膨胀 /收缩 )的新型相变材 料。 由于该固 /液态相变吸附剂被包裹在微型胶嚢里, 所以在相变后 仍呈微颗粒状, 不会像普通相变材料在液化后溶入电解液中。微胶嚢 相变材料有很多品种和型号,但由于锂电池最适宜的工作温度在摄氏 15至 40度之间, 相变材料的设定温度即可设定在这一区间。 无论 微胶嚢中固 /液态相变吸附剂是由何种化学成分所组成, 本发明应适 用于任何介于该温度区间的相变吸附剂材料。 在满足其它技术、使用 要求的前提下, 所选微胶嚢的尺寸是越小越好(小于 10um ), 有时温 度点的设定可根据现有成品型号作一些适当的改变。
2、 相变材料与硅酸盐(陶瓷)材料的混合比例
由于在隔膜纸或负极上涂布硅酸盐(陶瓷)材料的目地是在保证 电极板间电离子穿越的同时, 加强电芯的安全性能, 所以相变材料的 比例要在不影响这一根本目地的前提下予以实现。当然混合物中相变 材料所占比例越高, 电芯的热稳定性就越好, 根据目前的实验结果, 该比例可达到 15%至 35%之间。 随着硅酸盐(陶瓷 )材料的不断改进 和新型电解液的开发, 此比例也有可能发生变化, 因此本发明应适用 于任何一个大于零的混合比例。
3、 相变材料与硅酸盐(陶瓷) 混合物在隔膜纸上的涂布方法 当选定微胶嚢相变材料后, 并根据实验确定其与其它硅酸盐(陶 瓷)材料的混合比例后即可将最终混合物通过搅拌、振动等方式充分 混合并涂布、 吸附于隔膜纸上, 如图 4所示为隔膜纸位置示意图。 其 涂布方法包括浸渍、 吸附、 喷涂、 滚涂、 刮涂等。 涂布后要将隔膜纸 进行后续处理, 由于此时隔膜纸已涂有微胶嚢相变材料, 后续处理中 的干燥过程应避免采用高温热力干燥。 另外需要注意涂布的厚度, 涂 布后的隔膜纸厚度应介于 10至 100 4敖米之间。
除了上述涂布或吸附于隔膜纸上的方法还包括其它的涂布方法。 相变材料与硅酸盐(陶瓷)混合物还可以通过喷涂、 滚涂、 刮涂等方 法直接涂布于正、 负电极材料上, 与普通隔膜纸配合使用, 甚至可以 用该涂层彻底替代隔膜纸。由于相变吸热材料是涂布于全部可能产生 热量的电极平面上的,因此可以保证一定时间内在多层缠绕或重叠的 电极板间任何部位的温度差为最小。
通过对本发明采用新型相变材料涂布于电芯负极板表面或隔膜 纸上的方式来稳定电芯内核温度, 当电极温度达到相变温度时,相变 材料可大量吸收热能,使电芯内部温度长时间稳定在所选相变材料的 设定温度上。 与此同时, 本系统还具有在低温环境下为电芯组保温的 优点。 并且通过本发明的实施, 开创了用相变材料为方形电芯进行无 能耗温度控制的全新理念,增加了方形大容量电芯的安全性和使用寿 命, 扩展了电芯应用的环境温度区间, 在民用, 航天, 军工等方面具 有广泛的应用前景。
以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局 限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护 范围。

Claims

权利要求
1、 一种实现锂电池电芯内部温度控制的方法, 其特征在于, 包 括:
根据电芯的需要选择相变材料并设定相变点温度;
根据所述设定的相变点温度选定相变材料的型号并将其与硅酸 盐材料混合涂布于隔膜纸或负极上。
2、 如权利要求 1所述的实现锂电池电芯内部温度控制的方法, 其特征在于, 所述相变材料为新型固 /液态相变微胶嚢。
3、 如权利要求 2所述的实现锂电池电芯内部温度控制的方法, 其特征在于, 所述相变微胶嚢的尺寸应小于 10微米。
4、 如权利要求 1所述的实现锂电池电芯内部温度控制的方法, 其特征在于, 所述设定的相变点温度在 15至 40度之间。
5、 如权利要求 1所述的实现锂电池电芯内部温度控制的方法, 其特征在于,所述实现锂电池电芯内部温度控制的方法适应任何介于 锂电池适宜的工作温度区间的相变吸附剂材料。
6、 如权利要求 1所述的实现锂电池电芯内部温度控制的方法, 其特征在于, 所述相变材料与硅酸盐材料是按比例进行混合的, 混合 物中相变材料的比例大于零。
7、 如权利要求 1所述的实现锂电池电芯内部温度控制的方法, 其特征在于,相变材料与硅酸盐涂布于隔膜纸或负极上的具体方式包 括:
通过搅拌、 振动方式充分混合并涂布、 吸附于隔膜纸上; 通过喷涂、 滚涂、 刮涂方式直接涂布于正、 负电极材料上。
8、 如权利要求 7所述的实现锂电池电芯内部温度控制的方法, 其特征在于, 涂布于隔膜纸上的涂布方法包括: 浸渍、 吸附、 喷涂、 滚涂、 刮涂。
9、 如权利要求 1所述的实现锂电池电芯内部温度控制的方法, 其特征在于, 涂布后的隔膜纸厚度应介于 10微米至 100微米之间。
10、 如权利要求 1所述的实现鋰电池电芯内部温度控制的方法, 其特征在于, 将相变材料与硅酸盐涂布于隔膜纸后, 将涂有相变材料 的隔膜纸制作电芯遵守正常电芯组装程序,还需要调整电解液充浸时 间和充入量。
PCT/CN2011/077007 2011-06-09 2011-07-08 一种实现锂电池电芯内部温度控制的方法 WO2012167470A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180072510.4A CN103733420A (zh) 2011-06-09 2011-07-08 一种实现锂电池电芯内部温度控制的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110153479.9 2011-06-09
CN201110153479 2011-06-09

Publications (1)

Publication Number Publication Date
WO2012167470A1 true WO2012167470A1 (zh) 2012-12-13

Family

ID=47295361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077007 WO2012167470A1 (zh) 2011-06-09 2011-07-08 一种实现锂电池电芯内部温度控制的方法

Country Status (2)

Country Link
CN (1) CN103733420A (zh)
WO (1) WO2012167470A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048022A (zh) * 2015-06-24 2015-11-11 合肥国轩高科动力能源股份公司 一种新型锂离子电池用涂层材料及其制备方法
CN105355824A (zh) * 2015-12-11 2016-02-24 北京新能源汽车股份有限公司 动力电池隔膜、其制备方法及包括其的动力电池
FR3025363A1 (fr) * 2014-08-28 2016-03-04 Renault Sas Electrode pour batterie de vehicule
CN105514521A (zh) * 2015-12-07 2016-04-20 湖南立方新能源科技有限责任公司 一种具备温度调节功能的锂离子电池
CN105932200A (zh) * 2016-05-26 2016-09-07 北京新能源汽车股份有限公司 锂离子电池复合隔膜及其制备方法和锂离子电池
CN104466231B (zh) * 2013-09-24 2017-07-11 国联汽车动力电池研究院有限责任公司 一种锂离子二次电池及其制备方法
US9742047B2 (en) 2014-08-11 2017-08-22 Milwaukee Electric Tool Corporation Battery pack with phase change material
CN107293684A (zh) * 2017-06-12 2017-10-24 深圳天和顺新能源股份有限公司 一种高安全锂电池相变隔膜的配方及制造方法
CN107819158A (zh) * 2017-11-22 2018-03-20 东莞市超鸿自动化设备有限公司 电芯烘烤夹具及电芯烘烤的方法
CN107845847A (zh) * 2016-09-20 2018-03-27 中国科学院大连化学物理研究所 一种具有自控温功能的锂硫电池
CN107994191A (zh) * 2017-11-15 2018-05-04 江苏华富储能新技术股份有限公司 一种含有相变储能材料的用于铅蓄电池的agm隔板
CN111261979A (zh) * 2020-03-10 2020-06-09 南京邮电大学 一种低温自控内加热锂离子电池
CN112812746A (zh) * 2021-01-04 2021-05-18 华鼎国联动力电池有限公司 固-固复合相变材料及降低锂离子电池温升的方法
CN114069107A (zh) * 2021-11-16 2022-02-18 广东博力威科技股份有限公司 低温加热充电的控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946487A (zh) * 2017-11-15 2018-04-20 江苏华富储能新技术股份有限公司 一种含有相变储能材料的蓄电池防护箱
CN112542626A (zh) * 2019-09-20 2021-03-23 北京小米移动软件有限公司 移动终端的内置电池及制备方法
CN111009678A (zh) * 2019-12-31 2020-04-14 广东博龙能源科技有限公司 一种增加电池安全性的电池制作工艺
CN112259830A (zh) * 2020-10-28 2021-01-22 辽宁九夷锂能股份有限公司 一种可低温启动放电锂电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870347A (zh) * 2005-05-27 2006-11-29 比亚迪股份有限公司 具有温度调节功能的电池包
CN1993846A (zh) * 2004-08-06 2007-07-04 株式会社Lg化学 内部构造中含有容纳相变材料的胶囊的电池系统
CN2927335Y (zh) * 2006-04-26 2007-07-25 有量科技股份有限公司 具有吸热体的电池装置
US20090176149A1 (en) * 2002-01-09 2009-07-09 Hisashi Tsukamoto Method and apparatus for amplitude limiting battery temperature spikes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183568A1 (en) * 2009-11-18 2013-07-18 Susan J. Babinec Composite separator for electrochemical cell and method for its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176149A1 (en) * 2002-01-09 2009-07-09 Hisashi Tsukamoto Method and apparatus for amplitude limiting battery temperature spikes
CN1993846A (zh) * 2004-08-06 2007-07-04 株式会社Lg化学 内部构造中含有容纳相变材料的胶囊的电池系统
CN1870347A (zh) * 2005-05-27 2006-11-29 比亚迪股份有限公司 具有温度调节功能的电池包
CN2927335Y (zh) * 2006-04-26 2007-07-25 有量科技股份有限公司 具有吸热体的电池装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466231B (zh) * 2013-09-24 2017-07-11 国联汽车动力电池研究院有限责任公司 一种锂离子二次电池及其制备方法
US9742047B2 (en) 2014-08-11 2017-08-22 Milwaukee Electric Tool Corporation Battery pack with phase change material
US10305155B2 (en) 2014-08-11 2019-05-28 Milwaukee Electric Tool Corporation Battery pack with phase change material
FR3025363A1 (fr) * 2014-08-28 2016-03-04 Renault Sas Electrode pour batterie de vehicule
CN105048022A (zh) * 2015-06-24 2015-11-11 合肥国轩高科动力能源股份公司 一种新型锂离子电池用涂层材料及其制备方法
CN105514521A (zh) * 2015-12-07 2016-04-20 湖南立方新能源科技有限责任公司 一种具备温度调节功能的锂离子电池
CN105355824B (zh) * 2015-12-11 2018-07-06 北京新能源汽车股份有限公司 动力电池隔膜、其制备方法及包括其的动力电池
CN105355824A (zh) * 2015-12-11 2016-02-24 北京新能源汽车股份有限公司 动力电池隔膜、其制备方法及包括其的动力电池
CN105932200A (zh) * 2016-05-26 2016-09-07 北京新能源汽车股份有限公司 锂离子电池复合隔膜及其制备方法和锂离子电池
CN107845847A (zh) * 2016-09-20 2018-03-27 中国科学院大连化学物理研究所 一种具有自控温功能的锂硫电池
CN107845847B (zh) * 2016-09-20 2020-03-10 中国科学院大连化学物理研究所 一种具有自控温功能的锂硫电池
CN107293684A (zh) * 2017-06-12 2017-10-24 深圳天和顺新能源股份有限公司 一种高安全锂电池相变隔膜的配方及制造方法
CN107994191A (zh) * 2017-11-15 2018-05-04 江苏华富储能新技术股份有限公司 一种含有相变储能材料的用于铅蓄电池的agm隔板
CN107819158A (zh) * 2017-11-22 2018-03-20 东莞市超鸿自动化设备有限公司 电芯烘烤夹具及电芯烘烤的方法
CN107819158B (zh) * 2017-11-22 2024-04-02 东莞市超鸿自动化设备有限公司 电芯烘烤夹具及电芯烘烤的方法
CN111261979A (zh) * 2020-03-10 2020-06-09 南京邮电大学 一种低温自控内加热锂离子电池
CN111261979B (zh) * 2020-03-10 2022-07-29 南京邮电大学 一种低温自控内加热锂离子电池
CN112812746A (zh) * 2021-01-04 2021-05-18 华鼎国联动力电池有限公司 固-固复合相变材料及降低锂离子电池温升的方法
CN114069107A (zh) * 2021-11-16 2022-02-18 广东博力威科技股份有限公司 低温加热充电的控制方法

Also Published As

Publication number Publication date
CN103733420A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2012167470A1 (zh) 一种实现锂电池电芯内部温度控制的方法
Chen et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review
Qin et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material
Ianniciello et al. Electric vehicles batteries thermal management systems employing phase change materials
US20220158273A1 (en) Thermal management system and device
Kiani et al. Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach
Wang et al. High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network
JP7027631B2 (ja) 相変化物質(pcm)カプセルを適用したバッテリー冷却用のヒート・シンク
Zhao et al. Performance assessment of a passive core cooling design for cylindrical lithium‐ion batteries
JP5395765B2 (ja) 冷却材を備える電池、並びに冷却材を備える組電池
WO2018103306A1 (zh) 一种用于方形电池的热管理模块及其制备方法和应用
CN110551485A (zh) 一种水合盐相变储能材料及其制备方法、电池热管理系统
CN201845833U (zh) 一种新型聚合物锂离子二次电池
CN108199112A (zh) 一种用于方形电池的热管理模块及其制备方法和电池组
Wang et al. Application of polymer-based phase change materials in thermal safety management of power batteries
CN205452476U (zh) 一种具有相变热缓冲功能的圆柱形锂电池
CN105280983A (zh) 电动汽车动力电池组的散热系统
CN113097598B (zh) 一种基于相变材料浸没式被动热开关及其控制方法
CN104247144A (zh) 一种锂电池电芯模块及电池包冷却系统的设计方法
CN111029683A (zh) 一种耐温变储能元器件
CN108110151B (zh) 一种电芯封装铝塑膜及其制备方法和电池
Mahmud et al. Lithium-ion battery thermal management for electric vehicles using phase change material: A review
CN104993184A (zh) 一种动力电池及其冷却系统
CN110970686A (zh) 一种带热管理功能的圆柱形锂离子电池
CN110707392A (zh) 一种有利于锂离子电池散热的复合相变涂层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867340

Country of ref document: EP

Kind code of ref document: A1