WO2012165339A1 - Axial gap type rotary electrical machine - Google Patents

Axial gap type rotary electrical machine Download PDF

Info

Publication number
WO2012165339A1
WO2012165339A1 PCT/JP2012/063513 JP2012063513W WO2012165339A1 WO 2012165339 A1 WO2012165339 A1 WO 2012165339A1 JP 2012063513 W JP2012063513 W JP 2012063513W WO 2012165339 A1 WO2012165339 A1 WO 2012165339A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
electrical machine
rotating electrical
axial gap
gap type
Prior art date
Application number
PCT/JP2012/063513
Other languages
French (fr)
Japanese (ja)
Inventor
正禎 尾島
牧 晃司
康明 青山
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2012165339A1 publication Critical patent/WO2012165339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/15Sectional machines

Definitions

  • the present invention relates to an axial gap type rotating electrical machine.
  • a refrigerant is injected from the inlet provided near the rotation axis of the rotor into the inner peripheral side of the gap between the rotor and the stator, and the refrigerant is used to rotate the rotor. It is used to circulate over the entire surface of the rotor and stator.
  • the axial gap type rotating electrical machine has a disk shape having a plurality of permanent magnets arranged at predetermined intervals in the circumferential direction and arranged so that the magnetization directions are alternately reversed.
  • a refrigerant supply member that discharges the refrigerant to at least the disk-like rotor through the gap between the two.
  • the pitch angle of the circumferential arrangement between the adjacent magnetic poles is an even number of the pitch angles of the circumferential arrangement between the adjacent permanent magnets. It is preferable that the setting is doubled.
  • the axial gap type rotating electric machine according to the second aspect includes a plurality of magnetic pole groups composed of two or more adjacent magnetic pole elements, and a winding is provided for each magnetic pole group.
  • the refrigerant supply member is preferably disposed on the inner peripheral side of the winding.
  • the refrigerant supply member is a pipe member arranged so as to be inserted into the gap.
  • the refrigerant supply member is disposed so as to be inserted into the gap so that the refrigerant is directed toward the disk-shaped rotor. It is preferable to include a first tube member that discharges and a second tube member that is disposed so as to be inserted into the gap and discharges the refrigerant toward the winding.
  • the winding, the magnetic pole, and the disk-shaped rotor are housed, and the refrigerant is supplied to the refrigerant supply member. It is preferable to provide a housing in which a refrigerant flow path is formed.
  • a plurality of refrigerant gaps are formed so as to be in surface contact between adjacent magnetic poles. It is preferable that the cooling block is provided and the refrigerant supply member is arranged in the plurality of cooling blocks.
  • the refrigerant supply member is provided for each of the plurality of regions set in the disk-shaped rotor and the winding, It is preferable to include a temperature measurement unit that measures the temperature of the region, and a flow rate control unit that controls the flow rate of the refrigerant discharged from each of the refrigerant supply members based on the temperature measured by the temperature measurement unit.
  • the refrigerant supply member is provided for each of the plurality of regions set in the disk-shaped rotor and the winding, Based on the prediction, a plurality of region temperatures are predicted based on the storage unit in which the heat generation amount corresponding to the operating conditions of the rotating electrical machine is stored in advance with respect to the region, the heat generation amount stored in the storage unit, and the actual operation state And a flow rate control unit for controlling the flow rate of the refrigerant discharged from each of the refrigerant supply members.
  • the disk-shaped rotor in the axial gap type rotating electrical machine, can be effectively cooled even at a low speed.
  • FIG. 1 is a perspective view showing an external appearance of a rotating electrical machine 1.
  • 1 is a view showing a rotating electrical machine 1 having a cross section of a part of a housing 2.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a diagram illustrating the arrangement of permanent magnets 103 provided on a magnetic pole 110 and a rotor 102.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is a figure which shows arrangement
  • FIG. It is a figure explaining the cooling structure by the refrigerant
  • FIG. It is a figure which shows the modification 1.
  • FIG. It is a figure which shows the modification 2.
  • FIG. It is a figure which shows the modification 3.
  • FIG. It is a figure which shows the modification 4.
  • FIG. It is a figure which shows arrangement
  • FIG. 1 is a perspective view showing an appearance of an axial gap type rotating electrical machine 1.
  • FIG. 2 is a sectional view of a part of the housing 2 of the rotating electrical machine 1 shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1, and is a cross-sectional view passing through a portion where a magnetic pole 110 described later is provided.
  • 5 is a cross-sectional view taken along the line BB of FIG. 1, and is a cross-sectional view passing through a portion of a refrigerant supply member 120 described later.
  • the rotating electrical machine 1 includes a disk-shaped rotor 102 whose center is fixed to the rotating shaft 101, and a plurality of rotors 102 disposed so as to sandwich the rotor 102 with a gap interposed therebetween.
  • the winding 104 wound in common among the plurality of adjacent magnetic poles 110 of the plurality of magnetic poles 110, the housing 2 disposed so as to cover them, and the adjacent magnetic poles 110 And a plurality of refrigerant supply members 120 installed in the gap.
  • the refrigerant supply member 120 is fixed to the opening 20 formed in the end faces 2 a and 2 b in the axial direction of the housing 2.
  • a plurality of permanent magnets 103 are arranged on the rotor 102 in the circumferential direction with a predetermined interval.
  • the rotating shaft 101 to which the rotor 102 is fixed is rotatably supported by a bearing provided in the housing 2.
  • each magnetic pole 110 arranged so as to sandwich the rotor 102 includes a pair of magnetic pole teeth 111 facing both the front and back surfaces of the rotor 102 and a core 112 connecting them.
  • the permanent magnet 103 provided on the rotor 102 is magnetized in the thickness direction of the rotor 102, and one side of the rotor 102 is an S pole and the other side is an N pole.
  • Each magnetic pole tooth 111 of the magnetic pole 110 is arranged at a position facing the permanent magnet 103 in the radial direction of the rotor 102.
  • each magnetic pole 110 is fixed to the inner peripheral surface of both end faces 2 a and 2 b of the housing 2, but may be fixed to the inner peripheral surface of the side periphery 2 c of the housing 2. Further, by providing a guide or the like for positioning the magnetic pole 110 in the housing 2, the magnetic pole 110 can be accurately positioned.
  • twelve magnetic poles 110 are provided in the circumferential direction, and four pieces form one group (hereinafter referred to as a magnetic pole group). .
  • the winding 104 is provided for each magnetic pole group.
  • the winding 104 is wound so as to surround the magnetic pole teeth 111 of the four magnetic poles 110 included in the magnetic pole group.
  • two windings 104 are provided for one magnetic pole group, one of which is wound in common with four magnetic pole teeth 111 facing the surface side of the rotor 102 and the other is wound on the rotor 102.
  • the four magnetic pole teeth 111 facing the back side are wound in common.
  • the winding 104 may be fixed to the magnetic pole teeth 111, or may be fixed to the housing 2 side.
  • FIG. 4 shows an arrangement of the magnetic pole 110 and the permanent magnet 103 provided on the rotor 102.
  • the rotary electric machine 1 is provided with three magnetic pole groups, but in FIG. 4, one set of magnetic poles 110 and windings wound around them are provided.
  • Line 104 is shown. As described above, the winding 104 is also provided for the magnetic pole teeth 111 on the back surface side.
  • the rotor 102 is provided with 13 permanent magnets 103.
  • Each permanent magnet 103 is magnetized in the thickness direction of the rotor 102, and as shown in FIG. 4, the magnetic poles adjacent to each other in the rotation direction (circumferential direction) are alternately reversed, that is, N, S, N, S, N, S,... Are arranged.
  • the four magnetic poles 110 in the same magnetic pole group are arranged such that the pitch angle ⁇ 2 in the circumferential direction between the magnetic poles is twice the pitch angle ⁇ 1 in the circumferential direction between the permanent magnets.
  • the pitch angle of the circumferential arrangement between the magnetic poles is an angle formed by a radial straight line connecting the axis center and the center of the magnetic pole 110, and the pitch angle of the circumferential arrangement between the permanent magnets is the axis center. And an angle formed by a radial straight line connecting the center of the permanent magnet 103.
  • the direction of the magnetic flux flowing in the magnetic poles 110 becomes almost equal, so that the winding 104 can be wound around a plurality of adjacent magnetic poles 110 in common.
  • ⁇ 2 is doubled with respect to ⁇ 1, but in order to make the winding 104 common to the plurality of magnetic poles 110, it does not necessarily have to be exactly double.
  • the winding 104 can be made common by setting it to approximately twice, and a space margin is generated between the magnetic poles 110.
  • the number of the magnetic poles 110, the windings 104, and the permanent magnets 103 is not limited to that of this embodiment.
  • the number of magnetic poles 110 constituting the magnetic pole group is four here, but may be other than four.
  • the angle ⁇ 2 between the magnetic poles 110 is set to twice (or substantially twice) ⁇ 1, the common use of the winding 104 as described above is performed by making it an even number (or substantially even number). It becomes possible.
  • the angle ⁇ 2 between the magnetic poles 110 is an even multiple (or substantially an even multiple) of ⁇ 1, so that the refrigerant supply member 120 is interposed between the magnetic poles 110 as shown in FIG. Can be easily arranged.
  • the winding 104 is not disposed between the magnetic poles 110, so that the winding 104 can be cooled by the refrigerant from the inner peripheral side, and the cooling performance related to the winding 104 is improved. improves.
  • FIG. 5 and 6 are diagrams showing the arrangement of the refrigerant supply member 120.
  • FIG. FIG. 5 is a cross-sectional view taken along the line BB of FIG.
  • three refrigerant supply members 120 are arranged between the four magnetic poles 110 constituting the magnetic pole group.
  • the three refrigerant supply members 120 are arranged on the outer circumference side of the winding 104 and the refrigerant dropping pipe 121a for the winding and the refrigerant jet pipe 122 for the rotor arranged on the inner circumference side of the wound winding 104.
  • a refrigerant dropping pipe 121b for winding.
  • the base portions of the refrigerant dropping pipes 121 a and 121 b and the refrigerant jet pipe 122 are fixed to the openings 20 formed in the both end faces 2 a and 2 b of the housing 2, and the refrigerant 5 is supplied through the pipe 3.
  • the supplied refrigerant 5 is supplied to the winding 104 and the rotor 102 as indicated by arrows from the leading ends of the refrigerant dropping pipes 121a and 121b and the refrigerant jet pipe 122.
  • the rotating electrical machine 1 of the present embodiment has a configuration in which the rotating shaft 101 is horizontally disposed as shown in FIG. 5, and the refrigerant dropping pipe 121 b is disposed above the winding 104. Which of the refrigerant dropping pipes 121a and 121b and the refrigerant jet pipe 122 is used as the refrigerant supply member 120 may be appropriately selected according to the mounting posture of the rotating electrical machine 1.
  • FIG. 7 is a diagram showing a cross-sectional shape of the refrigerant supply member 120.
  • FIG. 7 (a) shows an example of the winding refrigerant dropping pipes 121a and 121b.
  • the refrigerant 5 supplied in the direction of the rotation axis changes its direction in the refrigerant dropping pipes 121a and 121b and is dripped vertically downward.
  • FIG. 7B shows an example of the refrigerant ejection pipe 122 for the rotor.
  • the refrigerant 5 supplied in the direction of the rotation axis is ejected without changing the direction in the pipe.
  • coolant ejected can be made faster by narrowing an internal diameter of the refrigerant
  • the refrigerant is dropped in the winding 104 by the refrigerant dropping pipes 121a and 121b.
  • the refrigerant may be jetted by increasing the flow rate of the refrigerant.
  • FIG. 7D shows an example of the refrigerant supply member 120 that can supply the refrigerant to the rotor 102 and the winding 104 at the same time. For example, this is shown in FIG. You may arrange in a position.
  • a liquid refrigerant such as cooling water, cooling oil, liquid nitrogen, and liquid helium is described as an example of the refrigerant 5, but a gaseous refrigerant such as a cooling gas can also be used.
  • the refrigerant 5 is liquid, the refrigerant 5 supplied to the rotor 102, the magnetic pole 110, the winding 104, and the like flows down to the lower part of the housing 2 due to gravity, and the refrigerant discharge port 4 provided at the lower part of the housing 2. Discharged from.
  • gas when gas is used for the refrigerant 5, the position where the refrigerant discharge port 4 is provided is not limited to the lower part of the housing 2.
  • the discharged refrigerant 5 can be configured to circulate the refrigerant 5 by supplying it to the pipe 3 again by a pump (not shown).
  • FIG. 8 shows a case where only the winding refrigerant supply member (refrigerant jet pipe 123) is arranged.
  • the refrigerant ejection pipe 123 is a refrigerant ejection pipe that is ejected after bending the direction of the refrigerant supplied from the pipe 3 by 90 degrees, and is configured to eject the refrigerant from the inside and outside of the winding 104.
  • the refrigerant ejection pipe 123 is a refrigerant ejection pipe that is ejected after bending the direction of the refrigerant supplied from the pipe 3 by 90 degrees, and is configured to eject the refrigerant from the inside and outside of the winding 104.
  • FIG. 9 shows a case where only the coolant supply member (refrigerant ejection pipe 122) for the rotor is arranged.
  • the refrigerant jet tube 122 is arranged so as to be inserted inside the winding 104 in the same manner as described above. However, the refrigerant jet tube 122 is connected to the outer periphery of the rotor 102 on the vertical upper side of the rotating shaft 101.
  • the refrigerant ejection pipe 122 is arranged so as to be biased toward the inner peripheral side of the rotor 102 at a position vertically below the rotation shaft 101.
  • FIG. 10 shows a case where the refrigerant flow path 6 is provided in the housing 2 and the refrigerant 5 is supplied from the outer peripheral side of the housing 2.
  • FIG. 10 a half sectional view showing the upper side from the center of the rotating shaft 101 is used.
  • FIG. 11 is a diagram illustrating an example of a cooling structure in the case where two rotors 102 are provided on one rotating shaft 101. In addition, in FIG. 11, it was set as the semi-sectional view which shows the upper side from the center of the rotating shaft 101.
  • FIG. 11 In correspondence with the two rotors 102, two sets of a plurality of magnetic poles 110 (not shown) and a plurality of windings 104 are provided along the axial direction.
  • the magnetic pole 110 disposed on the left side of the figure is fixed to the end surface 2 a of the housing 2 and a ring member 124 provided on the inner peripheral surface of the housing 2.
  • the magnetic pole 110 arranged on the left side of the figure is fixed to the end surface 2 b of the housing 2 and the ring member 124.
  • Refrigerant supply members 120 (refrigerant dropping pipes 121a and 121b and a refrigerant jet pipe 122) are arranged on both end surfaces in the axial direction of the ring member 124, respectively.
  • the number of rotors 102 is not limited to two, and the present invention can be similarly applied to a structure in which three or more rotors 102 are attached to one rotating shaft 101.
  • FIG. 12 is a diagram for explaining the third modification.
  • the refrigerant supply member 120 is configured to extend from the housing 2 to the adjacent magnetic poles 110. However, as shown in FIG. It is good also as a structure which does not extend.
  • the refrigerant supply member 120 is the refrigerant ejection pipe 122, which is disposed at a position facing the gap between the magnetic poles 110 and facing the permanent magnet 103 and the winding 104.
  • the refrigerant 5 ejected from the refrigerant ejection pipe 122 is blown to the permanent magnet 103 and the winding 104.
  • the winding 104 is provided on the magnetic pole tooth 111 of the magnetic pole 110, but it may be wound around the core 112 of the magnetic pole 110 as shown in FIG.
  • the refrigerant ejection pipe 125 is disposed inside the wound winding 104, and the refrigerant is disposed at a position facing the outer periphery of the winding 104 on the rotating shaft side.
  • An ejection pipe 123 was arranged.
  • the refrigerant ejection pipe 125 is a refrigerant ejection pipe that bends the direction of the supplied refrigerant by 90 degrees and ejects the refrigerant in two directions of the outer diameter direction and the inner diameter direction. Cooling of the winding 104 is improved by blowing the refrigerant to the inner side of the winding 104 by the refrigerant jetted in two directions from the refrigerant jet pipe 125 and blowing the refrigerant to the outer peripheral side of the winding 104 by the refrigerant jet pipe 123. ing.
  • the refrigerant jet pipe 122 is arranged at a position facing the permanent magnet 103 between the magnetic poles 110. Thereby, the permanent magnet 103 and the rotor 102 can be cooled effectively.
  • one winding 104 is wound around the plurality of magnetic poles 110.
  • the angle ⁇ 2 between the magnetic poles 110 is set to be twice (or substantially twice) the angle ⁇ 1 between the permanent magnets 103, so A space
  • coolant supply member (refrigerant jet pipes 122 and 125) can fully be ensured. And it arrange
  • two refrigerant ejection pipes 125 are disposed for windings, and one refrigerant ejection pipe 122 for the rotor is disposed.
  • the refrigerant is ejected from the refrigerant ejection pipe 125 to the left and right windings 104.
  • the angle ⁇ 2 is approximately twice ⁇ 1 as in the case where one winding 104 is wound around the plurality of magnetic poles 110, but the windings are provided individually. In this case, it is not always necessary to set this way. While setting so that ⁇ 2 ⁇ 2 ⁇ ⁇ 1, the direction of magnetization of the magnetic pole 110 may be alternately reversed. Further, even when the magnetic pole 110 is arranged for each permanent magnet, it is necessary to arrange the magnetic pole 110 with a certain gap in order to reduce the influence of the adjacent permanent magnet 103. It is possible to secure a space for disposing the refrigerant supply member 120 by opening the gap.
  • the refrigerant jet pipe 122 as shown in FIG. It is possible to spray the coolant onto the rotor 102 through the gap.
  • the rotor refrigerant jet tube 122 can be easily disposed between the magnetic poles 110.
  • Embodiment- 16 to 19 are diagrams for explaining the second embodiment.
  • an auxiliary member 130 that is a cooling block constituting a part of the refrigerant supply member is provided between the magnetic poles 110, and the refrigerant 5 is supplied through the auxiliary member 130. It was set as such.
  • a through hole 131 is formed in the auxiliary member 130 shown in FIG. 16, and the refrigerant jet pipe 122 is fixed to the through hole 131. Therefore, the refrigerant ejection pipe 122 can be disposed in the gap between the adjacent magnetic poles 110 without being fixed to the housing 2.
  • 16 is a view showing only the magnetic pole piece 110 and the auxiliary member 130, and FIG.
  • 17 is a cross-sectional view of a portion where the auxiliary member 130 is disposed in the rotating electrical machine.
  • the circumferential end face (surface facing the magnetic pole 110) of the auxiliary member 130 is in contact with the adjacent magnetic poles 110, and also has a function as a spacer that defines the distance between the magnetic poles 110.
  • the refrigerant supply member 120 (refrigerant ejection pipe 122) for the rotor 102 is provided, but a through hole 131 is further provided, and a refrigerant for winding is supplied to the through hole 131.
  • the member 120 may be fixed. Further, a rotor outlet and a winding outlet may be provided at the tip of one refrigerant supply member 120. Further, the refrigerant supply member 120 and the auxiliary member 130 may be integrally formed.
  • a coolant channel 132 is formed inside the auxiliary member 130.
  • Refrigerant discharge portions 132 a and 132 b are formed in the refrigerant flow path 132 at positions facing the winding 104 and the permanent magnet 103, and from these refrigerant discharge portions 132 a and 132 b toward the winding 104 and the permanent magnet 103.
  • the refrigerant is released.
  • release part may be made it fix the refrigerant
  • release part may be fix
  • the auxiliary member 130 in which the coolant is flowing is in surface contact with the magnetic pole 110, the heat generated in the magnetic pole 110 is the auxiliary member. Heat is radiated to the refrigerant through 130.
  • the refrigerant flow path 132 is formed inside the auxiliary member 130, the auxiliary member 130 is more easily cooled, and the cooling efficiency of the magnetic pole 110 is excellent.
  • the material of the auxiliary member 130 magnetic materials such as a dust core and an electromagnetic steel plate, aluminum, stainless steel, resin, and the like are used. However, it is preferable to use a metal in terms of cooling performance.
  • FIG. 19 is a diagram for explaining the effective magnetic flux and the reactive magnetic flux, and shows the CC cross section of FIG.
  • FIG. 19A shows a case where the auxiliary member 130 has a preferable shape (in the case of the present embodiment), and
  • FIG. 19B shows an unfavorable shape.
  • a permanent magnet magnetized so that the upper side in the figure is an N pole is indicated by reference numeral 103 a, and the lower side in the figure is an N pole.
  • the permanent magnet magnetized in FIG. At the timing shown in FIG. 19, in the four magnetic poles 110 provided with the common winding 104, the upper magnetic pole tooth 111 in the drawing has an S pole and the lower magnetic pole 111 has an N pole. At the next timing, the upper magnetic pole tooth 111 shown in the figure becomes the N pole, and the lower magnetic pole tooth 111 becomes the S pole.
  • the direction of the magnetic flux of the permanent magnet 103a is upward as shown by a thick line arrow, and the direction of the magnetic flux of the permanent magnet 103b is downward as shown by a thin line arrow.
  • the upward magnet magnetic flux becomes an effective magnetic flux
  • the downward magnet magnetic flux becomes an invalid magnetic flux. Therefore, when the auxiliary member 130 is made of a magnetic material, the portion facing the permanent magnet 103 of the auxiliary member 130 (130a) is sufficiently separated from the permanent magnet 103 as shown in FIG. It is important that the auxiliary member 130 does not pick up a large magnetic flux (downward magnet magnetic flux).
  • the portion facing the permanent magnet 103 is close to the permanent magnet 103 as in the auxiliary member 130b shown in FIG. 19B, the efficiency is likely to be affected by the reactive magnetic flux.
  • FIG. 20 is a diagram illustrating an example of a method for supplying the refrigerant 5.
  • a liquid such as cooling oil is used as the refrigerant 5, and the refrigerant 5 discharged from the refrigerant discharge port 4 of the housing 2 is collected into the refrigerant tank 506.
  • the refrigerant 5 in the refrigerant tank 506 is sent again to the pipe 3 connected to the refrigerant supply member 120 by the refrigerant feeding pump 504 and supplied to the refrigerant supply member 120.
  • the refrigerant feeding pump 504 is driven to rotate by a motor 505.
  • Flow rate adjusting valves 503a to 503c for controlling the flow rate of the refrigerant 5 ejected or dropped from each refrigerant supply member 120 are provided in the refrigerant path 507 between the refrigerant liquid feeding pump 504 and each pipe 3 respectively. ing.
  • the total refrigerant supply amount can be adjusted by adjusting the discharge amount of the refrigerant liquid feeding pump 504, and each refrigerant supply member can be adjusted by changing the adjustment amounts of the flow rate adjusting valves 503a to 503c.
  • the refrigerant supply amount by 120 can be individually adjusted.
  • the flow rate adjusting valves 503a to 503c are controlled by the control unit 501.
  • the detection value of the temperature sensor 502 is input to the control unit 501.
  • FIG. 20 only one temperature sensor 502 is shown, but actually, a plurality of the temperature sensors 502 are provided, and the rotor 102, the permanent magnet 103, the magnetic pole 110, the winding 104, and the like are measured.
  • a thermocouple, an infrared sensor, or the like is used according to the measurement target.
  • the control unit 501 adjusts the throttle amount of the flow rate adjusting valves 503a to 503c provided for each refrigerant supply member 120 according to the temperature of each unit measured by the temperature sensor 502. Accordingly, it is possible to reduce the supply amount of the refrigerant 5 to the refrigerant supply member 120 at the location where the heat generation is small, and increase the supply amount of the refrigerant 5 to the refrigerant supply member 120 at the location where the heat generation is large, thereby increasing the cooling efficiency. be able to.
  • the flow rate adjustment valve 503b is opened to increase the flow rate of the refrigerant 5 ejected from the refrigerant ejection pipe 122 toward the rotor 102.
  • each of the plurality of refrigerant supply members 120 is provided with a flow rate adjusting valve.
  • the plurality of refrigerant supply members 120 are divided into several groups, and the refrigerant flow rate is adjusted for each group. You may make it do.
  • a calorific value corresponding to the operating conditions is obtained in advance by simulation or experiment, and the result is obtained by the controller 501.
  • the data is stored in the storage unit 501a.
  • the temperature may be predicted based on the stored data and the actual operation condition, and the throttle amount of the flow rate adjusting valves 503a to 503c may be adjusted based on the predicted value.
  • FIG. 21A is a layout diagram of the permanent magnets 103 attached to the rotor 102, and is a view of a part of the rotor 102 as viewed from the axial direction of the rotating shaft 101.
  • FIG. 21B is a cross-sectional view in which the rotor 102 and the magnetic pole 110 are cut in the rotation direction (circumferential direction), and only a part of the cross section is shown.
  • the permanent magnets 103 are alternately arranged in the circumferential direction at a period P (period on a circle passing through the center of the permanent magnet 103), and the same magnetic poles face each other in the adjacent permanent magnets 103.
  • the two magnetic pole teeth 111 provided on the magnetic pole 110 are formed so as to be shifted by a distance b in the circumferential direction (the horizontal direction in the figure).
  • the distance b is set to be approximately the same value as the period P of the permanent magnet 103.
  • the axial gap type rotating electrical machine 1 includes a disk-shaped rotor 102 having a plurality of permanent magnets 103, a plurality of magnetic poles 110 arranged at intervals along the circumferential direction of the rotor 102, and a magnetic pole element. And a winding 104 wound around 110.
  • the magnetic pole 110 includes magnetic pole teeth 111 disposed so as to face one surface of the rotor 102, magnetic pole teeth 111 disposed so as to face the other surface of the rotor 102, and those magnetic pole teeth 111. It has the core 112 to connect.
  • coolant supply member 120 which discharge
  • the plurality of magnetic poles 110 are arranged at intervals along the circumferential direction of the rotor 102, and the refrigerant is discharged from the refrigerant supply member 120 through the gap between the adjacent magnetic poles 110. Therefore, sufficient cooling can be performed without lowering the cooling effect of the rotor 102 even at low speed rotation.
  • a refrigerant dripping pipe 121a or a refrigerant jet pipe 122 which is a pipe member as shown in FIG. 5 is arranged to be inserted into the gap, and the winding 104 is cooled by the refrigerant of the refrigerant dripping pipe 121a.
  • the rotor 102 may be cooled by the refrigerant in the refrigerant jet pipe 122.
  • the pitch angle ⁇ ⁇ b> 2 in the circumferential direction between the adjacent magnetic poles 110 is set to be an even multiple or substantially an even multiple of the pitch angle ⁇ ⁇ b> 1 in the circumferential direction between the adjacent permanent magnets 103.
  • a sufficient gap is formed between the magnetic poles 110.
  • the pitch angles ⁇ 1 and ⁇ 2 are set as described above, a plurality of magnetic pole groups composed of two or more adjacent magnetic poles 110 are formed, and the winding 104 is provided for each magnetic pole group. good.
  • the winding 104 is wound around the entire magnetic pole 110 constituting the magnetic pole group, so that the winding 104 is arranged between the adjacent magnetic poles 110 in the magnetic pole group. Not enough gaps are formed. Therefore, it is possible to cool the winding 104 from the inner peripheral side by arranging the refrigerant supply member 120 (the refrigerant jet pipe 122 and the refrigerant dropping pipe 121a) on the inner peripheral side of the winding 104. The cooling performance can be improved.
  • the refrigerant flow path 6 is formed in the housing 2 in which the magnetic pole element 110 and the rotor 102 around which the winding 104 is wound are housed, and the refrigerant flow path 6 passes through the refrigerant flow path 6.
  • a coolant may be supplied to the supply member 120. By doing so, the number of pipes 3 connected to the housing 2 can be reduced.
  • the magnetic pole 110 is disposed in contact with the housing 2, the housing 2 is cooled by the refrigerant flowing through the refrigerant flow path 6, and the magnetic pole 110 is cooled by the housing 2.
  • an auxiliary member 130 as shown in FIGS. 16 to 18 may be disposed between the magnetic poles 110 so as to be in surface contact with each of the adjacent magnetic poles 110 as a refrigerant supply member.
  • the auxiliary member 130 is provided with a refrigerant jet pipe 122 that discharges the refrigerant to the rotor 102 (see FIG. 17), or with a refrigerant flow path 132 and refrigerant discharge portions 132a and 132b as shown in FIG.
  • the coolant can be supplied to the rotor 102 and the winding 104.
  • the rotor 102 and the winding 104 are directly cooled by the refrigerant, and the magnetic pole 110 is cooled by the auxiliary member 130 that is in surface contact.
  • the embodiments described above may be used alone or in combination. This is because the effects of the respective embodiments can be achieved independently or synergistically.
  • the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.
  • Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
  • the axial gap type rotating electrical machine 1 of the present invention as an electric motor for ship propulsion or railway vehicles, a direct drive that does not require a reduction gear can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

An axial gap type rotary electrical machine comprises: a disc-shaped rotor having a plurality of permanent magnets arranged with prescribed gaps in the circumferential direction and arranged so that their magnetisation directions are alternately reversed; a plurality of magnetic poles having first magnetic pole teeth arranged so as to face one face of the disc-shaped rotor, second magnetic pole teeth arranged so as to face the other face of the disc-shaped rotor and a core that links these magnetic pole teeth arranged with gaps therebetween along the circumferential direction of the disc-shaped rotor; a winding wound on the magnetic poles; and a coolant supply member that delivers coolant at least to the disc-shaped rotor through the gaps between adjacent magnetic poles.

Description

アキシャルギャップ型回転電機Axial gap type rotating electrical machine
 本発明は、アキシャルギャップ型回転電機に関する。 The present invention relates to an axial gap type rotating electrical machine.
 環境保護や省エネルギの観点から電気推進船の開発が進んでいる。電機推進用電動機としては低速時に大トルクが得られる構造や、ダイレクトドライブを実現できる低速回転電機の開発が望まれている。そのような低速時に大トルクが得られる回転電機として、円盤状の回転子と、回転子に配置された永久磁石を挟み込むように配置された磁極子を有するアキシャルギャップ型回転電機が開発されている(例えば、特許文献1参照)。 Developed electric propulsion vessels from the viewpoint of environmental protection and energy saving. As electric motors for electric propulsion, it is desired to develop a structure capable of obtaining a large torque at a low speed and a low-speed rotating electric machine capable of realizing direct drive. As a rotating electrical machine capable of obtaining a large torque at such a low speed, an axial gap type rotating electrical machine having a disk-shaped rotor and a magnetic pole disposed so as to sandwich a permanent magnet disposed on the rotor has been developed. (For example, refer to Patent Document 1).
 このアキシャルギャップ型回転電機では、巻線が発熱する事により耐久信頼性が低下するといった問題が知られている。また、温度上昇に伴い永久磁石の磁力が低下する場合があるため、回転子の温度上昇を低減する必要がある。そのため、従来からアキシャルギャップ型回転電機の冷却技術が多数提案されている。 In this axial gap type rotating electrical machine, there is a known problem that durability reliability decreases due to heat generation of the winding. Moreover, since the magnetic force of a permanent magnet may fall with a temperature rise, it is necessary to reduce the temperature rise of a rotor. Therefore, many cooling techniques for axial gap type rotating electrical machines have been proposed.
 例えば、特許文献2に記載の技術では、ロータの回転軸近傍に設けられた注入口から、ロータとステータとの間のギャップの内周側に冷媒を注入し、その冷媒をロータの回転作用を利用してロータおよびステータの全面に循環させるようにしている。 For example, in the technique described in Patent Document 2, a refrigerant is injected from the inlet provided near the rotation axis of the rotor into the inner peripheral side of the gap between the rotor and the stator, and the refrigerant is used to rotate the rotor. It is used to circulate over the entire surface of the rotor and stator.
日本国特開平10-243617号公報Japanese Laid-Open Patent Publication No. 10-243617 日本国特開2007-20382号公報Japanese Unexamined Patent Publication No. 2007-20382
 しかしながら、特許文献2に記載の技術では、回転子の回転を利用して冷媒を移動させているため、低速回転時には冷媒の移動速度が低下する。そのため、低速回転時には冷却性能が低下するという問題がある。 However, in the technique described in Patent Document 2, since the refrigerant is moved by utilizing the rotation of the rotor, the moving speed of the refrigerant is reduced during low-speed rotation. Therefore, there is a problem that the cooling performance is lowered during low-speed rotation.
 本発明の第1の態様によると、アキシャルギャップ型回転電機は、周方向に所定間隔で配置され、かつ、磁化方向が交互に逆向きとなるように配置された複数の永久磁石を有する円盤状回転子と、円盤状回転子の一方の面に対向するように配置された第1の磁極歯、円盤状回転子の他方の面に対向するように配置された第2の磁極歯、およびそれらの磁極歯を繋ぐコア部を有し、円盤状回転子の周方向に沿って間隔を空けて配設された複数の磁極子と、磁極子に巻回された巻線と、隣接する磁極子の間の空隙を通して、少なくとも円盤状回転子に冷媒を放出する冷媒供給部材と、を備える。
 本発明の第2の態様によると、第1の態様のアキシャルギャップ型回転電機において、隣接する磁極子間の周方向配置のピッチ角度が、隣接する永久磁石間の周方向配置のピッチ角度の偶数倍に設定されていることが好ましい。
 本発明の第3の態様によると、第2の態様のアキシャルギャップ型回転電機において、隣接する2以上の磁極子で構成される磁極子群を複数備え、巻線を磁極子群毎に設けるとともに、該巻線の内周側に冷媒供給部材を配置することが好ましい。
 本発明の第4の態様によると、第1乃至3のいずれかの態様のアキシャルギャップ型回転電機において、冷媒供給部材は、空隙に挿入するように配置された管部材であることが好ましい。
 本発明の第5の態様によると、第1乃至3のいずれかの態様のアキシャルギャップ型回転電機において、冷媒供給部材は、空隙に挿入するように配置されて円盤状回転子に向けて冷媒を放出する第1の管部材と、空隙に挿入するように配置されて巻線に向けて冷媒を放出する第2の管部材とを備えることが好ましい。
 本発明の第6の態様によると、第1乃至5のいずれかの態様のアキシャルギャップ型回転電機において、巻線、磁極子および円盤状回転子が収納されるとともに、冷媒供給部材に冷媒を供給する冷媒流路が形成されたハウジングを備えることが好ましい。
 本発明の第7の態様によると、第1乃至3のいずれかの態様のアキシャルギャップ型回転電機において、隣接する磁極子の間に面接触するように挟持され、冷媒流路が形成された複数の冷却ブロックを備え、複数の冷却ブロックに冷媒供給部材を配置することが好ましい。
 本発明の第8の態様によると、第1の態様のアキシャルギャップ型回転電機において、冷媒供給部材は、円盤状回転子および巻線に設定された複数の領域に対してそれぞれ設けられ、複数の領域の温度を測定する温度測定部と、温度測定部で測定された温度に基づいて、冷媒供給部材の各々から放出される冷媒の流量をそれぞれ制御する流量制御部と、を備えることが好ましい。
 本発明の第9の態様によると、第1の態様のアキシャルギャップ型回転電機において、冷媒供給部材は、円盤状回転子および巻線に設定された複数の領域に対してそれぞれ設けられ、複数の領域に関して回転電機の運転条件に応じた発熱量が予め記憶されている記憶部と、記憶部に記憶されている発熱量および実際の運転状態に基づいて複数の領域温度を予測し、予測に基づいて冷媒供給部材の各々から放出される冷媒の流量をそれぞれ制御する流量制御部と、を備えることが好ましい。
According to the first aspect of the present invention, the axial gap type rotating electrical machine has a disk shape having a plurality of permanent magnets arranged at predetermined intervals in the circumferential direction and arranged so that the magnetization directions are alternately reversed. A rotor, a first magnetic pole tooth disposed so as to face one surface of the disk-shaped rotor, a second magnetic pole tooth disposed so as to face the other surface of the disk-shaped rotor, and those And a plurality of magnetic poles arranged at intervals along the circumferential direction of the disk-shaped rotor, windings wound around the magnetic poles, and adjacent magnetic poles And a refrigerant supply member that discharges the refrigerant to at least the disk-like rotor through the gap between the two.
According to the second aspect of the present invention, in the axial gap type rotating electric machine according to the first aspect, the pitch angle of the circumferential arrangement between the adjacent magnetic poles is an even number of the pitch angles of the circumferential arrangement between the adjacent permanent magnets. It is preferable that the setting is doubled.
According to the third aspect of the present invention, the axial gap type rotating electric machine according to the second aspect includes a plurality of magnetic pole groups composed of two or more adjacent magnetic pole elements, and a winding is provided for each magnetic pole group. The refrigerant supply member is preferably disposed on the inner peripheral side of the winding.
According to the fourth aspect of the present invention, in the axial gap type rotating electrical machine according to any one of the first to third aspects, it is preferable that the refrigerant supply member is a pipe member arranged so as to be inserted into the gap.
According to the fifth aspect of the present invention, in the axial gap type rotating electric machine according to any one of the first to third aspects, the refrigerant supply member is disposed so as to be inserted into the gap so that the refrigerant is directed toward the disk-shaped rotor. It is preferable to include a first tube member that discharges and a second tube member that is disposed so as to be inserted into the gap and discharges the refrigerant toward the winding.
According to the sixth aspect of the present invention, in the axial gap type rotating electric machine according to any one of the first to fifth aspects, the winding, the magnetic pole, and the disk-shaped rotor are housed, and the refrigerant is supplied to the refrigerant supply member. It is preferable to provide a housing in which a refrigerant flow path is formed.
According to the seventh aspect of the present invention, in the axial gap type rotating electrical machine according to any one of the first to third aspects, a plurality of refrigerant gaps are formed so as to be in surface contact between adjacent magnetic poles. It is preferable that the cooling block is provided and the refrigerant supply member is arranged in the plurality of cooling blocks.
According to the eighth aspect of the present invention, in the axial gap type rotating electric machine according to the first aspect, the refrigerant supply member is provided for each of the plurality of regions set in the disk-shaped rotor and the winding, It is preferable to include a temperature measurement unit that measures the temperature of the region, and a flow rate control unit that controls the flow rate of the refrigerant discharged from each of the refrigerant supply members based on the temperature measured by the temperature measurement unit.
According to the ninth aspect of the present invention, in the axial gap type rotating electric machine according to the first aspect, the refrigerant supply member is provided for each of the plurality of regions set in the disk-shaped rotor and the winding, Based on the prediction, a plurality of region temperatures are predicted based on the storage unit in which the heat generation amount corresponding to the operating conditions of the rotating electrical machine is stored in advance with respect to the region, the heat generation amount stored in the storage unit, and the actual operation state And a flow rate control unit for controlling the flow rate of the refrigerant discharged from each of the refrigerant supply members.
 本発明によれば、アキシャルギャップ型の回転電機において、低速回転であっても効果的に円盤状回転子を冷却することができる。 According to the present invention, in the axial gap type rotating electrical machine, the disk-shaped rotor can be effectively cooled even at a low speed.
回転電機1の外観を示す斜視図である。1 is a perspective view showing an external appearance of a rotating electrical machine 1. ハウジング2の一部を断面とした回転電機1を示す図である。1 is a view showing a rotating electrical machine 1 having a cross section of a part of a housing 2. FIG. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 磁極子110と回転子102に設けられた永久磁石103の配置を説明する図である。FIG. 4 is a diagram illustrating the arrangement of permanent magnets 103 provided on a magnetic pole 110 and a rotor 102. 図1のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 冷媒供給部材120の配置を示す図である。It is a figure which shows arrangement | positioning of the refrigerant | coolant supply member. 冷媒供給部材120の断面形状を説明する図である。It is a figure explaining the cross-sectional shape of the refrigerant | coolant supply member. 冷媒噴出管123による冷却構造を説明する図である。It is a figure explaining the cooling structure by the refrigerant | coolant ejection pipe | tube 123. FIG. 冷媒噴出管122による冷却構造を説明する図である。It is a figure explaining the cooling structure by the refrigerant | coolant ejection pipe | tube 122. FIG. 変形例1を示す図である。It is a figure which shows the modification 1. FIG. 変形例2を示す図である。It is a figure which shows the modification 2. FIG. 変形例3を示す図である。It is a figure which shows the modification 3. FIG. 変形例4を示す図である。It is a figure which shows the modification 4. 変形例5を示す図である。It is a figure which shows the modification 5. FIG. 変形例5の冷媒供給部材の配置を示す図である。It is a figure which shows arrangement | positioning of the refrigerant | coolant supply member of the modification 5. 磁極子110間に設けられた補助部材130を示す図である。It is a figure which shows the auxiliary member provided between the magnetic poles. 回転電機における補助部材130が配置されている部分の断面を示す図である。It is a figure which shows the cross section of the part by which the auxiliary member 130 is arrange | positioned in a rotary electric machine. 冷媒流路132が形成された補助部材130を説明する断面図である。It is sectional drawing explaining the auxiliary member 130 in which the refrigerant flow path 132 was formed. 有効磁束および無効磁束を説明する図である。It is a figure explaining an effective magnetic flux and a reactive magnetic flux. 第3の実施の形態を示す図である。It is a figure which shows 3rd Embodiment. 永久磁石103および磁極子110の他の例を示す図である。It is a figure which shows the other example of the permanent magnet 103 and the magnetic pole 110.
 以下、図を参照して本発明を実施するための形態について説明する。
-第1の実施の形態-
 図1はアキシャルギャップ型の回転電機1の外観を示す斜視図である。図2は、図1に示す回転電機1のハウジング2の一部を断面としたものである。図3は図1のA-A断面図であり、後述する磁極子110が設けられている部分を通る断面図である。図5は図1のB-B断面図であり、後述する冷媒供給部材120の部分を通る断面図である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
-First embodiment-
FIG. 1 is a perspective view showing an appearance of an axial gap type rotating electrical machine 1. FIG. 2 is a sectional view of a part of the housing 2 of the rotating electrical machine 1 shown in FIG. FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1, and is a cross-sectional view passing through a portion where a magnetic pole 110 described later is provided. 5 is a cross-sectional view taken along the line BB of FIG. 1, and is a cross-sectional view passing through a portion of a refrigerant supply member 120 described later.
 本実施の形態の回転電機1は、図2に示すように、中心が回転軸101に固定された円盤状の回転子102と、ギャップを介して回転子102を挟み込むように配置された複数の磁極子110と、複数の磁極子110のうちの隣り合う複数の磁極子110に共通して巻かれた巻線104と、それらを覆うように配置されたハウジング2と、隣り合う磁極子110間の空隙に設置された複数の冷媒供給部材120とを備えている。冷媒供給部材120は、ハウジング2の軸方向の端面2a,2bに形成された開口20に固定されている。回転子102には、複数の永久磁石103が所定間隔を空けて周方向に配置されている。回転子102が固定された回転軸101は、ハウジング2に設けられた軸受によって回転可能に支持されている。 As shown in FIG. 2, the rotating electrical machine 1 according to the present embodiment includes a disk-shaped rotor 102 whose center is fixed to the rotating shaft 101, and a plurality of rotors 102 disposed so as to sandwich the rotor 102 with a gap interposed therebetween. Between the magnetic pole 110, the winding 104 wound in common among the plurality of adjacent magnetic poles 110 of the plurality of magnetic poles 110, the housing 2 disposed so as to cover them, and the adjacent magnetic poles 110 And a plurality of refrigerant supply members 120 installed in the gap. The refrigerant supply member 120 is fixed to the opening 20 formed in the end faces 2 a and 2 b in the axial direction of the housing 2. A plurality of permanent magnets 103 are arranged on the rotor 102 in the circumferential direction with a predetermined interval. The rotating shaft 101 to which the rotor 102 is fixed is rotatably supported by a bearing provided in the housing 2.
 複数の磁極子110は、ハウジング2の周方向に沿って配置されている。図3に示すように、回転子102を挟み込むように配置された各磁極子110は、回転子102の表裏両面に対向する一対の磁極歯111とそれらを連結するコア112とを備えている。回転子102に設けられた永久磁石103は回転子102の厚さ方向に磁化されており、回転子102の一方の側がS極で他方の側がN極になっている。 The plurality of magnetic poles 110 are arranged along the circumferential direction of the housing 2. As shown in FIG. 3, each magnetic pole 110 arranged so as to sandwich the rotor 102 includes a pair of magnetic pole teeth 111 facing both the front and back surfaces of the rotor 102 and a core 112 connecting them. The permanent magnet 103 provided on the rotor 102 is magnetized in the thickness direction of the rotor 102, and one side of the rotor 102 is an S pole and the other side is an N pole.
 磁極子110の各磁極歯111は、回転子102の径方向に関して永久磁石103と対向する位置に配置されている。図3に示す例では、各磁極子110はハウジング2の両端面2a,2bの内周面に固定されているが、ハウジング2の側周2cの内周面に固定するようにしても良い。また、ハウジング2に磁極子110位置決め用ガイド等を設けることで、磁極子110を正確に位置決めすることが可能となる。 Each magnetic pole tooth 111 of the magnetic pole 110 is arranged at a position facing the permanent magnet 103 in the radial direction of the rotor 102. In the example shown in FIG. 3, each magnetic pole 110 is fixed to the inner peripheral surface of both end faces 2 a and 2 b of the housing 2, but may be fixed to the inner peripheral surface of the side periphery 2 c of the housing 2. Further, by providing a guide or the like for positioning the magnetic pole 110 in the housing 2, the magnetic pole 110 can be accurately positioned.
 本実施の形態の回転電機1では、12個の磁極子110が円周方向に設けられており、4個で一つのグループ(以下では、磁極子グループと呼ぶことにする)を形成している。巻線104は磁極子グループ毎に設けられており、図2に示す例では、巻線104は、磁極子グループに含まれる4個の磁極子110の磁極歯111を囲むように巻回されている。すなわち、一つの磁極子グループに対して2つの巻線104が設けられ、その一方は回転子102の表面側に対向する4つの磁極歯111に共通して巻回され、他方は回転子102の裏面側に対向する4つの磁極歯111に共通して巻回されている。なお、巻線104の固定方法としては、巻線104を磁極歯111に固定しても良いし、また、ハウジング2側に固定しても良い。 In the rotating electrical machine 1 of the present embodiment, twelve magnetic poles 110 are provided in the circumferential direction, and four pieces form one group (hereinafter referred to as a magnetic pole group). . The winding 104 is provided for each magnetic pole group. In the example shown in FIG. 2, the winding 104 is wound so as to surround the magnetic pole teeth 111 of the four magnetic poles 110 included in the magnetic pole group. Yes. That is, two windings 104 are provided for one magnetic pole group, one of which is wound in common with four magnetic pole teeth 111 facing the surface side of the rotor 102 and the other is wound on the rotor 102. The four magnetic pole teeth 111 facing the back side are wound in common. As a method for fixing the winding 104, the winding 104 may be fixed to the magnetic pole teeth 111, or may be fixed to the housing 2 side.
 図4に、磁極子110と回転子102に設けられた永久磁石103との配置を示す。なお、図2に示したように、回転電機1には3つの磁極子グループが設けられていているが、図4では、その内の一組の磁極子110と、それらに巻回された巻線104とを示した。上述したように、巻線104は裏面側の磁極歯111に対しても設けられている。 FIG. 4 shows an arrangement of the magnetic pole 110 and the permanent magnet 103 provided on the rotor 102. As shown in FIG. 2, the rotary electric machine 1 is provided with three magnetic pole groups, but in FIG. 4, one set of magnetic poles 110 and windings wound around them are provided. Line 104 is shown. As described above, the winding 104 is also provided for the magnetic pole teeth 111 on the back surface side.
 一方、回転子102には13個の永久磁石103が設けられている。各永久磁石103は回転子102の厚さ方向に磁化されており、図4に示すように、回転方向(周方向)に隣り合う磁極が交互に逆向きとなるように、すなわちN,S,N,S,N,S,・・・となるように配置されている。同一磁極子グループ内の4つの磁極子110は、磁極子間の周方向配置のピッチ角度θ2が永久磁石間の周方向配置のピッチ角度θ1に対して2倍となるように配置されている。なお、磁極子間の周方向配置のピッチ角度とは、軸中心と磁極子110の中央とを結ぶ径方向直線が成す角度であり、永久磁石間の周方向配置のピッチ角度とは、軸中心と永久磁石103の中央とを結ぶ径方向直線が成す角度である。 On the other hand, the rotor 102 is provided with 13 permanent magnets 103. Each permanent magnet 103 is magnetized in the thickness direction of the rotor 102, and as shown in FIG. 4, the magnetic poles adjacent to each other in the rotation direction (circumferential direction) are alternately reversed, that is, N, S, N, S, N, S,... Are arranged. The four magnetic poles 110 in the same magnetic pole group are arranged such that the pitch angle θ2 in the circumferential direction between the magnetic poles is twice the pitch angle θ1 in the circumferential direction between the permanent magnets. The pitch angle of the circumferential arrangement between the magnetic poles is an angle formed by a radial straight line connecting the axis center and the center of the magnetic pole 110, and the pitch angle of the circumferential arrangement between the permanent magnets is the axis center. And an angle formed by a radial straight line connecting the center of the permanent magnet 103.
 上述のように磁極子110を配置することにより、磁極子110内で磁束の流れる方向がほぼ等しくなるため巻線104を隣り合う複数の磁極子110に共通に巻くことが可能となる。ここでは、θ1に対してθ2を2倍としているが、巻線104を複数の磁極子110で共通化するためには必ずしも正確に2倍である必要はない。略2倍とすることで巻線104の共通化を行うことができ、磁極子110間にスペース的な余裕が生じる。 By arranging the magnetic poles 110 as described above, the direction of the magnetic flux flowing in the magnetic poles 110 becomes almost equal, so that the winding 104 can be wound around a plurality of adjacent magnetic poles 110 in common. Here, θ2 is doubled with respect to θ1, but in order to make the winding 104 common to the plurality of magnetic poles 110, it does not necessarily have to be exactly double. The winding 104 can be made common by setting it to approximately twice, and a space margin is generated between the magnetic poles 110.
 巻線104に電流を供給することにより、磁極子グループ内の4つの磁極子110の一方の側の磁極歯111が全てS極に、他方の側の磁極子110の全てがN極となる。巻線104に交流電流を供給すると、例えば、図2に示した3組の巻線104に対して3相交流電流を供給すると、各磁極子グループの4つの磁極子110は、4つ揃って交番磁界を発生する。そのような交番磁界によって、永久磁石103を備えた回転子102が回転駆動されることになる。 By supplying current to the winding 104, all the magnetic pole teeth 111 on one side of the four magnetic poles 110 in the magnetic pole group become S poles, and all the other magnetic poles 110 on the other side become N poles. When an alternating current is supplied to the winding 104, for example, when a three-phase alternating current is supplied to the three sets of windings 104 shown in FIG. Generate an alternating magnetic field. The rotor 102 provided with the permanent magnet 103 is rotationally driven by such an alternating magnetic field.
 なお、磁極子110、巻線104、永久磁石103の数は本実施形態のものに限らない。例えば、磁極子グループを構成する磁極子110の数をここでは4としたが、4以外であっても構わない。また、磁極子110間の角度θ2をθ1の2倍(または、略2倍)としたが、偶数倍(または、略偶数倍)とすることで上述したような巻線104の共通化を行うことが可能となる。このように、本実施の形態では、磁極子110間の角度θ2をθ1の偶数倍(または、略偶数倍)としたことにより、図2に示したように磁極子110間に冷媒供給部材120を容易に配置することができる。その結果、低速回転であっても回転子102の冷却効果が低下することなく、十分な冷却を行うことができる。さらに、巻線104を共通化することで、磁極子110間に巻線104が配置されない構造となり、巻線104を内周側から冷媒により冷却することが可能となり、巻線104に関する冷却性能が向上する。 In addition, the number of the magnetic poles 110, the windings 104, and the permanent magnets 103 is not limited to that of this embodiment. For example, the number of magnetic poles 110 constituting the magnetic pole group is four here, but may be other than four. Further, although the angle θ2 between the magnetic poles 110 is set to twice (or substantially twice) θ1, the common use of the winding 104 as described above is performed by making it an even number (or substantially even number). It becomes possible. As described above, in the present embodiment, the angle θ2 between the magnetic poles 110 is an even multiple (or substantially an even multiple) of θ1, so that the refrigerant supply member 120 is interposed between the magnetic poles 110 as shown in FIG. Can be easily arranged. As a result, sufficient cooling can be performed without reducing the cooling effect of the rotor 102 even at low speed rotation. Further, by making the winding 104 in common, the winding 104 is not disposed between the magnetic poles 110, so that the winding 104 can be cooled by the refrigerant from the inner peripheral side, and the cooling performance related to the winding 104 is improved. improves.
 図5,6は冷媒供給部材120の配置を示す図である。図5は図1のB-B断面図である。図6に示すように、磁極子グループを構成する4つの磁極子110の間には、冷媒供給部材120がそれぞれ3つずつ配置されている。3つの冷媒供給部材120は、巻回された巻線104の内周側に配置される巻線用の冷媒滴下管121aおよび回転子用の冷媒噴出管122と、巻線104の外周側に配置される巻線用の冷媒滴下管121bとで構成されている。 5 and 6 are diagrams showing the arrangement of the refrigerant supply member 120. FIG. FIG. 5 is a cross-sectional view taken along the line BB of FIG. As shown in FIG. 6, three refrigerant supply members 120 are arranged between the four magnetic poles 110 constituting the magnetic pole group. The three refrigerant supply members 120 are arranged on the outer circumference side of the winding 104 and the refrigerant dropping pipe 121a for the winding and the refrigerant jet pipe 122 for the rotor arranged on the inner circumference side of the wound winding 104. And a refrigerant dropping pipe 121b for winding.
 図5に示すように、冷媒滴下管121a,121bおよび冷媒噴出管122の根元部分はハウジング2の両端面2a,2bに形成された開口20に固定され、配管3によって冷媒5が供給される。供給された冷媒5は、冷媒滴下管121a,121bおよび冷媒噴出管122の先端部から、矢印で示すように巻線104および回転子102へと供給される。本実施の形態の回転電機1は、図5のように回転軸101を水平に配置される構成であって、冷媒滴下管121bは巻線104の上方に配置される。冷媒供給部材120として冷媒滴下管121a,121bおよび冷媒噴出管122のいずれを用いるかは、回転電機1の取り付け姿勢に応じて適宜選択すればよい。 As shown in FIG. 5, the base portions of the refrigerant dropping pipes 121 a and 121 b and the refrigerant jet pipe 122 are fixed to the openings 20 formed in the both end faces 2 a and 2 b of the housing 2, and the refrigerant 5 is supplied through the pipe 3. The supplied refrigerant 5 is supplied to the winding 104 and the rotor 102 as indicated by arrows from the leading ends of the refrigerant dropping pipes 121a and 121b and the refrigerant jet pipe 122. The rotating electrical machine 1 of the present embodiment has a configuration in which the rotating shaft 101 is horizontally disposed as shown in FIG. 5, and the refrigerant dropping pipe 121 b is disposed above the winding 104. Which of the refrigerant dropping pipes 121a and 121b and the refrigerant jet pipe 122 is used as the refrigerant supply member 120 may be appropriately selected according to the mounting posture of the rotating electrical machine 1.
 図7は、冷媒供給部材120の断面形状を示す図である。図7(a)は巻線用の冷媒滴下管121a,121bの一例を示したものである。回転軸方向に供給された冷媒5は、冷媒滴下管121a,121bの中で向きを変え、鉛直下方向に滴下される。図7(b)は回転子用の冷媒噴出管122の一例を示したものである。回転軸方向に供給された冷媒5は、配管内で向きを変えずに噴出される。図7(c)に示すように、冷媒噴出管122の内径を出口に向かって内径を小さく絞ることにより、噴出される冷媒の流速をより速くすることができる。 FIG. 7 is a diagram showing a cross-sectional shape of the refrigerant supply member 120. FIG. 7 (a) shows an example of the winding refrigerant dropping pipes 121a and 121b. The refrigerant 5 supplied in the direction of the rotation axis changes its direction in the refrigerant dropping pipes 121a and 121b and is dripped vertically downward. FIG. 7B shows an example of the refrigerant ejection pipe 122 for the rotor. The refrigerant 5 supplied in the direction of the rotation axis is ejected without changing the direction in the pipe. As shown in FIG.7 (c), the flow velocity of the refrigerant | coolant ejected can be made faster by narrowing an internal diameter of the refrigerant | coolant ejection pipe | tube 122 small toward an exit.
 なお、上述では、冷媒滴下管121a,121bによって巻線104に冷媒を滴下させるように構成したが、冷媒の流速を上げて噴出させるようにしても良い。図7(d)は、回転子102および巻線104への冷媒の供給を同時に行うことができる冷媒供給部材120の一例を示したものであり、例えば、これを図5の冷媒滴下管121aの位置に配置しても良い。 In the above description, the refrigerant is dropped in the winding 104 by the refrigerant dropping pipes 121a and 121b. However, the refrigerant may be jetted by increasing the flow rate of the refrigerant. FIG. 7D shows an example of the refrigerant supply member 120 that can supply the refrigerant to the rotor 102 and the winding 104 at the same time. For example, this is shown in FIG. You may arrange in a position.
 本実施の形態では、冷媒5として冷却水、冷却油、液体窒素、液体ヘリウムなどのような液体冷媒を例に説明しているが、冷却ガスのような気体冷媒を用いることもできる。冷媒5が液体の場合には、回転子102や磁極子110および巻線104などに供給された冷媒5は、重力によりハウジング2の下部に流れ落ち、ハウジング2の下部に設けられた冷媒排出口4から排出される。一方、冷媒5に気体を用いた場合には、冷媒排出口4の設ける位置はハウジング2の下部に限定されない。排出された冷媒5は、図示しないポンプによって再び配管3に供給することで、冷媒5を循環させるような構成とすることができる。 In the present embodiment, a liquid refrigerant such as cooling water, cooling oil, liquid nitrogen, and liquid helium is described as an example of the refrigerant 5, but a gaseous refrigerant such as a cooling gas can also be used. When the refrigerant 5 is liquid, the refrigerant 5 supplied to the rotor 102, the magnetic pole 110, the winding 104, and the like flows down to the lower part of the housing 2 due to gravity, and the refrigerant discharge port 4 provided at the lower part of the housing 2. Discharged from. On the other hand, when gas is used for the refrigerant 5, the position where the refrigerant discharge port 4 is provided is not limited to the lower part of the housing 2. The discharged refrigerant 5 can be configured to circulate the refrigerant 5 by supplying it to the pipe 3 again by a pump (not shown).
 なお、冷媒滴下管121a,121b、冷媒噴出管122の配置やそれらの数は、上述したものに限るものではなく、巻線用または回転子用の冷媒供給部材120のいずれか一方のみを配置することも可能である。図8は巻線用の冷媒供給部材(冷媒噴出管123)のみを配置した場合を示したものである。冷媒噴出管123は、配管3から供給された冷媒の方向を90度曲げてから噴出する冷媒噴出管であり、巻線104の内側および外側から冷媒を噴出するような構成とした。このように巻線104に内側と外側の両側から冷媒5を供給することにより、巻線104に対して高い冷却性能を得ることができる。 In addition, arrangement | positioning of the refrigerant | coolant dripping pipe | tube 121a, 121b and the refrigerant | coolant ejection pipe | tube 122 and those numbers are not restricted to what was mentioned above, Only either the refrigerant | coolant supply member 120 for windings or a rotor is arrange | positioned. It is also possible. FIG. 8 shows a case where only the winding refrigerant supply member (refrigerant jet pipe 123) is arranged. The refrigerant ejection pipe 123 is a refrigerant ejection pipe that is ejected after bending the direction of the refrigerant supplied from the pipe 3 by 90 degrees, and is configured to eject the refrigerant from the inside and outside of the winding 104. Thus, by supplying the coolant 5 from both the inside and the outside to the winding 104, high cooling performance can be obtained for the winding 104.
 一方、図9は回転子用の冷媒供給部材(冷媒噴出管122)のみを配置した場合を示したものである。なお、冷媒噴出管122は、上述した場合と同様に巻線104の内側に挿入されるように配置されているが、回転軸101よりも鉛直上側においては冷媒噴出管122を回転子102の外周側に偏らせて配置し、回転軸101よりも鉛直下側においては冷媒噴出管122を回転子102の内周側に偏らせて配置するようにしている。このような配置とすることで、重力の影響で落下する冷媒5を回転子102の広い面積に接触させることができる。 On the other hand, FIG. 9 shows a case where only the coolant supply member (refrigerant ejection pipe 122) for the rotor is arranged. The refrigerant jet tube 122 is arranged so as to be inserted inside the winding 104 in the same manner as described above. However, the refrigerant jet tube 122 is connected to the outer periphery of the rotor 102 on the vertical upper side of the rotating shaft 101. The refrigerant ejection pipe 122 is arranged so as to be biased toward the inner peripheral side of the rotor 102 at a position vertically below the rotation shaft 101. By setting it as such an arrangement | positioning, the refrigerant | coolant 5 which falls under the influence of gravity can be made to contact the large area of the rotor 102. FIG.
(変形例1)
 図10は、ハウジング2に冷媒流路6を設けて、冷媒5をハウジング2の外周側から供給するように構成した場合を示す。なお、図10では、回転軸101の中心より上側を示す半断面図とした。配管3から供給された冷媒を、一つの冷媒流路6を介して複数の冷媒供給部材120に分流することで、ハウジング2に接続される配管3の数を削減することができる。また、ハウジング2内に形成された冷媒流路6に冷媒を流すことによりハウジング2自体も冷却されるので、ハウジング2を熱伝導性のよい材料で構成することにより、ハウジング2に接触して配置された磁極子110も効果的に冷却することができる。
(Modification 1)
FIG. 10 shows a case where the refrigerant flow path 6 is provided in the housing 2 and the refrigerant 5 is supplied from the outer peripheral side of the housing 2. In FIG. 10, a half sectional view showing the upper side from the center of the rotating shaft 101 is used. By diverting the refrigerant supplied from the pipe 3 to the plurality of refrigerant supply members 120 via the single refrigerant flow path 6, the number of the pipes 3 connected to the housing 2 can be reduced. In addition, since the housing 2 itself is cooled by flowing the refrigerant through the refrigerant flow path 6 formed in the housing 2, the housing 2 is made of a material having good thermal conductivity, and is arranged in contact with the housing 2. The formed magnetic pole 110 can also be cooled effectively.
(変形例2)
 図11は、一つの回転軸101に2枚の回転子102が設けられた場合の冷却構造の一例を示す図である。なお、図11では、回転軸101の中心より上側を示す半断面図とした。2枚の回転子102に対応させて、複数の磁極子110(不図示)および複数の巻線104が軸方向に沿って2組設けられている。図示左側に配置される磁極子110は、ハウジング2の端面2aとハウジング2の内周面に設けられたリング部材124とに固定される。一方、図示左側に配置される磁極子110は、ハウジング2の端面2bとリング部材124とに固定される。リング部材124の軸方向両端面には、冷媒供給部材120(冷媒滴下管121a,121bおよび冷媒噴出管122)がそれぞれ配置されている。ただし、回転子102の数は2つに限るものではなく、3以上の回転子102を一つの回転軸101に取り付ける構造においても、同様に適用することができる。
(Modification 2)
FIG. 11 is a diagram illustrating an example of a cooling structure in the case where two rotors 102 are provided on one rotating shaft 101. In addition, in FIG. 11, it was set as the semi-sectional view which shows the upper side from the center of the rotating shaft 101. FIG. In correspondence with the two rotors 102, two sets of a plurality of magnetic poles 110 (not shown) and a plurality of windings 104 are provided along the axial direction. The magnetic pole 110 disposed on the left side of the figure is fixed to the end surface 2 a of the housing 2 and a ring member 124 provided on the inner peripheral surface of the housing 2. On the other hand, the magnetic pole 110 arranged on the left side of the figure is fixed to the end surface 2 b of the housing 2 and the ring member 124. Refrigerant supply members 120 (refrigerant dropping pipes 121a and 121b and a refrigerant jet pipe 122) are arranged on both end surfaces in the axial direction of the ring member 124, respectively. However, the number of rotors 102 is not limited to two, and the present invention can be similarly applied to a structure in which three or more rotors 102 are attached to one rotating shaft 101.
(変形例3)
 図12は変形例3を説明する図である。図10,11の場合と同様、図12の場合も半断面図とした。上述した実施形態では、ハウジング2から隣り合う磁極子110の間に延在するように冷媒供給部材120を構成したが、図12に示すように、冷媒供給部材120が磁極子110間の空隙まで延在しないような構成としても良い。この場合、冷媒供給部材120を冷媒噴出管122とし、それらは、磁極子110間の空隙に対向する位置であって、かつ、永久磁石103および巻線104に対向する位置に配置される。冷媒噴出管122から噴出された冷媒5は、永久磁石103および巻線104に吹き付けられる。
(Modification 3)
FIG. 12 is a diagram for explaining the third modification. As in the case of FIGS. 10 and 11, the case of FIG. In the above-described embodiment, the refrigerant supply member 120 is configured to extend from the housing 2 to the adjacent magnetic poles 110. However, as shown in FIG. It is good also as a structure which does not extend. In this case, the refrigerant supply member 120 is the refrigerant ejection pipe 122, which is disposed at a position facing the gap between the magnetic poles 110 and facing the permanent magnet 103 and the winding 104. The refrigerant 5 ejected from the refrigerant ejection pipe 122 is blown to the permanent magnet 103 and the winding 104.
(変形例4)
 上述の実施の形態では巻線104を磁極子110の磁極歯111に設けたが、図13に示すように磁極子110のコア112の部分に巻き回すようにしても良い。図13に示す例では、巻線用の冷媒供給部材として、巻き回された巻線104の内側に冷媒噴出管125を配置し、巻線104の回転軸側の外周に対向する位置に、冷媒噴出管123を配置した。冷媒噴出管125は、供給された冷媒の方向を90度曲げて、外径方向および内径方向の2方向に噴出させる冷媒噴出管である。冷媒噴出管125から2方向に噴出された冷媒によって巻線104の内側に冷媒を吹き付けると共に、冷媒噴出管123によって巻線104の外周側に冷媒を吹き付けることにより、巻線104の冷却を向上させている。
(Modification 4)
In the above-described embodiment, the winding 104 is provided on the magnetic pole tooth 111 of the magnetic pole 110, but it may be wound around the core 112 of the magnetic pole 110 as shown in FIG. In the example shown in FIG. 13, as the refrigerant supply member for the winding, the refrigerant ejection pipe 125 is disposed inside the wound winding 104, and the refrigerant is disposed at a position facing the outer periphery of the winding 104 on the rotating shaft side. An ejection pipe 123 was arranged. The refrigerant ejection pipe 125 is a refrigerant ejection pipe that bends the direction of the supplied refrigerant by 90 degrees and ejects the refrigerant in two directions of the outer diameter direction and the inner diameter direction. Cooling of the winding 104 is improved by blowing the refrigerant to the inner side of the winding 104 by the refrigerant jetted in two directions from the refrigerant jet pipe 125 and blowing the refrigerant to the outer peripheral side of the winding 104 by the refrigerant jet pipe 123. ing.
 また、回転子用の冷媒供給部材としては、磁極子110間の永久磁石103に対向する位置に、冷媒噴出管122を配置した。これにより、永久磁石103および回転子102を効果的に冷却することができる。 Further, as the refrigerant supply member for the rotor, the refrigerant jet pipe 122 is arranged at a position facing the permanent magnet 103 between the magnetic poles 110. Thereby, the permanent magnet 103 and the rotor 102 can be cooled effectively.
(変形例5)
 上述の実施の形態では、複数の磁極子110に対して一つの巻線104を巻き回したが、図14,15に示すように複数の磁極子110のそれぞれに巻線104を設けるようにしても良い。この場合も、図4に示す場合と同様に、磁極子110間の角度θ2は永久磁石103間の角度θ1の2倍(または、略2倍)に設定されているため、磁極子110間の空隙が大きくなり、冷媒供給部材(冷媒噴出管122,125)を挿入するためのスペースを十分に確保することができる。そして、磁極子110間に形成された空隙に、冷媒供給部材を挿入するように配置する。図15に示す例では、巻線用に2つの冷媒噴出管125を配置すると共に、回転子用の冷媒噴出管122を一つ配置するようにした。冷媒噴出管125からは左右の巻線104に冷媒が噴出される。
(Modification 5)
In the above-described embodiment, one winding 104 is wound around the plurality of magnetic poles 110. However, as shown in FIGS. Also good. Also in this case, similarly to the case shown in FIG. 4, the angle θ2 between the magnetic poles 110 is set to be twice (or substantially twice) the angle θ1 between the permanent magnets 103, so A space | gap becomes large and the space for inserting a refrigerant | coolant supply member (refrigerant jet pipes 122 and 125) can fully be ensured. And it arrange | positions so that a refrigerant | coolant supply member may be inserted in the space | gap formed between the magnetic poles 110. FIG. In the example shown in FIG. 15, two refrigerant ejection pipes 125 are disposed for windings, and one refrigerant ejection pipe 122 for the rotor is disposed. The refrigerant is ejected from the refrigerant ejection pipe 125 to the left and right windings 104.
 なお、図14,15に示す例では、一つの巻線104を複数の磁極子110に巻回す場合と同様に角度θ2をほぼθ1の2倍としているが、個別に巻線が設けられている場合には必ずしもこのように設定する必要はない。θ2<2・θ1のように設定するとともに、磁極子110の磁化の方向を交互に逆方向としても良い。さらに、永久磁石毎に磁極子110を配置する場合であっても、隣接する永久磁石103の影響を小さくするためには、ある程度空隙をあけて磁極子110を配置する必要があるため、そのように空隙をあけることで冷媒供給部材120を配置するスペースを確保することが可能となる。 In the example shown in FIGS. 14 and 15, the angle θ2 is approximately twice θ1 as in the case where one winding 104 is wound around the plurality of magnetic poles 110, but the windings are provided individually. In this case, it is not always necessary to set this way. While setting so that θ2 <2 · θ1, the direction of magnetization of the magnetic pole 110 may be alternately reversed. Further, even when the magnetic pole 110 is arranged for each permanent magnet, it is necessary to arrange the magnetic pole 110 with a certain gap in order to reduce the influence of the adjacent permanent magnet 103. It is possible to secure a space for disposing the refrigerant supply member 120 by opening the gap.
 また、隣り合う巻線104間に冷媒供給部材120を挿入することができなくても、巻線104間に空隙が空いていれば、図12に示すような冷媒噴出管122を用いることで、その空隙を通して冷媒を回転子102に吹き付けることが可能である。特に、それぞれの巻線104を磁極子110のコア112に設けるような構成とすれば、回転子用の冷媒噴出管122を磁極子110間に配置し易くなる。 Further, even if the refrigerant supply member 120 cannot be inserted between the adjacent windings 104, if there is a gap between the windings 104, the refrigerant jet pipe 122 as shown in FIG. It is possible to spray the coolant onto the rotor 102 through the gap. In particular, if the respective windings 104 are provided in the core 112 of the magnetic pole 110, the rotor refrigerant jet tube 122 can be easily disposed between the magnetic poles 110.
-第2の実施の形態-
 図16~19は、第2の実施の形態を説明する図である。第2の実施の形態では、図16に示すように、冷媒供給部材の一部を構成する冷却ブロックである補助部材130を磁極子110間に設け、その補助部材130を介して冷媒5を供給するような構成とした。図16に示す補助部材130には貫通孔131が形成されており、その貫通孔131に冷媒噴出管122が固定されている。そのため、冷媒噴出管122をハウジング2に固定することなく、隣り合う磁極子110間の空隙に配置することができる。なお、図16は磁極子110と補助部材130のみを示した図であり、図17は回転電機において補助部材130が配置されている部分の断面図である。補助部材130の周方向端面(磁極子110に対向する面)は隣接する磁極子110に接触しており、磁極子110間の距離を規定するスペーサとしての機能も有している。
-Second Embodiment-
16 to 19 are diagrams for explaining the second embodiment. In the second embodiment, as shown in FIG. 16, an auxiliary member 130 that is a cooling block constituting a part of the refrigerant supply member is provided between the magnetic poles 110, and the refrigerant 5 is supplied through the auxiliary member 130. It was set as such. A through hole 131 is formed in the auxiliary member 130 shown in FIG. 16, and the refrigerant jet pipe 122 is fixed to the through hole 131. Therefore, the refrigerant ejection pipe 122 can be disposed in the gap between the adjacent magnetic poles 110 without being fixed to the housing 2. 16 is a view showing only the magnetic pole piece 110 and the auxiliary member 130, and FIG. 17 is a cross-sectional view of a portion where the auxiliary member 130 is disposed in the rotating electrical machine. The circumferential end face (surface facing the magnetic pole 110) of the auxiliary member 130 is in contact with the adjacent magnetic poles 110, and also has a function as a spacer that defines the distance between the magnetic poles 110.
 なお、図17に示す例では、回転子102用の冷媒供給部材120(冷媒噴出管122)のみを設けているが、貫通孔131をさらに設けて、その貫通孔131に巻線用の冷媒供給部材120を固定するようにしてもよい。また、一つの冷媒供給部材120の先端部分に、回転子用の噴出口および巻線用の噴出口を設けるようにしても良い。さらに、冷媒供給部材120と補助部材130とを一体に形成するようにしても良い。 In the example shown in FIG. 17, only the refrigerant supply member 120 (refrigerant ejection pipe 122) for the rotor 102 is provided, but a through hole 131 is further provided, and a refrigerant for winding is supplied to the through hole 131. The member 120 may be fixed. Further, a rotor outlet and a winding outlet may be provided at the tip of one refrigerant supply member 120. Further, the refrigerant supply member 120 and the auxiliary member 130 may be integrally formed.
 図18に示す他の例では、補助部材130の内部に冷媒流路132が形成されている。冷媒流路132には、巻線104および永久磁石103と対向する位置に冷媒放出部132a,132bが形成されており、それらの冷媒放出部132a,132bから巻線104および永久磁石103に向けて冷媒が放出される。なお、冷媒流路132の出口に冷媒滴下管121a,121bや冷媒噴出管122を冷媒放出部として固定するようにしても良い。 In another example shown in FIG. 18, a coolant channel 132 is formed inside the auxiliary member 130. Refrigerant discharge portions 132 a and 132 b are formed in the refrigerant flow path 132 at positions facing the winding 104 and the permanent magnet 103, and from these refrigerant discharge portions 132 a and 132 b toward the winding 104 and the permanent magnet 103. The refrigerant is released. In addition, you may make it fix the refrigerant | coolant dripping pipe | tube 121a, 121b and the refrigerant | coolant ejection pipe | tube 122 to the exit of the refrigerant | coolant flow path 132 as a refrigerant | coolant discharge | release part.
 また、本実施の形態では、図17,18に示すように、内部に冷媒を流している補助部材130を、磁極子110と面接触させているので、磁極子110で発生した熱が補助部材130を介して冷媒へと放熱される。特に、図18に示す構成の場合には、補助部材130の内部に冷媒流路132が形成されているため補助部材130がより冷却され易く、磁極子110の冷却効率に優れている。補助部材130の材料としては、圧粉磁心や電磁鋼板などの磁性体材料や、アルミニウム、ステンレス、樹脂などが用いられるが、冷却性の点では金属を用いるのが好ましい。 In the present embodiment, as shown in FIGS. 17 and 18, since the auxiliary member 130 in which the coolant is flowing is in surface contact with the magnetic pole 110, the heat generated in the magnetic pole 110 is the auxiliary member. Heat is radiated to the refrigerant through 130. In particular, in the case of the configuration shown in FIG. 18, since the refrigerant flow path 132 is formed inside the auxiliary member 130, the auxiliary member 130 is more easily cooled, and the cooling efficiency of the magnetic pole 110 is excellent. As the material of the auxiliary member 130, magnetic materials such as a dust core and an electromagnetic steel plate, aluminum, stainless steel, resin, and the like are used. However, it is preferable to use a metal in terms of cooling performance.
 さらに、補助部材130を磁性体で構成した場合、磁気回路の磁気抵抗が低下するため、アキシャルギャップ型の回転電機1をより小型化することができる。ただし、補助部材130の形状を、図16に示すように、無効な磁束の影響を受けない形状とするのが好ましい。図19は有効磁束および無効磁束を説明する図であり、図17のC-C断面を示したものである。図19(a)は補助部材130が好ましい形状である場合(本実施の形態の場合)を示し、図19(b)は好ましくない形状を示したものである。 Furthermore, when the auxiliary member 130 is made of a magnetic material, the magnetic resistance of the magnetic circuit is lowered, so that the axial gap type rotating electrical machine 1 can be further downsized. However, it is preferable that the shape of the auxiliary member 130 is a shape that is not affected by an invalid magnetic flux as shown in FIG. FIG. 19 is a diagram for explaining the effective magnetic flux and the reactive magnetic flux, and shows the CC cross section of FIG. FIG. 19A shows a case where the auxiliary member 130 has a preferable shape (in the case of the present embodiment), and FIG. 19B shows an unfavorable shape.
 図19では、回転方向(周方向)に並べられた複数の永久磁石103の内、図示上側がN極となるように磁化された永久磁石を符号103aで示し、図示下側がN極となるように磁化された永久磁石を符号103bで示した。図19に示したタイミングでは、共通の巻線104が設けられた4つの磁極子110は、図示上側の磁極歯111がS極で下側の磁極は111がN極となっている。そして、次のタイミングでは図示上側の磁極歯111がN極で下側の磁極は111がS極となる。 In FIG. 19, among the plurality of permanent magnets 103 arranged in the rotation direction (circumferential direction), a permanent magnet magnetized so that the upper side in the figure is an N pole is indicated by reference numeral 103 a, and the lower side in the figure is an N pole. The permanent magnet magnetized in FIG. At the timing shown in FIG. 19, in the four magnetic poles 110 provided with the common winding 104, the upper magnetic pole tooth 111 in the drawing has an S pole and the lower magnetic pole 111 has an N pole. At the next timing, the upper magnetic pole tooth 111 shown in the figure becomes the N pole, and the lower magnetic pole tooth 111 becomes the S pole.
 永久磁石103aの磁束の方向は太線矢印で示すように上向きとなっており、永久磁石103bの磁束の方向は細線矢印で示すように下向きとなっている。そして、図19に示す配置の場合、上向きの磁石磁束が有効な磁束となり、下向きの磁石磁束が無効な磁束となる。そのため、補助部材130を磁性体材料で構成する場合には、図19(a)に示すように補助部材130(130a)の永久磁石103に対向する部分を、永久磁石103から十分に離し、無効な磁束(下向きの磁石磁磁束)を補助部材130が拾わないようにすることが重要である。一方、図19(b)に示す補助部材130bのように永久磁石103に対向した部分が永久磁石103に近い場合には、無効磁束の影響を受けやすく効率が低下する。 The direction of the magnetic flux of the permanent magnet 103a is upward as shown by a thick line arrow, and the direction of the magnetic flux of the permanent magnet 103b is downward as shown by a thin line arrow. In the arrangement shown in FIG. 19, the upward magnet magnetic flux becomes an effective magnetic flux, and the downward magnet magnetic flux becomes an invalid magnetic flux. Therefore, when the auxiliary member 130 is made of a magnetic material, the portion facing the permanent magnet 103 of the auxiliary member 130 (130a) is sufficiently separated from the permanent magnet 103 as shown in FIG. It is important that the auxiliary member 130 does not pick up a large magnetic flux (downward magnet magnetic flux). On the other hand, when the portion facing the permanent magnet 103 is close to the permanent magnet 103 as in the auxiliary member 130b shown in FIG. 19B, the efficiency is likely to be affected by the reactive magnetic flux.
-第3の実施の形態-
 図20は、冷媒5の供給方法の一例を示す図である。冷媒5には冷却油のような液体が用いられ、ハウジング2の冷媒排出口4から排出された冷媒5は、冷媒タンク506へと回収される。冷媒タンク506の冷媒5は、冷媒送液用ポンプ504によって再び冷媒供給部材120に接続された配管3へと送られ、冷媒供給部材120に供給される。冷媒送液用ポンプ504はモータ505によって回転駆動される。
-Third embodiment-
FIG. 20 is a diagram illustrating an example of a method for supplying the refrigerant 5. A liquid such as cooling oil is used as the refrigerant 5, and the refrigerant 5 discharged from the refrigerant discharge port 4 of the housing 2 is collected into the refrigerant tank 506. The refrigerant 5 in the refrigerant tank 506 is sent again to the pipe 3 connected to the refrigerant supply member 120 by the refrigerant feeding pump 504 and supplied to the refrigerant supply member 120. The refrigerant feeding pump 504 is driven to rotate by a motor 505.
 冷媒送液用ポンプ504と各配管3との間の冷媒経路507には、各冷媒供給部材120から噴出または滴下される冷媒5の流量を制御するための流量調整弁503a~503cがそれぞれ設けられている。例えば、冷媒送液用ポンプ504の吐出量を調整することによりトータルの冷媒供給量を調整することができ、また、各流量調整弁503a~503cの調整量を変更することにより、各冷媒供給部材120による冷媒供給量を個別に調整することができる。 Flow rate adjusting valves 503a to 503c for controlling the flow rate of the refrigerant 5 ejected or dropped from each refrigerant supply member 120 are provided in the refrigerant path 507 between the refrigerant liquid feeding pump 504 and each pipe 3 respectively. ing. For example, the total refrigerant supply amount can be adjusted by adjusting the discharge amount of the refrigerant liquid feeding pump 504, and each refrigerant supply member can be adjusted by changing the adjustment amounts of the flow rate adjusting valves 503a to 503c. The refrigerant supply amount by 120 can be individually adjusted.
 各流量調整弁503a~503cは制御部501によって制御される。制御部501には温度センサ502の検出値が入力される。図20では、温度センサ502を一つしか記載していないが実際には複数設けられ、回転子102や永久磁石103や磁極子110や巻線104等の計測が行われる。温度センサ502には、計測対象に応じて熱電対や赤外線センサ等が用いられる。 The flow rate adjusting valves 503a to 503c are controlled by the control unit 501. The detection value of the temperature sensor 502 is input to the control unit 501. In FIG. 20, only one temperature sensor 502 is shown, but actually, a plurality of the temperature sensors 502 are provided, and the rotor 102, the permanent magnet 103, the magnetic pole 110, the winding 104, and the like are measured. For the temperature sensor 502, a thermocouple, an infrared sensor, or the like is used according to the measurement target.
 回転電機1の運転状態によっては、巻線104や回転子102の発熱に分布ができる場合がある。そこで、制御部501は、温度センサ502によって計測された各部の温度に応じて、各冷媒供給部材120に関して設けられた流量調整弁503a~503cの絞り量を調整する。これにより、発熱が小さい個所の冷媒供給部材120に対する冷媒5の供給量を少なくして、発熱が大きい個所の冷媒供給部材120に対する冷媒5の供給量を多くすることが可能となり、冷却効率を上げることができる。例えば、永久磁石103の温度が管理温度範囲よりも高くなった場合には、流量調整弁503bの絞りを開けて冷媒噴出管122から回転子102方向に噴出される冷媒5の流量を増加させる。 Depending on the operating state of the rotating electrical machine 1, there may be a distribution in the heat generation of the winding 104 and the rotor 102. Therefore, the control unit 501 adjusts the throttle amount of the flow rate adjusting valves 503a to 503c provided for each refrigerant supply member 120 according to the temperature of each unit measured by the temperature sensor 502. Accordingly, it is possible to reduce the supply amount of the refrigerant 5 to the refrigerant supply member 120 at the location where the heat generation is small, and increase the supply amount of the refrigerant 5 to the refrigerant supply member 120 at the location where the heat generation is large, thereby increasing the cooling efficiency. be able to. For example, when the temperature of the permanent magnet 103 becomes higher than the management temperature range, the flow rate adjustment valve 503b is opened to increase the flow rate of the refrigerant 5 ejected from the refrigerant ejection pipe 122 toward the rotor 102.
 なお、図20に示す例では、複数の冷媒供給部材120の各々に流量調整弁を設けているが、複数の冷媒供給部材120をいくつかのグループに分けて、そのグループ毎に冷媒流量を調整するようにしても良い。 In the example shown in FIG. 20, each of the plurality of refrigerant supply members 120 is provided with a flow rate adjusting valve. However, the plurality of refrigerant supply members 120 are divided into several groups, and the refrigerant flow rate is adjusted for each group. You may make it do.
 また、温度センサ等によって実際に温度計測を行う代わりに、運転条件(電流値や回転数などの条件)に応じた発熱量を予めシミュレーションや実験等によって求めておき、その結果を制御部501の記憶部501aに記憶させておく。そして、実際の運転状態においては、記憶されたデータと実際の運転条件に基づいて温度を予測し、その予測値に基づいて流量調整弁503a~503cの絞り量を調整するようにしても良い。 Further, instead of actually measuring the temperature with a temperature sensor or the like, a calorific value corresponding to the operating conditions (conditions such as current value and rotation speed) is obtained in advance by simulation or experiment, and the result is obtained by the controller 501. The data is stored in the storage unit 501a. In the actual operation state, the temperature may be predicted based on the stored data and the actual operation condition, and the throttle amount of the flow rate adjusting valves 503a to 503c may be adjusted based on the predicted value.
 上述した実施の形態では、図4に示すように、永久磁石103の磁化方向を、回転子102の厚さ方向と一致させるようにしたが、図21に示すように、回転方向に隣り合う永久磁石103の磁極を向かい合うように配置させるようにしても良い。図21(a)は回転子102に取り付けられた永久磁石103の配置図であり、回転子102の一部を回転軸101の軸方向から見た図である。図21(b)は、回転子102および磁極子110を回転方向(周方向)に断面した断面図であり、断面の一部のみを示した。 In the above-described embodiment, as shown in FIG. 4, the magnetization direction of the permanent magnet 103 is made to coincide with the thickness direction of the rotor 102. However, as shown in FIG. You may make it arrange | position so that the magnetic pole of the magnet 103 may face each other. FIG. 21A is a layout diagram of the permanent magnets 103 attached to the rotor 102, and is a view of a part of the rotor 102 as viewed from the axial direction of the rotating shaft 101. FIG. 21B is a cross-sectional view in which the rotor 102 and the magnetic pole 110 are cut in the rotation direction (circumferential direction), and only a part of the cross section is shown.
 図21(b)に示すように、永久磁石103は周期P(永久磁石103の中央を通る円上での周期)で周方向に交互に配置され、隣接する永久磁石103は同一磁極同士が向かい合うように配置されている。磁極子110に設けられた2つの磁極歯111は、周方向(図示左右方向)に距離bだけずれるように形成されている。図21に示す例では、距離bは、永久磁石103の周期Pとほぼ同一値に設定されている。このように永久磁石103の同一磁極同士を向かい合わせるように配置することで、一つの永久磁石103に用いられる材料の使用量を、図4の場合に比べて低減することができる。 As shown in FIG. 21 (b), the permanent magnets 103 are alternately arranged in the circumferential direction at a period P (period on a circle passing through the center of the permanent magnet 103), and the same magnetic poles face each other in the adjacent permanent magnets 103. Are arranged as follows. The two magnetic pole teeth 111 provided on the magnetic pole 110 are formed so as to be shifted by a distance b in the circumferential direction (the horizontal direction in the figure). In the example shown in FIG. 21, the distance b is set to be approximately the same value as the period P of the permanent magnet 103. Thus, by arranging the same magnetic poles of the permanent magnet 103 so as to face each other, the amount of material used for one permanent magnet 103 can be reduced compared to the case of FIG.
 上述した実施の形態においては、以下に示すような作用効果を奏することができる。
 アキシャルギャップ型の回転電機1は、複数の永久磁石103を有する円盤状の回転子102と、回転子102の周方向に沿って間隔を空けて配設された複数の磁極子110と、磁極子110に巻回された巻線104と、を備えている。磁極子110は、回転子102の一方の面に対向するように配置された磁極歯111、回転子102の他方の面に対向するように配置された磁極歯111、およびそれらの磁極歯111を繋ぐコア112を有している。そして、本実施の形態では、隣接する磁極子110の間の空隙を通して、少なくとも回転子102に冷媒を放出する冷媒供給部材120をさらに備えている。
In the embodiment described above, the following effects can be obtained.
The axial gap type rotating electrical machine 1 includes a disk-shaped rotor 102 having a plurality of permanent magnets 103, a plurality of magnetic poles 110 arranged at intervals along the circumferential direction of the rotor 102, and a magnetic pole element. And a winding 104 wound around 110. The magnetic pole 110 includes magnetic pole teeth 111 disposed so as to face one surface of the rotor 102, magnetic pole teeth 111 disposed so as to face the other surface of the rotor 102, and those magnetic pole teeth 111. It has the core 112 to connect. And in this Embodiment, the refrigerant | coolant supply member 120 which discharge | releases a refrigerant | coolant at least to the rotor 102 through the space | gap between the adjacent magnetic poles 110 is further provided.
 このように、回転子102の周方向に沿って間隔を空けて複数の磁極子110を配設するとともに、隣接する磁極子110の間の空隙を通して冷媒供給部材120から冷媒を放出するようにしたので、低速回転であっても回転子102の冷却効果が低下することなく、十分な冷却を行うことができる。冷媒供給部材120としては、図5に示すような管部材である冷媒滴下管121aや冷媒噴出管122を空隙に挿入するように配置し、冷媒滴下管121aの冷媒により巻線104を冷却し、冷媒噴出管122の冷媒により回転子102を冷却するようにしても良い。 As described above, the plurality of magnetic poles 110 are arranged at intervals along the circumferential direction of the rotor 102, and the refrigerant is discharged from the refrigerant supply member 120 through the gap between the adjacent magnetic poles 110. Therefore, sufficient cooling can be performed without lowering the cooling effect of the rotor 102 even at low speed rotation. As the refrigerant supply member 120, a refrigerant dripping pipe 121a or a refrigerant jet pipe 122 which is a pipe member as shown in FIG. 5 is arranged to be inserted into the gap, and the winding 104 is cooled by the refrigerant of the refrigerant dripping pipe 121a. The rotor 102 may be cooled by the refrigerant in the refrigerant jet pipe 122.
 また、図4に示すように、隣接する磁極子110間の周方向配置のピッチ角度θ2を、隣接する永久磁石103間の周方向配置のピッチ角度θ1の偶数倍または略偶数倍に設定することで、磁極子110間に十分な空隙が形成される。その結果、磁極子110間に冷媒供給部材120や補助部材130を配置することが容易となる。 Further, as shown in FIG. 4, the pitch angle θ <b> 2 in the circumferential direction between the adjacent magnetic poles 110 is set to be an even multiple or substantially an even multiple of the pitch angle θ <b> 1 in the circumferential direction between the adjacent permanent magnets 103. Thus, a sufficient gap is formed between the magnetic poles 110. As a result, it becomes easy to arrange the refrigerant supply member 120 and the auxiliary member 130 between the magnetic poles 110.
 さらに、ピッチ角度θ1,θ2を上述のように設定し、隣接する2以上の磁極子110で構成される複数の磁極子群を形成し、巻線104を磁極子群毎に設けるようにしても良い。この場合、図4に示すように巻線104は磁極子群を構成する磁極子110の全体に対して巻回されるので、磁極子群の隣接する磁極子110間には巻線104は配置されず、十分な空隙が形成される。そのため、巻線104の内周側に冷媒供給部材120(冷媒噴出管122や冷媒滴下管121a)を配置することで巻線104を内周側からも冷却することが可能となり、巻線104の冷却性能の向上を図ることができる。 Further, the pitch angles θ1 and θ2 are set as described above, a plurality of magnetic pole groups composed of two or more adjacent magnetic poles 110 are formed, and the winding 104 is provided for each magnetic pole group. good. In this case, as shown in FIG. 4, the winding 104 is wound around the entire magnetic pole 110 constituting the magnetic pole group, so that the winding 104 is arranged between the adjacent magnetic poles 110 in the magnetic pole group. Not enough gaps are formed. Therefore, it is possible to cool the winding 104 from the inner peripheral side by arranging the refrigerant supply member 120 (the refrigerant jet pipe 122 and the refrigerant dropping pipe 121a) on the inner peripheral side of the winding 104. The cooling performance can be improved.
 また、図10,11に示すように、巻線104が巻回された磁極子110および回転子102が収納されるハウジング2に冷媒流路6を形成し、その冷媒流路6を介して冷媒供給部材120に冷媒を供給するようにしても良い。そうすることで、ハウジング2に接続される配管3の数を削減することができる。また、磁極子110をハウジング2に接触して配置した場合、冷媒流路6を流れる冷媒によりハウジング2が冷却され、そのハウジング2によって磁極子110が冷却される。 As shown in FIGS. 10 and 11, the refrigerant flow path 6 is formed in the housing 2 in which the magnetic pole element 110 and the rotor 102 around which the winding 104 is wound are housed, and the refrigerant flow path 6 passes through the refrigerant flow path 6. A coolant may be supplied to the supply member 120. By doing so, the number of pipes 3 connected to the housing 2 can be reduced. When the magnetic pole 110 is disposed in contact with the housing 2, the housing 2 is cooled by the refrigerant flowing through the refrigerant flow path 6, and the magnetic pole 110 is cooled by the housing 2.
 さらにまた、冷媒供給部材として、図16~18に示すような補助部材130を、隣接する磁極子110の各々に面接触するように磁極子110間に配置するようにしても良い。補助部材130には、回転子102に冷媒を放出する冷媒噴出管122を設けたり(図17参照)、図18に示すように冷媒流路132および冷媒放出部132a,132bを設けたりすることで、回転子102や巻線104に冷媒を供給することができる。その結果、回転子102や巻線104が冷媒により直接冷却されると共に、磁極子110は面接触している補助部材130によって冷却される。 Furthermore, an auxiliary member 130 as shown in FIGS. 16 to 18 may be disposed between the magnetic poles 110 so as to be in surface contact with each of the adjacent magnetic poles 110 as a refrigerant supply member. The auxiliary member 130 is provided with a refrigerant jet pipe 122 that discharges the refrigerant to the rotor 102 (see FIG. 17), or with a refrigerant flow path 132 and refrigerant discharge portions 132a and 132b as shown in FIG. The coolant can be supplied to the rotor 102 and the winding 104. As a result, the rotor 102 and the winding 104 are directly cooled by the refrigerant, and the magnetic pole 110 is cooled by the auxiliary member 130 that is in surface contact.
 上述した各実施形態はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。さらに、艦船推進用や鉄道車両用の電動機として本発明のアキシャルギャップ型の回転電機1を用いることで、減速機を必要としないダイレクトドライブが実現可能となる。 The embodiments described above may be used alone or in combination. This is because the effects of the respective embodiments can be achieved independently or synergistically. In addition, the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. Furthermore, by using the axial gap type rotating electrical machine 1 of the present invention as an electric motor for ship propulsion or railway vehicles, a direct drive that does not require a reduction gear can be realized.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2011年第124349号(2011年6月2日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application 2011-124349 (filed on June 2, 2011)

Claims (9)

  1.  周方向に所定間隔で配置され、かつ、磁化方向が交互に逆向きとなるように配置された複数の永久磁石を有する円盤状回転子と、
     前記円盤状回転子の一方の面に対向するように配置された第1の磁極歯、前記円盤状回転子の他方の面に対向するように配置された第2の磁極歯、およびそれらの磁極歯を繋ぐコア部を有し、前記円盤状回転子の周方向に沿って間隔を空けて配設された複数の磁極子と、
     前記磁極子に巻回された巻線と、
     隣接する前記磁極子の間の空隙を通して、少なくとも前記円盤状回転子に冷媒を放出する冷媒供給部材と、を備えたアキシャルギャップ型回転電機。
    A disk-like rotor having a plurality of permanent magnets arranged at predetermined intervals in the circumferential direction, and arranged so that the magnetization directions are alternately reversed;
    First magnetic pole teeth disposed so as to face one surface of the disk-shaped rotor, second magnetic pole teeth disposed so as to face the other surface of the disk-shaped rotor, and magnetic poles thereof A plurality of magnetic poles having a core portion for connecting teeth and arranged at intervals along the circumferential direction of the disk-shaped rotor;
    A winding wound around the magnetic pole;
    An axial gap type rotating electrical machine comprising: a refrigerant supply member that discharges refrigerant to at least the disk-like rotor through a gap between adjacent magnetic poles.
  2.  請求項1に記載のアキシャルギャップ型回転電機において、
     隣接する前記磁極子間の周方向配置のピッチ角度が、隣接する前記永久磁石間の周方向配置のピッチ角度の偶数倍に設定されているアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine in which a pitch angle in a circumferential direction between adjacent magnetic poles is set to an even multiple of a pitch angle in a circumferential direction between adjacent permanent magnets.
  3.  請求項2に記載のアキシャルギャップ型回転電機において、
     隣接する2以上の前記磁極子で構成される磁極子群を複数備え、
     前記巻線を前記磁極子群毎に設けるとともに、該巻線の内周側に前記冷媒供給部材を配置したアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 2,
    A plurality of magnetic pole groups each composed of two or more adjacent magnetic pole elements,
    An axial gap type rotating electrical machine in which the winding is provided for each of the magnetic pole groups and the refrigerant supply member is disposed on the inner peripheral side of the winding.
  4.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記冷媒供給部材は、前記空隙に挿入するように配置された管部材であるアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    The refrigerant supply member is an axial gap type rotating electrical machine that is a pipe member disposed so as to be inserted into the gap.
  5.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記冷媒供給部材は、前記空隙に挿入するように配置されて前記円盤状回転子に向けて冷媒を放出する第1の管部材と、前記空隙に挿入するように配置されて前記巻線に向けて冷媒を放出する第2の管部材とを備えるアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    The refrigerant supply member is disposed so as to be inserted into the gap and discharges the refrigerant toward the disk-shaped rotor, and is disposed so as to be inserted into the gap and directed toward the winding. And an axial gap type rotating electrical machine including a second pipe member that discharges the refrigerant.
  6.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記巻線、前記磁極子および前記円盤状回転子が収納されるとともに、前記冷媒供給部材に冷媒を供給する冷媒流路が形成されたハウジングを備えたアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine including a housing in which the winding, the magnetic pole, and the disk-shaped rotor are housed and a refrigerant flow path for supplying a refrigerant to the refrigerant supply member is formed.
  7.  請求項1に記載のアキシャルギャップ型回転電機において、
     隣接する前記磁極子の間に面接触するように挟持され、冷媒流路が形成された複数の冷却ブロックを備え、
     前記複数の冷却ブロックに前記冷媒供給部材を配置したアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    A plurality of cooling blocks that are sandwiched so as to be in surface contact between the adjacent magnetic poles and in which a refrigerant flow path is formed,
    An axial gap type rotating electrical machine in which the refrigerant supply member is disposed in the plurality of cooling blocks.
  8.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記冷媒供給部材は、前記円盤状回転子および前記巻線に設定された複数の領域に対してそれぞれ設けられ、
     前記複数の領域の温度を測定する温度測定部と、
     前記温度測定部で測定された温度に基づいて、前記冷媒供給部材の各々から放出される冷媒の流量をそれぞれ制御する流量制御部と、を備えたアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    The refrigerant supply member is provided for each of a plurality of regions set in the disk-shaped rotor and the winding,
    A temperature measuring unit for measuring temperatures of the plurality of regions;
    An axial gap type rotating electrical machine comprising: a flow rate control unit that controls the flow rate of the refrigerant discharged from each of the refrigerant supply members based on the temperature measured by the temperature measurement unit.
  9.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記冷媒供給部材は、前記円盤状回転子および前記巻線に設定された複数の領域に対してそれぞれ設けられ、
     前記複数の領域に関して回転電機の運転条件に応じた発熱量が予め記憶されている記憶部と、
     前記記憶部に記憶されている発熱量および実際の運転状態に基づいて前記複数の領域温度を予測し、前記予測に基づいて前記冷媒供給部材の各々から放出される冷媒の流量をそれぞれ制御する流量制御部と、を備えたアキシャルギャップ型回転電機。
    In the axial gap type rotating electrical machine according to claim 1,
    The refrigerant supply member is provided for each of a plurality of regions set in the disk-shaped rotor and the winding,
    A storage unit in which the amount of heat generated according to the operating conditions of the rotating electrical machine with respect to the plurality of regions is stored in advance;
    The flow rate for predicting the plurality of region temperatures based on the calorific value stored in the storage unit and the actual operating state, and controlling the flow rate of the refrigerant discharged from each of the refrigerant supply members based on the prediction And an axial gap type rotating electrical machine including a control unit.
PCT/JP2012/063513 2011-06-02 2012-05-25 Axial gap type rotary electrical machine WO2012165339A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-124349 2011-06-02
JP2011124349A JP2012253899A (en) 2011-06-02 2011-06-02 Axial gap-type rotary electrical machine

Publications (1)

Publication Number Publication Date
WO2012165339A1 true WO2012165339A1 (en) 2012-12-06

Family

ID=47259195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063513 WO2012165339A1 (en) 2011-06-02 2012-05-25 Axial gap type rotary electrical machine

Country Status (2)

Country Link
JP (1) JP2012253899A (en)
WO (1) WO2012165339A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004600A1 (en) * 2013-04-10 2014-10-17 Renault Sa ELECTRICAL MACHINE WITH INTERNAL COOLING CIRCUIT
WO2015186163A1 (en) * 2014-06-02 2015-12-10 株式会社日立製作所 Axial gap motor
GB2580920A (en) * 2019-01-29 2020-08-05 Saietta Group Ltd Axial flux electrical machine and ancillary components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318782A (en) * 2004-03-31 2005-11-10 Nissan Motor Co Ltd Cooling structure for axial gap electric motor
JP2005348589A (en) * 2004-06-07 2005-12-15 Nissan Motor Co Ltd Cooling structure of axial gap electric motor
JP2006074962A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Motor cooler
JP2007020382A (en) * 2005-06-06 2007-01-25 Toyota Central Res & Dev Lab Inc Axial motor and cooling method
JP2008263753A (en) * 2007-04-13 2008-10-30 Toyota Motor Corp Cooling device for vehicular rotary electric machine
JP2009213231A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Electric motor
JP2011101545A (en) * 2009-11-09 2011-05-19 Hitachi Ltd Rotary electrical machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318782A (en) * 2004-03-31 2005-11-10 Nissan Motor Co Ltd Cooling structure for axial gap electric motor
JP2005348589A (en) * 2004-06-07 2005-12-15 Nissan Motor Co Ltd Cooling structure of axial gap electric motor
JP2006074962A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Motor cooler
JP2007020382A (en) * 2005-06-06 2007-01-25 Toyota Central Res & Dev Lab Inc Axial motor and cooling method
JP2008263753A (en) * 2007-04-13 2008-10-30 Toyota Motor Corp Cooling device for vehicular rotary electric machine
JP2009213231A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Electric motor
JP2011101545A (en) * 2009-11-09 2011-05-19 Hitachi Ltd Rotary electrical machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004600A1 (en) * 2013-04-10 2014-10-17 Renault Sa ELECTRICAL MACHINE WITH INTERNAL COOLING CIRCUIT
WO2015186163A1 (en) * 2014-06-02 2015-12-10 株式会社日立製作所 Axial gap motor
GB2580920A (en) * 2019-01-29 2020-08-05 Saietta Group Ltd Axial flux electrical machine and ancillary components

Also Published As

Publication number Publication date
JP2012253899A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
CN102598479B (en) Wind power generator having an internal coolant circuit
JP5911033B1 (en) Operation method of rotating electric machine
US7705503B2 (en) Rotating electrical machine
KR101475369B1 (en) Rotary machine
JP4442207B2 (en) Cooling structure of rotating electric machine
CN106451866B (en) Motor rotor support and motor
CN103746485B (en) A kind of cooling structure of permagnetic synchronous motor
EP2589132B1 (en) Synchronous reluctance machine using rotor flux barriers as cooling channels
US8648505B2 (en) Electrical machine with multiple cooling flows and cooling method
CN101990732B (en) Electric machine comprising a fan with multiple ducts
JP6386737B2 (en) Vacuum pump
EP2843812A2 (en) Axial gap-type power generator
JP2013009508A (en) Cooling structure for rotating electric machine
JP5545180B2 (en) Rotating electric machine
WO2012165339A1 (en) Axial gap type rotary electrical machine
JP5920108B2 (en) Rotating electrical machine equipment
JP6469964B2 (en) Permanent magnet rotating electric machine
JP2011217438A (en) Cooling system for rotating electric machine
JP2013034332A (en) Rotary electric machine
JP2013190669A (en) Galvano scanner and laser beam machine
WO2017077813A1 (en) Axial-gap rotating electric machine
EP2477313B1 (en) An electric machine
JP6942881B2 (en) Cooling structure of rotary electric machine
KR20140062229A (en) Motor cooling apparatus for vehicle
JP5601504B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792403

Country of ref document: EP

Kind code of ref document: A1