WO2015186163A1 - Axial gap motor - Google Patents

Axial gap motor Download PDF

Info

Publication number
WO2015186163A1
WO2015186163A1 PCT/JP2014/064570 JP2014064570W WO2015186163A1 WO 2015186163 A1 WO2015186163 A1 WO 2015186163A1 JP 2014064570 W JP2014064570 W JP 2014064570W WO 2015186163 A1 WO2015186163 A1 WO 2015186163A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling medium
stator
rotor
supply pipe
medium supply
Prior art date
Application number
PCT/JP2014/064570
Other languages
French (fr)
Japanese (ja)
Inventor
芳紹 堤
見多 出口
明仁 中原
孝仁 村木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/064570 priority Critical patent/WO2015186163A1/en
Publication of WO2015186163A1 publication Critical patent/WO2015186163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to an axial gap motor.
  • ⁇ Axial gap motor is composed of a disk-shaped rotor and a stator placed facing it.
  • the rotor has a plurality of flat permanent magnets arranged in the circumferential direction
  • the stator has a plurality of electromagnets composed of a core and a coil arranged in the circumferential direction.
  • the rotor is attached to the shaft.
  • the shaft is supported by a bearing attached to the end bracket.
  • the stator is held by the housing on the outer peripheral side.
  • the housing is coupled to the end bracket. In the case of a fully-closed axial gap motor, the housing and the end bracket cover all directions.
  • a two-rotor / one-stator configuration in which both sides of the stator are sandwiched by two rotors and a gap surface is formed on both sides of the stator is performed.
  • the axial gap motor when the axial gap motor is mounted on a hybrid vehicle, a large torque is required. As the torque increases, the current flowing through the coil increases, and the heat generated in the coil and core increases. Therefore, the axial gap motor cannot be sufficiently cooled only by radiating the heat from the housing to the surrounding air by conventional heat conduction and cooling it.
  • Patent Document 1 As a device using a cooling medium for cooling the stator of an axial type rotating electric machine, there is one shown in Patent Document 1, and the coil and the core are cooled by circulating the cooling medium with a closed structure of the coil.
  • Patent Document 1 the coil and the core are sealed, and cooling is performed by flowing a cooling medium in the sealed space.
  • this cooling method since the cooling medium is supplied only to the coil and the core, the core support member, the shaft and the like to which the cooling medium is not supplied are not cooled.
  • the present invention provides an axial gap motor structure in which a cooling medium is appropriately supplied to a place where the stator is to be cooled.
  • An axial gap motor having a rotor fixed to a rotating shaft, a stator arranged to face the rotor in the axial direction, and a cooling medium supply pipe for supplying a cooling medium to the stator, in the radial direction of the stator
  • An axial gap motor in which a cooling medium supply pipe is disposed adjacently and a first windbreak wall is disposed between the rotor and the stator in the axial direction.
  • the cooling medium is appropriately supplied to the place where the stator is to be cooled.
  • Sectional drawing explaining an example of the axial gap motor of this invention A perspective view of a cooling medium supply pipe for supplying a cooling medium for the upper half of the stator Perspective view of upper second windbreak wall for upper half of stator
  • a perspective view of a cooling medium supply pipe for supplying a cooling medium for the lower half of the stator Perspective view of the lower second windbreak for the lower half of the stator Detailed view of the vicinity of the upper coolant supply pipe
  • Sectional drawing of the axial gap motor in another embodiment of this invention Sectional drawing of the axial gap motor in another embodiment of this invention
  • Detailed view of the vicinity of the cooling medium supply pipe in another embodiment of the present invention Bird's eye view of the first windbreak and stator Bird's-eye view of stator with first windbreak removed
  • FIG. 1 is a cross-sectional view illustrating an example of an axial gap motor of the present invention.
  • FIG. 2 is a perspective view of a cooling medium supply pipe for supplying a cooling medium for the upper half of the stator.
  • FIG. 3 is a perspective view of the upper second windbreak wall for the upper half of the stator.
  • FIG. 4 is a perspective view of a cooling medium supply pipe for supplying a cooling medium for the lower half of the stator.
  • FIG. 5 is a perspective view of the lower second windbreak wall for the lower half of the stator.
  • FIG. 6 is a detailed view of the vicinity of the upper cooling medium supply pipe.
  • the axial gap motor according to an embodiment of the present invention can be applied to a hybrid vehicle or an electric vehicle, but is not limited thereto. It is desirable to apply the axial gap motor according to an embodiment of the present invention to a hybrid vehicle that requires a large torque.
  • the axial gap motor 1 includes a disk-shaped rotor 3 fixed to a rotating shaft, a stator 2 disposed opposite to the rotor 3 in the axial direction via a gap, and the rotor 3 on the inner periphery of the rotor 3. It is composed of a connected shaft 4 (rotating shaft), a bearing 5 that supports the shaft 4, an end bracket 62 to which the bearing 5 is attached, and a housing 61 connected to the outer periphery of the end bracket 62 and the stator 2. ing.
  • the housing 6 includes a cylindrical housing 61 that covers the stator 2 and the rotor 3, and end plates 62 that are attached to both ends of the housing 61.
  • the rotor 3 is composed of a magnet, a structural material for holding the magnet, a back yoke, and the like (not shown).
  • a magnet of the rotor 3 a ferrite magnet or a neodymium magnet is used.
  • the stator 2 includes a core 22, a coil 21 wound around the core 22, and a support member 23 that supports the core 22.
  • the coil 21 of the stator 2 uses a copper wire or an aluminum wire.
  • the core 22 is made of a laminated magnetic magnetic steel sheet or amorphous foil or a soft magnetic material such as a dust core.
  • the upper cooling medium supply pipe 81 (cooling medium supply pipe 8) is disposed above the coil 21 in the upper half of the stator 2. Further, the lower cooling medium supply pipe 82 (cooling medium supply pipe 8) is disposed on the upper side of the coil 21 in the lower half of the stator 2. In other words, the cooling medium supply pipe 8 is disposed adjacent to the radial direction of the stator 2.
  • the upper second windbreak wall 72 is disposed in the axial direction and on the side near the rotor 3 on the side of the upper cooling medium supply pipe 81.
  • the first windbreak wall 71 is disposed between the rotor 3 and the stator 2 in the axial direction.
  • the first windbreak wall 71 forms a flow path through which the cooling medium flows from one end in the radial direction of the stator 2 toward the other end.
  • the first windbreak wall 71 is made of heat-resistant resin, and is disposed so as to cover the entire surface of the rotor 3 side between the adjacent cores 22 in a concentric disk shape.
  • a cooling medium discharge port 9 for collecting the cooling medium is provided at the lower portion of the housing 61.
  • the upper half cooling medium supply pipe 81 for the upper half has a cooling pipe of the same diameter on the concave surface of the hollow cooling medium supply pipe 81 having an arc shape with an outer diameter R2 and an inner diameter R1 and a circular cross section.
  • a plurality of medium supply holes 83 are opened at substantially equal intervals.
  • the angle of the arc of the upper cooling medium supply pipe 81 (indicated by ⁇ in the figure) is approximately 180 degrees or more so that the cooling medium supply hole 83 can be provided also in the lateral direction (side direction in the figure) in FIG. It is preferable that the angle is.
  • the upper second windbreak wall 72 has a structure that covers the side surface on the rotor 3 side of the upper cooling medium supply pipe 81 of FIG. 2 as shown in FIG.
  • the lower cooling medium supply pipe 82 for the lower half is the same as the convex surface of the lower cooling medium supply pipe 82 of the hollow pipe having the outer diameter R2, the inner diameter R1, and the circular arc shape as shown in FIG.
  • a plurality of cooling medium supply holes 83 having a diameter are opened at substantially equal intervals.
  • the angle of the arc of the lower cooling medium supply pipe 82 (denoted by ⁇ in the figure) is approximately 180 degrees so that the cooling medium supply hole 83 can also be provided in the lateral direction (side direction in the figure) in FIG. The above angle is preferable.
  • the lower second windbreak wall 73 has a structure that covers the rotor 3 side surface of the lower cooling medium supply pipe 82 of FIG. 4 as shown in FIG.
  • the upper cooling medium supply pipe 81 is provided on the upper side in the outer diameter direction of the coil 21, and the cooling medium supply hole 83 opens downward in the upper cooling medium supply pipe 81.
  • a first windbreak wall 71 is provided between the stator 2 and the rotor 3, and a second windbreak wall 72 is provided on the rotor 3 side of the upper cooling medium supply pipe 81.
  • a flow of the cooling medium ejected from the cooling medium supply hole 83 is indicated by 100.
  • the positional relationship is the same and only the structures of the lower cooling medium supply pipe 82 and the lower second windbreak wall 72 are different.
  • the operation of the axial gap motor 1 of this embodiment will be described.
  • the coil 21 When the coil 21 is energized using an inverter or AC power supply not shown in the figure, an alternating magnetic field is formed on the surface of the stator 2.
  • the alternating magnetic field and the static magnetic field of the rotor 3 by the magnet are attracted and repelled, whereby the rotor 3 generates rotor torque.
  • the cooling medium is supplied from a cooling medium supply pipe 8 from a cooling medium supply system (not shown) installed outside the axial gap motor 1.
  • the cooling medium supplied to the cooling medium supply pipe 8 is ejected from the cooling medium supply hole 83 and is also supplied to the support member 23 by the coil 21 and the core 22 of the stator 2 and the flow.
  • the cooling medium ejected from the upper refrigerant supply pipe 81 is not affected by the air current generated by the rotation of the rotor 3 by the upper second windbreak wall 72, and the desired coil 21 and core 22 desired. Reach the place. Further, the cooling medium flowing between the portion of the stator 2 facing the rotor 3, that is, between the slots of the core 22, is not affected by the airflow generated by the rotor 3, and the coil 21, the core 22, or the core support It is supplied to the member 23 and cooled. Thereafter, a part of the supplied cooling medium is dropped on the shaft 4 to cool the shaft 4.
  • the cooling medium is transported to another part of the stator 2 by the centrifugal force generated by the rotation of the shaft 4, and the other part of the stator 2 is cooled. Another part of the cooling medium is supplied to the other part of the stator 2 through the coil 21 and cools the other part of the stator 2.
  • the cooling medium ejected from the lower refrigerant supply pipe 82 is not affected by the air flow generated by the rotation of the rotor 3 by the lower second windbreak wall 73, and the coil 21 and the core 22. To reach the desired location. Further, the cooling medium flowing through the portion of the stator 2 facing the rotor 3, that is, the slot between the adjacent cores 22, by the first windbreak wall 71 is not affected by the air flow generated by the rotor 3, and is not affected by the coil 21, the core 22 or the core. It is supplied to the support member 23 and cooled. In addition to this, in the lower half of the axial gap motor 1, the cooling medium flowing from the upper half is also supplied, contributing to cooling of the lower half of the stator 2.
  • the cooling medium that has cooled the stator 2 reaches the inner wall of the housing 61, flows, and is discharged from the cooling medium discharge port 9 provided at the lower portion of the housing 61 to the outside of the casing 6 of the axial gap motor 1.
  • the cooling medium discharged from the axial gap motor 1 returns to the cooling medium supply system, and is supplied again to the axial gap motor 1 from the cooling medium supply pipe 8 to perform cooling.
  • the cooling medium supply pipes 8 are provided on both sides of the stator 2. That is, the rotor 3 is configured by a first rotor and a second rotor that are arranged to face each other in the axial direction with the stator 2 interposed therebetween.
  • the stator 2 includes a core 22 and a support member 23 that supports the core 22. The first coil disposed on the side of the support member 23 on the side close to the first rotor with respect to the axial direction and the side of the support member 23 on the side close to the second rotor with respect to the axial direction.
  • the cooling medium supply pipe is configured by the second coil, and the cooling medium supply pipe is disposed on the radially outer side of the first coil, and the lower cooling medium supply is disposed on the radially inner side of the second coil. And a tube 82. If the cooling medium is to be supplied to both surfaces of the stator 2 by using one cooling medium supply pipe 8 without doing so, in order to obtain a spread for supplying the cooling medium to an appropriate place of the coil 21, This is because the distance from 2 becomes longer and the outer diameter of the axial gap motor 1 increases significantly.
  • the cross-sectional shapes of the upper cooling medium supply pipe 81 and the lower cooling medium supply pipe 82 do not necessarily have to be circular, and may be closed so that the cooling medium can be transported.
  • the diameters of the cooling medium supply holes 83 are the same and are substantially equally spaced. Since the pressure decreases from the supply side of the cooling medium supply pipe 8 toward the downstream side, the following operation is performed from the upstream side of the cooling medium supply pipe 8 toward the downstream side. The cooling medium can be ejected evenly. The method is to gradually increase the diameter of the cooling medium supply holes 83 toward the downstream, or to arrange the cooling medium supply holes 83 of the same diameter at appropriate intervals that are not equal.
  • the first windbreak wall 71, the upper second windbreak wall 72, and the lower second windbreak wall 73 are separate and provided with a gap.
  • the upper second windbreak wall 72 is disposed so as to provide a gap between the end portion of the upper second windbreak wall 72 and the end portion of the first windbreak wall 71
  • the lower second windbreak wall 73 is arranged so as to provide a gap between the end portion of the lower second windbreak wall 73 and the end portion of the first windbreak wall 71, and a part of the rotor 3 is arranged in the gap.
  • the temperature of the stator 2 portion to which the upper second windbreak wall 72 and the lower second windbreak wall 73 are attached is lower than the temperature of the core 22 portion to which the first windbreak wall 71 is attached.
  • Different materials can be used. Therefore, it is not necessary to use the same material for all.
  • the upper second windbreak wall 72 and the lower second windbreak wall 73 can be made of a material having a heat resistant temperature lower than that of the first windbreak wall 71. Thereby, cost can be reduced.
  • first windbreak wall 71 extends radially outward in the upper half and is integrated with the upper second windbreak wall 72, and is integrated with the lower second windbreak wall 73 in the lower half. An effect is obtained.
  • the upper second windbreak wall 72 and the lower second windbreak wall 73 are fixed to the stator 2 at one end, but the upper second windbreak wall 72 and the lower second windbreak wall 73 are integrated with the first windbreak wall 71.
  • the support is supported at two locations by the stator 2 and the core 22. Therefore, since it is supported firmly, the plate
  • FIG. 7 is a cross-sectional view of an axial gap motor according to another embodiment of the present invention.
  • the other configuration is the same as that of the first embodiment except that the lower cooling medium supply pipe 82 for the lower half of the stator 2 and the lower second windbreak wall 73 are not provided.
  • the cooling medium that flows through the cooling medium supply pipe 8 is omitted. Increase the amount of.
  • the lower cooling refrigerant supply pipe 82 for the lower half of the stator 2 and the lower second windbreak wall 73 can be omitted, so that the structure of the stator 2 can be simplified as compared with the first embodiment.
  • FIG. 8 is a cross-sectional view of an axial gap motor according to another embodiment of the present invention.
  • the upper cooling medium supply pipe 81 and the upper second windbreak wall 72 are arranged in the radial direction of the stator 2. Except for being provided outside, the other configuration is the same as that of the first embodiment. The same members as those in the first embodiment are given the same numbers.
  • the upper cooling medium supply pipe 81 and the upper second windbreak wall 72 for the upper half are connected to the stator 2. It is provided on the outer peripheral side of the lower half. In this way, the cooling medium can be directly supplied to the lower half of the stator 2 as compared with the second embodiment.
  • productivity can be improved.
  • FIG. 9 is a detailed view of the vicinity of the coolant supply pipe according to another embodiment of the present invention.
  • Other configurations are the same as those in the first embodiment except that the position of the cooling medium supply pipe 8 is different.
  • the same members as those in the first embodiment are given the same numbers.
  • the cooling medium supply hole 83 of the cooling medium supply pipe 8 is opened downward, the flow 100 of the jetted cooling medium is widened, and a distance that can supply an appropriate region to the coil 21 is necessary.
  • the cooling medium supply hole 83 is provided so as to be inclined from below. Therefore, the distance that the flow 100 of the jetted cooling medium has an appropriate spread can be shortened compared to the case where the cooling medium supply hole 83 faces downward. As a result, an increase in the diameter of the axial gap motor 1 can be suppressed.
  • FIG. 10 is a bird's-eye view of the first windbreak wall and the stator.
  • FIG. 11 is a bird's-eye view of the stator with the first windbreak wall 71 of FIG. 10 removed.
  • the upper coolant supply pipe 81 and the lower coolant supply pipe 82 of the coolant supply pipe 8 are omitted.
  • the first windbreak wall 71 is arranged on the core 21 of the stator 2 so as to cover the entire rotor 3 side surface between the adjacent cores 22 and the rotor 22 side surface of the core 22 in a concentric disk shape. Yes.
  • the coil 21 is in contact with the side surface of one of the cores 22 in the slot a between the adjacent cores 22.
  • the cooling refrigerant supplied from the cooling refrigerant supply pipe 8 flows through the coil 21 without being obstructed when flowing through the slot a, and cooling with the cooling medium is performed efficiently.
  • the coil 21 is in contact with the core 22 over a wide area, the heat generated in the coil 21 is more transferred to the core 22 and the support member 23 having a large heat capacity, so that the temperature of the coil 21 can be lowered.

Abstract

Provided is an axial gap motor structure in which a cooling medium is appropriately supplied to a place to be cooled in a stator. An axial gap motor has a rotor fixed to a rotating shaft, a stator disposed facing the rotor in a shaft direction, and a cooling medium supply pipe for supplying a cooling medium to the stator, wherein the cooling medium supply pipe is disposed adjacent to the stator in a radial direction and a first windshield wall is disposed between the rotor and the stator in a shaft direction.

Description

アキシャルギャップモータAxial gap motor
 本発明は、アキシャルギャップモータに関する。 The present invention relates to an axial gap motor.
 アキシャルギャップモータは、円板状のロータとこれと対向して置かれたステータから構成される。ロータは、平板状の永久磁石を円周方向に複数個配置し、ステータは、コアとコイルとからなる電磁石を円周方向複数個配置している。ロータは、シャフトに取付けられている。シャフトはエンドブラケットに取付けられた軸受けにより支持されている。ステータは、外周側でハウジングに保持されている。ハウジングはエンドブラケットに結合されている。全閉型のアキシャルギャップモータの場合には、ハウジングとエンドブラケットとにより全方向を覆われている。 ¡Axial gap motor is composed of a disk-shaped rotor and a stator placed facing it. The rotor has a plurality of flat permanent magnets arranged in the circumferential direction, and the stator has a plurality of electromagnets composed of a core and a coil arranged in the circumferential direction. The rotor is attached to the shaft. The shaft is supported by a bearing attached to the end bracket. The stator is held by the housing on the outer peripheral side. The housing is coupled to the end bracket. In the case of a fully-closed axial gap motor, the housing and the end bracket cover all directions.
 アキシャルギャップモータでは、例えば、体格当たりのトルクを大きくするためにステータの両側を2枚のロータではさみ、ステータの両側にギャップ面を形成した2ロータ1ステータの構成をとることが行われる。 In an axial gap motor, for example, in order to increase the torque per physique, a two-rotor / one-stator configuration in which both sides of the stator are sandwiched by two rotors and a gap surface is formed on both sides of the stator is performed.
 アキシャルギャップモータでの損失の多くは電磁石を構成するコイルやコアで発生する。損失は熱となり熱伝導によりコア、コア支持部材、これと接するハウジングへ伝えられ、最終的には外気に放熱される。これとは別の経路として、内部の気体の熱伝達によりステータからロータへ熱が伝えられる。ロータ、シャフトに伝えられた熱は、熱伝導によりベアリングそしてエンドブラケットに伝えられ、一部は、熱伝達によりハウジングに伝えられ最終的には外気に放熱される。放熱されなかった熱により、ステータとロータの温度が上昇する。ロータの磁石温度が上昇すると磁力が低下し、アキシャルギャップモータの効率が低下する。 多 く Most of the loss in the axial gap motor occurs in the coils and cores that make up the electromagnet. The loss is converted into heat and transferred to the core, the core support member, and the housing in contact with the core by heat conduction, and is finally radiated to the outside air. As an alternative path, heat is transferred from the stator to the rotor by heat transfer of the internal gas. The heat transferred to the rotor and the shaft is transferred to the bearing and the end bracket by heat conduction, and a part of the heat is transferred to the housing by heat transfer and finally radiated to the outside air. The temperature of the stator and the rotor rises due to the heat that has not been dissipated. When the magnet temperature of the rotor increases, the magnetic force decreases, and the efficiency of the axial gap motor decreases.
 アキシャルギャップモータを、例えば、ハイブリッド自動車に搭載する場合には、大きなトルクが必要となる。トルクの増大に伴い、コイルに流れる電流も増し、コイルとコアで発生する熱が大きくなる。そのため、従来の熱伝導によりハウジングから周囲の空気へ放熱して冷却するだけでは、充分にアキシャルギャップモータの冷却を行うことができない。 For example, when the axial gap motor is mounted on a hybrid vehicle, a large torque is required. As the torque increases, the current flowing through the coil increases, and the heat generated in the coil and core increases. Therefore, the axial gap motor cannot be sufficiently cooled only by radiating the heat from the housing to the surrounding air by conventional heat conduction and cooling it.
 そこで、冷却媒体をステータに直接供給して冷却媒体の熱伝達を利用し冷却を促進し、この温度上昇を抑制することが必要である。しかし、アキシャルギャップモータの回転時には、ロータの回転数やロータの直径にもよるが数十m/sの気流が発生する。単に、冷却冷媒を供給しただけでは、この気流により供給された冷却媒体は飛散し、冷却すべき所望の場所に供給することができない。 Therefore, it is necessary to supply the cooling medium directly to the stator to promote cooling by utilizing the heat transfer of the cooling medium and to suppress this temperature rise. However, when the axial gap motor rotates, an air flow of several tens of m / s is generated depending on the rotational speed of the rotor and the diameter of the rotor. Simply by supplying the cooling refrigerant, the cooling medium supplied by the air flow is scattered and cannot be supplied to a desired place to be cooled.
 アキシャル型回転電機の固定子の冷却に冷却媒体を用いるものとしては、特許文献1に示すものがあり、コイルを密閉構造とし冷却媒体を循環させることでコイルとコアとの冷却を行っている。 As a device using a cooling medium for cooling the stator of an axial type rotating electric machine, there is one shown in Patent Document 1, and the coil and the core are cooled by circulating the cooling medium with a closed structure of the coil.
特開2005-261083号公報Japanese Patent Application Laid-Open No. 2005-261083
 特許文献1では、コイルとコアとを密閉して、この密閉空間に冷却媒体を流し冷却を行っている。この冷却方式では、冷却媒体がコイルとコアのみに供給されるため、冷却媒体が供給されないコア支持部材やシャフトなどは冷却が行われない。 In Patent Document 1, the coil and the core are sealed, and cooling is performed by flowing a cooling medium in the sealed space. In this cooling method, since the cooling medium is supplied only to the coil and the core, the core support member, the shaft and the like to which the cooling medium is not supplied are not cooled.
 本発明では、冷却媒体がステータの冷却すべき場所に適切に供給されるアキシャルギャップモータの構造を提供する。 The present invention provides an axial gap motor structure in which a cooling medium is appropriately supplied to a place where the stator is to be cooled.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are as follows, for example.
 回転軸に固定されるロータと、ロータの軸方向に対向して配置されるステータと、冷却媒体をステータに供給する冷却媒体供給管と、を有するアキシャルギャップモータであって、ステータの径方向に隣接して冷却媒体供給管が配置され、軸方向において、ロータおよびステータの間に第一防風壁が配置されるアキシャルギャップモータ。 An axial gap motor having a rotor fixed to a rotating shaft, a stator arranged to face the rotor in the axial direction, and a cooling medium supply pipe for supplying a cooling medium to the stator, in the radial direction of the stator An axial gap motor in which a cooling medium supply pipe is disposed adjacently and a first windbreak wall is disposed between the rotor and the stator in the axial direction.
 本発明により、冷却媒体がステータの冷却すべき場所に適切に供給される。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, the cooling medium is appropriately supplied to the place where the stator is to be cooled. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明のアキシャルギャップモータの一例を説明する断面図Sectional drawing explaining an example of the axial gap motor of this invention ステータの上側半分用の冷却媒体を供給する冷却媒体供給管の斜視図A perspective view of a cooling medium supply pipe for supplying a cooling medium for the upper half of the stator ステータの上側半分用の上側第二防風壁の斜視図Perspective view of upper second windbreak wall for upper half of stator ステータの下側半分用の冷却媒体を供給する冷却媒体供給管の斜視図A perspective view of a cooling medium supply pipe for supplying a cooling medium for the lower half of the stator ステータの下側半分用の下側第二防風壁の斜視図Perspective view of the lower second windbreak for the lower half of the stator 上側冷却媒体供給管の付近の詳細図Detailed view of the vicinity of the upper coolant supply pipe 本発明の別の実施形態におけるアキシャルギャップモータの断面図Sectional drawing of the axial gap motor in another embodiment of this invention 本発明の別の実施形態におけるアキシャルギャップモータの断面図Sectional drawing of the axial gap motor in another embodiment of this invention 本発明の別の実施形態における冷却媒体供給管の付近の詳細図Detailed view of the vicinity of the cooling medium supply pipe in another embodiment of the present invention 第一防風壁とステータの鳥瞰図Bird's eye view of the first windbreak and stator 第一防風壁を取り外したステータの鳥瞰図Bird's-eye view of stator with first windbreak removed
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 第一の実施例について図1から図6を用いて説明する。図1は、本発明のアキシャルギャップモータの一例を説明する断面図である。図2は、ステータの上側半分用の冷却媒体を供給する冷却媒体供給管の斜視図である。図3は、ステータの上側半分用の上側第二防風壁の斜視図である。図4は、ステータの下側半分用の冷却媒体を供給する冷却媒体供給管の斜視図である。図5は、ステータの下側半分用の下側第二防風壁の斜視図である。図6は、上側冷却媒体供給管の付近の詳細図である。 The first embodiment will be described with reference to FIGS. FIG. 1 is a cross-sectional view illustrating an example of an axial gap motor of the present invention. FIG. 2 is a perspective view of a cooling medium supply pipe for supplying a cooling medium for the upper half of the stator. FIG. 3 is a perspective view of the upper second windbreak wall for the upper half of the stator. FIG. 4 is a perspective view of a cooling medium supply pipe for supplying a cooling medium for the lower half of the stator. FIG. 5 is a perspective view of the lower second windbreak wall for the lower half of the stator. FIG. 6 is a detailed view of the vicinity of the upper cooling medium supply pipe.
 本発明の一実施形態に係るアキシャルギャップモータは、ハイブリッド自動車や電機自動車に適用できるが、それに限られない。大きなトルクが必要となるハイブリッド自動車に本発明の一実施形態に係るアキシャルギャップモータを適用することが望ましい。 The axial gap motor according to an embodiment of the present invention can be applied to a hybrid vehicle or an electric vehicle, but is not limited thereto. It is desirable to apply the axial gap motor according to an embodiment of the present invention to a hybrid vehicle that requires a large torque.
 本発明のアキシャルギャップモータ1は、回転軸に固定される円板状のロータ3、ロータ3にギャップを介して軸方向に対向して配置されるステータ2、ロータ3の内周でロータ3に接続されたシャフト4(回転軸)、このシャフト4を支持する軸受5、この軸受5が取り付けられたエンドブラケット62、このエンドブラケット62と固定子2の外周に接続されたハウジング61とから構成されている。筐体6は、ステータ2とロータ3とを覆う円筒状のハウジング61とハウジング61の両端に取り付けられるエンドプレート62とから構成される。 The axial gap motor 1 according to the present invention includes a disk-shaped rotor 3 fixed to a rotating shaft, a stator 2 disposed opposite to the rotor 3 in the axial direction via a gap, and the rotor 3 on the inner periphery of the rotor 3. It is composed of a connected shaft 4 (rotating shaft), a bearing 5 that supports the shaft 4, an end bracket 62 to which the bearing 5 is attached, and a housing 61 connected to the outer periphery of the end bracket 62 and the stator 2. ing. The housing 6 includes a cylindrical housing 61 that covers the stator 2 and the rotor 3, and end plates 62 that are attached to both ends of the housing 61.
 ロータ3は、図示しないが磁石とこれを保持する構造材やバックヨークなどで構成されている。ロータ3の磁石は、フェライト磁石やネオジム磁石などを用いる。 The rotor 3 is composed of a magnet, a structural material for holding the magnet, a back yoke, and the like (not shown). As the magnet of the rotor 3, a ferrite magnet or a neodymium magnet is used.
 ステータ2は、コア22、これに巻かれたコイル21とコア22を支持する支持部材23から構成されている。ステータ2のコイル21は、銅線またはアルミ線を用いる。コア22は電磁鋼板やアモルファス箔を積層したものまたは圧粉磁心などの軟磁性体を用いる。 The stator 2 includes a core 22, a coil 21 wound around the core 22, and a support member 23 that supports the core 22. The coil 21 of the stator 2 uses a copper wire or an aluminum wire. The core 22 is made of a laminated magnetic magnetic steel sheet or amorphous foil or a soft magnetic material such as a dust core.
 本発明の一実施形態では、図1に示すように上側冷却媒体供給管81(冷却媒体供給管8)は、ステータ2の上側半分ではコイル21の上側に配置されている。また、下側冷却媒体供給管82(冷却媒体供給管8)は、ステータ2の下側半分では、コイル21の上側に配置されている。換言すると、ステータ2の径方向に隣接して冷却媒体供給管8が配置されている。上側第二防風壁72は、軸方向であって、上側冷却媒体供給管81の側方でロータ3に近い側に配置されている。 In one embodiment of the present invention, as shown in FIG. 1, the upper cooling medium supply pipe 81 (cooling medium supply pipe 8) is disposed above the coil 21 in the upper half of the stator 2. Further, the lower cooling medium supply pipe 82 (cooling medium supply pipe 8) is disposed on the upper side of the coil 21 in the lower half of the stator 2. In other words, the cooling medium supply pipe 8 is disposed adjacent to the radial direction of the stator 2. The upper second windbreak wall 72 is disposed in the axial direction and on the side near the rotor 3 on the side of the upper cooling medium supply pipe 81.
 第一防風壁71は、軸方向において、ロータ3およびステータ2の間に配置される。第一防風壁71は、ステータ2の径方向一方端から他方端に向かって冷却媒体が流れる流路を形成する。第一防風壁71は、耐熱性の樹脂製で、コア22のロータ3側の面と隣接するコア22どうしの間のロータ3側の全面を同心円板状に覆うように配置されている。 The first windbreak wall 71 is disposed between the rotor 3 and the stator 2 in the axial direction. The first windbreak wall 71 forms a flow path through which the cooling medium flows from one end in the radial direction of the stator 2 toward the other end. The first windbreak wall 71 is made of heat-resistant resin, and is disposed so as to cover the entire surface of the rotor 3 side between the adjacent cores 22 in a concentric disk shape.
 ハウジング61の下部には、冷却媒体を回収するための冷却媒体排出口9が設けられている。 A cooling medium discharge port 9 for collecting the cooling medium is provided at the lower portion of the housing 61.
 上側半分用の上側冷却媒体供給管81は、図2に示すように外径R2、内径R1の円弧状で断面が円形の中空の管の冷却媒体供給管81の凹面に、同一の直径の冷却媒体供給孔83がほぼ等間隔で複数個開口した構造となっている。上側冷却媒体供給管81の円弧の角度(図中θで表記)は、冷却媒体供給孔83を図1の横方向(図の側面方向)にも設けることができるようにするため概略180度以上の角度であることが好ましい。 As shown in FIG. 2, the upper half cooling medium supply pipe 81 for the upper half has a cooling pipe of the same diameter on the concave surface of the hollow cooling medium supply pipe 81 having an arc shape with an outer diameter R2 and an inner diameter R1 and a circular cross section. A plurality of medium supply holes 83 are opened at substantially equal intervals. The angle of the arc of the upper cooling medium supply pipe 81 (indicated by θ in the figure) is approximately 180 degrees or more so that the cooling medium supply hole 83 can be provided also in the lateral direction (side direction in the figure) in FIG. It is preferable that the angle is.
 上側第二防風壁72は、図3に示すように図2の上側冷却媒体供給管81のロータ3側の側面を覆うような構造をしている。 The upper second windbreak wall 72 has a structure that covers the side surface on the rotor 3 side of the upper cooling medium supply pipe 81 of FIG. 2 as shown in FIG.
 下側半分用の下側冷却媒体供給管82は、図4に示すように外径R2、内径R1で円弧状の断面が円形の中空の管の下側冷却媒体供給管82の凸面に同一の直径の冷却媒体供給孔83がほぼ等間隔で複数個開口した構造となっている。下側冷却媒体供給管82の円弧の角度(図中θで表記)は、冷却媒体供給孔83を図1の横方向(図の側面方向)にも設けることができるようにするため概略180度以上の角度であることが好ましい。 The lower cooling medium supply pipe 82 for the lower half is the same as the convex surface of the lower cooling medium supply pipe 82 of the hollow pipe having the outer diameter R2, the inner diameter R1, and the circular arc shape as shown in FIG. A plurality of cooling medium supply holes 83 having a diameter are opened at substantially equal intervals. The angle of the arc of the lower cooling medium supply pipe 82 (denoted by θ in the figure) is approximately 180 degrees so that the cooling medium supply hole 83 can also be provided in the lateral direction (side direction in the figure) in FIG. The above angle is preferable.
 下側第二防風壁73は、図5に示すように図4の下側冷却媒体供給管82のロータ3側側面を覆うような構造をしている。 The lower second windbreak wall 73 has a structure that covers the rotor 3 side surface of the lower cooling medium supply pipe 82 of FIG. 4 as shown in FIG.
 上側冷却媒体供給管81付近の詳細を図6に示す。上側冷却媒体供給管81はコイル21の外径方向上側に設けられており、上側冷却媒体供給管81に冷却媒体供給孔83が下方に開口している。第一防風壁71がステータ2とロータ3との間に設けられており、第二防風壁72が上側冷却媒体供給管81のロータ3側に設けられている。冷却媒体供給孔83から噴出した冷却媒体の流れが100で示されている。下側冷却媒体供給管82付近については、下側冷却媒体供給管82と下側第二防風壁72の構造が異なるだけで互いの位置関係は同じで、同じ動作を行うため説明を省く。 Details of the vicinity of the upper cooling medium supply pipe 81 are shown in FIG. The upper cooling medium supply pipe 81 is provided on the upper side in the outer diameter direction of the coil 21, and the cooling medium supply hole 83 opens downward in the upper cooling medium supply pipe 81. A first windbreak wall 71 is provided between the stator 2 and the rotor 3, and a second windbreak wall 72 is provided on the rotor 3 side of the upper cooling medium supply pipe 81. A flow of the cooling medium ejected from the cooling medium supply hole 83 is indicated by 100. In the vicinity of the lower cooling medium supply pipe 82, the positional relationship is the same and only the structures of the lower cooling medium supply pipe 82 and the lower second windbreak wall 72 are different.
 本実施例のアキシャルギャップモータ1の動作を説明する。図に示さないインバータや交流電源を用いコイル21に通電すると、ステータ2表面に交番磁界が形成される。この交番磁界と磁石によるロータ3の静磁界とが吸引、反発することでロータ3が回転子トルクを発生する。アキシャルギャップモータ1の外部に設置された図に示さない冷却媒体供給系から冷却媒体が冷却媒体供給管8より供給される。冷却媒体供給管8に供給された冷却媒体は、冷却媒体供給孔83より噴出しステータ2のコイル21やコア22そして流動により支持部材23にも供給される。 The operation of the axial gap motor 1 of this embodiment will be described. When the coil 21 is energized using an inverter or AC power supply not shown in the figure, an alternating magnetic field is formed on the surface of the stator 2. The alternating magnetic field and the static magnetic field of the rotor 3 by the magnet are attracted and repelled, whereby the rotor 3 generates rotor torque. The cooling medium is supplied from a cooling medium supply pipe 8 from a cooling medium supply system (not shown) installed outside the axial gap motor 1. The cooling medium supplied to the cooling medium supply pipe 8 is ejected from the cooling medium supply hole 83 and is also supplied to the support member 23 by the coil 21 and the core 22 of the stator 2 and the flow.
 アキシャルギャップモータ1の上側半分では、上側冷媒供給管81より噴出した冷却媒体は、上側第二防風壁72によりロータ3の回転により発生した気流の影響を受けずにコイル21とコア22の所望の場所に到達する。また、第一防風壁71により、ロータ3と対向するステータ2の部分すなわちコア22のスロット間を流れる冷却媒体は、ロータ3により発生した気流の影響を受けずにコイル21、コア22やコア支持部材23へ供給され、冷却を行う。この後、供給された冷却媒体の一部は、シャフト4に滴下しシャフト4の冷却を行う。さらに、シャフト4の回転により発生する遠心力により冷却媒体はステータ2の別の部分に輸送され、ステータ2の別の部分を冷却する。冷却媒体の別の部分は、コイル21を伝わりステータ2の他の部分へと供給され、ステータ2の他の部分を冷却する。 In the upper half of the axial gap motor 1, the cooling medium ejected from the upper refrigerant supply pipe 81 is not affected by the air current generated by the rotation of the rotor 3 by the upper second windbreak wall 72, and the desired coil 21 and core 22 desired. Reach the place. Further, the cooling medium flowing between the portion of the stator 2 facing the rotor 3, that is, between the slots of the core 22, is not affected by the airflow generated by the rotor 3, and the coil 21, the core 22, or the core support It is supplied to the member 23 and cooled. Thereafter, a part of the supplied cooling medium is dropped on the shaft 4 to cool the shaft 4. Further, the cooling medium is transported to another part of the stator 2 by the centrifugal force generated by the rotation of the shaft 4, and the other part of the stator 2 is cooled. Another part of the cooling medium is supplied to the other part of the stator 2 through the coil 21 and cools the other part of the stator 2.
 アキシャルギャップモータ1の下側半分では、下側冷媒供給管82より噴出した冷却媒体は、下側第二防風壁73によりロータ3の回転により発生した気流の影響を受けずにコイル21とコア22の所望の場所に到達する。また第一防風壁71により、ロータ3と対向するステータ2の部分すなわち隣接するコア22間のスロットを流れる冷却媒体は、ロータ3により発生した気流の影響を受けずにコイル21、コア22やコア支持部材23へ供給され、冷却を行う。これに加えて、アキシャルギャップモータ1の下側半分では、上側半分から流動して来た冷却媒体も供給され、ステータ2の下側半分の冷却に寄与する。 In the lower half of the axial gap motor 1, the cooling medium ejected from the lower refrigerant supply pipe 82 is not affected by the air flow generated by the rotation of the rotor 3 by the lower second windbreak wall 73, and the coil 21 and the core 22. To reach the desired location. Further, the cooling medium flowing through the portion of the stator 2 facing the rotor 3, that is, the slot between the adjacent cores 22, by the first windbreak wall 71 is not affected by the air flow generated by the rotor 3, and is not affected by the coil 21, the core 22 or the core. It is supplied to the support member 23 and cooled. In addition to this, in the lower half of the axial gap motor 1, the cooling medium flowing from the upper half is also supplied, contributing to cooling of the lower half of the stator 2.
 ステータ2を冷却した冷却媒体は、ハウジング61の内壁に達し、流動してハウジング61の下部に設けられた冷却媒体排出口9からアキシャルギャップモータ1の筐体6の外側へと排出される。アキシャルギャップモータ1より排出された冷却媒体は冷却媒体供給系へ戻り、再度、冷却媒体供給管8よりアキシャルギャップモータ1へと供給され冷却を行う。 The cooling medium that has cooled the stator 2 reaches the inner wall of the housing 61, flows, and is discharged from the cooling medium discharge port 9 provided at the lower portion of the housing 61 to the outside of the casing 6 of the axial gap motor 1. The cooling medium discharged from the axial gap motor 1 returns to the cooling medium supply system, and is supplied again to the axial gap motor 1 from the cooling medium supply pipe 8 to perform cooling.
 本実施例では冷却媒体供給管8は、ステータ2の両面にそれぞれ設けられている。つまり、ロータ3は、ステータ2を挟んで軸方向に対向して配置される第一ロータ及び第二ロータと、により構成され、ステータ2は、コア22と、コア22を支持する支持部材23と、軸方向に対して第一ロータに近い側の支持部材23の側方に配置される第一コイルと、軸方向に対して第二ロータに近い側の支持部材23の側方に配置される第二コイルと、により構成され、冷却媒体供給管は、第一コイルの径方向外側に配置される上側冷却媒体供給管81と、第二コイルの径方向内側に配置される下側冷却媒体供給管82と、により構成されている。このようにせず、ステータ2の両面を1つの冷却媒体供給管8を使って冷却媒体を供給しようとすると、冷却媒体がコイル21の適切な場所へ供給されるための広がりを得るために、ステータ2からの距離が長くなりアキシャルギャップモータ1の外径の著しい増加を招くためである。 In the present embodiment, the cooling medium supply pipes 8 are provided on both sides of the stator 2. That is, the rotor 3 is configured by a first rotor and a second rotor that are arranged to face each other in the axial direction with the stator 2 interposed therebetween. The stator 2 includes a core 22 and a support member 23 that supports the core 22. The first coil disposed on the side of the support member 23 on the side close to the first rotor with respect to the axial direction and the side of the support member 23 on the side close to the second rotor with respect to the axial direction. The cooling medium supply pipe is configured by the second coil, and the cooling medium supply pipe is disposed on the radially outer side of the first coil, and the lower cooling medium supply is disposed on the radially inner side of the second coil. And a tube 82. If the cooling medium is to be supplied to both surfaces of the stator 2 by using one cooling medium supply pipe 8 without doing so, in order to obtain a spread for supplying the cooling medium to an appropriate place of the coil 21, This is because the distance from 2 becomes longer and the outer diameter of the axial gap motor 1 increases significantly.
 本発明の一実施形態では、特許文献1のようにコイルとコアに冷却媒体を流す密閉構造とはなっていないために、流路を形成した後、流路の密閉構造の確認や不具合が発生した場合における流路の密閉構造の修復を必要とせず、生産性が向上する。 In one embodiment of the present invention, since the sealing structure in which the cooling medium is allowed to flow through the coil and the core as in Patent Document 1 is not formed, after the flow path is formed, the confirmation of the sealing structure of the flow path and problems occur. In this case, it is not necessary to repair the sealed structure of the flow path, and the productivity is improved.
 本実施例では上側冷却媒体供給管81と下側冷却媒体供給管82の断面形状は、必ずしも円形である必要は無く冷却媒体が輸送できるような閉じた断面形状をしていればよい。また、冷却媒体供給孔83の直径は、同一としてほぼ等間隔とした。冷却媒体供給管8の供給側から下流に向かって圧力が低下していくため、以下のようにすることで冷却媒体供給管8の上流から下流に向かって、冷却媒体供給管8の上流から下流まで均一に冷却媒体を噴出させることができる。その方法は、冷却媒体供給孔83の直径を下流に向かって段階的に大きくしていくことや、同一の直径の冷却媒体供給孔83を等間隔でない適切な間隔で配置することである。 In this embodiment, the cross-sectional shapes of the upper cooling medium supply pipe 81 and the lower cooling medium supply pipe 82 do not necessarily have to be circular, and may be closed so that the cooling medium can be transported. In addition, the diameters of the cooling medium supply holes 83 are the same and are substantially equally spaced. Since the pressure decreases from the supply side of the cooling medium supply pipe 8 toward the downstream side, the following operation is performed from the upstream side of the cooling medium supply pipe 8 toward the downstream side. The cooling medium can be ejected evenly. The method is to gradually increase the diameter of the cooling medium supply holes 83 toward the downstream, or to arrange the cooling medium supply holes 83 of the same diameter at appropriate intervals that are not equal.
 本実施例では、第一防風壁71と上側第二防風壁72および下側第二防風壁73とは、別体となっており間隙が設けられている。換言すれば、上側第二防風壁72は、上側第二防風壁72の端部と第一防風壁71の端部との間に間隙を設けるように配置されており、下側第二防風壁73は、下側第二防風壁73の端部と第一防風壁71の端部との間に間隙を設けるように配置されており、ロータ3の一部が間隙に配置されている。上側第二防風壁72と下側第二防風壁73とが取り付けられているステータ2部分の温度が、第一防風壁71とが取り付けられているコア22の部分の温度より低いため、その温度に適切な異なる材質とすることができる。そのため、全部を同一材料とする必要がなくなる。上側第二防風壁72と下側第二防風壁73とは第一防風壁71の構成材料より耐熱温度の低い材料を用いることができる。これによりコストを低減できる。 In the present embodiment, the first windbreak wall 71, the upper second windbreak wall 72, and the lower second windbreak wall 73 are separate and provided with a gap. In other words, the upper second windbreak wall 72 is disposed so as to provide a gap between the end portion of the upper second windbreak wall 72 and the end portion of the first windbreak wall 71, and the lower second windbreak wall 73 is arranged so as to provide a gap between the end portion of the lower second windbreak wall 73 and the end portion of the first windbreak wall 71, and a part of the rotor 3 is arranged in the gap. The temperature of the stator 2 portion to which the upper second windbreak wall 72 and the lower second windbreak wall 73 are attached is lower than the temperature of the core 22 portion to which the first windbreak wall 71 is attached. Different materials can be used. Therefore, it is not necessary to use the same material for all. The upper second windbreak wall 72 and the lower second windbreak wall 73 can be made of a material having a heat resistant temperature lower than that of the first windbreak wall 71. Thereby, cost can be reduced.
 また、第一防風壁71を上側半分では径方向外へ延長して上側第二防風壁72と一体とし、下側半分では下側第防風壁73と一体としてしても本実施例と同等の効果が得られる。上側第二防風壁72と下側第二防風壁73とはステータ2に片端で固定されているが、上側第二防風壁72と下側第二防風壁73とを第一防風壁71と一体とすると、支持はステータ2とコア22とで2ヶ所で支持されることとなる。そのため強固に支持されるので、上側第二防風壁72と下側第二防風壁73との板厚を薄くすることができる。これによりコストを低減できる。 Further, the first windbreak wall 71 extends radially outward in the upper half and is integrated with the upper second windbreak wall 72, and is integrated with the lower second windbreak wall 73 in the lower half. An effect is obtained. The upper second windbreak wall 72 and the lower second windbreak wall 73 are fixed to the stator 2 at one end, but the upper second windbreak wall 72 and the lower second windbreak wall 73 are integrated with the first windbreak wall 71. Then, the support is supported at two locations by the stator 2 and the core 22. Therefore, since it is supported firmly, the plate | board thickness of the upper side 2nd windbreak wall 72 and the lower side 2nd windbreak wall 73 can be made thin. Thereby, cost can be reduced.
 図7は、本発明の別の実施形態におけるアキシャルギャップモータの断面図である。本実施例では、ステータ2の下側半分用の下側冷却媒体供給管82と下側第二防風壁73が無い以外は、他の構成は第1の実施例と同じである。 FIG. 7 is a cross-sectional view of an axial gap motor according to another embodiment of the present invention. In the present embodiment, the other configuration is the same as that of the first embodiment except that the lower cooling medium supply pipe 82 for the lower half of the stator 2 and the lower second windbreak wall 73 are not provided.
 シャフト4下半分付近が狭く下側半分用の下側冷却媒体供給管82と下側第二防風壁73を設けることが出来ない場合には、これらを省いて冷却媒体供給管8に流す冷却媒体の量を増やす。本実施例ではステータ2下側半分用の下側冷却冷媒供給管82と下側第二防風壁73とを省くことが出来るので、ステータ2の構造が実施例1に比べて簡略化できる。 When the lower half of the shaft 4 is narrow and the lower cooling medium supply pipe 82 and the lower second windbreak wall 73 for the lower half cannot be provided, the cooling medium that flows through the cooling medium supply pipe 8 is omitted. Increase the amount of. In the present embodiment, the lower cooling refrigerant supply pipe 82 for the lower half of the stator 2 and the lower second windbreak wall 73 can be omitted, so that the structure of the stator 2 can be simplified as compared with the first embodiment.
 図8は、本発明の別の実施形態におけるアキシャルギャップモータの断面図である。本実施例では、ステータ2の下側半分に下側冷却媒体供給管82と下側第二防風壁73の代わりに、上側冷却媒体供給管81と上側第二防風壁72がステータ2の径方向外側に設けられている以外は、他の構成は第1の実施例と同じである。実施例1と同一部材には同じ番号を付与している。 FIG. 8 is a cross-sectional view of an axial gap motor according to another embodiment of the present invention. In this embodiment, instead of the lower cooling medium supply pipe 82 and the lower second windbreak wall 73 in the lower half of the stator 2, the upper cooling medium supply pipe 81 and the upper second windbreak wall 72 are arranged in the radial direction of the stator 2. Except for being provided outside, the other configuration is the same as that of the first embodiment. The same members as those in the first embodiment are given the same numbers.
 シャフト4の下側半分付近の空間に制約があるが、ハウジング61下側半分の空間に制約が無い場合には、上側半分用の上側冷却媒体供給管81と上側第二防風壁72をステータ2の下側半分の外周側に設ける。このようにすると、実施例2に比べてステータ2の下側半分に冷却媒体を直接供給できる。本実施例では、ステータ2下側にもステータ2上側半分用の上側冷却媒体供給管81と上側第二防風壁72を用いることができるので、生産性を改善できる。 If there is a restriction on the space near the lower half of the shaft 4, but there is no restriction on the space on the lower half of the housing 61, the upper cooling medium supply pipe 81 and the upper second windbreak wall 72 for the upper half are connected to the stator 2. It is provided on the outer peripheral side of the lower half. In this way, the cooling medium can be directly supplied to the lower half of the stator 2 as compared with the second embodiment. In the present embodiment, since the upper cooling medium supply pipe 81 and the upper second windbreak wall 72 for the upper half of the stator 2 can be used also on the lower side of the stator 2, productivity can be improved.
 図9は、本発明の別の実施形態における冷却媒体供給管の付近の詳細図である。冷却媒体供給管8の位置が異なる以外は、他の構成は他の構成は第1の実施例と同じである。実施例1と同一部材には同じ番号を付与している。 FIG. 9 is a detailed view of the vicinity of the coolant supply pipe according to another embodiment of the present invention. Other configurations are the same as those in the first embodiment except that the position of the cooling medium supply pipe 8 is different. The same members as those in the first embodiment are given the same numbers.
 実施例1では、冷却媒体供給管8の冷却媒体供給孔83が下方向に開口していたため、噴出した冷却媒体の流れ100が広がり、コイル21に適切な領域供給できるような距離が必要である。本実施例では、冷却媒体供給孔83が下方より傾斜させて設けられている。そのため、噴出した冷却媒体の流れ100が適切な広がりを持つ距離を冷却媒体供給孔83が下方に向いている場合に対して短くすることができる。これによりアキシャルギャップモータ1の直径の増加を抑制できるという特徴がある。 In the first embodiment, since the cooling medium supply hole 83 of the cooling medium supply pipe 8 is opened downward, the flow 100 of the jetted cooling medium is widened, and a distance that can supply an appropriate region to the coil 21 is necessary. . In this embodiment, the cooling medium supply hole 83 is provided so as to be inclined from below. Therefore, the distance that the flow 100 of the jetted cooling medium has an appropriate spread can be shortened compared to the case where the cooling medium supply hole 83 faces downward. As a result, an increase in the diameter of the axial gap motor 1 can be suppressed.
 図10と図11を用いて本発明の別の実施例を説明する。図10は第一防風壁とステータの鳥瞰図である。図11は図10の第一防風壁71を取り外したステータの鳥瞰図である。 Another embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a bird's-eye view of the first windbreak wall and the stator. FIG. 11 is a bird's-eye view of the stator with the first windbreak wall 71 of FIG. 10 removed.
 図10では、冷却冷媒供給管8の上側冷却媒体供給管81と下側冷却媒体供給管82は省いてある。図10では、ステータ2のコア21の上に第一防風壁71がコア22のロータ側の面と隣接するコア22どうしの間のロータ3側の全面を同心円板状に覆うように配置されている。 In FIG. 10, the upper coolant supply pipe 81 and the lower coolant supply pipe 82 of the coolant supply pipe 8 are omitted. In FIG. 10, the first windbreak wall 71 is arranged on the core 21 of the stator 2 so as to cover the entire rotor 3 side surface between the adjacent cores 22 and the rotor 22 side surface of the core 22 in a concentric disk shape. Yes.
 図11において、コイル21を隣接するコア22間のスロットaでは、コイル21をどちらかのコア22の側面に接するようにする。このようにすれば、冷却冷媒供給管8から供給された冷却冷媒が、スロットaを流れる際にコイル21に流れを阻害されずに流れ、冷却媒体による冷却が効率的に行われる。さらに、コイル21がコア22に広い面積で接しているため、コイル21で発生した熱がコア22そして熱容量の大きな支持部材23へより多く伝えられるためコイル21の温度が低く出来るという特徴がある。 In FIG. 11, the coil 21 is in contact with the side surface of one of the cores 22 in the slot a between the adjacent cores 22. By doing so, the cooling refrigerant supplied from the cooling refrigerant supply pipe 8 flows through the coil 21 without being obstructed when flowing through the slot a, and cooling with the cooling medium is performed efficiently. Further, since the coil 21 is in contact with the core 22 over a wide area, the heat generated in the coil 21 is more transferred to the core 22 and the support member 23 having a large heat capacity, so that the temperature of the coil 21 can be lowered.
1…アキシャルギャップモータ
2…ステータ
3…ロータ
4…シャフト
5…軸受け
6…筐体
7…防風壁
8…冷却媒体供給管
9…冷却媒体排出口
21…コイル
22…コア
23…支持部材
61…ハウジング
62…エンドブラケット
71…第一防風壁
72…上側第二防風壁
73…下側第二防風壁
81…上側冷却媒体供給管
82…下側冷却媒体供給管
83…冷却媒体供給孔
100…噴出した冷却媒体の流れ
DESCRIPTION OF SYMBOLS 1 ... Axial gap motor 2 ... Stator 3 ... Rotor 4 ... Shaft 5 ... Bearing 6 ... Housing 7 ... Windproof wall 8 ... Cooling medium supply pipe 9 ... Cooling medium discharge port 21 ... Coil 22 ... Core 23 ... Support member 61 ... Housing 62 ... End bracket 71 ... First windbreak wall 72 ... Upper second windbreak wall 73 ... Lower second windbreak wall 81 ... Upper cooling medium supply pipe 82 ... Lower cooling medium supply pipe 83 ... Cooling medium supply hole 100 ... ejected Coolant flow

Claims (8)

  1.  回転軸に固定されるロータと、
     前記ロータの軸方向に対向して配置されるステータと、
     冷却媒体を前記ステータに供給する冷却媒体供給管と、を有するアキシャルギャップモータであって、
     前記ステータの径方向に隣接して前記冷却媒体供給管が配置され、
     軸方向において、前記ロータおよび前記ステータの間に第一防風壁が配置されるアキシャルギャップモータ。
    A rotor fixed to the rotating shaft;
    A stator arranged opposite to the rotor in the axial direction;
    A cooling medium supply pipe for supplying a cooling medium to the stator, and an axial gap motor,
    The cooling medium supply pipe is disposed adjacent to the radial direction of the stator,
    An axial gap motor in which a first windbreak wall is disposed between the rotor and the stator in the axial direction.
  2.  請求項1において、
     前記軸方向であって、前記ロータに近い側の前記冷却媒体供給管の側方に配置される第二防風壁を備えるアキシャルギャップモータ。
    In claim 1,
    An axial gap motor provided with the 2nd windbreak wall arrange | positioned in the said axial direction and the side of the said cooling-medium supply pipe | tube near the said rotor.
  3.  請求項2において、
     前記第二防風壁は、前記第二防風壁の端部と前記第一防風壁の端部との間に間隙を設けるように配置され、
     前記ロータの一部が前記間隙に配置されるアキシャルギャップモータ。
    In claim 2,
    The second windbreak wall is disposed so as to provide a gap between an end portion of the second windbreak wall and an end portion of the first windbreak wall.
    An axial gap motor in which a part of the rotor is disposed in the gap.
  4.  請求項2において、
     前記第一防風壁は、前記第二防風壁と一体に形成されるアキシャルギャップモータ。
    In claim 2,
    The first windbreak wall is an axial gap motor formed integrally with the second windbreak wall.
  5.  請求項1乃至4のいずれかにおいて、
     前記第一防風壁は、前記ステータの径方向一方端から他方端に向かって前記冷却媒体が流れる流路を形成するアキシャルギャップモータ。
    In any one of Claims 1 thru | or 4,
    The first windbreak wall is an axial gap motor that forms a flow path through which the cooling medium flows from one radial end to the other end of the stator.
  6.  請求項1乃至5のいずれかにおいて、
     前記冷却媒体供給管は冷却媒体供給孔を有し、
     前記冷却媒体供給孔は傾斜させて設けられているアキシャルギャップモータ。
    In any one of Claims 1 thru | or 5,
    The cooling medium supply pipe has a cooling medium supply hole;
    An axial gap motor in which the cooling medium supply hole is inclined.
  7.  請求項1乃至6のいずれかにおいて、
     前記ステータは、
      コアと、
      前記コアを支持する支持部材と、
      軸方向に対して前記ロータに近い側の前記支持部材の側方に配置されるコイルと、により構成され、
     前記コイルは前記コアの側面に接するように配置されるアキシャルギャップモータ。
    In any one of Claims 1 thru | or 6.
    The stator is
    The core,
    A support member for supporting the core;
    A coil disposed on the side of the support member on the side close to the rotor with respect to the axial direction, and
    The axial gap motor is arranged such that the coil is in contact with a side surface of the core.
  8.  請求項1乃至7のいずれかにおいて、
     前記ロータは、前記ステータを挟んで軸方向に対向して配置される第一ロータ及び第二ロータと、により構成され、
     前記ステータは、
      コアと、
      前記コアを支持する支持部材と、
      軸方向に対して前記第一ロータに近い側の前記支持部材の側方に配置される第一コイルと、
      軸方向に対して前記第二ロータに近い側の前記支持部材の側方に配置される第二コイルと、により構成され、
     前記供給管は、
      前記第一コイルの径方向外側に配置される上側冷却媒体供給管と、
      前記第二コイルの径方向内側に配置される下側冷却媒体供給管と、により構成されるアキシャルギャップモータ。
    In any one of Claims 1 thru | or 7,
    The rotor is composed of a first rotor and a second rotor that are arranged to face each other in the axial direction across the stator,
    The stator is
    The core,
    A support member for supporting the core;
    A first coil disposed on the side of the support member on the side closer to the first rotor with respect to the axial direction;
    A second coil disposed on the side of the support member on the side close to the second rotor with respect to the axial direction, and
    The supply pipe is
    An upper cooling medium supply pipe disposed on a radially outer side of the first coil;
    An axial gap motor comprising: a lower cooling medium supply pipe disposed on the radially inner side of the second coil.
PCT/JP2014/064570 2014-06-02 2014-06-02 Axial gap motor WO2015186163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064570 WO2015186163A1 (en) 2014-06-02 2014-06-02 Axial gap motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064570 WO2015186163A1 (en) 2014-06-02 2014-06-02 Axial gap motor

Publications (1)

Publication Number Publication Date
WO2015186163A1 true WO2015186163A1 (en) 2015-12-10

Family

ID=54766267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064570 WO2015186163A1 (en) 2014-06-02 2014-06-02 Axial gap motor

Country Status (1)

Country Link
WO (1) WO2015186163A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261083A (en) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd Cooling structure of rotating electric machine
WO2012165339A1 (en) * 2011-06-02 2012-12-06 株式会社 日立製作所 Axial gap type rotary electrical machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261083A (en) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd Cooling structure of rotating electric machine
WO2012165339A1 (en) * 2011-06-02 2012-12-06 株式会社 日立製作所 Axial gap type rotary electrical machine

Similar Documents

Publication Publication Date Title
JP5482376B2 (en) Hermetic rotary electric machine
JP5080603B2 (en) Apparatus and method for cooling an electric machine
US10072672B2 (en) Fan
US9800118B2 (en) Self-cooled motor
JP6054348B2 (en) Brushless rotating electric machine
US9800117B2 (en) Self-cooled motor
CN208986739U (en) Disc type electric machine
US9360019B2 (en) Fan
JP2020156201A (en) Rotary electric machine
CN110474485A (en) A kind of high-speed motor cooling system
JP2012010565A (en) Permanent magnet rotary electric machine
JP2019161752A (en) Rotary electric machine stator
JP2016220375A (en) Axial gap type motor generator
CN111600419B (en) Rotating electrical machine
KR101714477B1 (en) OUTER ROTOR MOTOR WITH A STREAMLINED Blade for POWER OF of Unmanned Aircraft Robot
WO2008004286A1 (en) Rotating electric machine and shaft for rotating electric machine
JP2016158365A (en) Motor
JP6540023B2 (en) fan
JP2015226376A (en) Axial gap motor
WO2015186163A1 (en) Axial gap motor
CN110994906B (en) Brushless rotating electric machine
JP2019205254A (en) Rotary electric machine
WO2016189886A1 (en) Rotating electric machine
JP2016163373A (en) Axial gap motor
JP2017200354A (en) Brushless rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP