WO2012163253A1 - 负载模拟测试设备、测试方法、控制装置及转动惯量调节装置 - Google Patents

负载模拟测试设备、测试方法、控制装置及转动惯量调节装置 Download PDF

Info

Publication number
WO2012163253A1
WO2012163253A1 PCT/CN2012/076107 CN2012076107W WO2012163253A1 WO 2012163253 A1 WO2012163253 A1 WO 2012163253A1 CN 2012076107 W CN2012076107 W CN 2012076107W WO 2012163253 A1 WO2012163253 A1 WO 2012163253A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertia
motor
moment
tested
load
Prior art date
Application number
PCT/CN2012/076107
Other languages
English (en)
French (fr)
Inventor
杨书生
刘葵
邓鹏�
Original Assignee
北京配天大富精密机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201120176448 external-priority patent/CN202110035U/zh
Priority claimed from CN201110141279A external-priority patent/CN102323548A/zh
Priority claimed from CN201110141235.9A external-priority patent/CN102323547B/zh
Priority claimed from CN 201120243609 external-priority patent/CN202153171U/zh
Application filed by 北京配天大富精密机械有限公司 filed Critical 北京配天大富精密机械有限公司
Publication of WO2012163253A1 publication Critical patent/WO2012163253A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/10Determining the moment of inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation

Definitions

  • the invention relates to the field of electrical appliance control, in particular to a load simulation test device, a test method, a load simulation test control device and a moment of inertia adjustment device used in the load simulation test device.
  • the electrical drive industrial robot the characteristics of the drive mechanism consisting of the motor and the motor drive largely determines the operating performance of the industrial robot and the operational position accuracy.
  • the characteristics of the drive mechanism can be adjusted by adjusting its control parameters, but at the same time the characteristics of the drive mechanism are related to the load characteristics it carries. That is, under different load characteristics, the drive mechanism needs to select different control parameters to obtain better characteristics. Therefore, in order to obtain better control performance of industrial robots, it is necessary to repeatedly debug the control parameters of the industrial robot drive mechanism.
  • the conventional debugging method is to mount the drive mechanism to the mechanical body of the robot, and then adjust the control parameters of the motor drive until the performance is satisfactory.
  • the inventors have found in the research that this method will likely cause impact and damage to the mechanical body of the industrial robot once the control parameter selection is inappropriate.
  • FIG. 1 is a schematic structural diagram of a prior art load simulation test bench.
  • the load simulation test bench is composed of a motor, a motor driver to be debugged, a sensor, a brake, a moment of inertia adjustment block, and a controller.
  • the motor, sensor, brake and inertia adjustment block are connected in series.
  • the controller is coupled to the sensor for receiving a sensing signal of the sensor, the controller is coupled to the brake for controlling operation of the brake, and the motor is coupled to the motor driver to be commissioned.
  • the controller adjusts the output braking torque by controlling the brake to simulate a load of different torques, and the inertia adjusting block is used to adjust the moment of inertia of the load, and the corresponding adjustment is to be debugged.
  • the parameters of the motor drive are used to drive the motor.
  • the adjustment of the moment of inertia can only be achieved by using different moments of inertia adjustment blocks. Therefore, if the moment of inertia needs to be changed during the test, the test needs to be stopped and the moment of inertia adjustment block is replaced. Changing the moment of inertia reduces the test efficiency.
  • the technical problem to be solved by the embodiment of the present invention is to provide a load simulation test device, a test method, a load simulation test control device, and a moment inertia adjustment device for the load simulation test device, which can realize real-time adjustment of the moment of inertia.
  • a technical solution adopted by the embodiment of the present invention is to provide a load simulation test device including an inertia adjustment device, a control device, and a transmission shaft for connecting with the motor device to be tested; the inertia adjustment device and the transmission The shaft connection is used for adjusting the moment of inertia of the transmission shaft; the control device is connected with the inertia adjusting device for controlling the inertia adjusting device to adjust the moment of inertia of the transmission shaft.
  • another technical solution adopted by the embodiment of the present invention is: providing a load simulation test method comprising: receiving a moment of inertia parameter input by a user; configuring a moment of inertia of the inertia adjustment device according to a moment of inertia parameter;
  • the motor performs load simulation test; receives actual rotation state information of sensor sensing feedback on the drive shaft connected to the motor to be tested; compares actual rotation state information with preset ideal rotation state information, and outputs a comparison result to complete the test.
  • a load simulation test control device including: an inertia parameter setting unit for receiving a moment of inertia parameter input by a user; and an inertia adjustment unit for The moment of inertia parameter of the inertia parameter setting unit configures the moment of inertia of the inertia adjusting device; the collecting unit is configured to receive the actual rotating state information of the sensor sensing feedback on the transmission shaft connected to the motor to be tested; and the comparing unit is configured to collect the unit The collected actual rotation state information is compared with the preset ideal rotation state information, and the comparison result is output.
  • a load simulation test method which includes the following steps: connecting the output shaft of the motor to be tested through the transmission device to the transmission shaft of the load adjustment device; The device controls the load adjusting device to test the motor to be tested; when the motor to be tested is tested, when the shifting device does not meet the requirement, the test is started after the shifting device is replaced.
  • a control device for providing a load simulation test includes: a first control unit for outputting a signal to change a motor output shaft to be tested and a load adjustment device for transmission a rotation speed ratio between the shafts; a signal receiving unit for receiving the sensed rotation state parameter of the load adjustment device transmission shaft at the rotation speed ratio; and a second control unit for outputting a signal to control the load adjustment device for load adjustment.
  • a moment of inertia adjusting device including a main shaft, an articulated arm structure body, and an electric motor;
  • the articulated arm structure body includes at least one set of joint arms, a set of joints
  • the arm includes a first articulated arm and a second articulated arm;
  • the head of the first articulated arm is coupled to the main shaft and fixed in axial position relative to the main shaft, the tail is hinged to the head of the second articulated arm, and the tail of the second articulated arm is Connected to the moving block moving axially along the main axis, the moving block is connected to the motor, and the motor controls the position of the moving block on the main shaft.
  • a moment of inertia adjusting device including a mass body, a support base, a linear motion unit and an electric motor;
  • the mass body is composed of two hinged mass blocks;
  • the support base is composed of a fixed support seat and a sliding support seat, and the two ends of the mass body are respectively connected to the fixed support seat and the sliding support seat by a pivot;
  • the linear motion unit comprises a guide rail and a slider, and the slider moves along the guide rail;
  • the sliding support seat is fixed on the On the slider;
  • the linear motion unit is connected to the motor, and the motor drives the slider to move.
  • the control device is connected to the inertia adjustment device for controlling the inertia adjustment device to adjust the moment of inertia of the transmission shaft in real time.
  • This design can adjust the moment of inertia of the drive shaft in real time, so that the simulated load of the motor unit to be tested can be adjusted in real time, without stopping the inertia during the test. Therefore, the load under various parameters can be performed without stopping the machine. Simulate testing and repeat testing to improve testing efficiency and ease of use.
  • the moment of inertia adjusting device of the embodiment of the invention controls the spindle or the driving slider by using a servo motor, realizes the real-time adjustment of the moment of inertia, can accurately simulate the moment of inertia, and overcomes the problems in the manual operation.
  • the control difficulty is simplified and the true simulation of the moment of inertia is improved.
  • FIG. 1 is a schematic structural view of a prior art load simulation test bench
  • FIG. 2 is a schematic structural view of a moment of inertia adjusting device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a second inertia adjustment device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic view showing the improved structure of the moment of inertia adjusting device according to the second embodiment of the present invention.
  • Figure 5 is a schematic view showing another modified structure of the moment of inertia adjusting device according to the second embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a third moment of inertia adjusting device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a four load simulation test apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a variable inertia unit of the load simulation test apparatus shown in FIG. 7;
  • FIG. 9 is a schematic structural diagram of a load simulation test device according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a six-load simulation test method according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a load simulation test control apparatus according to Embodiment 7 of the present invention.
  • FIG. 12 is a schematic structural diagram of an eight load simulation test apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a load simulation test apparatus according to Embodiment 9 of the present invention.
  • FIG. 14 is a flow chart of a ten load simulation test method according to an embodiment of the present invention.
  • Figure 15 is a block diagram showing the structure of an eleventh load simulation test control device according to an embodiment of the present invention.
  • Embodiment 1 of the present invention provides a moment of inertia adjusting device.
  • a moment of inertia adjusting device according to an embodiment of the present invention includes a main shaft 51, an articulated arm structure 52 and an electric motor 55.
  • the articulated arm structure 52 includes at least one set of articulated arms, and the set of articulated arms includes an end-to-end articulation a first articulated arm 521 and a second articulated arm 522; the head of the first articulated arm is coupled to the spindle 51 and fixed in axial position relative to the spindle 51, and the tail is hinged to the head of the second articulating arm 522
  • the tail of the second articulated arm is coupled to a moving block 54 that moves axially along the main axis, the moving block 54 is coupled to the motor 55, and the motor 53 controls the moving block 54 on the spindle 51. position.
  • the motor used in this embodiment is a servo motor, and the control system of the servo motor adopts a general computer system.
  • the control system first obtains a set of control signals of the moment of inertia, and the control signal is processed and sent to the driver, the driver Controlling the rotation of the servo motor realizes the adjustment of the inertia.
  • the control system in this embodiment can also adopt a special computer system.
  • the motor in the embodiment of the present invention can also select a stepping motor and control by using the same control system as described above, and details are not described herein again.
  • a sensor device for detecting the rotation coefficient can also be mounted on one end of the output shaft of the servo motor or on the spindle.
  • the articulated arm structure 52 in this embodiment is composed of two sets of articulated arms that are symmetric with respect to the main shaft 51. When the moment of inertia is small, only one set of articulated arms can be used. When the moment of inertia is large or the simulated rigid body is not required. In the case of regularity, the articulated arm structure may also be composed of three or more sets of articulated arms. The first joint arm 521 and the second joint arm 522 of the joint arm structure 52 are connected by a movable connection.
  • a hinge connection is adopted as a preferred connection manner, such that the first joint arm 521 and the second joint arm 522 It can be fully expanded to 180° or fully folded to 0°, so that the adjustment range of the moment of inertia is greatly increased.
  • the main shaft 51 is provided with a fixed body 53 fixed in axial position with respect to the main shaft 51, and the fixed body 53 is hinged to the head of the first articulated arm 521.
  • the fixing body 53 is a fixing ring, and the fixing ring is sleeved on the main shaft 51.
  • the advantage of selecting the fixing ring is that the space occupied by the fixing ring can be reduced, and the fixing body can be integrated on the main shaft to ensure the structure of the joint arm.
  • the body rotates with the spindle as the axis.
  • the mounting manner of the fixed body is not limited as long as the joint arm structure can be ensured to rotate with the main shaft as the axis.
  • the moving block 54 in this embodiment is an annular body movable along the main axis, and the annular body is sleeved on the main shaft.
  • the main shaft is a screw and a matching ring.
  • the inner wall has a threaded ring body nested with the lead screw, so that when the motor 55 controls the rotation of the main shaft 51, the control of the moving block 54 is realized, thereby changing the first joint arm 521 of the articulated arm structure 52 and The angle of the second articulated arm 522 completes the adjustment of the moment of inertia.
  • the spindle is controlled by a servo motor to realize the control of the degree of expansion of the first joint arm and the second joint arm of the joint arm structure, thereby realizing the adjustment of the moment of inertia and utilizing the precise control of the servo motor by the computer system. Accurate real-time adjustment of the moment of inertia is completed, which avoids the inconvenience caused by manual operation and provides adjustment efficiency.
  • the combination of multiple sets of articulated arms in the articulated arm structure achieves the realization of the complex simulation of the moment of inertia and improves the simulation authenticity of the moment of inertia.
  • the diameters of the first joint arm and the second joint arm are gradually increased from the both ends to the hinge, that is, the first joint arm and the second joint arm are not rod arms having a uniform diameter.
  • the present embodiment forms a mass body at the joint of the first joint arm and the second joint arm, in order to achieve the best.
  • the mass body can be a dense material
  • the mass body can be formed on the hinge by installing the mating mass, or directly processing the hinge into a weighted hinge ball, increasing the mass at the hinge and increasing the moment of inertia Adjust the moment of inertia adjustment range of the device.
  • the second inertia adjusting device of the second embodiment of the present invention includes a mass body 61, a support base 62, a linear motion unit 63 and a motor 64; the mass body 61 is composed of two hinged masses 611 and masses 612.
  • the support base 62 is composed of a fixed support base 621 and a slide support seat 622, and the two ends of the mass body 61 are respectively connected to the fixed support seat and the slide support seat via a pivot 623 and a pivot 624;
  • the linear motion unit 63 includes a guide rail 631 and a slider 632 that moves along the guide rail 631; the slide bearing mount 622 is fixed to the slider 632; the linear motion unit 63 is coupled to the motor 64, the motor 64 drives the slider 632 to move.
  • the pivot 623 on one side of the fixed support seat and the pivot 624 on the side of the sliding support seat are fixed on the fixed support seat and the sliding support seat by bearings, and the rolling rotation mode of the bearing can reduce the quality.
  • the rotational friction of the body it can be understood that the bearing is not the only way to fix the bearing seat and the pivot.
  • the flange can be used instead of the bearing, or the hole can be directly opened on the two supporting seats.
  • the embodiment preferably uses a bearing as a fixing member for the pivot and the support base.
  • the fixed structure is arranged at one end of the pivot and the mass body to facilitate the disassembly and assembly of the mass body.
  • the mass body 61 is hinged by the mass 611 and the mass 612, and is freely rotated at the hinge position of the mass 611 and the mass 612.
  • the moment of inertia adjusting device has only one mass, in order to prevent the two masses of the mass body
  • the block is stretched into a straight line to form a motion singularity. Therefore, the program command of the control system limits the motion displacement of the slider to less than the length of the two masses, so that the movable angle of the two masses is less than 180°. So that the slider only corresponds to one moment of inertia value at each movement point.
  • the moment of inertia adjusting device in this embodiment includes two mass bodies, and the two mass bodies have the same structure, and are symmetrically mounted on the fixed bearing seat and the sliding bearing seat by the pivot shaft 623 and the pivot shaft 624, which is different from the rotation of the single mass body.
  • the inertia adjusting device has two symmetrical mounted mass inertia adjusting devices, which can not only limit the movement of the slider on the control command to prevent the motion block from moving, but also improve the structure to prevent the mass from appearing.
  • each mass body has a linear limit block 701 on the inner side of the mass block hinge for preventing the mass movement as a straight line, when the mass movement angle on each mass body is close to 180 At °°, the linear stop blocks on the mass body come into contact with each other, preventing the mass on the mass body from being drawn into a straight line.
  • the pivot 623 on one side of the fixed support base is A coincidence limit block 801 is provided.
  • the mass body is connected to the fixed support seat and the sliding support seat via the pivot 623 and the pivot 624.
  • the sliding support seat is fixed on the slider, so that the rotation of the mass body and the movement of the sliding support seat are independent of each other.
  • the control system of the inertia adjusting device controls the rotation angle and the number of rotations of the motor by the command, thereby realizing precise control of the slider and ensuring the accuracy of the inertia adjustment. With real time.
  • the fine adjustment groove 901 for adding a small mass is provided on the mass.
  • the fine adjustment groove 901 is an intermediate through hole, and the mass to be loaded selects a screw with a nut. Column, the stud is passed through the fine adjustment groove, the nut is locked, and the position of the loaded mass needs to be adjusted. Then loosen the nut properly, move the position of the stud on the fine adjustment groove, and then lock the nut to realize the moment of inertia.
  • the mass to be loaded can also be replaced by a snap-type cylinder, which does not constitute a limitation on the utility model.
  • the improvement of the embodiment relative to the second embodiment is that a fine adjustment groove 901 is arranged on the mass, the mass to be loaded can be flexibly determined according to requirements, and the position of the loaded mass at the fine adjustment groove can be adjusted, and The adjustment range of the moment of inertia is increased, and the accuracy of the moment of inertia adjustment can also be increased.
  • the moment of inertia adjusting device of the third embodiment further has a shield 902, and the shield is fixed to the fixed support.
  • the protective cover 902 can prevent the quality body from flying off at high speed when it is rotated at a high speed to damage the surrounding person, thereby increasing the safety reliability of the entire moment of inertia adjusting device.
  • the motor is connected to the linear motion unit through a speed reducer, the linear motion unit includes a timing belt and a timing pulley, the motor drives a timing pulley, and the slider is fixed on the timing belt, and the synchronization The belt drives the slider to move along the guide rail.
  • a speed reducer between the motor and the linear motion unit may be a mass body in which the motor drives a large load, which can increase the range of the moment of inertia adjustment.
  • the linear motion unit of the moment of inertia adjusting device includes a screw that drives the screw to rotate, and the rotation of the screw drives the sliding The block moves along the rail.
  • the motor rotates
  • the lead screw rotates simultaneously with the motor. It can be understood that when a speed reducer is connected between the motor and the linear motion unit, the ability of the motor to drive the screw can be increased, and the output shaft of the reducer drives the lead screw.
  • Rotating, the rotation of the screw drives the movement of the slider, the motor selects a servo motor or a stepping motor, and the control system controls the forward or reverse rotation of the motor by command, and continues to rotate or stop the rotation to realize the adjustment of the moment of inertia. .
  • the screw is used to control the movement of the slider.
  • the servo motor or the stepping motor can be used as the driving source to better realize the information feedback.
  • the moment of inertia can be adjusted in time by the feedback information. To ensure real-time control of the moment of inertia.
  • the embodiment of the invention further provides a load simulation test apparatus using the moment of inertia adjustment device involved in the foregoing embodiment.
  • FIG. 7 is a schematic structural diagram of a four-load simulation test apparatus according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a variable inertia unit of the load simulation test apparatus shown in FIG.
  • the inertia adjusting device 11 is connected to the transmission shaft 15 for adjusting the moment of inertia of the transmission shaft 15;
  • the control device 13 is connected to the inertia adjusting device 11 for controlling the inertia adjusting device 11 to adjust the moment of inertia of the drive shaft 15.
  • the moment of inertia of the transmission shaft 15 is adjusted by the inertia adjusting device 11 and the transmission shaft 15, and the control device 13 is connected to the inertia adjusting device 11 for controlling the
  • the inertia adjustment device 11 adjusts the moment of inertia of the drive shaft 15 in real time.
  • the design can adjust the moment of inertia of the transmission shaft 15 in real time, so as to adjust the simulated load of the motor device to be tested in real time, and connect with the motor device to be tested according to the analog load corresponding to the motor device to be tested.
  • the motor driver is to be debugged to obtain the appropriate operating parameters of the motor device to be tested.
  • the load simulation test apparatus of the present embodiment has the advantage of being able to adjust the moment of inertia in real time and is convenient to test.
  • the inertia adjusting device 11 includes a variable inertia unit 111 and a driving unit 113 .
  • the variable inertia unit 111 is connected to the transmission shaft 15 , and the driving unit 113 and the control device 13 respectively
  • the variable inertia unit 111 is connected to receive a control command of the control device 13, and drives the variable inertia unit 111 to change the moment of inertia.
  • the driving unit 113 includes a motor 1131 and a motor driver 1133 connected to the motor
  • the motor driver 1133 drives the motor 1131 to operate, and the motor 1131 is connected to the variable inertia unit 111 to drive the variable inertia unit 111 to adjust the moment of inertia.
  • the driving unit 113 uses a motor as a power source.
  • the driving unit 113 may also be another power source such as a micro internal combustion engine.
  • the motor driver is also replaced.
  • the specific power and corresponding structural implementation of the particular drive unit for the throttle control device does not constitute a limitation of the present invention.
  • the motor 1131 in this embodiment can adopt a servo motor, and of course, a stepping motor can also be used.
  • a smaller size motor can be used, and a speed reducer is added to the connection structure of the ring body, thereby reducing the output speed of the motor.
  • the specific motor selection can also take other conventional implementations, and does not constitute a limitation of the present invention.
  • the motor 1131 in this embodiment can also be replaced by other energy output devices such as a micro internal combustion engine.
  • the load simulation test device of the present embodiment controls the variable inertia unit 111 to adjust the moment of inertia of the transmission shaft 15 in real time by the control device 13, and has the advantages of convenient test operation and real-time adjustment of the moment of inertia.
  • control device 13 is connected to the driving unit 113, and the control driving unit 113 drives the variable inertia unit 111 to perform the adjustment of the moment of inertia in real time.
  • control device 13 is connected to the motor driver 1133 of the driving unit 113 for controlling the motor driver 1133 to drive the motor module 1131 to operate.
  • the control device 13 controls the motor driver 1133 to drive the motor module 1131 to operate in real time, so that the motor module 1131 drives the variable inertia unit 111 to perform the adjustment of the moment of inertia in real time.
  • variable inertia unit 111 includes a first arm 1111, a second arm 1113, a third arm 1115 and a fourth arm 1117 and an annular body 1119 of the same length;
  • the lengths of the arms 1111 and the second arms 1113 are set to be equal, and the lengths of the third arms 1115 and the fourth arms 1117 are set equal, and of course the four arms are all set to be equal in length, specifically as needed.
  • the first arm 1111, the second arm 1113, the third arm 1115 and the fourth arm 1115 are distributed in the same plane;
  • the first end of the first arm 1111 and the first end of the second arm 1113 are hingedly connected to the transmission shaft 15, and the second end of the first arm 1111 and the first end of the third arm 1115 Hinge connection
  • the second end of the second arm 1113 is hingedly connected to the first end of the fourth arm 1117;
  • the second end of the third arm 1115 and the second end of the fourth arm 1117 are hingedly connected to an annular body 1119, and the annular body 1119 is slidable along the transmission shaft 15.
  • variable inertia unit 111 drives the transmission shaft 15 through the motor module 1131, and changes the moment of inertia of the first arm 1111, the second arm 1113, the third arm 1115, and the fourth arm 1117.
  • the moment of inertia of the first arm 1111, the second arm 1113, the third arm 1115, and the fourth arm 1117 is the moment of inertia of the load of the drive shaft 15.
  • variable inertia unit 111 on the transmission shaft 15 By adjusting the power of the motor module 1131 in real time, the position of the annular body 1119 of the variable inertia unit 111 on the transmission shaft 15 can be changed, thereby realizing the adjustment of the moment of inertia of the rotating shaft 15 in real time.
  • the structure of the variable inertia unit in this embodiment may have various embodiments. For example, there may be a plurality of groups of structures such as the first arm 1111 and the third arm 1113. Specifically, there may be three groups, and each group is formed. The symmetrical square angle is 120 degrees, and there are also four groups. The symmetrical angle of each group is 90 degrees, which is set as needed.
  • each arm of the variable inertia unit 111 can also be composed of a thin wire, and a corresponding mass is arranged between the corresponding two arms of the first group, that is, two thin legs of each group of arms. Set a mass between the lines.
  • the load simulation test apparatus of this design has the advantage of being able to adjust and test the load of the drive shaft 15 in real time.
  • the load simulation test apparatus further includes a brake torque adjuster 17 , and the brake torque adjuster 17 is respectively connected to the drive shaft 15 and the control device 13 for receiving the control device.
  • the control command of 13 adjusts the rotational moment of the drive shaft 15 in real time.
  • the brake torque adjuster 17 includes a magnetic powder brake (not shown), and the brake torque adjuster can change the rotational moment of the drive shaft 15 correspondingly.
  • control device is further connected to the motor driver to be debugged, and the control device 13 controls the inertia adjusting device 11 and the braking torque adjuster 17 respectively, and correspondingly implements the inertia adjusting device 11 to load the test device.
  • the inertia adjustment, the braking torque regulator 17 adjusts the rotational torque of the load simulation test device, and at the same time, the control device controls the motor driver to be debugged, thereby realizing the control device simultaneously implementing the motor driver to be debugged, the inertia adjusting device 11 and the control of the brake torque regulator 17, the load simulation test of the load simulation test device by the control device 13 can be repeatedly implemented, and the test efficiency of the load simulation test can be improved.
  • the brake torque adjuster 17 is connected to the control device 13, and the control device 13 controls the brake torque adjuster 17 to adjust the rotation of the drive shaft 15 in real time. Torque.
  • the control device 13 first obtains a set of torque control signals, the control signals being digital signals, which are set in advance according to the mechanical characteristics of the drive shaft 15, and the control device 13 controls the control
  • the signal is generated by a digital-to-analog module to generate a time-varying torque command to the driver 171 of the brake torque adjuster 17.
  • the driver 171 converts the torque command correspondingly into a current signal, thereby controlling the rotational moment of the magnetic powder brake output.
  • the time-varying torque command is transmitted to the brake torque regulator 17 in real time by the control device 13 , thereby controlling the brake torque adjuster 17 to adjust the torque of the drive shaft 15 in real time.
  • the load simulation test apparatus further includes a sensor 18 coupled to the drive shaft 15 for sensing load parameters of the drive shaft 15 .
  • the load parameter includes rotational torque and speed information of the drive shaft 15. Therefore, the rotational torque and speed information of the drive shaft 5 can be sensed by the sensor 18.
  • the sensor includes a sensor, and the sensor may be one or more, as long as the actual torque and speed information of the motor can be obtained, and the selection of the specific sensor type and number does not constitute a limitation of the present invention. .
  • control device 13 includes an acquisition unit 131 , and the collection unit 131 is connected to the sensor 18 for acquiring sensing information of the sensor 18 .
  • the control device 13 may be a dedicated computer system or a general-purpose computer system, and is mainly used to control the braking torque adjuster 17 and the inertia adjusting device 11 to realize the rotating torque of the transmission shaft 15 . And real-time adjustment of the moment of inertia.
  • the control device 13 includes an acquisition unit 131, and the acquisition unit 131 is connected to the sensor 18 for collecting rotational torque and speed information sensed by the sensor.
  • the information collected by the signal acquisition unit includes: an analog signal and an orthogonal coded signal.
  • what is collected here may also be a digital signal, and the corresponding digital signal is an analog signal and an orthogonal coded signal processed by analog-to-digital conversion.
  • the signal acquisition frequency of the acquisition unit 131 is selected according to the natural frequency characteristics of the system and the real-time requirements of the control.
  • the control device 13 analyzes and generates a rotational torque variation curve of the transmission shaft 15 according to the collected information, thereby implementing tracking of the rotational torque variation curve of the transmission shaft 15 by the control device 13.
  • the load simulation test apparatus further includes a shifting device 19, and an output shaft (not shown) of the motor device to be tested and the transmission shaft 15 are respectively connected to the shifting device 19, And a method for changing the output shaft of the motor device to be tested and the transmission shaft 15 and the rotation speed ratio.
  • the shifting device 19 is connected to the output shaft of the motor device to be tested, and the other end is connected to the drive shaft 15 to change the speed ratio of the output shaft of the motor to be tested to the drive shaft 15.
  • the shifting device 19 may be a speed reducer or an accelerator. Of course, you can make the appropriate choices as needed.
  • the shifting device 19 can change the load range of the motor device to be tested. Thereby expanding the scope of testing.
  • the shifting device 19 is a speed reducer.
  • the speed reducer can adopt a gear reducer, a worm reducer, a harmonic reducer, a cycloidal pin reducer, etc., and the specific reducer can be selected based on the test requirements and the accuracy and transmission of the reducer.
  • the choice of efficiency requirements does not constitute a limitation of the invention.
  • the speed reducer can realize a load of driving a large moment of inertia and a large turning moment with a small power motor device to be tested, and expands the load test range.
  • FIG. 9 is a schematic structural diagram of a five-load simulation test apparatus according to an embodiment of the present invention.
  • the load simulation test apparatus of this embodiment includes an inertia adjustment device 21 and a control device 23 for connecting the drive shaft 25, the brake torque adjuster 27 and the sensor 28 with the motor device to be tested.
  • the drive shaft 25 is coupled to the sensor 28 for sensing load parameters of the drive shaft 25, the load parameters including rotational torque and speed information.
  • the sensor may be disposed coaxially with the transmission shaft, that is, the shaft of the sensor itself and the transmission shaft form an integral structure, and the sensor senses a load parameter on its own shaft, and correspondingly, the transmission shaft is obtained. Load parameters.
  • the brake torque adjuster 27 is coupled to the drive shaft 25 for adjusting the rotational torque of the drive shaft 25.
  • the brake torque regulator 27 can be controlled by the control device 23 in accordance with the adjustment requirements, so that the brake torque adjuster 27 can adjust the rotational torque of the drive shaft 25.
  • the inertia adjusting device 21 is coupled to the drive shaft 25 for adjusting the moment of inertia of the drive shaft 25.
  • the inertia adjusting device 21 can be controlled by the control device 23 in accordance with the adjustment request, thereby realizing the adjustment of the moment of inertia of the drive shaft 25 by the inertia adjusting device 21.
  • the control device 23 comprises an acquisition unit 231 which is connected to the sensor 28 for collecting the sensing signals of the sensor 28.
  • the control device 23 is connected to the brake torque regulator 27 and the inertia adjustment device 21, respectively.
  • the control device 23 controls the brake torque adjuster 27 to adjust the rotational moment of the drive shaft 25 in real time, and the control device 23 controls the inertia adjustment device 21 to adjust the moment of inertia of the drive shaft 25. .
  • the control device 23 controls the brake torque adjuster 27 to adjust the rotational torque of the drive shaft 25 in real time, and the control device 23 controls The inertia adjusting device 21 adjusts the moment of inertia of the drive shaft 25.
  • the inertia adjusting device 21 adjusts the moment of inertia of the drive shaft 25.
  • the rotational torque and the moment of inertia of the load of the motor to be tested are adjusted in real time.
  • the load simulation test device does not need to be stopped during the test. Easy to test. Therefore, the load simulation test apparatus of the present embodiment has the advantage of being able to adjust the moment of inertia in real time and is convenient to test.
  • the load simulation test apparatus of the embodiment of the present invention has the advantages of convenient test and real-time performance.
  • FIG. 10 is a flowchart of a six load simulation test method according to an embodiment of the present invention. The method includes the following steps:
  • the moment of inertia parameter may be input into the control device by the user in the form of an instruction, or the user may directly configure the moment of inertia parameter in the parameter configuration interface of the control device, and the moment of inertia parameter may be a data. It can also be a set of data or a curve.
  • the control device can be a computer system or a control system built in an inertia adjustment device, which is specifically set as needed.
  • control parameter is set in real time in the control device, and the inertia adjustment device realizes the adjustment of the moment of inertia in real time by the control device.
  • the starting of the motor to be tested may be manually started, or may be automatically started after completion of the previous step by a controller.
  • the controller may also be the control device in the above steps to achieve the same The device controls multiple functions and saves setup resources.
  • the corresponding motor drive parameter set can be obtained by the moment of inertia parameter in the control device.
  • the corresponding relationship between the moment of inertia parameter and the motor drive parameter set can be set inside the control device, and the motor driver can be configured by finding the drive parameter set. Then, the variable inertia device is driven by the motor driver to achieve the required inertia conversion.
  • the control mode of the control device to the motor is also changed based on the motor. For example, the control of the stepper motor and the servo motor is different, the servo motor has high control precision, and the cost of the stepper motor is high.
  • the low-cost, specific control mode can be selected according to the conventional conventional manner, and does not constitute a limitation of the present invention.
  • the load simulation test method of the embodiment has the advantages of convenient testing, capable of reloading tests on different axes of the robot, and high test efficiency.
  • the method before starting the load simulation test for the motor to be tested, the method may further include:
  • the braking torque parameter can be input into the control device in the form of an instruction.
  • the user can directly configure the braking torque parameter through the interface of the control device, and the braking torque parameter can be a data or a group. Data or a curve.
  • the step of setting the moment of inertia of the inertia adjusting device according to the moment of inertia parameter in the step S2 specifically includes:
  • the motor driver drives the motor to rotate and drives the variable inertia device to change the moment of inertia of the drive shaft.
  • the actual rotation state information includes: an actual rotation torque and an actual rotation speed; and the preset ideal rotation state information includes: an ideal rotation torque and an ideal rotation speed.
  • step S5 compares the actual rotation state information with the ideal rotation state information; and the process of outputting the comparison result to complete the test includes:
  • first difference and the second difference are both smaller than the preset allowable difference range, it is determined that the motor to be tested meets the test requirement.
  • the rotation state information is a rotation torque and a rotation speed. It can be understood that the rotation state information may also be other data parameters that can be used to measure the rotation state, such as a rotational angular velocity, etc., specific parameters. It may be a signal that the sensor can directly sense or a processed data parameter based on the signal sensed by the sensor, and does not constitute a limitation of the present invention.
  • the load simulation test method of the embodiment of the present invention has the ability to perform command setting in the control device in real time, thereby real-time control of the braking torque and the moment of inertia of the load simulation test device, and has real-time control operation and test efficiency. High advantage.
  • FIG. 11 is a schematic structural diagram of a load simulation test control apparatus according to Embodiment 7 of the present invention.
  • the inertia parameter setting unit 101 is configured to receive a moment of inertia parameter input by the user;
  • the inertia parameter setting unit 101 may be an input interface of a computer system or a single-chip microcomputer system, and the specific expression form does not constitute a limitation of the present invention.
  • the inertia adjusting unit 102 is configured to configure a moment of inertia of the inertia adjusting device according to the moment of inertia parameter of the inertia parameter setting unit 101;
  • the collecting unit 103 is configured to receive actual rotation state information of the sensor sensing feedback on the transmission shaft connected to the motor to be tested;
  • the comparison unit 104 is configured to compare the actual rotation state information collected by the collection unit 103 with preset ideal rotation state information, and output a comparison result.
  • the load simulation test control device further includes: a driving parameter configuration unit, configured to be connected to the driver of the motor to be tested, and reconfiguring the test to be tested when the comparison result of the comparison unit is that the test fails Drive parameters for the motor drive.
  • the specific configuration of the motor driver parameters to be tested may be that a configuration command is sent to the driver of the motor to be tested, and the driving parameters of the motor driver to be tested are reconfigured.
  • the configuration command may include a driving parameter for configuring the motor driver, or may be a driving parameter identifier including a configuration, and after receiving the driving parameter identifier, the motor driver may find the local memory according to the driving parameter identifier.
  • the stored set of drive parameters completes the configuration of the drive parameters, and the specific drive parameter configuration manner does not constitute a limitation of the present invention.
  • the embodiment of the present invention further provides another load simulation test device.
  • an eight-load simulation test apparatus includes:
  • the load adjustment device 35 includes a drive shaft 351 for connecting the output shaft of the motor to be tested;
  • the control device 37 is connected to the load adjustment device 35, and the control device 37 controls the load adjustment device 35 to perform load adjustment;
  • the load simulation test apparatus further includes a first shifting device 31, and the first shifting device 31 is disposed at one end of the load adjusting device 35, the drive shaft 351 is connected to an output shaft (not shown) of the motor to be tested, for changing the The ratio of the speed of the motor output shaft to be tested to the drive shaft of the load adjusting device 35.
  • the load testing device of the embodiment of the present invention sets the first shifting device 31 between the output shaft of the motor to be tested and the transmission shaft 351 of the load adjusting device 35, and the shifting device 31 is described. It is disposed at one end of the load adjusting device 35 and the output shaft of the motor to be tested.
  • the load simulation test under the condition of simulating multi-axis load of the motor to be tested can expand the load test range of the motor to be tested, and greatly facilitate testing different axes of the multi-axis robot.
  • the load simulation test apparatus further includes a sensing device 33 for sensing motion state information of the drive shaft 351, and the control device 37 is connected to the sensing device 33. The sensing signal of the sensing device 33 is received.
  • the first shifting device 31 is a multi-speed adjustable shifting device. When testing different axes of the robot, it is not necessary to replace the shifting device. It is only necessary to adjust the first shifting device to select a suitable speed ratio, which is convenient for testing different axes of the robot. it is good.
  • the multi-speed adjustable shifting device may be a continuous multi-speed adjustable shifting device or a non-continuous multi-speed adjustable shifting device, which is mainly set according to actual test requirements.
  • the first shifting device 31 is provided as a speed reducer.
  • a speed reducer Such a design enables a low-power motor to be tested to drive a large moment of inertia and a large rotational torque load, and expands the load test range.
  • FIG. 13 it is a schematic structural diagram of a load simulation test device according to an embodiment of the present invention.
  • the load testing device is substantially the same as that of the eighth embodiment.
  • the main difference is that the transmission shaft 451 includes a separate first transmission unit 4511 and a second transmission unit 4513, and the sensing device 43 is used. Sensing the rotation state information of the first transmission unit 4511, and setting a second shifting device 39 between the first transmission unit 4511 and the second transmission unit 4513 for changing the first transmission unit 4511 and the second transmission The ratio of speeds between units 4513.
  • the rotation state information is a rotation torque and a rotation speed. It can be understood that the rotation state information may also be other data parameters that can be used to measure the rotation state, such as a rotational angular velocity, etc., specific parameters. It may be a signal that can be directly sensed by the sensor or a processed data parameter based on the signal directly sensed by the sensor, and the specific parameter expression form does not constitute a limitation of the present invention.
  • the second shifting device 39 is disposed between the first transmission unit 4511 and the second transmission unit 4513, such a design can change the rotational speed between the first transmission unit 4511 and the second transmission unit 4513. More convenient for load testing.
  • the second shifting device arrangement 39 is a speed reducer. In this way, it is possible to use a motor with a small power to drive a load with a large moment of inertia and a large torque, and to expand the load test range.
  • the load adjusting device 45 includes a brake unit 453 for adjusting a rotational moment of the second transmission unit 4513
  • the control device 47 is coupled to the brake unit 453 and correspondingly controls the brake unit 453 work.
  • the control device 47 controls the brake unit to adjust the torque of the load according to a preset torque command.
  • the torque command is set according to the characteristics of the actual robot shaft. In this way, in the load simulation test, the rotational torque of the load can be adjusted to simulate the rotational torque load characteristic of the robot.
  • the load adjusting device 45 further includes an inertia adjusting unit 455 that adjusts the second transmission unit 4513, and the control device 47 is connected to the inertia adjusting unit 455 and correspondingly controls the inertia adjusting unit 455. jobs.
  • the control device 47 controls the inertia amount adjustment unit 455 to adjust the inertia amount of the load according to a preset moment of inertia command.
  • the inertia amount adjustment command is also set according to the characteristics of the actual robot shaft. In such a design, in the load simulation test, the moment of inertia adjustment of the load can be performed, thereby simulating the varying moment of inertia load characteristic of the axis of the robot.
  • the first shifting device 41 of the embodiment of the present invention may be a fixed speed ratio shifting device, and may be a multi-speed adjustable speed ratio shifting device, and may of course be a multi-speed continuously adjustable speed ratio shifting device. In this embodiment, a multi-speed continuously adjustable speed ratio shifting device is provided as needed. Thus, when the load simulation test is performed on different axes of the robot, the load simulation test can be performed only by adjusting the rotational speed ratio of the first shifting device 41.
  • the first shifting device 41 may be a gear reducer or a pulley reducer, and specifically may be selected according to requirements.
  • the second shifting device 39 of the embodiment of the present invention can also be configured as a shifting device whose speed is more than a plurality of speeds, and whose speed is more than a continuously adjustable and fixed speed ratio. In the present embodiment, it is sufficient to provide a speed change device having a fixed speed ratio.
  • the load adjusting device 45 includes a brake unit 453 for adjusting a rotational moment of the motor to be tested, and the control device 47 is coupled to the brake unit 453 and correspondingly controls the brake unit 453 to operate.
  • the load adjusting device 45 further includes an inertia adjusting unit 455 for adjusting the moment of inertia of the motor to be tested, and the control device 47 is connected to the inertia adjusting unit 455 and correspondingly controls the inertia
  • the adjustment unit 455 operates.
  • the brake unit 453 and the inertia adjustment unit 455 are two devices disposed on the same transmission shaft for corresponding to the rotational torque and the moment of inertia of the simulated load.
  • the working process of the load testing device of the embodiment is: when the motor to be tested is tested, the first shifting device correspondingly changes the speed ratio between the output shaft of the motor to be tested and the first transmission unit 4511, so that Simulate the load on one axis for load simulation testing under this load.
  • the sensing device 43 correspondingly senses motion state information such as speed and rotational moment on the second transmission unit 4513.
  • the sensing device 43 is coupled to the control device 47 and is operative to transmit the sensed rotational state information to the control device 47.
  • the control device 47 transmits a torque adjustment command to the brake unit 453 according to a control program set in advance, and the brake unit 453 adjusts the load rotation torque correspondingly.
  • the control device 47 transmits a moment of inertia adjustment adjustment command to the inertia adjustment unit 455 according to a preset control program, and the inertia adjustment unit 455 adjusts the moment of inertia of the load.
  • the torque adjustment command transmitted from the control device 47 to the brake unit 453 and the inertia adjustment command transmitted to the inertia adjustment unit 455 are set in advance according to the characteristics of the actual axis of the robot.
  • the control device 47 controls the load adjusting device 45 to adjust the rotational torque and the moment of inertia of the load
  • the motor to be tested is correspondingly driven to drive different loads, and the control parameters of the motor driver to be debugged are adjusted to obtain a corresponding test.
  • the motor driver to be tested under different loads enables the robot to obtain control parameters with better control performance.
  • the motor driver to be tested selects different control parameters to enable the robot to obtain better control characteristics. Therefore, in order to obtain better control performance of the robot, it is necessary to repeatedly debug the control parameters of the industrial robot drive mechanism.
  • the load simulation test device implemented by the present invention simulates the load of the robot, the industrial robot can obtain better control performance, but does not cause impact and damage to the mechanical body of the robot.
  • control parameters are adjusted before the motor to be tested is installed on the mechanical body, and the motor to be tested is installed on the mechanical body after the control performance is satisfactory, thereby avoiding the whole Impact and damage of the mechanical body of industrial robots.
  • the load testing device of the present embodiment by setting the first shifting device 41 for changing the speed ratio of the output shaft and the first transmission unit 4511, it is possible to simulate the load of the industrial robot.
  • Multi-axis anisotropy such as simulation, can drive a larger power load with a smaller power motor to be tested.
  • a multi-axis robot can be tested by changing the speed ratio to perform load simulation tests on different axes.
  • the second shifting device 49 realizes a load that drives a large moment of inertia and a large turning moment by using a motor of a smaller power by changing a speed ratio of the first transmission unit 4511 and the second transmission unit 4513.
  • the load test device of the embodiment has the advantages of being able to simulate a multi-axis robot and testing different axes without replacing the load, and the test is convenient, and the test load range is wide.
  • FIG. 14 is a flowchart of a ten load simulation test method according to an embodiment of the present invention.
  • the load simulation test method includes the following steps:
  • the test of the next motor to be tested can be performed. If the current shifting device meets the test requirements, the motor to be tested can be directly replaced. If the current shifting device does not meet the test requirements, then The test can be performed by replacing the shifting device and then installing the motor to be tested.
  • the step S2 of the control device controlling the load adjustment device to test the motor to be tested may specifically include the following steps:
  • the control device receives the sensing signal of the sensor connected to the drive shaft, and generates a test result according to the sensing signal;
  • the driving parameter includes a power parameter, a rotation speed parameter and the like, and a parameter for controlling the movement of the motor to be tested.
  • a sensing device is simultaneously disposed for sensing the rotation state of the transmission shaft of the load adjusting device driven by the motor to be tested. The information is sent to the control device for analysis.
  • the sensing state information of the load on the transmission shaft is sensed by providing a sensing device on the transmission shaft, and the information may be rotational torque and speed information.
  • the sensed motion state information is analyzed by the control device, mainly analyzing the rotational torque and speed information under the current load.
  • the load adjustment device is controlled by the control device to perform load adjustment.
  • the load is adjusted according to a preset program corresponding to the driving load adjusting device, for example, the rotation torque and the moment of inertia are adjusted to realize the load simulation.
  • the replacement when testing the motor to be tested, changing the speed ratio between the output shaft of the motor to be tested and the transmission shaft of the load adjusting device, and when testing different output shafts, the replacement is convenient and the test efficiency is high. It can realize the simulation test of driving a large load to a smaller power motor, expand the load test range, and carry out load simulation test on different axes of the robot without replacing the load.
  • the load simulation test method of the embodiment has the advantages of convenient testing and large test load range.
  • FIG. 15 is a schematic structural diagram of an eleventh load simulation test control apparatus according to an embodiment of the present invention.
  • the load simulation test control device includes:
  • a first control unit 201 configured to output a signal to change a speed ratio between the output shaft of the motor to be tested and the drive shaft of the load adjusting device;
  • the signal receiving unit 202 is configured to receive the rotational state information of the sensed load adjusting device drive shaft at the rotational speed ratio.
  • the second control unit 203 is configured to output a signal to control the load adjustment device for load adjustment.
  • the load simulation test control device of the embodiment can change the rotation speed ratio between the output shaft of the motor to be tested and the transmission shaft of the load adjustment device, and can realize the load test of different axes of the robot.
  • Load simulation test is easy to operate and has a wide range of test loads.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The steps of the above method embodiments; and the foregoing storage medium includes: read-only memory (Read-Only Memory, ROM, Random Access Memory (RAM), disk or optical disc, and other media that can store program code.
  • Read-Only Memory ROM
  • RAM Random Access Memory

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了负载模拟测试设备、测试方法、控制装置及用于负载模拟测试设备的转动惯量调节装置。该转动惯量调节装置主要包括电机和由电机控制的主轴或驱动滑块,从而实现对转动惯量的实时、精确调节。所述负载模拟测试设备主要包括惯量调节装置、控制装置、以及用于与待测电机装置连接的传动轴;所述惯量调节装置与传动轴连接;所述控制装置与所述惯量调节装置连接。本发明实施例的负载测试设备具有测试方便,测试负载范围大和能够对所述传动轴的转动力矩和转动惯量进行实时调节的优点。

Description

负载模拟测试设备、测试方法、控制装置及转动惯量调节装置
【技术领域】
本发明涉及电器控制领域,特别涉及一种负载模拟测试设备、测试方法、负载模拟测试控制装置及用于该负载模拟测试设备中的转动惯量调节装置。
【背景技术】
在当代社会中,电机的应用范围越来越广,由电机作为驱动源的机械设备比比皆是,比如采用电气驱动的工业机器人。这类工业机器人利用电机直接或通过机械传动装置来驱动执行机构进行工作,其所用能源简单,执行机构的工作速度变化范围大、效率高、且定位精度高,具有使用方便、噪声低和操作灵活的特点,因而在市场上占据了主导地位。
这种由电气驱动的工业机器人,由电机和电机驱动器组成的驱动机构的特性很大程度上决定了工业机器人的操作速度和操作位置精度等工作性能。驱动机构的特性可通过调节其控制参数来进行调整,但同时驱动机构的特性又与其所带负载特性有关。即,在不同的负载特性下,驱动机构需选择不同的控制参数才能获得比较好的特性。因此,为使工业机器人获得较好的控制性能,需要对工业机器人驱动机构控制参数进行反复调试。
常规调试方法是将驱动机构安装到机器人的机械本体上,然后调节电机驱动器的控制参数,直到性能满意为止。本发明人在研究中发现,这种方法一旦控制参数选择不合适,将很可能会对工业机器人的机械本体造成冲击和损伤。
现有的另一种方法是通过使用负载模拟测试台来进行参数调试。请参阅图1,图1是现有技术的负载模拟测试台的结构示意图。所述负载模拟测试台由电机、待调试电机驱动器、传感器、制动器、转动惯量调节块和控制器等构成。所述电机、传感器、制动器和惯量调节块依次连接设置。所述控制器与所述传感器连接用于接收所述传感器的感测信号,所述控制器与所述制动器连接用于控制所述制动器工作,所述电机与所述待调试电机驱动器连接。这种测试台中,所述控制器通过对所述制动器进行控制来调节其输出制动力矩的大小,从而模拟不同力矩的负载,所述惯量调节块用于调节负载的转动惯量,对应调节待调试电机驱动器的参数来实现对所述电机的驱动。
上述现有技术中,对转动惯量的调节,只能通过搭配不同的转动惯量调节块来实现,因此在进行测试的过程中,如果需要改变转动惯量,则需要停止测试,更换转动惯量调节块来改变转动惯量,降低了测试效率。
【发明内容】
本发明实施例主要解决的技术问题是提供可以实现转动惯量实时调节的负载模拟测试设备、测试方法、负载模拟测试控制装置、以及用于该负载模拟测试设备中的转动惯量调节装置。
为解决上述技术问题,本发明实施例采用的一个技术方案是:提供一种负载模拟测试设备包括惯量调节装置、控制装置、以及用于与待测电机装置连接的传动轴;惯量调节装置与传动轴连接,用于调节传动轴的转动惯量;控制装置与惯量调节装置连接,用于控制惯量调节装置调节传动轴的转动惯量。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种负载模拟测试方法包括:接收用户输入的转动惯量参数;根据转动惯量参数配置惯量调节装置的转动惯量;启动待测电机进行负载模拟测试;接收与待测电机连接的传动轴上的传感器感测反馈的实际转动状态信息;将实际转动状态信息与预设的理想转动状态信息进行比较,输出比较结果完成测试。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种负载模拟测试控制装置包括:惯量参数设置单元,用于接收用户输入的转动惯量参数;惯量调节单元,用于根据惯量参数设置单元的转动惯量参数配置惯量调节装置的转动惯量;采集单元,用于接收与待测电机连接的传动轴上的传感器感测反馈的实际转动状态信息;比较单元,用于将采集单元采集的实际转动状态信息与预设的理想转动状态信息进行比较,并输出比较结果。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:一种负载模拟测试方法,其包括如下步骤:将待测电机输出轴通过变速装置与负载调节装置的传动轴连接;通过控制装置控制所述负载调节装置对所述待测电机进行测试;另一待测电机进行测试时,在所述变速装置不满足要求时,更换变速装置后开始测试。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种负载模拟测试的控制装置包括:第一控制单元,用于输出信号以改变待测电机输出轴与负载调节装置传动轴之间的转速比;信号接收单元,用于接收感测到的负载调节装置传动轴在转速比下的转动状态参数;第二控制单元,用于输出信号以控制负载调节装置进行负载调节。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种转动惯量调节装置包括主轴、关节臂结构体,和电动机;关节臂结构体包括至少一组关节臂,一组关节臂包括首尾铰接的第一关节臂和第二关节臂;第一关节臂的首部与主轴连接并相对于主轴的轴向位置固定,尾部与第二关节臂的首部铰接,第二关节臂的尾部与沿主轴轴向运动的运动块相连,运动块与电动机相连,电动机控制运动块在主轴上的位置。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种转动惯量调节装置,包括质量体、支承座、直线运动单元和电动机;质量体由两个铰接的质量块组成;支承座由固定支承座和滑动支承座组成,质量体两端分别通过枢轴与固定支承座和滑动支承座连接;直线运动单元包括导轨和滑块,滑块沿导轨运动;滑动支承座固定于滑块上;直线运动单元与电动机连接,电动机驱动滑块运动。
区别于现有技术,本发明实施例的负载模拟测试设备中,通过设置控制装置与惯量调节装置连接,用于控制惯量调节装置对传动轴的转动惯量进行实时调节。这种设计能够实时地调节传动轴的转动惯量,从而实时的调节待测电机装置的模拟负载,不需要在测试过程中调节惯量时进行停机,因此,无需停机就能进行多种参数下的负载模拟测试且能够重复测试,提高测试效率,使用方便。本发明实施例的转动惯量调节装置采用伺服电机对主轴或驱动滑块进行控制,实现了对转动惯量的实时调节,能够实现对转动惯量的精确模拟,克服了手动操作中存在的问题,在对转动惯量的模拟测试过程中,简化了控制难度,提高对转动惯量的真实模拟性。
【附图说明】
图1是现有技术的负载模拟测试台的结构示意图;
图2是本发明实施例一转动惯量调节装置的结构示意图;
图3是本发明实施例二转动惯量调节装置的结构示意图;
图4是本发明实施例二转动惯量调节装置的改进结构示意图;
图5是本发明实施例二转动惯量调节装置的另一种改进结构示意图;
图6是本发明实施例三转动惯量调节装置的结构示意图;
图7是本发明实施例四负载模拟测试设备的结构示意图;
图8是图7所示负载模拟测试设备的变惯量单元的结构示意图;
图9是本发明实施例五负载模拟测试设备的结构示意图;
图10是本发明实施例六负载模拟测试方法的流程图;
图11是本发明实施例七负载模拟测试控制装置的结构示意图;
图12是本发明实施例八负载模拟测试设备的结构示意图;
图13是本发明实施例九负载模拟测试设备的结构示意图;
图14是本发明实施例十负载模拟测试方法的流程图;
图15是本发明实施例十一负载模拟测试控制装置的结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明实施例进行详细说明。
本发明实施例一提供一种转动惯量调节装置。请参照图2,本发明实施例一转动惯量调节装置包括主轴51、关节臂结构体52和电动机55;所述关节臂结构体52包括至少一组关节臂,所述一组关节臂包括首尾铰接的第一关节臂521和第二关节臂522;所述第一关节臂的首部与所述主轴51连接并相对于所述主轴51的轴向位置固定,尾部与第二关节臂522的首部铰接,所述第二关节臂的尾部与沿主轴轴向运动的运动块54相连,所述运动块54与所述电动机55相连,所述电动机53控制所述运动块54在所述主轴51上的位置。
本实施例中所使用的电动机为伺服电机,对于伺服电机的控制系统采用通用计算机系统,在使用时,控制系统首先得到一组转动惯量的控制信号,该控制信号经过处理后发给驱动器,驱动器控制伺服电机转动实现惯量的调节,当然本实施例中的控制系统也可以采用专用计算机系统。作为另一种控制方式,本实用新型实施例中的电动机还可以选择步进电机,并采用上述相同的控制系统进行控制,此处不再赘述。为了更好的实现转动惯量的调节,还可以在伺服电机的输出轴一端或者在主轴上安装用于检测转动系数的传感器装置。
本实施例中的关节臂结构体52由两组相对于主轴51对称的关节臂组成,当转动惯量较小时,也可以只采用一组关节臂,当转动惯量较大时或者需要模拟的刚体不规则时,关节臂结构体也可以由三组或三组以上的关节臂组成。关节臂结构体52的第一关节臂521和第二关节臂522之间采用活动式连接,本实施例采用铰链连接作为其较佳的连接方式,这样第一关节臂521和第二关节臂522便可以完全展开成180°,也可以完全折叠成0°,使得转动惯量的调节范围大大增加。本实施例中在主轴51上设置有相对于主轴51轴向位置固定的固定体53,所述固定体53与第一关节臂521的首部铰接。所述固定体53为一种固定环,并固定环套在主轴51上,选择固定环的优点在于能够减小固定环所占的空间,并且能够将固定体集成在主轴上,保证关节臂结构体以主轴为轴心转动。可以理解的是,只要能够保证关节臂结构体以主轴为轴心转动,便不限制固定体的安装方式。为了更好的控制运动块的移动,本实施例中的运动块54为可沿主轴运动的环形体,该环形体套于主轴上,本实施例中的主轴为一丝杠,与之相配的环形体为一内壁具有与丝杠嵌套的螺纹环体,这样,当电动机55控制主轴51转动的时候便实现了对运动块54的控制,从而改变关节臂结构体52的第一关节臂521和第二关节臂522的夹角,完成对转动惯量的调节。
本实施例中通过伺服电机控制主轴,实现对关节臂结构体的第一关节臂和第二关节臂的展开度的控制,从而实现对转动惯量的调节,利用计算机系统对伺服电机的精准控制,完成对转动惯量的精确实时调节,避免了手动操作带来的不方便,提供了调节效率。在关节臂结构体中采用多组关节臂组合的方式,达到了转动惯量复杂模拟的实现,提高了转动惯量的模拟真实性。
作为对实施例一转动惯量调节装置的变形,第一关节臂和第二关节臂的直径由两端向铰接处逐渐增大,即第一关节臂和第二关节臂并非采用直径均匀的杆臂,这样在靠近第一关节臂和第二关节臂的铰接处便会获得更大的质量,从而能够增加转动惯量的调节范围。为了进一步增加第一关节臂和第二关节臂在铰接处的质量以进一步增加转动惯量的调节范围,本实施例在第一关节臂和第二关节臂铰接处形成有质量体,为了体现最佳效果,所述质量体可以是密度较大的材料,所述质量体可以通过安装配合质量块在铰链上形成,或者直接将铰链加工成加重式的铰链球,增加铰链处的质量从而增加转动惯量调节装置的转动惯量调节范围。
本发明实施例二转动惯量调节装置,如图3所示,包括质量体61、支承座62、直线运动单元63和电动机64;所述质量体61由两个铰接的质量块611和质量块612组成;所述支承座62由固定支承座621和滑动支承座622组成,所述质量体61两端分别通过枢轴623和枢轴624与固定支承座和滑动支承座连接;所述直线运动单元63包括导轨631和滑块632,所述滑块632沿导轨631运动;所述滑动支承座622固定于所述滑块632上;所述直线运动单元63与所述电动机64连接,所述电动机64驱动所述滑块632运动。
在本实施例的应用过程中,固定支承座一侧的枢轴623与滑动支承座一侧的枢轴624通过轴承固定在固定支承座和滑动支承座上,轴承的滚动旋转方式可以减小质量体的转动摩擦力,可以理解的是,轴承不是支承座与枢轴间唯一的固定方式,实际应用中也可以选用法兰盘来替代轴承,或者直接在两支承座上开孔,枢轴在开孔中转动,本实施例优选用轴承作为枢轴与支承座的固定件。在枢轴与质量体连接的一端有固定结构,方便质量体的拆装。
所述质量体61由质量块611和质量块612铰接组成,在质量块611和质量块612的铰接位置实现自由转动,当转动惯量调节装置只有一个质量体时,为了防止质量体的两个质量块被拉伸成一条直线而形成运动奇点,因此在控制系统的程序指令上会限制滑块的运动位移小于两个质量块的长度和,这样可以保证两个质量块的活动角度小于180°,使得滑块在每个运动点只对应一个转动惯量值。
本实施例中的转动惯量调节装置包括两个质量体,两个质量体具有同样结构,通过枢轴623和枢轴624对称安装于固定支承座与滑动支承座上,不同于单个质量体的转动惯量调节装置,具有两个对称安装的质量体的转动惯量调节装置,不但可以在控制指令上限制滑块的运动以防止质量块出现运动奇点,还可以在结构上作出改进防止质量块出现运动奇点,如图4所示,每个质量体在质量块铰接处内侧具有用于防止质量块运动为一条直线的直线限位块701,当每个质量体上的质量块活动角度接近于180°时,质量体上的直线限位块会彼此接触,阻止质量体上的质量块被拉成一条直线。同样,如图5所示,为了使滑块在每个运动点只对应一个转动惯量值,即防止质量体上的两个质量块运动重合,在所述固定支承座一侧的枢轴623上设有重合限位块801。
本实施例中质量体通过枢轴623和枢轴624连接于固定支承座与滑动支承座上,滑动支承座固定于滑块上,因此质量体的转动与滑动支承座的运动是相互独立的,当滑动支承座运动时,不需要停止整个设备的运行;转动惯量调节装置的控制系统通过指令控制电动机的转动角度和转动圈数,从而实现对滑块的精准控制,保证转动惯量调节的准确性与实时性。
为了更加准确的实现转动惯量的调节,请参照图6所示的本发明实施例三转动惯量调节装置。本实施例中在所述质量块上具有用于加装微小质量块的微调槽901,本实施例中所述微调槽901是中间贯穿的孔槽,所要加载的质量块选择带有螺母的螺柱,将螺柱穿过微调槽,锁紧螺母,需要调节加载的质量的位置时,则适当的旋松螺母,移动螺柱在微调槽上的位置,然后再锁紧螺母即可实现转动惯量的微小调节,可以理解的是,所要加载的质量块也可以选择卡扣式的柱体来替代,对于所选择的质量块不构成对本实用新型的限制。
本实施例相对于实施例二的改进之处在于在质量块上设置微调槽901,所要加载的质量块可以根据需要灵活确定,并且可以调节所加载的质量块在微调槽处的位置,能够将转动惯量的调节范围增大,同时也能增加转动惯量调节的精确性。
如图6所示,作为实施例二中的改进方式,本实施例三中的转动惯量调节装置还具有防护罩902,所述防护罩固定于所述固定支承座上。所述防护罩902能够防止质量体在高速转动时,其上某些部件可能会飞脱而伤害到周围的人,增加了整个转动惯量调节装置的安全可靠性。本实施例中所述电动机通过减速器与直线运动单元连接,所述直线运动单元包括同步带和同步带轮,所述电动机驱动同步带轮,所述滑块固定在同步带上,所述同步带带动所述滑块沿所述导轨运动。因此当电动机转动时即可实现对转动惯量的调节。在电动机与直线运动单元之间增加减速器可以是电动机驱动负载较大的质量体,能够增加转动惯量调节的范围。
作为对实施例二和实施例三转动惯量调节装置的改进,转动惯量调节装置的所述直线运动单元包括丝杠,所述电动机驱动所述丝杠转动,所述丝杠的转动带动所述滑块沿所述导轨运动。当电动机转动时,所述丝杠与电动机同时转动,可以理解的是,当电动机与直线运动单元之间连接有减速器时,可以增加电动机驱动丝杠的能力,减速器的输出轴带动丝杠转动,丝杠的转动驱动所述滑块的移动,所述电动机选择伺服电机或步进电机,控制系统通过指令控制电动机的正转或反转,以及继续转动或停止转动,实现转动惯量的调节。
采用丝杠来控制滑块的移动,丝杠的螺纹间距越小则控制越精确,采用伺服电机或步进电机作为驱动源能够更好的实现信息反馈,通过反馈的信息量及时调整转动惯量参数,保证转动惯量的实时性控制。
本发明实施例进一步提供一种使用前述实施例中涉及的转动惯量调节装置的负载模拟测试设备。
参阅图7和图8,图7是本发明实施例四负载模拟测试设备的结构示意图,图8是图7所示负载模拟测试设备的变惯量单元的结构示意图。
本实施例的负载模拟测试设备,其包括:
惯量调节装置11、控制装置13、以及用于与待测电机装置连接的传动轴15;
所述惯量调节装置11与传动轴15连接,用于调节传动轴15的转动惯量;
所述控制装置13与所述惯量调节装置11连接,用于控制所述惯量调节装置11调节所述传动轴15的转动惯量。
本实施例的负载调节设备中,通过设置所述惯量调节装置11与所述传动轴15连接调节传动轴15的转动惯量,所述控制装置13与所述惯量调节装置11连接,用于控制所述惯量调节装置11对所述传动轴15的转动惯量进行实时调节。这种设计能够实时地调节所述传动轴15的转动惯量,从而实时的调节所述待测电机装置的模拟负载,根据所述待测电机装置的模拟负载对应调节与所述待测电机装置连接的待•调试电机驱动器,从而得到所述待测试电机装置的合适工作参数,在获得待测电机参数过程中,不需停止待测电机装置,测试方便。因此,本实施例的负载模拟测试设备具有能够实时调节转动惯量和测试方便的优点。
请参阅图7,另一实施例中,所述惯量调节装置11包括变惯量单元111和驱动单元113,所述变惯量单元111连接所述传动轴15,所述驱动单元113分别与控制装置13和变惯量单元111连接,用于接收所述控/制装置13的控制命令,驱动所述变惯量单元111改变转动惯量。
所述驱动单元113包括电机1131和与所述电机连接的电机驱动器1133 ,所述电机驱动器1133驱动所述电机1131工作,所述电机1131连接所述变惯量单元111,带动所述变惯量单元111进行转动惯量的调节。
本实施例中,所述驱动单元113是采用电机作为动力源,在具体实现时,所述驱动单元113还可以是微型内燃机等其他动力源,当然,如果使用微型内燃机,那么电机驱动器也对应替换为油门控制装置,具体的驱动单元的具体动力和相应的结构实现不构成对本发明的限制。
本实施例中的电机1131,为了实现精确控制,可以采取伺服电机,当然也可以采用步进电机。另外,基于电机1131驱动环形体在传动轴的运动方式不同或者为了缩小电机的尺寸,可以使用尺寸较小的电机,并在环形体的连接结构中增加一减速器,从而实现降低电机输出转速,增大扭矩的目的,具体的电机选择还可以采取现有的其他常规实现方式,不构成对本发明的限制。同理,本实施例中的电机1131还可以采用微型内燃机等其他能量输出设备代替。
本实施例的负载模拟测试设备中通过所述控制装置13控制所述变惯量单元111实时调节所述传动轴15的转动惯量,具有测试操作方便和能够实时调节转动惯量的优点。
请参阅图7 ,另一实施例中,所述控制装置13与所述驱动单元113连接,控制驱动单元113驱动变惯量单元111实时进行转动惯量的调节。
本实施例中,所述控制装置13与所述驱动单元113的电机驱动器1133连接,用于控制所述电机驱动器1133驱动所述电机模块1131工作。所述控制装置13控制所述电机驱动器1133实时驱动所述电机模块1131工作,以便所述电机模块1131驱动所述变惯量单元111实时进行转动惯量的调节。
请一并参阅图7和图8。另一实施例中,所述变惯量单元111包括长度相同的第一支臂1111、第二支臂1113、第三支臂1115和第四支臂1117和一环形体1119;这里所述第一支臂1111和第二支臂1113的长度设置为相等,第三支臂1115和第四支臂1117的长度设置为相等,当然所述四个支臂全部设置为长度相等,具体根据需要设置。
所述第一支臂1111、第二支臂1113、第三支臂1115和第四支臂1115分布在同一平面;
所述第一支臂1111第一端与第二支臂1113第一端铰链连接在传动轴15上,所述第一支臂1111的第二端与所述第三支臂1115的第一端铰链连接;
所述第二支臂1113的第二端与所述第四支臂1117的第一端铰链连接;
所述第三支臂1115第二端与第四支臂1117的第二端铰链连接在一环形体1119上,所述环形体1119可沿传动轴15滑动。
本实施例中,所述变惯量单元111通过电机模块1131驱动传动轴15,通过改变所述第一支臂1111、第二支臂1113、第三支臂1115和第四支臂1117的转动惯量,对应的改变所述环形体1119在所述传动轴15上位置变化。所述第一支臂1111、第二支臂1113、第三支臂1115和第四支臂1117的转动惯量即为所述传动轴15负载的转动惯量。当所述传动轴15的转动惯量变化时,所述环形体1119在所述传动轴15上的位移对应变化,位移的变化值与转动惯量的变化值成正比。通过实时调节所述电机模块1131的功率,可以改变所述变惯量单元111的环形体1119在传动轴15上的位置,从而实现实时调节所述转动轴15的转动惯量。本实施例中的变惯量单元的结构可以有多种实施方式,例如,可以由多组如所述第一支臂1111与第三支臂1113组成的结构,具体可以有三组,则每组形成对称平角为120度,也可以有四组,则每组形成对称的夹角为90度,具体根据需要设置。
当然,所述变惯量单元111的每一支臂也可以由一细线构成,对应的第一组的对应的二个支臂之间设置一质量块,即,每一组支臂的二条细线之间设置一质量块。
这种设计的负载模拟测试设备具有能够对所述传动轴15的负载进行实时调节和测试方便的优点。
请参阅图7,另一实施例中,所述负载模拟测试设备还包括制动力矩调节器17,所述制动力矩调节器17分别与传动轴15和控制装置13连接,用于接收控制装置13的控制指令以实时调节所述传动轴15的转动力矩。
本实施例中,所述制动力矩调节器17包括磁粉制动器(图未示),所述制动力矩调节器可以对应改变所述传动轴15的转动力矩。
请参阅图7 ,在另一实施例中,所述控制装置还与待调试电机驱动器连接,所述控制装置13分别控制惯量调节装置11和制动力矩调节器17,对应实现惯量调节装置11对负载模拟测试设备的惯量调节,制动力矩调节器17对负载模拟测试设备的转动力矩的调节,同时,所述控制装置实控制待调试电机驱动器,从而实现所述控制装置同时实现对待调试电机驱动器,惯量调节装置11和制动力矩调节器17的控制,可重复实现控制装置13对负载模拟测试设备的负载模拟测试,能够提高所述负载模拟测试的测试效率。
请参阅图7,另一实施例中,所述制动力矩调节器17与所述控制装置13连接,所述控制装置13控制所述制动力矩调节器17实时调节所述传动轴15的转动力矩。
本实施例中,所述控制装置13首先得到一组力矩的控制信号,所述控制信号为数字信号,是预先根据需要和传动轴15的机械特性设置的,所述控制装置13将所述控制信号通过一数模变模块生成时变的力矩指令发送给制动力矩调节器17的驱动器171。所述驱动器171将所述力矩指令对应转化为电流信号,从而控制所述磁粉制动器输出的转动力矩。通过所述控制装置13实时向所述制动力矩调节器17发送时变的力矩指令,从而控制所述制动力矩调节器17对所述传动轴15实时进行力矩的调节。
请参阅图7,另一实施例中,所述负载模拟测试设备还包括传感器18,所述传感器18与所述传动轴15连接用于感测所述传动轴15的负载参数。所述负载参数包括所述传动轴15的转动力矩和速度信息。因此,通过所述传感器18,可以对所述传动轴5的转动力矩和速度信息进行感测。本实施例中,所述传感器包括传感器,传感器可以是一个也可以是多个,只要可以获得电机的实际转矩和速度信息即可,具体的传感器类型和个数的选择不构成对本发明的限制。
请参阅图7,另一实施例中,所述控制装置13包采集单元131,所述采集单元131与所述传感器18连接用于采集所述传感器18的感测信息。
所述控制装置13可以是专用的计算机系统,也可以是通用计算机系统,主要用于对所述制动力矩调节器17和惯量调节装置11进行控制,从而实现对所述传动轴15的转动力矩和转动惯量的实时调节。所述控制装置13包括采集单元131,所述采集单元131与所述传感器18连接,用于采集所述传感器感测的转动力矩和速度信息。所述信号采集单元采集的信息包括:模拟信号和正交编码信号。当然,这里采集到的也可以是数字信号,对应的所述数字信号是通过模数转换处理过的模拟信号和正交编码信号。所述采集单元131的信号采集频率根据系统的固有频率特性以及控制的实时性要求进行选择。所述控制装置13根据采集的信息进行分析生成所述传动轴15的转动力矩变化曲线,从而实现控制装置13对所述传动轴15的转动力矩变化曲线的跟踪。
请参阅图7,另一实施例中,所述负载模拟测试设备还包括变速装置19,待测电机装置的输出轴(图未示)与所述传动轴15分别与所述变速装置19连接,用于改变所述待测电机装置输出轴与所述传动轴15和转速比。
所述变速装置19的一端与待测电机装置的输出轴连接,另一端与所述传动轴15连接,从而改变所述待测电机装置输出轴与所述传动轴15的转速比。所述变速装置19可以是减速器,也可以是加速器。当然根据需要可以进行相应的选择。所述变速装置19可以改变所述待测电机装置的负载范围。从而扩大测试范围。
请参阅图7,在另一实施例中,所述变速装置19为减速器。本实施例中,所述减速器可以采用齿轮减速器、蜗杆减速器、谐波减速器、摆线针轮减速器等,具体的减速器选择,可以基于测试需求以及对减速器的精度和传动效率要求进行选择,不构成对本发明的限制。
所述减速器可以实现小功率的待测电机装置驱动大转动惯量和大转动力矩的负载,扩大了负载测试范围。
请参阅图9,其是本发明实施例五负载模拟测试设备的结构示意图。本实施例的负载模拟测试设备包括:惯量调节装置21和控制装置23、用于与待测电机装置连接传动轴25、制动力矩调节器27和传感器28。
所述传动轴25与所述传感器28连接,所述传感器28用于感测所述传动轴25的负载参数,所述负载参数包括转动力矩和速度信息。所述传感器可设置成与所述传动轴共轴,即所述传感器自身的轴与传动轴形成一体结构,所述传感器感测自身的轴上的负载参数,对应就可得到所述传动轴的负载参数。
所述制动力矩调节器27与所述传动轴25连接,用于对所述传动轴25的转动力矩的进行调节。
根据调节需要,可以通过控制装置23对所述制动力矩调节器27进行控制,从而实现所述制动力矩调节器27对传动轴25的转动力矩的调节。
所述惯量调节装置21与所述传动轴25连接,用于对所述传动轴25的转动惯量进行调节。
根据调节需要,可以通过控制装置23对所述惯量调节装置21进行控制,从而实现所述惯量调节装置21对传动轴25的转动惯量的调节。
所述控制装置23包括采集单元231,所述采集单元231与传感器28连接用于采集所述传感器28的感测信号。所述控制装置23分别与所述制动力矩调节器27和惯量调节装置21对应连接。所述控制装置23控制所述制动力矩调节器27对所述传动轴25的转动力矩进行实时调节,所述控制装置23控制所述惯量调节装置21对所述传动轴25的转动惯量进行调节。
相较于现有技术,本实施例的负载模拟测试设备中,所述控制装置23控制所述制动力矩调节器27对所述传动轴25的转动力矩进行实时调节,所述控制装置23控制所述惯量调节装置21对所述传动轴25的转动惯量进行调节。从而实现对待测电机装置负载的转动力矩和转动惯量进行实时调节。通过实时对所述负载模拟测试设备负载的转动力矩和转动惯量的调节,对应调节与所述待测电机装置连接的待调试电机驱动器的参数,测试过程中不需停止所述负载模拟测试设备,测试方便。因此,本实施例的负载模拟测试设备具有能够实时调节转动惯量和测试方便的优点。
因此,本发明实施例的负载模拟测试设备具有测试方便和实时性的优点。
本发明实施例还提供一种负载模拟测试方法,请参阅图10,图10是本发明实施例六负载模拟测试方法的流程图。所述方法包括如下步骤:
S11:接收用户输入的转动惯量参数;
本发明实施例中,所述转动惯量参数可以是用户通过指令的形式输入至控制装置内,也可以是用户直接在控制装置的参数配置接口配置转动惯量参数,所述转动惯量参数可以是一个数据,也可以是一组数据或一条曲线,所述控制装置可以是一计算机系统,也可以是一惯量调节装置内置的控制系统,具体根据需要设置。
S12:根据转动惯量参数设置惯量调节装置的转动惯量;
本步骤是通过在所述控制装置中实时设置控制参数,通过控制装置实时控制所述惯量调节装置实现转动惯量的调节。
S13:启动待测电机进行负载模拟测试;
本步骤中,所述待测电机的启动可以是手动启动,也可以是通过一控制器在上一步骤完成后自动启动,当然,所述控制器也可以是上述步骤中的控制装置,实现同一装置控制多个功能,节省设置资源。
S14:接收与待测电机连接的传动轴上的传感器感测反馈的实际转动状态信息;
S15:将所述实际转动状态信息与预设的理想转动状态信息进行比较,输出比较结果完成测试。
本实施例中,可以在控制装置中通过转动惯量参数获得对应的电机驱动参数集,具体的可以在控制装置内部设置转动惯量参数与电机驱动参数集的对应关系,通过查找驱动参数集配置电机驱动器,再通过电机驱动器驱动变惯量装置实现所需的惯量变换。可以理解,控制装置对电机的控制方式基于电机的不同其控制方式也会有所改变,例如对于步进电机和伺服电机的控制就有所不同,伺服电机控制精度高,而步进电机的成本低廉,具体的控制方式可以根据现有的常规方式进行选择,不构成对本发明的限制。
相较于现有技术,本实施例的负载模拟测试方法具有测试方便,能够对机器人的不同轴进行换装测试,测试效率高的优点。
在另一所述负载模拟测试方法的实施例中,启动待测电机进行负载模拟测试之前,所述方法还可以包括:
接收用户输入的制动力矩参数;并按照所述制动力矩参数设置制动力矩调节器的制动力矩。
所述制动力矩参数可以通过指令的形式输入至控制装置内,当然也可以是用户通过控制装置的接口直接配置制动力矩参数,所述制动力矩参数可以是一个数据,也可以是一组数据或一条曲线。
在另一实施例中,所述步骤S2所述根据转动惯量参数设置惯量调节装置的转动惯量的步骤具体包括:
根据转动惯量参数获得转动惯量参数对应的电机驱动参数;
通过所述电机驱动参数配置电机驱动器;
电机驱动器驱动电机转动,并带动变惯量装置改变所述传动轴的转动惯量。
所述实际转动状态信息包括:实际转动力矩和实际转速;所述预设的理想转动状态信息包括:理想转动力矩和理想转速。
在另一实施例中,所述步骤S5将所述实际转动状态信息与理想转动状态信息进行比较;输出比较结果完成测试的过程包括:
计算实际转动力矩和理想转动力矩的第一差值;
计算实际转速和理想转速的第二差值;
若所述第一差值和第二差值均小于预置的允许差值范围,则判定所述待测电机满足测试要求。
若待测电机不满足测试要求,则向所述待测电机的驱动器发送配置指令,重新配置待测电机驱动器的驱动参数。
可以理解,本发明实施例中,所述转动状态信息为转动力矩和转速,可以理解,所述转动状态信息还可以为其他可以用于测评转动状态的数据参数,如转动角速度等,具体的参数可以是传感器直接可以感测的信号或者基于传感器感测的信号经过加工后的数据参数,不构成对本发明的限制。
综上所述,本发明实施例的负载模拟测试方法具有能够实时的在控制装置中进行指令的设置,从而实时的控制负载模拟测试设备的制动力矩和转动惯量,具有实时控制操作,测试效率高的优点。
本发明实施例还提供一种负责模拟测试控制装置。请参阅图11,图11是本发明实施例七负载模拟测试控制装置的结构示意图。
本实施例负载模拟测试控制装置包括:
惯量参数设置单元101,用于接收用户输入的转动惯量参数;
本实施例中,所述惯量参数设置单元101可以为一计算机系统或者单片机系统的输入接口,具体的表现形式不构成对本发明的限制。
惯量调节单元102,用于根据惯量参数设置单元101的转动惯量参数配置惯量调节装置的转动惯量;
采集单元103,用于接收与待测电机连接的传动轴上的传感器感测反馈的实际转动状态信息;
比较单元104,用于将所述采集单元103采集的实际转动状态信息与预设的理想转动状态信息进行比较,并输出比较结果。
在另一实施例中,所述负载模拟测试控制装置还包括:驱动参数配置单元,用于与待测电机的驱动器相连,在所述比较单元的比较结果为测试未通过时,重新配置待测电机驱动器的驱动参数。具体配置待测电机驱动器参数的方式可以是向所述待测电机的驱动器发送配置指令,重新配置待测电机驱动器的驱动参数。所述配置指令中可以包含用于配置电机驱动器的驱动参数,也可以是包含配置的驱动参数标识,所述电机驱动器在收到所述驱动参数标识后,则可以根据驱动参数标识找到本地存储器内存储的一组驱动参数完成驱动参数的配置,具体驱动参数配置方式不构成对本发明的限制。
除前述实施例描述的转动惯量调节装置、负载模拟测试设备、测试方法及控制装置外,本发明实施例进一步提供另一种负载模拟测试设备。
参阅图12,本发明实施例八负载模拟测试设备包括:
负载调节装置35和控制装置37,所述负载调节装置35包括用于连接待测电机输出轴的传动轴351;
所述控制装置37连接所述负载调节装置35,所述控制装置37控制所述负载调节装置35进行负载调节;
所述负载模拟测试设备还包括第一变速装置31,所述第一变速装置31设置在所述负载调节装置35传动轴351连接待测电机输出轴(图未示)一端,用于改变所述待测电机输出轴与负载调节装置35传动轴之间的转速比。
区别于现有技术,本发明实施例负载测试设备通过在所述待测电机的输出轴与所述负载调节装置35传动轴351之间设置所述第一变速装置31,所核述变速装置31设置在负载调节装置35传动轴351与待测电机输出轴连接的一端,在对不同的待测电机输出轴进行测试时,换装方便,测试效率高,在不需要更换负载前提下,就能对待测电机进行模拟多轴负载条件下的负载模拟测试,能够扩大对待测电机的负载测试范围,极大方便对多轴机器人的不同轴进行测试。
在另一实施例中,所述负载模拟测试设备还包括传感装置33,所述传感装置33用于感测传动轴351的运动状态信息,所述控制装置37与传感装置33连接用于接收传感装置33的感测信号。
另一实施例中,所述第一变速装置31为多档可调变速装置。当对机器人的不同轴进行测试时,不需重新更换变速装置,只需对所述第一变速装置进行调节选择合适的转速比即可,便于对机器人的不同轴进行测试时,使用效果好。
当然,所述多档可调变速装置可以为连续多档可调变速装置,也可以为非连续多档可调变速装置,主要根据实际测试需要进行设置。当然,还可以采用更换不同转速比的所述第一变速装置的方式,模拟机器人的多轴负载特性。
另一实施例中,所述第一变速装置31设置为减速器。这样的设计能够实现小功率的待测电机驱动大转动惯量和大转动力矩的负载,扩大负载测试范围。
再请参阅图13,其是本发明实施例九负载模拟测试设备结构示意图。
本实施例中,所述负载测试设备与实施例八的大致相同,主要区别在于,所述传动轴451包括分离的第一传动单元4511和第二传动单元4513,所述传感装置43用于感测所述第一传动单元4511的转动状态信息,所述第一传动单元4511和第二传动单元4513之间设置第二变速装置39,用于改变所述第一传动单元4511与第二传动单元4513之间的转速比。
可以理解,本发明实施例中,所述转动状态信息为转动力矩和转速,可以理解,所述转动状态信息还可以为其他可以用于测评转动状态的数据参数,如转动角速度等,具体的参数可以是传感器直接可以感测得到的信号或者基于传感器直接感测的信号经过加工后的数据参数,具体的参数表现形式不构成对本发明的限制。
由于在所述第一传动单元4511与所述第二传动单元4513之间设置所述第二变速装置39,这样的设计可以改变所述第一传动单元4511与第二传动单元4513之间的转速比,便于进行负载测试。
另一实施例中,所述第二变速装置设置39为减速器。这样,可以实现利用小功率的待测电机来驱动大转动惯量大力矩的负载,扩大负载测试范围。
另一实施例中,所述负载调节装置45包括用于调节所述第二传动单元4513的转动力矩的制动器单元453,所述控制装置47与所述制动器单元453连接并对应控制所述制动器单元453工作。这种设计,所述控制装置47根据预先设定的力矩指令控制所述制动器单元对负载进行力矩的调节。所述力矩指令根据实际的机器人轴的特性设定。这样,在进行负载模拟测试中,可以进行负载的转动力矩的调节,从而模拟机器人该轴的转动力矩负载特性。
另一实施例中,所述负载调节装置45还包括调节所述第二传动单元4513的惯量调节单元455,所述控制装置47与所述惯量调节单元455连接并对应控制所述惯量调节单元455工作。所述控制装置47根据预先设定的转动惯量指令控制所述惯性量调节单元455对负载进行惯性量的调节。所述惯性量调节指令同样根据实际的机器人轴的特性设定。这样的设计,在进行负载模拟测试中,可以进行负载的转动惯量调节,从而模拟机器人该轴的变化转动惯量负载特性。
本发明实施例的所述第一变速装置41可以是固定转速比的变速装置,可以是多档可调转速比的变速装置,当然也可以是多档连续可调转速比变速装置。本实施例中,根据需要设置为多档连续可调转速比变速装置。这样,在对机器人的不同轴进行负载模拟测试时,只需对应调节所述第一变速装置41的转速比即能进行负载模拟测试。所述第一变速装置41可以是齿轮减速器,也可以是皮带轮减速器,具体可以根据需要对应选择设置。
本发明实施例的所述第二变速装置39同样可以设置为转速比多档可调,转速比多档连续可调和固定转速比的变速装置。本实施例中,设置为固定转速比的变速装置即可。
所述负载调节装置45包括制动器单元453,所述制动器单元453用于调节所述待测电机的转动力矩,所述控制装置47与所述制动器单元453连接并对应控制所述制动器单元453工作。
所述负载调节装置45还包括惯量调节单元455,所述惯量调节单元455用于调节所述待测电机的转动惯量,所述控制装置47与所述惯量调节单元455连接并对应控制所述惯量调节单元455工作。
所述制动器单元453和惯量调节单元455为设置在同一传动轴上的二个器件,用于对应模拟负载的转动力矩和转动惯量。
本实施例的负载测试设备的工作过程是:对待测电机进行测试时,所述第一变速装置对应改变所述待测电机输出轴与所述第一传动单元4511之间的转速比,使其模拟某一轴的负载以便进行此负载下的负载模拟测试。所述传感装置43对应感应所述第二传动单元4513上的速度和转动力矩等运动状态信息。所述传感装置43与所述控制装置47连接,并用于将感测到的转动状态信息发送至所述控制装置47。
根据模拟负载的需要,所述控制装置47根据预先设置的控制程序,向所述制动器单元453发送力矩调节指令,所述制动器单元453对应的调节负载转动力矩。
所述控制装置47根据预先设置的控制程序向惯量调节单元455发送转动惯量调节调节指令,所述惯量调节单元455对应调节负载的转动惯量。
所述控制装置47向所述制动器单元453发送的力矩调节指令和向所述惯量调节单元455发送的惯量调节指令根据所述机器人的实际轴的特性预先设定。
在所述控制装置47控制所述负载调节装置45对应调节负载的转动力矩和转动惯量时,所述待测电机对应驱动不同的负载工作,对待调试电机驱动器控制参数进行调整,以便测试得出对应不同负载下的待测电机驱动器使机器人获得较好控制性能的控制参数。
即,在不同的负载特性下,待测电机驱动器选择不同的控制参数才能使机器人获得比较好的控制特性。因此,为使机器人获得较好的控制性能,需要对工业机器人驱动机构控制参数进行反复调试。而采用本发明实施的负载模拟测试设备对机器人的负载进行模拟测试时,能使工业机器人获得较好的控制性能,但不会对机器人的机械本体造成冲击和损伤。
本实施例通过完全模拟工业机器人实际负载的方法,在待测电机安装到机械本体之前先对其控制参数进行调节,待控制性能满意后再将待测电机安装到机械本体上,从而避免对整个工业机器人机械本体的冲击和损伤。
相较于现有技术,本实施例的负载测试设备中,通过设置所述第一变速装置41用于改变所述输出轴与所述第一传动单元4511的转速比,能够模拟工业机器人负载的多轴异性,比如模拟实现以较小功率的待测电机驱动较大功率的负载情况,同时,可以通过改变转速比模拟测试多轴机器人,对其不同轴进行负载模拟测试。所述第二变速装置49通过改变所述第一传动单元4511和所述第二传动单元4513的转速比,实现利用较小功率的电机来驱动大转动惯量和大转动力矩的负载。
本实施例中,当需要模拟机器人另一单轴的负载特性时,只需将待测电机和待调试电机驱动器更换为对应轴的电机和待调试电机驱动器,改变所述第一变速装置41的转速比,同时改变由所述制动器单元453和惯量调节单元455对应模拟的转动力矩大小和转动惯量大小,从而模拟机器人该轴的负载特性。类似的,通过不断选择具有合适转速比的第一变速装置,可模拟工业机器人每一单轴的负载特性。
因此,本实施例的所述负载测试设备具有不需更换负载即能够模拟多轴机器人而对其不同轴进行测试,测试方便,且测试负载范围广的优点。
请参阅图14,其是本发明实施例十负载模拟测试方法的流程图。所述负载模拟测试方法包括如下步骤:
S21:将待测电机输出轴通过变速装置与负载调节装置的传动轴连接;在对待测电机进行测试时,将变速装置安装到负载调节装置的传动轴上,然后将待测电机的输出轴通过所述变速装置与传动轴对应连接,所述变速装置用于改变所述待测电机与负载调节装置传动轴的转速比。
S22:通过控制装置控制所述负载调节装置对所述待测电机进行测试;
对另一待测电机进行测试时,在所述变速装置不满足要求时,更换变速装置后开始测试。
S23:对另一待测电机进行测试时,在当前变速装置不满足要求时,更换变速装置后开始测试。
在对一个待测试电机的输出轴测试完成后,可以进行下一待测电机的测试,如果当前变速装置满足测试要求,直接将待测电机更换即可,如果当前变速装置不满足测试要求,则可通过更换变速装置后再安装待测电机进行测试。
所述步骤S2控制装置控制所述负载调节装置对所述待测电机进行测试的过程具体可以包括步骤:
根据待测电机的参数和待测电机的运行环境设置制动器的制动力矩和惯量调节单元的转动惯量;
然后启动电源开始对待测电机进行的测试,测试过程中控制装置接收与传动轴连接的传感器的感测信号,并根据所述感测信号生成测试结果;
当测试结果显示待测电机不满足要求时,则停止测试,重新设置当前测试电机的驱动参数或者更换待测电机,再开始测试,直到得到与所述负载调节装置匹配的待测电机的驱动参数。所述驱动参数包括功率参数,转速参数等控制待测电机运动的参数,在测试时,同时设置一传感装置用于感测所述待测电机驱动下的负载调节装置的传动轴的转动状态信息,并将感测到的转动状态信息发送到控制装置进行分析。
本步骤中,是通过在所述传动轴上设置一传感装置对所述传动轴进行负载的运动状态信息的感测,所述信息可以是转动力矩和速度信息。将感测到的运动状态信息通过控制装置进行分析,主要是分析当前负载下转动力矩和速度信息。通过所述控制装置控制所述负载调节装置进行负载调节。
根据预先设置的程序对应驱动负载调节装置进行负载的调节,如,进行转动力矩和转动惯量的调节实现负载的模拟。
本实施例中,在对待测电机进行测试时,改变待测电机输出轴与负载调节装置传动轴之间的转速比,并且在对不同的输出轴进行测试时,换装方便,测试效率高,可以实现对较小功率的电机驱动较大负载的模拟测试,扩大负载测试范围,同时,不用更换负载就能对机器人的不同轴进行负载模拟测试。
因此,本实施例的负载模拟测试方法具有测试方便,测试负载范围大的优点。
再请参阅图15,其是本发明实施例十一负载模拟测试控制装置的结构示意图。所述负载模拟测试控制装置包括:
第一控制单元201,用于输出信号以改变待测电机输出轴与负载调节装置传动轴之间的转速比;
信号接收单元202,用于接收感测到的负载调节装置传动轴在所述转速比下的转动状态信息。
第二控制单元203,用于输出信号以控制负载调节装置进行负载调节。
相较于现有技术,本实施例的负载模拟测试控制装置能够改变待测电机输出轴与负载调节装置传动轴之间的转速比,能够方便对机器人的不同轴进行负载测试时,具有实现负载模拟测试操作方便,测试负载范围广的优点。
本领域普通技术人员可以理解:实现上述实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (35)

  1. 一种负载模拟测试设备,其特征在于,其包括:
    惯量调节装置、控制装置、以及用于与待测电机装置连接的传动轴;
    所述惯量调节装置与传动轴连接,用于调节传动轴的转动惯量;
    所述控制装置与所述惯量调节装置连接,用于控制所述惯量调节装置调节所述传动轴的转动惯量。
  2. 根据权利要求1所述的负载模拟测试设备,其特征在于,所述惯量调节装置包括变惯量单元和驱动单元,所述变惯量单元连接所述传动轴,所述驱动单元分别与控制装置和变惯量单元连接,用于接收所述控制装置的控制命令,驱动所述变惯量单元改变转动惯量。
  3. 根据权利要求2所述的负载模拟测试设备,其特征在于,所述驱动单元包括电机和与所述电机连接的电机驱动器,所述电机驱动器驱动所述电机工作,所述电机连接所述变惯量单元,带动所述变惯量单元进行转动惯量的调节。
  4. 根据权利要求1所述的负载模拟测试设备,其特征在于,所述负载模拟测试设备还包括制动力矩调节器,所述制动力矩调节器分别与传动轴和控制装置连接,用于接收控制装置的控制指令,并根据控制装置的控制指令调节所述传动轴的制动力矩。
  5. 根据权利要求1所述的负载模拟测试设备,其特征在于,所述负载模拟测试设备包括传感器,所述传感器设置于所述传动轴上,用于感测所述传动轴的实际转动状态信息。
  6. 根据权利要求5所述的负载模拟测试设备,其特征在于,所述控制装置包括有信息采集单元,所述信息采集单元与所述传感器连接,用于采集所述传感器感测的转动状态信息。
  7. 如权利要求1所述的负载模拟测试设备,其特征在于,所述控制装置包括电机驱动参数配置单元,用于向待测电机的电机驱动器发送配置指令,修改电机驱动器的驱动参数。
  8. 如权利要求1所述的负载模拟测试设备,其特征在于,所述负载模拟测试设备还包括第一变速装置,所述第一变速装置设置在所述负载调节装置传动轴连接待测电机输出轴一端,用于改变所述待测电机输出轴与负载调节装置传动轴之间的转速比。
  9. 如权利要求8所述的负载模拟测试设备,其特征在于,所述第一变速装置为多档可调变速装置。
  10. 如权利要求8所述的负载模拟测试设备,其特征在于,所述传动轴包括分离的第一传动单元和第二传动单元,所述传感器用于感测所述第一传动单元上的运动状态信息,所述第一传动单元和第二传动单元之间设置第二变速装置,用于改变所述第一传动单元与第二传动单元之间的转速比。
  11. 根据权利要求10所述的负载模拟测试设备,其特征在于,所述第二变速装置为减速器。
  12. 一种负载模拟测试方法,其特征在于,包括:
    接收用户输入的转动惯量参数;
    根据转动惯量参数配置惯量调节装置的转动惯量;
    启动待测电机进行负载模拟测试;
    接收与待测电机连接的传动轴上的传感器感测反馈的实际转动状态信息;
    将所述实际转动状态信息与预设的理想转动状态信息进行比较,输出比较结果完成测试。
  13. 如权利要求12所述的方法,其特征在于,启动待测电机进行负载模拟测试之前,所述方法还包括:
    接收用户输入的制动力矩参数;
    按照所述制动力矩参数设置制动力矩调节器的制动力矩。
  14. 如权利要求12所述的方法,其特征在于,根据转动惯量参数设置惯量调节装置的转动惯量的过程包括:
    根据转动惯量参数获得转动惯量参数对应的电机驱动参数;
    通过所述电机驱动参数配置电机驱动器;
    电机驱动器驱动电机转动,并带动变惯量装置改变所述传动轴的转动惯量。
  15. 如权利要求13所述的方法,其特征在于,所述实际转动状态信息包括:实际转动力矩和实际转速;所述预设的理想转动状态信息包括:理想转动力矩和理想转速。
  16. 如权利要求15所述的方法,其特征在于,将所述实际转动状态信息与理想转动状态信息进行比较;输出比较结果完成测试的过程包括:
    计算实际转动力矩和理想转动力矩的第一差值;
    计算实际转速和理想转速的第二差值;
    若所述第一差值和第二差值均小于预置的允许差值范围,则判定所述待测电机满足测试要求。
  17. 如权利要求16所述的方法,其特征在于,还包括:若待测电机不满足测试要求,则向所述待测电机的驱动器发送配置指令,重新配置待测电机驱动器的驱动参数。
  18. 一种负载模拟测试控制装置,其特征在于,包括:
    惯量参数设置单元,用于接收用户输入的转动惯量参数;
    惯量调节单元,用于根据惯量参数设置单元的转动惯量参数配置惯量调节装置的转动惯量;
    采集单元,用于接收与待测电机连接的传动轴上的传感器感测反馈的实际转动状态信息;
    比较单元,用于将所述采集单元采集的实际转动状态信息与预设的理想转动状态信息进行比较,并输出比较结果。
  19. 如权利要求18所述的负载模拟测试控制装置,其特征在于,还包括:驱动参数配置单元,用于与待测电机的驱动器相连,在所述比较单元的比较结果为测试未通过时,重新配置待测电机驱动器的驱动参数。
  20. 一种负载模拟测试方法,其特征在于,其包括如下步骤:
    将待测电机输出轴通过变速装置与负载调节装置的传动轴连接;
    通过控制装置控制所述负载调节装置对所述待测电机进行测试;
      对另一待测电机进行测试时,在所述变速装置不满足要求时,更换变速装置后开始测试。
  21. 根据权利要求20所述的负载模拟测试方法,其特征在于,控制装置控制所述负载调节装置对所述待测电机进行测试的过程包括步骤:
    根据待测电机的参数和待测电机的运行环境设置制动器的制动力矩和惯量调节单元的转动惯量;
    然后启动电源开始对待测电机进行的测试,测试过程中控制装置接收与传动轴连接的传感器的感测信号,并根据所述感测信号生成测试结果;
    当测试结果显示待测电机不满足要求时,则停止测试,重新设置当前测试电机的驱动参数或者更换待测电机,再开始测试,直到得到与所述负载调节装置匹配的待测电机的驱动参数。
  22. 一种负载模拟测试的控制装置,其特征在于,其包括:
    第一控制单元,用于输出信号以改变待测电机输出轴与负载调节装置传动轴之间的转速比;
    信号接收单元,用于接收感测到的负载调节装置传动轴在所述转速比下的转动状态参数;
    第二控制单元,用于输出信号以控制负载调节装置进行负载调节。
  23. 一种转动惯量调节装置,其特征在于,包括主轴、关节臂结构体,和电动机;所述关节臂结构体包括至少一组关节臂,所述一组关节臂包括首尾铰接的第一关节臂和第二关节臂;所述第一关节臂的首部与所述主轴连接并相对于所述主轴的轴向位置固定,尾部与第二关节臂的首部铰接,所述第二关节臂的尾部与沿主轴轴向运动的运动块相连,所述运动块与所述电动机相连,所述电动机控制所述运动块在所述主轴上的位置。
  24. 如权利要求23所述的转动惯量调节装置,其特征在于,所述的关节臂结构体由两组相对于主轴对称的关节臂组成。
  25. 如权利要求23所述的转动惯量调节装置,其特征在于,所述的关节臂结构体由三组或三组以上的关节臂组成。
  26. 如权利要求23所述的转动惯量调节装置,其特征在于,所述主轴上设置有相对于主轴轴向位置固定的固定体,所述固定体与第一关节臂的首部铰接。
  27. 如权利要求23所述的转动惯量调节装置,其特征在于,所述固定体为固定环,所述固定环套在主轴上。
  28. 如权利要求23所述的转动惯量调节装置,其特征在于,所述第一关节臂和第二关节臂的直径由两端向铰接处逐渐增大。
  29. 如权利要求23所述的转动惯量调节装置,其特征在于,在所述第一关节臂和所述第二关节臂铰接处有质量体。
  30. 一种转动惯量调节装置,其特征在于:包括质量体、支承座、直线运动单元和电动机;所述质量体由两个铰接的质量块组成;所述支承座由固定支承座和滑动支承座组成,所述质量体两端分别通过枢轴与固定支承座和滑动支承座连接;所述直线运动单元包括导轨和滑块,所述滑块沿导轨运动;所述滑动支承座固定于所述滑块上;所述直线运动单元与所述电动机连接,所述电动机驱动所述滑块运动。
  31. 如权利要求30所述的转动惯量调节装置,其特征在于,所述转动惯量调节装置还包括防护罩,所述防护罩固定于所述固定支承座上。
  32. 如权利要求30所述的转动惯量调节装置,其特征在于,所述质量块上具有用于加装微小质量块的微调槽。
  33. 如权利要求30所述的转动惯量调节装置,其特征在于:所述转动惯量调节装置包括2个以上的质量体,所述质量体两端分别通过枢轴与所述固定支承座和所述滑动支承座连接。
  34. 如权利要求33所述的转动惯量调节装置,其特征在于:所述质量体在质量块铰接处内侧具有用于防止质量块运动为一条直线的直线限位块。
  35. 如权利要求30所述的转动惯量调节装置,其特征在于:在所述固定支承座的枢轴上具有用于防止质量块运动重合的重合限位块。
PCT/CN2012/076107 2011-05-27 2012-05-25 负载模拟测试设备、测试方法、控制装置及转动惯量调节装置 WO2012163253A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201110141279.1 2011-05-27
CN 201120176448 CN202110035U (zh) 2011-05-27 2011-05-27 一种转动惯量调节装置
CN201120176448.0 2011-05-27
CN201110141235.9 2011-05-27
CN201110141279A CN102323548A (zh) 2011-05-27 2011-05-27 负载模拟测试设备、负载模拟测试方法和控制装置
CN201110141235.9A CN102323547B (zh) 2011-05-27 2011-05-27 负载模拟测试设备、测试方法及负载模拟测试控制装置
CN 201120243609 CN202153171U (zh) 2011-07-12 2011-07-12 一种转动惯量调节装置
CN201120243609.3 2011-07-12

Publications (1)

Publication Number Publication Date
WO2012163253A1 true WO2012163253A1 (zh) 2012-12-06

Family

ID=47258373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076107 WO2012163253A1 (zh) 2011-05-27 2012-05-25 负载模拟测试设备、测试方法、控制装置及转动惯量调节装置

Country Status (1)

Country Link
WO (1) WO2012163253A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155608A (zh) * 2014-09-04 2014-11-19 上海航天电子通讯设备研究所 一种转动负载模拟装置
RU2533540C1 (ru) * 2013-05-21 2014-11-20 Алексей Васильевич Егоров Способ определения момента инерции цепной передачи
CN104634573A (zh) * 2015-02-09 2015-05-20 清华大学 一种用于双电机同轴冗余驱动控制研究的实验台
CN106646219A (zh) * 2015-10-30 2017-05-10 北京精密机电控制设备研究所 一种惯性负载模拟装置
CN107764538A (zh) * 2017-11-17 2018-03-06 太原科技大学 一种综合磁流变液制动系统试验台
CN108343565A (zh) * 2018-04-26 2018-07-31 中国矿业大学 风电机组永磁直驱变桨距系统动态负载模拟装置和方法
CN109946608A (zh) * 2019-04-19 2019-06-28 河北工业大学 一种转动惯量可调电机实验装置
CN111398816A (zh) * 2020-04-24 2020-07-10 泉州装备制造研究所 一种腿足机器人用电机系统在线测试装置
CN112611565A (zh) * 2020-12-31 2021-04-06 北京中科宇航技术有限公司 一种负载模拟装置
CN112665854A (zh) * 2020-12-30 2021-04-16 广东石油化工学院 一种高精度变速箱模拟诊断系统
CN112919276A (zh) * 2021-04-02 2021-06-08 日立电梯(中国)有限公司 一种电梯可靠性地面等效验证系统及方法
CN113096504A (zh) * 2021-04-22 2021-07-09 杭州电子科技大学 一种速度控制系统的模拟实验电路
CN113532855A (zh) * 2021-07-23 2021-10-22 北京卫星环境工程研究所 一种用于宇航机械臂关节寿命验证的地面综合试验系统
CN113640604A (zh) * 2021-08-12 2021-11-12 四川航天烽火伺服控制技术有限公司 一种电动舵机综合试验装置
CN114035044A (zh) * 2021-10-26 2022-02-11 日立楼宇技术(广州)有限公司 电机额定负载的测试方法、系统、装置及介质
CN114323620A (zh) * 2021-12-31 2022-04-12 中电科(宁波)海洋电子研究院有限公司 一种适用于舵轮驱动器的测试方法及其测试装置
CN114441205A (zh) * 2021-12-24 2022-05-06 湖南金翎箭信息技术有限公司 一种一体化舵机测试加载设备
CN115407198A (zh) * 2022-09-26 2022-11-29 华东交通大学 一种轮毂电机性能测试装置及方法
CN115825735A (zh) * 2023-01-09 2023-03-21 徐州金茂源车业有限公司 一种电动车电机性能测试台
CN115877114A (zh) * 2023-02-20 2023-03-31 极限人工智能有限公司 一种电动地脚支撑测试设备及测试方法
CN116907825A (zh) * 2023-09-11 2023-10-20 湖南揽月机电科技有限公司 一种飞轮轴系自动考核系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348289A (ja) * 1991-05-27 1992-12-03 Mitsubishi Electric Corp 車両用主電動機の回転性能試験装置
JP2003307554A (ja) * 2002-04-16 2003-10-31 Mitsuba Corp 被試験体の負荷試験装置
CN101211160A (zh) * 2006-12-30 2008-07-02 南京理工大学 伺服系统模拟加载控制装置
CN101477174A (zh) * 2008-10-31 2009-07-08 北京理工大学 伺服系统复杂负载工况模拟和性能测试装置
CN101788649A (zh) * 2009-01-23 2010-07-28 上海工程技术大学 一种电机负载模拟方法
CN201828650U (zh) * 2010-10-25 2011-05-11 广州数控设备有限公司 采用交流伺服电机作为可变转矩负载的模拟装置
CN202110258U (zh) * 2011-05-27 2012-01-11 北京配天大富精密机械有限公司 负载模拟测试设备
CN102323547A (zh) * 2011-05-27 2012-01-18 北京配天大富精密机械有限公司 负载模拟测试设备、测试方法及负载模拟测试控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348289A (ja) * 1991-05-27 1992-12-03 Mitsubishi Electric Corp 車両用主電動機の回転性能試験装置
JP2003307554A (ja) * 2002-04-16 2003-10-31 Mitsuba Corp 被試験体の負荷試験装置
CN101211160A (zh) * 2006-12-30 2008-07-02 南京理工大学 伺服系统模拟加载控制装置
CN101477174A (zh) * 2008-10-31 2009-07-08 北京理工大学 伺服系统复杂负载工况模拟和性能测试装置
CN101788649A (zh) * 2009-01-23 2010-07-28 上海工程技术大学 一种电机负载模拟方法
CN201828650U (zh) * 2010-10-25 2011-05-11 广州数控设备有限公司 采用交流伺服电机作为可变转矩负载的模拟装置
CN202110258U (zh) * 2011-05-27 2012-01-11 北京配天大富精密机械有限公司 负载模拟测试设备
CN102323547A (zh) * 2011-05-27 2012-01-18 北京配天大富精密机械有限公司 负载模拟测试设备、测试方法及负载模拟测试控制装置

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533540C1 (ru) * 2013-05-21 2014-11-20 Алексей Васильевич Егоров Способ определения момента инерции цепной передачи
CN104155608A (zh) * 2014-09-04 2014-11-19 上海航天电子通讯设备研究所 一种转动负载模拟装置
CN104634573A (zh) * 2015-02-09 2015-05-20 清华大学 一种用于双电机同轴冗余驱动控制研究的实验台
CN106646219A (zh) * 2015-10-30 2017-05-10 北京精密机电控制设备研究所 一种惯性负载模拟装置
CN107764538A (zh) * 2017-11-17 2018-03-06 太原科技大学 一种综合磁流变液制动系统试验台
CN107764538B (zh) * 2017-11-17 2024-05-07 太原科技大学 一种综合磁流变液制动系统试验台
CN108343565A (zh) * 2018-04-26 2018-07-31 中国矿业大学 风电机组永磁直驱变桨距系统动态负载模拟装置和方法
CN108343565B (zh) * 2018-04-26 2023-12-19 中国矿业大学 风电机组永磁直驱变桨距系统动态负载模拟装置和方法
CN109946608A (zh) * 2019-04-19 2019-06-28 河北工业大学 一种转动惯量可调电机实验装置
CN109946608B (zh) * 2019-04-19 2023-09-12 河北工业大学 一种转动惯量可调电机实验装置
CN111398816A (zh) * 2020-04-24 2020-07-10 泉州装备制造研究所 一种腿足机器人用电机系统在线测试装置
CN111398816B (zh) * 2020-04-24 2024-03-29 泉州装备制造研究所 一种腿足机器人用电机系统在线测试装置
CN112665854A (zh) * 2020-12-30 2021-04-16 广东石油化工学院 一种高精度变速箱模拟诊断系统
CN112665854B (zh) * 2020-12-30 2022-12-13 广东石油化工学院 一种高精度变速箱模拟诊断系统
CN112611565A (zh) * 2020-12-31 2021-04-06 北京中科宇航技术有限公司 一种负载模拟装置
CN112919276B (zh) * 2021-04-02 2024-02-06 日立电梯(中国)有限公司 一种电梯可靠性地面等效验证系统及方法
CN112919276A (zh) * 2021-04-02 2021-06-08 日立电梯(中国)有限公司 一种电梯可靠性地面等效验证系统及方法
CN113096504A (zh) * 2021-04-22 2021-07-09 杭州电子科技大学 一种速度控制系统的模拟实验电路
CN113096504B (zh) * 2021-04-22 2022-06-24 杭州电子科技大学 一种速度控制系统的模拟实验电路
CN113532855B (zh) * 2021-07-23 2024-03-12 北京卫星环境工程研究所 一种用于宇航机械臂关节寿命验证的地面综合试验系统
CN113532855A (zh) * 2021-07-23 2021-10-22 北京卫星环境工程研究所 一种用于宇航机械臂关节寿命验证的地面综合试验系统
CN113640604A (zh) * 2021-08-12 2021-11-12 四川航天烽火伺服控制技术有限公司 一种电动舵机综合试验装置
CN114035044A (zh) * 2021-10-26 2022-02-11 日立楼宇技术(广州)有限公司 电机额定负载的测试方法、系统、装置及介质
CN114035044B (zh) * 2021-10-26 2023-08-22 日立楼宇技术(广州)有限公司 电机额定负载的测试方法、系统、装置及介质
CN114441205A (zh) * 2021-12-24 2022-05-06 湖南金翎箭信息技术有限公司 一种一体化舵机测试加载设备
CN114323620B (zh) * 2021-12-31 2024-01-30 中电科(宁波)海洋电子研究院有限公司 一种适用于舵轮驱动器的测试方法及其测试装置
CN114323620A (zh) * 2021-12-31 2022-04-12 中电科(宁波)海洋电子研究院有限公司 一种适用于舵轮驱动器的测试方法及其测试装置
CN115407198A (zh) * 2022-09-26 2022-11-29 华东交通大学 一种轮毂电机性能测试装置及方法
CN115407198B (zh) * 2022-09-26 2024-05-14 华东交通大学 一种轮毂电机性能测试装置及方法
CN115825735A (zh) * 2023-01-09 2023-03-21 徐州金茂源车业有限公司 一种电动车电机性能测试台
CN115877114B (zh) * 2023-02-20 2023-08-25 极限人工智能有限公司 一种电动地脚支撑测试设备及测试方法
CN115877114A (zh) * 2023-02-20 2023-03-31 极限人工智能有限公司 一种电动地脚支撑测试设备及测试方法
CN116907825B (zh) * 2023-09-11 2024-01-16 湖南揽月机电科技有限公司 一种飞轮轴系自动考核系统及方法
CN116907825A (zh) * 2023-09-11 2023-10-20 湖南揽月机电科技有限公司 一种飞轮轴系自动考核系统及方法

Similar Documents

Publication Publication Date Title
WO2012163253A1 (zh) 负载模拟测试设备、测试方法、控制装置及转动惯量调节装置
WO2014073759A1 (ko) 구동기용 다목적 하중 모의 시험기 및 이를 이용한 모의 시험 시스템
CN105137562B (zh) 一种光学元件三自由度微位移调节装置
JP2735153B2 (ja) 精密位置制御装置及び精密位置制御方法
WO2010071261A1 (en) Displayable wind turbine
CN100384080C (zh) 用于光刻机的数字可调双环电机控制器及其数字调节方法
CN107241912A (zh) 竖向增稳机构及云台装置和拍摄设备
WO2020215387A1 (zh) 绳驱柔性机器人实验平台
CN102360231B (zh) 一种基于速率陀螺的挠性天线伺服控制系统
WO2020215385A1 (zh) 绳索驱动柔性机器人的运动学测试系统
CN102323547B (zh) 负载模拟测试设备、测试方法及负载模拟测试控制装置
WO2016080786A1 (ko) 회전 및 병진 운동 시의 출력부재의 강성을 제어하는 장치
WO2020226263A1 (ko) 전력 케이블 풀러 및 전력 케이블 풀러 시스템
CN214125185U (zh) 一种压电致动的永磁调速器的精确转速控制装置
Fujita et al. Dynamic characteristics and dual control of a ball screw drive with integrated piezoelectric actuator
CN112332633B (zh) 一种压电致动的永磁调速器的精确转速控制装置及其方法
JP2008528307A (ja) 動的平衡手段を持つ5バー機構と、5バー機構を動的に均衡させるための方法
JPH05138484A (ja) 精密位置決め微動送り装置およびシステム
JP2019126903A (ja) 自動制御装置及び自動制御方法
JPH0475831A (ja) ネジ締め装置
CN107971769A (zh) 一种数控车床夹具轴自动夹紧装置
Pikalov et al. Integrating electronic and mechanical components to create an adaptive battery tool
CN207588750U (zh) 一种开关磁阻控制模式平滑切换的装置控制系统
WO2023128584A1 (ko) 고 자유도 로봇 핸드
CN101031853A (zh) 载荷控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792911

Country of ref document: EP

Kind code of ref document: A1