WO2012163052A1 - 无源光网络的通道均衡方法和装置 - Google Patents

无源光网络的通道均衡方法和装置 Download PDF

Info

Publication number
WO2012163052A1
WO2012163052A1 PCT/CN2011/082221 CN2011082221W WO2012163052A1 WO 2012163052 A1 WO2012163052 A1 WO 2012163052A1 CN 2011082221 W CN2011082221 W CN 2011082221W WO 2012163052 A1 WO2012163052 A1 WO 2012163052A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
wavelength
uplink
load
channel
Prior art date
Application number
PCT/CN2011/082221
Other languages
English (en)
French (fr)
Inventor
叶飞
程宁
高波
刘福学
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/082221 priority Critical patent/WO2012163052A1/zh
Priority to CN201180002587.4A priority patent/CN102511170B/zh
Publication of WO2012163052A1 publication Critical patent/WO2012163052A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention relates to the field of optical fiber communications, and in particular, to a channel equalization method and apparatus for a Passive Optical Net Wotk (PON). Background technique
  • ODSM-PON Optical Dynamic Spectrum Management-Passive Optical Network
  • WDM Widelength Division Multiplexing
  • TDM Time Division Multiplexer
  • Hybrid passive optical network The ODSM-PON includes an OLT (Optical Line Terminal) on the office side, an ONU (Optical Network Unit) on the user side, or an Optical Network Terminal (ONT), and an Optical Distribution Network (ODN).
  • OLT Optical Line Terminal
  • ONT Optical Network Unit
  • ODN Optical Distribution Network
  • ODSM-PON can increase the channel by adopting WDM, and the TDM mode in the channel can improve efficiency and flexibility, thereby achieving relatively low user cost, and increasing network capacity expansion while maintaining high user bandwidth. Flexibility.
  • the OLT to the ONU is called downlink.
  • the OLT broadcasts the downlink data stream to all ONUs in TDM mode, but each ONU only receives data with its own identity.
  • the OLT's tunable DEMUX dynamically divides the upstream wavelength range into multiple upstream channels, of which the tunable DEMUX is shown in Figure 2.
  • Each uplink channel is received by one receiver, and ONUs in different uplink channels coexist in WDM mode.
  • the ONUs use TDMA (Time Division Multiple Access) in the uplink channel, that is, allocate time slots for each ONU in the channel through the OLT.
  • TDMA Time Division Multiple Access
  • Each ONU must send data in strict accordance with the time slot allocated by the OLT.
  • the wavelength of light emitted by the laser on the ONU side is affected by changes in ambient temperature or drive current, which causes wavelength drift and affects the quality of its own uplink data.
  • the changed wavelength may enter the range of receiving wavelengths of other receivers, so that the erroneous receiver receives the uplink data, and also interferes with the receiver receiving normal uplink data, and causes each The receiver load is not balanced.
  • the embodiment of the present invention provides a channel equalization method and device for a passive optical network.
  • the load of the upstream receiver is adjusted according to the load condition of the uplink receiver and the wavelength state of the ONU.
  • An obtaining module configured to obtain a wavelength state of an ONU of each uplink channel of the passive optical network
  • a load status acquisition module configured to obtain a load status of each uplink receiver according to a wavelength state of the ONU
  • a load adjustment module configured to adjust the load status according to the uplink receiver and a wavelength state of the ONU The load of the upstream receiver.
  • the embodiment of the present invention further provides a passive optical network system, including an optical line terminal OLT and a plurality of optical network units ONUs; the OLT includes a plurality of uplink receivers of different receiving wavelengths, respectively, for receiving light of different uplink channels. a signal, the plurality of optical network units are dynamically and tunably coupled to the plurality of uplink channels; wherein the OLT is configured to acquire a wavelength state of an optical network unit ONU of each uplink channel, according to a wavelength state of the ONU, Obtaining a load condition of each uplink receiver; adjusting a load of the uplink receiver according to a load condition of the uplink receiver and a wavelength state of the ONU.
  • a passive optical network system including an optical line terminal OLT and a plurality of optical network units ONUs; the OLT includes a plurality of uplink receivers of different receiving wavelengths, respectively, for receiving light of different uplink channels. a signal, the plurality of optical network units are dynamically and tunably coupled to the plurality of
  • the OLT detects the wavelength state of each ONU uplink data, obtains the load status of each uplink receiver, and adjusts the load of the receiver according to the wavelength state of the ONU and the load condition of the receiver.
  • the embodiment of the present invention can achieve uplink receiver load balancing. , the uplink bandwidth efficiency is improved and the purpose of optimizing the ONU reception effect is optimized.
  • FIG. 1 is a schematic diagram of a network architecture of 0DSM-P0N in the prior art
  • FIG. 3 is a schematic diagram of a network structure of an 0DSM-P0N system to which a channel equalization method for a passive optical network according to an embodiment of the present invention is applicable;
  • FIG. 4 is a schematic flowchart of a channel equalization method for a passive optical network according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic flowchart of a channel equalization method for a passive optical network according to Embodiment 2 of the present invention
  • It is a schematic structural diagram of a channel equalization device of a passive optical network according to Embodiment 3 of the present invention.
  • the embodiment of the present invention provides a channel equalization method for a passive optical network.
  • the central office OLT can activate the ONU wavelength state detection by triggering, for example, an error overrun trigger or a periodic start signal, thereby obtaining a load of each uplink receiver. a condition, and adjusting the load of each uplink receiver according to the load condition of the uplink receiver and the wavelength state of the ONU, such as adjusting the wavelength of the ONU and/or adjusting the uplink adjustable DEMUX (Demultiplexer)
  • the wavelength division is performed to achieve uplink channel equalization of the passive optical network.
  • the channel equalization method of the passive optical network may be applied to the ODSM-PON system as shown in FIG.
  • the ODSM-PON system includes a central office OLT and a plurality of ONUs at the user end, and the OLT is connected to the plurality of ONUs through an ODN.
  • 0DN can use two-stage splitting, the first stage is a hybrid optical multiplexer, and the second stage is a passive optical splitting device. The following is a description of the case where four pairs of wavelengths are used in the above lines and downlinks.
  • the OLT to the ONU is called downlink, the downlink uses four wavelengths, and coexists in WDM mode.
  • the ONU is divided into four groups according to the downlink wavelength.
  • the OLT broadcasts the downlink data stream to all corresponding receiving wavelengths in TDM mode.
  • each ONU only receives data with its own identity.
  • the OLT uses an adjustable DEMUX to divide the uplink wavelength into four channels, each channel being received by an uplink receiver, and the plurality of ONUs are dynamically and tunably coupled to the plurality of uplink channels. And the ONUs in different uplink channels coexist in WDM mode.
  • each ONU adopts the TDMA mode in the uplink channel, that is, the OLT allocates time slots for each ONU in the channel, and each ONU must strictly allocate according to the OLT.
  • the slot sends data.
  • the continuous signal light of different wavelengths emitted by the four transmitters Txl-Tx4 of the OLT is coupled by the optical multiplexer (Multiplexer, MUX) to form a downlink multiplexed optical output to the backbone optical fiber of the ODN.
  • the fiber After the fiber is transmitted, it arrives at the hybrid device (Hybrid-Box).
  • the downlink multiplexed light is demultiplexed by the WDM coupler, and demultiplexed by another MUX, and the demultiplexed output of the different wavelengths of the downstream light are respectively coupled. It enters the corresponding branch fiber and is transmitted to the second-stage passive optical splitter via the branch fiber, and then transmitted to each ONU through the host fiber.
  • the uplink burst optical signal transmitted by the ONU is coupled into the branch fiber through the second-stage passive optical splitter through the second-stage passive optical splitter, and enters the Hybrid-Box through the branch fiber, and passes through the WDM inside the Hybrid-Box.
  • the passive optical splitter inside the Hybrid-Box is coupled and coupled to form an upward coupled light at the passive optical splitter, and the uplink coupled light enters the trunk optical fiber through the WDM device and is transmitted through the trunk optical fiber.
  • the uplink coupled light After arriving at the central office OLT. Inside the OLT, the uplink coupled light is demultiplexed by the uplink tunable DEMUX, and then received by four uplink receivers RxA-RxD of different receiving wavelengths.
  • the channel equalization method of the passive optical network is described in detail below in conjunction with the ODSM-PON system shown in FIG. 3 and through several specific embodiments.
  • Embodiment 1 of the present invention provides a channel equalization method for a passive optical network, and the process thereof is as shown in FIG. 4, including: Step 401: The OLT acquires a wavelength state of an ONU of an optical network unit of each uplink channel;
  • Step 402 According to the wavelength state of the ONU, the OLT obtains the load status of each uplink receiver.
  • Step 403 Adjust the load of the uplink receiver according to the load status of the uplink receiver and the wavelength state of the ONU. For example, adjusting the wavelength of each ONU and/or adjusting the wavelength division of the uplink DEMUX.
  • the load state of each uplink receiver is obtained by detecting the wavelength state of each ONU uplink data, and the load of the receiver is adjusted according to the wavelength state of the ONU and the load condition of the receiver. It achieves the purpose of uplink receiver load balancing, uplink bandwidth efficiency improvement and optimized ONU reception.
  • Example 2
  • a second embodiment of the present invention provides a channel equalization method for a passive optical network.
  • an error condition is used as a trigger condition for triggering ONU wavelength detection.
  • the process is as shown in FIG. 5, and includes:
  • Step 501 The ONU enters the running state.
  • the OLT periodically initiates the ONU automatic discovery process.
  • the ONU feeds back to the OLT the type of the current ONU transmitter, that is, whether it is a wavelength-adjustable ONU. If the wavelength is adjustable, the ONU can also feedback parameters such as the wavelength adjustment range and the adjustment time. The default value for these parameters is 0.
  • the default transmitter type is not adjustable, which is the transmitter used by the existing ONU.
  • the operation state of the ONU that is, the 05 state in the GPON standard, and other standards such as XG-PON, EPON, and 10G-EPON have equivalent states. If the ONU has just entered the running state after the automatic discovery process is online, the wavelength state of the ONU is unknown, and a trigger signal for detecting the ONU wavelength state is generated. After the OLT ends the ONU automatic discovery process, the ONU wavelength monitoring trigger function is enabled.
  • the DBA Dynamic Bandwidth Allocation
  • the OLT may allocate TDM bandwidth for the ONU or WDM bandwidth for the ONU.
  • the error rate increases.
  • Existing PON (Passive Optical Network) systems such as GPON and 10G-GPON define BIP (Bit Interleaved Parity) and FEC (Forward Error Correction), other PONs.
  • the system also has FEC or other similar function definitions based on which error statistics can be made.
  • the wavelength drift causes error, but the bit error rate increase is not necessarily caused by the wavelength drift. Since the error detection can be performed online, when the error rate of the ONU uplink data transmission exceeds the preset value within a certain period of time.
  • the error overrun signal can be used as a trigger signal for wavelength detection.
  • the error overrun trigger signal can be associated with a single ONU that produces a bit error, or with all ONUs.
  • the ONU wavelength detection state trigger signal can be used as the trigger signal for the global ONU wavelength state detection.
  • ONU wavelength detection by a periodic start signal.
  • the OLT can set different period values for different ONUs.
  • the periodic start signal trigger can be associated with a single ONU or with all ONUs.
  • Step 502 When the OLT detects the trigger signal, triggering the ONU wavelength detection state, and allocating the time division multiplexing TDM bandwidth to the ONU.
  • the ONU registers the trigger signal after the online connection, and the single ONU wavelength detection enable signal is used to trigger the measurement of the wavelength state of a single ONU; the error overrun signal, the periodic start signal, LOS/LOBi (or LOFi/ LOSi)
  • the signal or the like is a wavelength state detection for triggering all ONUs.
  • DBA Dynamic Bandwidth Allocation
  • the DBA allocates TDM bandwidth to the ONU. That is, the DBA allocates the time slot authorization with the same start time and length to the ONU on the receiving channel and its left and right adjacent channels.
  • ONUs of different uplink channels share uplink bandwidth in WDM mode, and data transmission in TDMA mode in the same uplink channel.
  • WDM+TDMA When the optical signal transmitted by an ONU is drifting, the OLT does not know which ONU wavelength has drifted.
  • WDM+TDMA In order to avoid interference from adjacent channels, it is necessary to use WDM+TDMA on the original receiving channel and adjacent channels.
  • the ONUs that transmit the uplink data are all reassigned to the TDMA transmission mode, that is, the uplink bandwidth is shared in the TDM manner on the original receiving channel and the adjacent channel.
  • the DBA allocates time slots of the same start time and length on the original receiving channel and adjacent channels. That is, at a certain time, the OLT receives only one ONU optical signal on the original receiving channel and the adjacent channel. According to the timing relationship of the DBA, the effective time of the TDM mode switch can be determined. After the TDM mode is switched, the ONU wavelength state detection state is entered.
  • the wavelength monitoring trigger In the TDM mode, in order to avoid the logic or chip state machine deadlock, the wavelength monitoring trigger needs to be deactivated. That is, the OLT no longer processes the trigger signal of the ONU wavelength state detection.
  • Step 503 Detect the ONU wavelength state of the uplink channel, and record the number of each ONU of the uplink channel that falls into the transition zone and the number that falls into the passband.
  • the OLT can determine the time when each ONU uplink signal arrives at the OLT receiver according to the DBA bandwidth grant information (such as the bandwidth mapping table BWMAP), that is, it can know which ONU optical signal is measured.
  • the SD and RSSI of the uplink signal of each ONU are measured by the optical module, and the wavelength state of the ONU is judged according to the measurement result.
  • the wavelength of the ONU is on the DEMUX transition band between the RSSI maximum value and the next largest value corresponding channel, otherwise the wavelength of the ONU is in the RSSI The maximum corresponds to the channel.
  • an ONU wavelength state table is generated. As shown in Table 1:
  • the ONU-ID is a globally unique identifier assigned by the OLT when the ONU is registered to go online;
  • the ONU type is reported when the ONU is registered on the line, and includes whether the ONU laser is wavelength-tunable information;
  • the CH-ID is the number of the OLT-side receiver and corresponds to each upstream channel. During the ONU registration process, the CH-ID corresponds to the number of the receiver that received the serial number response of the ONU. After the ONU wavelength state detection is completed, the CH-ID corresponding to the ONU can be calculated according to the foregoing detection results of SD and RSSI;
  • the Edge-ID is the number of the transition zone of the DEMUX. For the case where the ONU wavelength is in the pass band, that is, in the case of the transition band, the Edge-ID defaults to 0.
  • the upstream wavelength range is 1260nm ⁇ 1280nm. If the start wavelength of the short-wavelength passband (corresponding to channel 1) of DEMUX is less than or equal to 1260 nm, and the end wavelength of the long-wavelength passband (corresponding to channel 4) of DEMUX is greater than or equal to 1280 nm, then the DEMUX has 3 Transition zone.
  • the detection of the bit error rate is carried out without interruption.
  • the speed of wavelength drift is in the order of seconds or milliseconds; for low-cost adjustable ONUs, the wavelength adjustment speed is similar.
  • the ONU wavelength drift or adjustment speed is slow relative to the error detection speed.
  • the error rate of the ONU uplink transmission will gradually increase until it drifts to the adjacent channel and then slowly decreases. Therefore, the drift of the ONU wavelength can be monitored by detecting the bit error rate.
  • there may be many reasons for the error It is not considered that the ONU wavelength has drifted because of the error. It is necessary to determine the wavelength state of the ONU by performing SD and RSSI detection on the original receiving channel and the adjacent channel.
  • the adjustable ONU of the wavelength in the transition zone of the DEMUX is directly adjusted to the emission wavelength of the ONU;
  • the second case is the channel load of the transition of the DEMUX to the case where the uplink channel is unbalanced.
  • the third case is that when the ONU wavelength state table does not satisfy the first case or the second case, the ONU wavelength and the adjustable DEMUX are stopped, and the description has been reached. The purpose of channel equalization.
  • the ONU When the wavelength falls into the transition zone, the ONU is an ONU whose wavelength is not adjustable, or the wavelength-adjustable ONU that falls into the transition zone cannot reach the channel balance because the wavelength adjustment range is small. In this case, it is necessary to improve the uplink channel load by adjusting the uplink DEMUX. Balance, improve the utilization of upstream bandwidth.
  • Step 504 According to the ONU wavelength state table, when detecting that the ONU wavelength falls into the transition band and is of a wavelength-adjustable type ONU, adjust the ONU wavelength to the DEMUX passband corresponding to the uplink channel with the smallest load in the wavelength adjustment capability range. Within the wavelength range.
  • the passband wavelength range of each uplink channel is determined according to the wavelength setting of the DEMUX, and the load of each uplink channel is obtained according to the ONU wavelength state table, and the target channel adjusted by the ONU is determined. That is, the channel with the smallest load in the ONU wavelength adjustment capability range, and the target emission wavelength value of the ONU wavelength adjustment is determined according to the wavelength range of the DEMUX passband of the target channel.
  • the ONU wavelength adjustment range is limited, when determining the ONU wavelength adjustment target emission wavelength value, it is necessary to set in the range in which the ONU wavelength is adjustable. After determining the target transmit wavelength of the ONU, the transmit wavelength value is sent to the ONU to be adjusted, so that the ONU to be adjusted adjusts its own transmit wavelength, and sends the uplink data to the receiver of the load small channel.
  • the OLT can send the target wavelength value to the designated ONU through the MAC-level control channel such as downlink PLOAM, OMCI or OAM.
  • the MAC-level control channel such as downlink PLOAM, OMCI or OAM.
  • Step 505 When the OLT receives the feedback information of the ONU to be adjusted or the timeout information of the first timer, it is re-detected whether the wavelength of the ONU to be adjusted falls within the wavelength range of the DEMUX passband of the target channel. If the upstream optical signal of the ONU to be adjusted does not fall within the wavelength range of the DEMUX passband of the target channel, it is re-adjusted.
  • the adjusted ONU can send feedback information to the OLT through the control channel of the MAC layer such as uplink PLOAM, OMCI or OAM to confirm the wavelength adjustment result.
  • the feedback information can be adjusted or failed.
  • the time set by the timer should be greater than the time to adjust the ONU wavelength and send the upstream optical signal to the OLT. If the device times out, it is considered that the ONU wavelength adjustment process is completed.
  • the OLT After receiving the feedback information or the timer timeout information, the OLT re-detects the ONU wavelength state, refreshes the ONU wavelength state table, checks whether the wavelength of the ONU falls within the target passband range, and continues to be in the transition zone according to the wavelength state table.
  • the wavelength-adjustable ONU performs wavelength adjustment. If no wavelength-adjustable ONU is in the transition zone, step 401 is performed.
  • the ONU wavelength adjustment can have an effect on a single ONU or on multiple or all ONUs.
  • Step 506 Determine, according to the ONU wavelength state table, a load status of each uplink channel. If the difference between the load of any two uplink channels exceeds a second threshold, adjust the wavelength division of the uplink DEMUX, so that load balancing of each uplink channel is performed. .
  • the wavelength position of the transition band of the uplink DEMUX on the OLT end can be adjusted, that is, the wavelength range of the passband of the uplink DEMUX can be adjusted, that is, the receiving wavelength range of the uplink channel is adjustable, and how to adjust the passband of the uplink DEMUX.
  • the wavelength range is prior art and will not be described here.
  • the adjustable DEMUX can be adjusted to achieve channel equalization.
  • the wavelength division of the uplink DEMUX is adjusted to balance the load of each uplink channel.
  • the adjustment of the DEMUX transition band can refer to the traversal algorithm of the complete binary tree. First, the sum of the channel loads on both sides of the transition zone of the adjustable DEMUX can be compared. If the difference between the sum of the channel loads on both sides of the transition zone exceeds the second threshold, then the transition is brought to the larger side of the channel load. Adjusted so that the channel load on both sides of the transition band meets the conditions of channel load balancing.
  • the two channels on the left side of the most intermediate transition zone reach Load balancing, that is, adjusting the transition band on the left side, adjusting the transition band to the side with larger channel load, so that the difference between the loads of the two channels on the two sides of the transition band does not exceed the second threshold, that is, the condition of the channel load balance is satisfied.
  • the two channels on the right side of the intermediate transition zone are load balanced.
  • the channel load balancing can be achieved.
  • this load balancing adjustment can also achieve the effect of adjusting the unadjustable ONU from the transition band to the channel.
  • Step 507 When the OLT receives the feedback information of the DEMUX to be adjusted or the timeout information of the second timer, re-detect the ONU wavelength state, and check whether the difference between the load of any two uplink channels exceeds the second threshold, if any If the difference between the loads of the two upstream channels exceeds the second threshold, it is re-adjusted.
  • the adjustment process is based on the feedback information of the DEMUX adjustment process or the timeout information of the DEMUX adjustment timer.
  • the timeout information indicates that the DEMUX adjustment is completed.
  • the OLT After the OLT receives the feedback information of the DEMUX or the timeout information of the DEMUX adjustment timer, the OLT rechecks the wavelength status of the ONU and checks whether the uplink channel is load balanced, that is, whether the difference between the load of any two uplink channels is less than the second threshold.
  • the adjustment of the adjustable DEMUX is generally performed in the manner in which all ONUs participate. This is because the adjustment of the adjustable DEMUX affects the wavelength division of the uplink channel, and the influence on the uplink reception of the ONU is difficult to judge, and it is necessary to make the uplink that may be affected.
  • the channel works in TDM mode.
  • TDM mode switching and ONU wavelength state detection have relatively high requirements on timing control and response speed, they are generally implemented by hardware technologies such as FPGA, ASIC, SoC, circuit or chip. Other functions, such as
  • the adjustment algorithms of ONU and DEMUX can be implemented in software or in hardware technologies such as FPGA, ASIC, SoC, circuit or chip.
  • the feature of the embodiment of the invention is that the channel equalization and the uplink bandwidth efficiency can be improved by the ONU wavelength adjustment or the adjustable DEMUX adjustment, without the support of the microsecond adjustable ONU optical module, and the service operation is not interrupted.
  • the technical solution of the present invention is mainly described on the basis of the ITU-T G.987.3 standard (XG-PON), but is not limited thereto, EPON,
  • GPON or 10G-EPON are also suitable.
  • the wavelength of the ONU can be detected by triggering the trigger signal, and the wavelength of the ONU can be detected in time.
  • the uplink channel load balancing, the uplink bandwidth efficiency, and the optimized ONU receiving effect are achieved. the goal of. Example 3
  • Embodiment 3 of the present invention proposes a channel equalization device for a passive optical network, where the channel equalization device can be
  • the internal OLT of the ODSM-PON system is implemented internally to implement uplink channel equalization of the ODSM-PON system.
  • the channel equalization device of the passive optical network includes:
  • the obtaining module 601 is configured to obtain a wavelength state of an ONU of each uplink channel of the passive optical network.
  • the load status obtaining module 602 is configured to obtain a load status of each uplink receiver according to the wavelength state of the ONU.
  • the adjustment load module 603 is configured to adjust a load of the uplink receiver according to a load condition of the uplink receiver and a wavelength state of the ONU.
  • the obtaining module 601 may specifically include:
  • a bandwidth allocation unit 6011 configured to allocate a time division multiplexing TDM bandwidth to the ONU;
  • the recording unit 6012 is configured to record the number of each ONU that falls into the transition zone and the number that falls into the passband.
  • the adjustment load module 603 can specifically include:
  • the first adjustment load unit 6031 is configured to adjust the ONU wavelength to the DEMUX corresponding to the uplink channel with the smallest load in the wavelength adjustment capability range when the detected ONU uplink optical signal drifts and is of the wavelength-adjustable type ONU Within the passband; or,
  • the second adjustment load unit 6032 is configured to determine the load status of each uplink channel. If the difference between the load of any two uplink channels exceeds the second threshold, the wavelength division of the uplink DEMUX is adjusted to balance the load of each uplink channel.
  • the first adjustment load unit 6031 may specifically include:
  • the processing sub-unit 60311 is configured to determine, according to the load condition of each uplink receiver, an uplink receiver with a minimum load in the range of the ONU wavelength adjustment capability, and determine, according to a wavelength range of the DEMUX passband corresponding to the uplink receiver, an ONU to be adjusted.
  • Target emission wavelength value
  • the sending sub-unit 60312 is configured to send the target transmit wavelength value to the ONU to be adjusted, so that the ONU to be adjusted adjusts its own transmit wavelength, and sends the uplink data to the receiving of the uplink receiver with less load.
  • the second adjustment load unit 6032 may specifically include:
  • the determining sub-unit 60321 is configured to adjust the transition band between the two sides of the DEMUX, and determine whether the load difference of the channels on the two sides of each DEMUX transition band exceeds the second threshold;
  • the adjusting sub-unit 60322 is configured to adjust, if it exceeds, the transition of the difference between the load of the two adjacent channels exceeds the second threshold to the side of the channel load, so that the channels on both sides of the transition band are load balanced.
  • the channel equalization device of the passive optical network may further include:
  • the first triggering module 604 is configured to detect a bit error rate of the ONU transmission data of the received uplink channel, when the error occurs. When the code rate exceeds the first threshold, an error overrun signal is generated, and the acquiring module is triggered to acquire the wavelength state of each uplink channel ONU.
  • the second triggering module 605 is configured to trigger the acquiring module to acquire the wavelength state of each ONU of the uplink channel according to the periodic global ONU wavelength detection signal of the preset time period.
  • the third triggering module 606 is configured to: when the ONU enters the running state after the automatic discovery process is online, and the wavelength state of the ONU is unknown, the ONU wavelength detection state triggering signal is generated, and the acquiring module is triggered to acquire the wavelength of the ONU of each uplink channel. State
  • the fourth triggering module 607 is configured to: according to the optical signal loss LOS signal or the uplink burst loss LOBi signal or the frame loss LOFi signal or the optical signal loss LOSi signal, trigger the acquiring module to obtain the wavelength state of each uplink channel ONU.
  • the load state of each uplink receiver is obtained by detecting the wavelength state of each ONU uplink data, and the load of the receiver is adjusted according to the wavelength state of the ONU and the load condition of the receiver. It achieves the purpose of uplink receiver load balancing, uplink bandwidth efficiency improvement and optimized ONU reception.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种无源光网络的通道均衡方法和装置,属于光纤通信领域,所述方法包括:获取无源光网络各上行通道的光网络单元ONU的波长状态;根据所述ONU的波长状态,得到各上行接收机的负载状况;根据所述上行接收机的负载状况以及所述ONU的波长状态,调节所述上行接收机的负载。本发明实施例公开的方法可以达到上行接收机负载均衡、上行带宽效率提升和优化ONU接收效果的目的。

Description

无源光网络的通道均衡方法和装置 技术领域
本发明涉及光纤通信领域, 特别涉及一种无源光网络 (Passive Optical Netwotk, PON)的 通道均衡方法和装置。 背景技术
ODSM-PON ( Optical Dynamic Spectrum Management-Passive Optical Network,动态光谱 管理-无源光纤网络) 是一种结合 WDM ( Wavelength Division Multiplexing, 波分复用) 和 TDM ( Time Division Multiplexer, 时分复用) 技术的混合无源光网络。 ODSM-PON包括局 侧的 OLT ( Optical Line Terminal, 光线路终端)、 用户侧的 ONU ( Optical Network Unit, 光 网络单元)或者 ONT( Optical Network Terminal,光网络终端)、以及 ODN( Optical Distribution Network, 光分配网络)。 ODSM-PON通过采用 WDM可以增加信道, 信道内采用 TDM方 式可以提高效率和灵活性, 从而实现了相对较低的用户成本, 并在维持较高的用户使用带 宽的前提下, 增加了网络容量扩展的弹性。
在 ODSM-PON系统中如图 1所示, 从 OLT到 ONU称为下行, OLT以 TDM方式将下 行数据流广播到所有 ONU, 但各 ONU只接收带有自身标识的数据。 反之, 从 ONU到 OLT 为上行, OLT 的可调 DEMUX (解复用器) 将上行波长范围动态划分为多个上行通道, 其 中可调 DEMUX如图 2所示。每个上行通道由一个接收机接收, 不同上行通道内的 ONU以 WDM方式共存。为了保证同一上行通道内的各个 ONU的上行信号不发生冲突,这些 ONU 在该上行通道内采用 TDMA ( Time Division Multiple Access, 时分多址)方式, 即通过 OLT 为通道内的每个 ONU分配时隙, 各个 ONU必须严格按照 OLT分配的时隙发送数据。 在图 1所示的 ODSM-PON系统中, ONU侧的激光器发射的光的波长会受到环境温度 或驱动电流的变化的影响, 从而导致波长发生漂移, 会影响自身上行数据的质量。 由于波 长发生了变化, 改变后的波长有可能进入其它接收机接收波长的范围, 使得错误的接收机 接收到了该上行数据, 同时也对该接收机接收正常的上行数据产生了干扰, 并导致各接收 机负载不均衡。 发明内容
为了解决 OLT侧上行接收机负载不均衡的问题, 本发明实施例提供了一种无源光网络 的通道均衡方法和装置。
本发明实施例提出的无源光网络的通道均衡方法, 包括:
获取无源光网络各上行通道光网络单元的 ONU的波长状态;
根据所述 ONU的波长状态, 得到各上行接收机的负载状况;
根据所述上行接收机的负载状况以及所述 ONU的波长状态,调节所述上行接收机的负 载。
本发明实施例提出的无源光网络的通道均衡装置, 包括:
获取模块, 用于获取无源光网络各的上行通道 ONU的波长状态;
负载状况获取模块, 用于根据所述 ONU的波长状态, 得到各上行接收机的负载状况; 调节负载模块, 用于根据所述上行接收机的负载状况以及所述 ONU的波长状态, 调节 所述上行接收机的负载。
本发明实施例还提出一种无源光网络系统, 包括光线路终端 OLT 和多个光网络单元 ONU; 所述 OLT包括多个不同接收波长的上行接收机, 分别用于接收不同上行通道的光信 号, 所述多个光网络单元动态可调地耦合到所述多个上行通道; 其中, 所述 OLT用于获取 各上行通道的光网络单元 ONU的波长状态, 根据所述 ONU的波长状态, 得到各上行接收 机的负载状况; 根据所述上行接收机的负载状况以及所述 ONU的波长状态, 调节所述上行 接收机的负载。
本发明实施例提供的技术方案可以达到以下的有益效果:
通过 OLT检测各 ONU上行数据的波长状态, 获取各上行接收机的负载状况, 并根据 ONU的波长状态以及接收机的负载状况, 调节接收机的负载, 本发明实施例可以达到上行 接收机负载均衡、 上行带宽效率提升和优化 ONU接收效果的目的。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的 附图。
图 1是现有技术中 0DSM-P0N的一种网络架构示意图;
图 2是现有技术中一种基于 TEF ( Tunable Edge Filter, 可调边缘滤波器) 的可调 DEMUX 的原理示意图;
图 3是本发明实施例提供的无源光网络的通道均衡方法可以适用的 0DSM-P0N系统的网 络结构示意图;
图 4是本发明实施例 1提供的一种无源光网络的通道均衡方法的流程示意图; 图 5是本发明实施例 2提供的一种无源光网络的通道均衡方法的流程示意图; 图 6是本发明实施例 3提供的一种无源光网络的通道均衡装置的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
本发明实施例提供一种无源光网络的通道均衡方法, 局端 OLT可以通过如误码超限触 发或周期性启动信号触发的方式来激活 ONU波长状态检测,从而得到各个上行接收机的负 载状况,并根据所述上行接收机的负载状况和所述 ONU的波长状态调节各个上行接收机的 负载, 比如调节所述 ONU的波长和 /或调节上行可调 DEMUX ( Demultiplexer, 解复用器) 的波长划分, 从而实现所述无源光网络的上行通道均衡。
在一种实施例中, 所述无源光网络的通道均衡方法可以适用于如图 3 所示的 ODSM-PON系统。请参阅图 3,所述 ODSM-PON系统包括局端 OLT和用户端的多个 ONU, 所述 OLT通过 ODN连接到所述多个 ONU。 在所述 0DSM-P0N系统中, 0DN可以采用两级分 光, 第一级是混合光复用器, 第二级是无源分光器件。 下面以上行、 下行各采用四对波长 的情况来说明。从 OLT到 ONU称为下行, 下行采用四个波长, 并以 WDM方式共存; ONU 根据下行波长分成四组, 在每个下行波长上, OLT以 TDM方式将下行数据流广播到所有对 应接收波长的 ONU, 但各 ONU只接收带有自身标识的数据。 反之, 从 ONU到 OLT为上 行, OLT采用可调 DEMUX将上行波长划分为四个通道, 每个通道由一个上行接收机接收, 所述多个 ONU动态可调地耦合到所述多个上行通道, 且不同上行通道内的 ONU以 WDM 方式共存。 为了保证同一上行通道内的各个 ONU的上行信号不发生冲突, 各个 ONU在该 上行通道内采用 TDMA方式, 即通过 OLT为通道内的每个 ONU分配时隙, 各个 ONU必 须严格按照 OLT分配的时隙发送数据。
在下行方向上, OLT的四个发射机 Txl-Tx4发射的不同波长的连续信号光通过光复用 器 (Multiplexer, MUX) 波分复用耦合后形成下行复用光输出到 ODN的主干光纤, 经主 干光纤传输后到达混合装置 (Hybrid-Box)。 在 Hybrid-Box内, 所述下行复用光经 WDM耦 合器分波后,通过另一个 MUX进行解复用,解复用输出的各个不同波长的下行光分别耦合 进入对应的分支光纤, 并且经分支光纤传输到第二级无源光分路器, 再经入户光纤传输到 各个 ONU。
在上行方向上, ONU发射的上行突发光信号经入户光纤由第二级无源光分路器耦合进 入分支光纤, 经分支光纤后进入 Hybrid-Box, 经所述 Hybrid-Box内部的 WDM器件分波后 进入所述 Hybrid-Box 内部的无源光分路器并在所述无源光分路器进行耦合形成上行耦合 光, 上行耦合光进而通过 WDM器件进入主干光纤, 经主干光纤传输后到达局端 OLT。 在 OLT内部, 所述上行耦合光经过上行可调 DEMUX进行解复用之后, 分别由四个不同接收 波长的上行接收机 RxA-RxD接收。 以下结合图 3所示的 ODSM-PON系统, 并通过若干个具体实施例, 对所述无源光网络 的通道均衡方法进行详细介绍。
实施例 1
本发明实施例 1提出了一种无源光网络的通道均衡方法, 其流程如图 4所示, 包括: 步骤 401 : OLT获取各上行通道的光网络单元 ONU的波长状态;
步骤 402: 根据所述 ONU的波长状态, OLT得到各上行接收机的负载状况; 步骤 403: 根据所述上行接收机的负载状况以及所述 ONU的波长状态, 调节所述上行 接收机的负载, 比如调节各个 ONU的波长和 /或调节上行 DEMUX的波长划分。
本发明实施例通过检测各 ONU上行数据的波长状态, 得到各上行接收机的负载状况, 并根据 ONU的波长状态以及接收机的负载状况, 调节接收机的负载。达到上行接收机负载 均衡、 上行带宽效率提升和优化 ONU接收效果的目的。 实施例 2
本发明实施例 2提出了一种无源光网络的通道均衡方法, 本实施例以误码超限信号作 为触发 ONU波长检测的触发条件为例, 其流程如图 5所示, 包括:
步骤 501 : ONU进入运行状态。
OLT周期性启动 ONU自动发现流程, ONU向 OLT反馈当前 ONU发射机的类型, 即 是否为波长可调 ONU。 若为波长可调 ONU则还可以反馈波长调节范围、 调节时间等参数。 这些参数的默认值为 0, 默认的发射机的类型是不可调的, 即现有 ONU使用的发射机。
ONU的运行 (Operation) 状态, 即 GPON标准中的 05状态, 其它标准如 XG-PON、 EPON、 10G-EPON等也都有等效状态。 若 ONU刚刚通过自动发现流程上线后进入运行状 态, 此时 ONU的波长状态未知, 则产生 ONU波长状态检测的触发信号。 在 OLT结束 ONU自动发现流程后, ONU波长监控触发功能处于使能状态。
对于波长状态确定的处于运行状态的 ONU, DBA (Dynamic Bandwidth Allocation, 动 态带宽分配)模块根据 ONU波长状态表确定为 ONU分配 TDM带宽或 WDM带宽。 WDM 带宽即 DBA只为该 ONU在接收通道上分配带宽。 在一般情况下, OLT既可能为 ONU分 配 TDM带宽, 也可能为 ONU分配 WDM带宽。
当波长状态确定的处于运行状态的 ONU上行波长向上行 DEMUX的过渡带漂移时,误 码率会增大。现有 PON(Passive Optical Network,无源光纤网络)系统如 GPON、 10G-GPON 都定义了 BIP (Bit Interleaved Parity, 比特交叉奇偶校验)和 FEC (Forward Error Correction, 前向纠错), 其它 PON系统也有 FEC或其它类似的功能定义, 基于这些功能可以进行误码 统计。 波长漂移会引起误码, 但误码率增大不一定是由于波长漂移引起的, 由于误码检测 可以在线进行, 因此当一定时间段内的 ONU上行数据传输的误码率超过预设值时, 误码超 限信号可以作为波长检测的触发信号。误码超限触发信号可以与产生误码的单个 ONU关联, 也可以与所有 ONU关联。
除误码超限信号以外, 预设时间周期的周期性全局 ONU波长检测信号、光信号丢失信 号 LOS (Loss of signal ) 上行突发丢失信号 LOBi (Loss of burst for ONUi) 以及在 ONU刚 刚通过自动发现流程上线后进入运行状态, 且 ONU的波长状态未知时, 产生 ONU波长检 测状态触发信号等都可以作为全局 ONU波长状态检测的触发信号。
在 GPON G.984.3标准中, 没有 LOBi信号, 可以用帧丢失信号 LOFi (Loss of frame of ONUi) 和光信号丢失信号 LOSi (Loss of signal for ONUi) 代替。
进一步的, 在 GPON、 EPON等现有标准中, FEC是非强制的, 而基于 BIP的误码统 计也存在不准确或失效的可能, 因此还可以通过周期性启动信号触发启动 ONU波长检测, 关键是要设置合适的定时器周期值。 OLT可以为不同的 ONU设置不同的周期值, 周期性启 动信号触发可以与单个 ONU关联, 也可以与所有 ONU关联。
步骤 502: 当 OLT检测到触发信号时触发 ONU波长检测状态, 并为所述 ONU分配时 分复用 TDM带宽。
首先可以根据触发信号的类型,可以确定是测量单个 ONU还是全部 ONU的波长状态。 一般情况下, ONU注册上线后的触发信号、 单个 ONU波长检测启动信号是用于触发测量 单个 ONU的波长状态检测;误码超限信号,周期性的启动信号、 LOS/LOBi (或 LOFi/ LOSi) 信号等是用于触发全部 ONU的波长状态检测。
DBA (Dynamic Bandwidth Allocation,动态带宽分配)为 ONU分配 TDM带宽,即 DBA 为该 ONU在接收通道及其左、 右相邻通道上分配开始时间和长度相同的时隙授权。 在 ODSM-PON系统中, 不同上行通道的 ONU以 WDM的方式共享上行带宽, 在同一 上行通道内以 TDMA方式进行数据传输。 当某个 ONU发射的光信号产生了漂移的时候, OLT并不清楚是哪个 ONU的波长产生了漂移, 为了避免相邻通道的干扰, 因此需要将在原 接收通道和相邻通道上使用 WDM+TDMA 的方式传输上行数据的 ONU全部重新分配为 TDMA的传输方式, 即在原接收通道和相邻通道上以 TDM方式共享上行带宽。
在 TDM方式下, DBA在原接收通道和相邻通道上分配开始时间和长度相同的时隙。 即在某一时刻, OLT在原接收通道和相邻通道上只收到一个 ONU的光信号。 根据 DBA的 定时关系, 可以确定 TDM方式切换的生效时间。 TDM方式切换完成后, 将进入 ONU波长 状态检测状态。
在 TDM方式下,为了避免逻辑或芯片的状态机死锁,需要将波长监控触发使能去激活, 即此时 OLT不再处理 ONU波长状态检测的触发信号。
步骤 503: 检测上行通道 ONU波长状态, 记录上行通道的各 ONU落入过渡带的编号 和落入通带的编号。
OLT根据 DBA带宽授权信息 (如带宽映射表 BWMAP) 可以确定每个 ONU上行信号 到达 OLT接收机的时间, 即可以知道测量的是哪一个 ONU的光信号。 通过光模块测量每 个 ONU的上行信号的 SD和 RSSI, 根据测量结果判断 ONU的波长状态。
当检测的时候, 如果在原接收通道和相邻通道上只有一个 SD信号, 则说明 ONU波长 在通道内, 没有产生漂移的情况, 不需要调节; 否则, 需要分析原接收通道和相邻通道的 RSSI测量值, 若 RSSI最大值与次大值均超过 OLT接收机的灵敏度, 则该 ONU的波长在 RSSI最大值与次大值对应通道之间的 DEMUX过渡带上, 否则说明该 ONU的波长在 RSSI 最大值对应的通道内。
检测上行的每个 ONU波长状态后, 生成 ONU波长状态表。 如表 1所示:
Figure imgf000008_0001
ONU波长状态表 其中, ONU-ID是 OLT在 ONU注册上线时分配的全局唯一的标识符;
ONU类型为该 ONU在注册上线时上报, 包含该 ONU激光器是否为波长可调的信息; CH-ID是 OLT端接收机的编号, 与各上行通道相对应。 在 ONU注册过程中, CH-ID 对应于接收到该 ONU的序列号响应的接收机的编号。 ONU波长状态检测完成后, 该 ONU 对应的 CH-ID可以根据前述 SD和 RSSI的检测结果可以计算出来;
Edge-ID是 DEMUX的过渡带的编号。 对于 ONU波长在通带的情况, 即不在过渡带的 情况下, Edge-ID默认值为 0。对于 XG-PON,上行波长范围为 1260nm~1280nm。若 DEMUX 的短波长方向的通带 (对应通道 1 ) 的起始波长小于或等于 1260nm, DEMUX的长波长方 向的通带 (对应通道 4) 的结束波长大于或等于 1280nm, 则该 DEMUX有 3个过渡带。
误码率的检测是不间断进行的。 对于固定波长的 ONU, 波长漂移的速度是秒级或毫秒 级; 对于低成本可调 ONU, 假设其波长调节速度也是相近的。 相对于误码检测速度来说, ONU波长漂移或调节速度是缓慢的。 随着 ONU波长向过渡带的漂移, ONU上行传输的误 码率会逐渐增加, 直到漂移到相邻通道后再慢慢减小。 因此, 可以通过对误码率的检测来 监控 ONU波长的漂移。 但因为产生误码的原因可能有很多种, 不能因为有误码就认为是 ONU波长发生了漂移, 就需要通过对原接收通道和相邻通道进行 SD和 RSSI检测来判断 ONU的波长状态。
进一步的, 根据 ONU波长检测状态所生成的 ONU波长状态表, 会有三种处理情况。 第一种情况是, 对于波长在 DEMUX的过渡带范围内的可调 ONU, 直接调节 ONU的发射 波长; 第二种情况是, 对于上行通道不均衡的情况, 将 DEMUX的过渡带向的通道负载量 较多的一边调节; 第三种情况是, 当 ONU波长状态表中既不满足第一种情况也不满足第二 种情况时, 停止调节 ONU波长和可调 DEMUX, 此时说明已经达到了通道均衡的目的。
当波长落入过渡带的 ONU为波长不可调的 ONU,或落入过渡带的波长可调 ONU由于 波长调节范围较小而不能达到通道均衡, 此时需要通过调节上行 DEMUX来改善上行通道 的负载均衡, 提高上行带宽的利用率。
步骤 504: 根据所述 ONU波长状态表, 当检测到 ONU波长落入过渡带且为波长可调 类型的 ONU 时, 调节 ONU 波长至其波长调节能力范围内负载最小的上行通道对应的 DEMUX通带的波长范围内。
对于波长在 DEMUX的过渡带范围内的波长可调 ONU,根据 DEMUX的波长设置确定 各上行通道的通带波长范围,并根据 ONU波长状态表得到各上行通道的负载,确定该 ONU 调节的目标通道,即 ONU波长调节能力范围内负载最小的通道,并根据目标通道的 DEMUX 通带的波长范围确定 ONU波长调节的目标发射波长值。
需要说明的是, 由于 ONU波长调整的范围有限, 因此在确定 ONU波长调节目标发射 波长值时, 需要在该 ONU波长可调的范围内进行设定。 确定 ONU的目标发射波长后, 将所述发射波长值发送给需调节的 ONU, 使得需调节 的 ONU调节自身的发射波长, 将上行数据发送至负载小通道的接收机。
OLT可以通过下行 PLOAM、 OMCI或 OAM等 MAC层面的控制通道将目标波长值发 送给指定的 ONU。
步骤 505: 当 OLT收到所述需调节的 ONU的反馈信息或第一定时器的超时信息时, 重 新检测所述需调节的 ONU的波长是否落入目标通道的 DEMUX通带的波长范围内,若所述 需调节的 ONU的上行光信号未落入目标通道的 DEMUX通带的波长范围内则重新对其进行 调节。
调节后的 ONU可以通过上行 PLOAM、OMCI或 OAM等 MAC层面的控制通道向 OLT 发送反馈信息确认波长调节结果, 反馈信息可以为调节完成或调节失败。
考虑到 MAC层面的修改可能影响对现有产品的兼容性, 可以在 OLT设置定时器, 该 定时器所设定的时间应大于调节完成一次 ONU波长并发送上行光信号到达 OLT的时间, 若定时器超时, 则认为本次 ONU波长调节过程完成。
当 OLT收到反馈信息或定时器超时信息后, 重新检测 ONU波长状态, 刷新 ONU波长 状态表, 检查该 ONU的波长是否落入目标通带范围内, 并继续根据波长状态表对其它处于 过渡带的波长可调 ONU进行波长调节, 若没有波长可调 ONU处于过渡带则执行步骤 401。 ONU波长调节可以对单个 ONU产生作用, 也可以对多个或全部 ONU产生作用。
步骤 506: 根据所述 ONU波长状态表, 判断各上行通道的负载状态, 若任意两个上行 通道的负载之差超过第二阈值, 则调节该上行 DEMUX的波长划分, 使得各上行通道的负 载均衡。
OLT端上行 DEMUX的过渡带的波长位置是可以调节的, 即上行 DEMUX的通带的波 长范围是可以调节的, 也即上行通道的接收波长范围是可调的, 如何调节上行 DEMUX的 通带的波长范围为现有技术, 在此不再赘述。
当落入过渡带的可调类型的 ONU调节结束, 或过渡带上没有可调类型的 ONU时, 可 能存在上行通道之间负载分配不均, 或大量不可调类型的 ONU集中在过渡带上, 此时可以 调节可调 DEMUX以达到通道均衡。
若任意两个上行通道的负载之差超过第二阈值, 则调节该上行 DEMUX的波长划分, 使得各上行通道的负载均衡。 DEMUX过渡带的调节可以参考完全二叉树的遍历算法。首先 可以比较可调 DEMUX最中间的过渡带两边的通道负载之和, 如果所述过渡带两边的通道 负载之和的差超过第二阈值, 则将该过渡带向通道负载之和较大的一边调节, 使得该过渡 带两边的通道负载满足通道负载平衡的条件。 然后使最中间的过渡带左边的两个通道达到 负载均衡, 即调节调节左边的过渡带, 将该过渡带向通道负载较大的一边调节, 使得该过 渡带两边的两个通道的负载之差不超过第二阈值, 即满足通道负载平衡的条件。 最后按照 同样的方法, 使得中间的过渡带右边的两个通道达到负载均衡。
通过调节可调 DEMUX, 可以达到通道负载均衡的目的; 另一方面, 对于不可调类型的 ONU,这种负载均衡的调节方式也可以达到将不可调类型 ONU从过渡带调节至通道内的作 用。
步骤 507:当 OLT收到所述需调节的 DEMUX的反馈信息或第二定时器的超时信息时, 重新检测 ONU波长状态, 检测任意两个上行通道的负载之差是否超过第二阈值, 若任意两 个上行通道的负载之差超过第二阈值, 则重新对其进行调节。
调节过程以可调 DEMUX调节过程完成的反馈信息或 DEMUX调节定时器的超时信息 为准, 超时信息代表该 DEMUX调节完成。 当 OLT接收到 DEMUX的反馈信息或 DEMUX 调节定时器的超时信息后, OLT重新检查 ONU的波长状态,检查各上行通道是否负载均衡, 即任意两个上行通道的负载之差是否小于第二阈值。
对可调 DEMUX的调节一般在全部 ONU参与的方式下进行, 这是因为可调 DEMUX 的调节会影响到上行通道的波长划分, 对 ONU上行接收的影响很难判断, 需要使可能受影 响的上行通道以 TDM方式工作。
需要说明的是, 由于 TDM方式切换和 ONU波长状态检测对时序控制和响应速度要求 比较高, 所以一般用 FPGA、 ASIC、 SoC、 电路或芯片等硬件技术实现。 而其它功能, 如
ONU和 DEMUX的调节算法, 则既可以用软件实现, 也可以用 FPGA、 ASIC、 SoC、 电路 或芯片等硬件技术实现。
本发明实施例的特点是可以通过 ONU波长调节或可调 DEMUX调节来实现通道均衡和 上行带宽效率提升, 而不需微秒级可调 ONU光模块的支持, 并且不会中断业务运行。 本发 明的技术方案主要是在 ITU-T G.987.3标准(XG-PON)的基础上描述的,但不限于此, EPON、
GPON或 10G-EPON等也同样适合。
本发明实施例通过触发信号触发进入 ONU波长检测状态, 可以及时检测出 ONU的波 长状态, 通过调节 ONU的发射波长或调节可调 DEMUX, 达到上行通道负载均衡、 上行带 宽效率提升和优化 ONU接收效果的目的。 实施例 3
本发明实施例 3 提出了一种无源光网络的通道均衡装置, 所述通道均衡装置可以在
ODSM-PON系统的局端 OLT内部实现, 用以实现所述 ODSM-PON系统的上行通道均衡。 如图 6所示, 所述无源光网络的通道均衡装置包括:
获取模块 601, 用于获取无源光网络各上行通道的 ONU的波长状态。
负载状况获取模块 602, 用于根据所述 ONU的波长状态, 得到各上行接收机的负载状 况。
调节负载模块 603, 用于根据所述上行接收机的负载状况以及所述 ONU的波长状态, 调节所述上行接收机的负载。 在具体实施例中, 获取模块 601可以具体包括:
分配带宽单元 6011, 用于为所述 ONU分配时分复用 TDM带宽;
记录单元 6012, 用于记录上行通道的各 ONU落入过渡带的编号和落入通带的编号。 调节负载模块 603可以具体包括:
第一调节负载单元 6031,用于当检测到的 ONU上行光信号发生漂移且为波长可调类型 的 ONU 时, 调节所述 ONU波长至其波长调节能力范围内负载最小的上行通道所对应的 DEMUX通带范围内; 或者,
第二调节负载单元 6032, 用于判断各上行通道的负载状态, 若任意两个上行通道的负 载之差超过第二阈值, 则调节该上行 DEMUX的波长划分, 使得各上行通道的负载均衡。
其中, 第一调节负载单元 6031可以具体包括:
处理子单元 60311, 用于根据所述各上行接收机的负载状况确定 ONU波长调节能力范 围内负载最小的上行接收机, 根据该上行接收机对应的 DEMUX通带的波长范围确定需调 节的 ONU的目标发射波长值;
发送子单元 60312, 用于将所述目标发射波长值发送给所述需调节的 ONU, 使得所述 需调节的 ONU调节自身的发射波长,将上行数据发送至负载较小的上行接收机的接收范围 内。
其中, 第二调节负载单元 6032可以具体包括:
判断子单元 60321,用于从 DEMUX最中间的过渡带开始,逐级向两边的过渡带进行调 节, 判断每个 DEMUX过渡带两边同级通道的负载差是否超过第二阈值;
调节子单元 60322,用于若超过则将所述两边同级通道负载之差超过第二阈值的过渡带 向通道负载较多的一边调节, 使得所述过渡带两边的通道达到负载均衡。 在具体实施例中, 所述无源光网络的通道均衡装置还可以进一步包括:
第一触发模块 604, 用于检测接收到的上行通道的 ONU传输数据的误码率, 当所述误 码率超过第一阈值时产生误码超限信号,触发所述获取模块获取各上行通道 ONU的波长状 态。
第二触发模块 605, 用于根据预设时间周期的周期性全局 ONU波长检测信号, 触发所 述获取模块获取各上行通道 ONU的波长状态;
第三触发模块 606, 用于在 ONU刚刚通过自动发现流程上线后进入运行状态, 且 ONU 的波长状态未知时, 产生 ONU波长检测状态触发信号, 触发所述获取模块获取各上行通道 的 ONU的波长状态;
第四触发模块 607,用于根据光信号丢失 LOS信号或上行突发丢失 LOBi信号或帧丢失 LOFi信号或光信号丢失 LOSi信号, 触发所述获取模块获取各上行通道 ONU的波长状态。
本发明实施例通过检测各 ONU上行数据的波长状态, 得到各上行接收机的负载状况, 并根据 ONU的波长状态以及接收机的负载状况, 调节接收机的负载。达到上行接收机负载 均衡、 上行带宽效率提升和优化 ONU接收效果的目的。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完 成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

1、 一种无源光网络的通道均衡方法, 其特征在于, 包括:
获取无源光网络各上行通道的光网络单元 ONU的波长状态;
根据所述 ONU的波长状态, 得到各上行接收机的负载状况;
根据所述上行接收机的负载状况以及所述 ONU 的波长状态, 调节所述上行接收机的负 载。
2、 根据权利要求 1所述的方法, 其特征在于, 所述获取各上行通道 ONU的波长状态包 括:
为所述 ONU分配时分复用 TDM带宽;
记录上行通道的各 ONU落入过渡带的编号和落入通带的编号。
3、 根据权利要求 1所述的方法, 其特征在于, 还包括: 在获取各上行通道 ONU的波长 状态之前,
检测接收到的上行通道的 ONU传输数据的误码率, 当所述误码率超过第一阈值时产生 误码超限信号, 执行获取各上行通道的 ONU的波长状态的步骤; 或者,
根据预设时间周期的周期性全局 ONU波长检测信号, 执行获取各上行通道的 ONU的波 长状态的步骤; 或者,
在 ONU刚刚通过自动发现流程上线后进入运行状态, 且 ONU的波长状态未知时, 产生
ONU波长检测状态触发信号, 执行获取各上行通道的 ONU的波长状态的步骤; 或者, 根据光信号丢失 LOS信号或上行突发丢失 LOBi信号或帧丢失 LOFi信号或光信号丢失 LOSi信号, 执行获取各上行通道的 ONU的波长状态的步骤。
4、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述上行接收机的负载状况以及 所述 ONU的波长状态, 调整所述上行接收机的负载, 包括:
当检测到的 ONU上行光信号发生漂移且为波长可调类型的 ONU时, 调节所述 ONU波 长至其波长调节能力范围内负载最小的上行通道所对应的 DEMUX通带范围内; 或者, 判断各上行通道的负载状态, 若任意两个上行通道的负载之差超过第二阈值, 则调节该 上行 DEMUX的波长划分, 使得各上行通道的负载均衡。
5、 根据权利要求 4所述的方法, 其特征在于, 所述调节 ONU波长至其波长调节能力范 围内负载最小的上行通道所对应的 DEMUX通带范围内, 包括:
根据所述各上行接收机的负载状况确定 ONU波长调节能力范围内负载最小的上行接收 机, 根据该上行接收机对应的 DEMUX通带的波长范围确定需调节的 ONU的目标发射波长 值;
将所述目标发射波长值发送给所述需调节的 ONU, 使得所述需调节的 ONU调节自身的 发射波长, 将上行数据发送至负载较小的上行接收机的接收范围内。
6、 根据权利要求 4所述的方法, 其特征在于, 所述判断各上行通道的负载状态, 若任意 两个上行通道的负载之差超过第二阈值, 则调节该上行 DEMUX的波长划分, 使得各上行通 道的负载均衡, 包括- 从 DEMUX最中间的过渡带开始, 逐级向两边的过渡带进行调节, 判断每个 DEMUX过 渡带两边同级通道的负载差是否超过第二阈值;
若超过则将所述两边同级通道负载之差超过第二阈值的过渡带向通道负载较多的一边调 节, 使得所述过渡带两边同级通道达到负载均衡。
7、 一种无源光网络的通道均衡装置, 其特征在于, 包括:
获取模块, 用于获取无源光网络各上行通道的 ONU的波长状态;
负载状况获取模块, 用于根据所述 ONU的波长状态, 得到各上行接收机的负载状况; 调节负载模块, 用于根据所述上行接收机的负载状况以及所述 ONU 的波长状态, 调节 所述上行接收机的负载。
8、 根据权利要求 7所述的装置, 其特征在于, 所述获取模块, 包括:
分配带宽单元, 用于为所述 ONU分配时分复用 TDM带宽;
记录单元, 用于记录上行通道的各 ONU落入过渡带的编号和落入通带的编号。
9、 根据权利要求 7所述的装置, 其特征在于, 所述装置还包括以下触发模块之一: 第一触发模块, 用于检测接收到的上行通道的 ONU传输数据的误码率, 当所述误码率 超过第一阈值时产生误码超限信号, 触发所述获取模块获取各上行通道 ONU的波长状态; 第二触发模块, 用于根据预设时间周期的周期性全局 ONU波长检测信号, 触发所述获 取模块获取各上行通道 ONU的波长状态;
第三触发模块, 用于在 ONU刚刚通过自动发现流程上线后进入运行状态, 且 ONU的波 长状态未知时,产生 ONU波长检测状态触发信号,触发所述获取模块获取各上行通道的 ONU 的波长状态;
第四触发模块,用于根据光信号丢失 LOS信号或上行突发丢失 LOBi信号或帧丢失 LOFi 信号或光信号丢失 LOSi信号, 触发所述获取模块获取各上行通道 ONU的波长状态。
10、 根据权利要求 7所述的装置, 其特征在于, 所述调节负载模块包括:
第一调节负载单元, 用于当检测到的 ONU 上行光信号发生漂移且为波长可调类型的
ONU时,调节所述 ONU波长至其波长调节能力范围内负载最小的上行通道所对应的 DEMUX 通带范围内; 或者,
第二调节负载单元, 用于判断各上行通道的负载状态, 若任意两个上行通道的负载之差 超过第二阈值, 则调节该上行 DEMUX的波长划分, 使得各上行通道的负载均衡。
11、 根据权利要求 10所述的装置, 其特征在于, 所述第一调节负载单元包括: 处理子单元, 用于根据所述各上行接收机的负载状况确定 ONU波长调节能力范围内负 载最小的上行接收机,根据该上行接收机对应的 DEMUX通带的波长范围确定需调节的 ONU 的目标发射波长值;
发送子单元, 用于将所述目标发射波长值发送给所述需调节的 ONU, 使得所述需调节的
ONU调节自身的发射波长, 将上行数据发送至负载较小的上行接收机的接收范围内。
12、 根据权利要求 10所述的装置, 其特征在于, 所述第二调节负载单元包括: 判断子单元, 用于从 DEMUX最中间的过渡带开始, 逐级向两边的过渡带进行调节, 判 断每个 DEMUX过渡带两边同级通道的负载差是否超过第二阈值;
调节子单元, 用于若超过则将所述两边同级通道负载之差超过第二阈值的过渡带向通道 负载较多的一边调节, 使得所述过渡带两边的通道达到负载均衡。
13、 一种无源光网络系统, 其特征在于, 包括光线路终端 OLT和多个光网络单元 ONU; 所述 OLT包括多个不同接收波长的上行接收机, 分别用于接收不同上行通道的光信号, 所述多个光网络单元动态可调地耦合到所述多个上行通道;
其中, 所述 OLT用于获取各上行通道的光网络单元 ONU的波长状态, 根据所述 ONU 的波长状态, 得到各上行接收机的负载状况; 根据所述上行接收机的负载状况以及所述 ONU 的波长状态, 调节所述上行接收机的负载。
14、 如权利要求 13所述的系统, 其特征在于, 所述多个上行接收机通过上行可调解复用 器 DEMUX耦合到光分配网络的主干光纤, 其中, 所述调节上行接收机的负载包括调节各个 ONU的波长和 /或调节上行可调 DEMUX的波长划分。
15、 根据权利要求 13或 14所述的系统, 其特征在于, 所述 OLT通过误码超限触发或周 期性启动信号触发的方式来激活 ONU波长状态检测。
16、根据权利要求 15所述的系统, 其特征在于, 所述 OLT在检测到的 ONU上行光信号 发生漂移且为波长可调类型的 ONU时, 调节所述 ONU波长至其波长调节能力范围内负载最 小的上行通道所对应的 DEMUX通带范围内。
17、根据权利要求 16所述的系统, 其特征在于, 所述 OLT在调节所述 ONU波长至其波 长调节能力范围内负载最小的上行通道所对应的 DEMUX通带范围内过程中, 根据所述各上 行接收机的负载状况确定 ONU波长调节能力范围内负载最小的上行接收机, 根据该上行接 收机对应的 DEMUX通带的波长范围确定需调节的 ONU的目标发射波长值, 并将所述目标 发射波长值发送给所述需调节的 ONU, 使得所述需调节的 ONU调节自身的发射波长, 将上 行数据发送至负载较小的上行接收机的接收范围内。
18、 如权利要求 15所述的系统, 其特征在于, 所述 OLT在判断出任意两个上行通道的 负载之差超过第二阈值, 调节该上行 DEMUX的波长划分, 使得各上行通道的负载均衡。
19、 根据权利要求 18所述的系统, 其特征在于, 所述 OLT调节该上行 DEMUX的波长 划分, 使得各上行通道的负载均衡过程中, 从 DEMUX最中间的过渡带开始, 逐级向两边的 过渡带进行调节, 判断每个 DEMUX过渡带两边同级通道的负载差是否超过第二阈值; 若超 过则将所述两边同级通道负载之差超过第二阈值的过渡带向通道负载较多的一边调节, 使得 所述过渡带两边同级通道达到负载均衡。
20、 如权利要求 13所述的系统, 其特征在于, 所述 OLT包括如权利要求 7-12中任 所述的无源光网络的通道均衡装置。
PCT/CN2011/082221 2011-11-15 2011-11-15 无源光网络的通道均衡方法和装置 WO2012163052A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/082221 WO2012163052A1 (zh) 2011-11-15 2011-11-15 无源光网络的通道均衡方法和装置
CN201180002587.4A CN102511170B (zh) 2011-11-15 2011-11-15 无源光网络的通道均衡方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082221 WO2012163052A1 (zh) 2011-11-15 2011-11-15 无源光网络的通道均衡方法和装置

Publications (1)

Publication Number Publication Date
WO2012163052A1 true WO2012163052A1 (zh) 2012-12-06

Family

ID=46222793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082221 WO2012163052A1 (zh) 2011-11-15 2011-11-15 无源光网络的通道均衡方法和装置

Country Status (2)

Country Link
CN (1) CN102511170B (zh)
WO (1) WO2012163052A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846942A (zh) * 2016-05-26 2016-08-10 四川润泽经伟信息技术有限公司 一种非合作突发通信信号截取系统及截取方法
WO2017185505A1 (zh) * 2016-04-26 2017-11-02 中兴通讯股份有限公司 一种通道的调整方法、装置及系统
US10768382B2 (en) 2018-11-29 2020-09-08 Corning Research & Development Corporation Multiport assemblies including access apertures and a release tool
US10802228B2 (en) 2017-06-28 2020-10-13 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US10809463B2 (en) 2017-06-28 2020-10-20 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
CN114978339A (zh) * 2021-02-27 2022-08-30 华为技术有限公司 一种光通信装置、系统及相关方法
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11886010B2 (en) 2019-10-07 2024-01-30 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal
US11994722B2 (en) 2020-11-30 2024-05-28 Corning Research & Development Corporation Fiber optic adapter assemblies including an adapter housing and a locking housing
US12019279B2 (en) 2019-05-31 2024-06-25 Corning Research & Development Corporation Multiports and other devices having optical connection ports with sliding actuators and methods of making the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312546B (zh) * 2013-06-14 2016-12-07 杭州沃云科技有限公司 一种自动配置管理ZigBee网络的方法
CN103281608A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791000A (zh) * 2004-12-17 2006-06-21 电子科技大学 一种用于波分复用光网络的综合业务疏导方法
CN101159506A (zh) * 2007-10-26 2008-04-09 华为技术有限公司 一种pon通信信道均衡的方法、装置及系统
WO2008078819A1 (ja) * 2006-12-27 2008-07-03 Nec Communication Systems, Ltd. 光アクセスネットワーク、リモート装置、光通信方法及び光通信プログラム
CN101621454A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 无源光网络系统、光线路终端和光网络单元

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100547705B1 (ko) * 2002-12-04 2006-01-31 삼성전자주식회사 기가비트 이더넷 수동 광 가입자망의 음성서비스를 위한대역폭 할당방법
CN101039506B (zh) * 2006-03-15 2011-02-02 华为技术有限公司 一种移动管理实体/用户面实体迁移方法
CN101583057B (zh) * 2009-06-11 2013-08-07 中兴通讯股份有限公司 网络选路方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791000A (zh) * 2004-12-17 2006-06-21 电子科技大学 一种用于波分复用光网络的综合业务疏导方法
WO2008078819A1 (ja) * 2006-12-27 2008-07-03 Nec Communication Systems, Ltd. 光アクセスネットワーク、リモート装置、光通信方法及び光通信プログラム
CN101159506A (zh) * 2007-10-26 2008-04-09 华为技术有限公司 一种pon通信信道均衡的方法、装置及系统
CN101621454A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 无源光网络系统、光线路终端和光网络单元

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017185505A1 (zh) * 2016-04-26 2017-11-02 中兴通讯股份有限公司 一种通道的调整方法、装置及系统
US10530517B2 (en) 2016-04-26 2020-01-07 Zte Corporation Channel adjustment method, apparatus and system
CN105846942A (zh) * 2016-05-26 2016-08-10 四川润泽经伟信息技术有限公司 一种非合作突发通信信号截取系统及截取方法
US11531168B2 (en) 2017-06-28 2022-12-20 Corning Research & Development Corporation Fiber optic connectors having a keying structure and methods of making the same
US12013578B2 (en) 2017-06-28 2024-06-18 Corning Research & Development Corporation Multifiber fiber optic connectors, cable assemblies and methods of making the same
US10809463B2 (en) 2017-06-28 2020-10-20 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
US11215768B2 (en) 2017-06-28 2022-01-04 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11262509B2 (en) 2017-06-28 2022-03-01 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11287582B2 (en) 2017-06-28 2022-03-29 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11287581B2 (en) 2017-06-28 2022-03-29 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11940656B2 (en) 2017-06-28 2024-03-26 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US11300735B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11307364B2 (en) 2017-06-28 2022-04-19 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11327247B2 (en) 2017-06-28 2022-05-10 Corning Optical Communications LLC Multiports having connection ports formed in the shell and associated securing features
US11409055B2 (en) 2017-06-28 2022-08-09 Corning Optical Communications LLC Multiports having connection ports with associated securing features and methods of making the same
US11536913B2 (en) 2017-06-28 2022-12-27 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11966089B2 (en) 2017-06-28 2024-04-23 Corning Optical Communications, Llc Multiports having connection ports formed in the shell and associated securing features
US11460646B2 (en) 2017-06-28 2022-10-04 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US11487065B2 (en) 2017-06-28 2022-11-01 Corning Research & Development Corporation Multiports and devices having a connector port with a rotating securing feature
US11914197B2 (en) 2017-06-28 2024-02-27 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11493699B2 (en) 2017-06-28 2022-11-08 Corning Research & Development Corporation Multifiber fiber optic connectors, cable assemblies and methods of making the same
US11493700B2 (en) 2017-06-28 2022-11-08 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11914198B2 (en) 2017-06-28 2024-02-27 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11415759B2 (en) 2017-06-28 2022-08-16 Corning Optical Communications LLC Multiports having a connection port insert and methods of making the same
US11906792B2 (en) 2017-06-28 2024-02-20 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11703646B2 (en) 2017-06-28 2023-07-18 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11579377B2 (en) 2017-06-28 2023-02-14 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same with alignment elements
US11886017B2 (en) 2017-06-28 2024-01-30 Corning Research & Development Corporation Multiports and other devices having connection ports with securing features and methods of making the same
US11624877B2 (en) 2017-06-28 2023-04-11 Corning Research & Development Corporation Multiports having connection ports with securing features that actuate flexures and methods of making the same
US10802228B2 (en) 2017-06-28 2020-10-13 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US11656414B2 (en) 2017-06-28 2023-05-23 Corning Research & Development Corporation Multiports and other devices having connection ports with securing features and methods of making the same
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11789214B2 (en) 2017-06-28 2023-10-17 Corning Research & Development Corporation Multiports and other devices having keyed connection ports and securing features and methods of making the same
US11543600B2 (en) 2017-06-28 2023-01-03 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US10768382B2 (en) 2018-11-29 2020-09-08 Corning Research & Development Corporation Multiport assemblies including access apertures and a release tool
US12019279B2 (en) 2019-05-31 2024-06-25 Corning Research & Development Corporation Multiports and other devices having optical connection ports with sliding actuators and methods of making the same
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
US11886010B2 (en) 2019-10-07 2024-01-30 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US12019285B2 (en) 2020-09-30 2024-06-25 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11994722B2 (en) 2020-11-30 2024-05-28 Corning Research & Development Corporation Fiber optic adapter assemblies including an adapter housing and a locking housing
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
CN114978339A (zh) * 2021-02-27 2022-08-30 华为技术有限公司 一种光通信装置、系统及相关方法
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal

Also Published As

Publication number Publication date
CN102511170A (zh) 2012-06-20
CN102511170B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2012163052A1 (zh) 无源光网络的通道均衡方法和装置
US10158421B2 (en) Rogue optical network interface device detection
US9967033B2 (en) Flexible TWDM PON with load balancing and power saving
US9860618B2 (en) Upstream wavelength calibration in optical networks
US8861954B2 (en) Burst-mode receiver equipped with optical amplifier, method for controlling optical amplifier, and system
WO2015154267A1 (zh) 一种光时域反射仪实现装置及系统
US20150037035A1 (en) Network system
TWI458276B (zh) 具有非可調諧的傳統光學網路單元(ONUs)之分波長多工(WDM)被動光學網路(PON)
KR20200111214A (ko) Olt, onu, pon 시스템, 및 pon 시스템에서의 메시지 전송 방법
KR20170003649A (ko) 파장 스위칭 방법, 장치, 및 시스템
JP5853822B2 (ja) 加入者側装置登録方法
WO2012006949A1 (en) Passive optical network with adaptive filters for upstream transmission management
CN106664234B (zh) Wdm/tdm-pon系统和其发送开始时刻校正方法
WO2018137154A1 (zh) 一种无源光网络pon的通信方法、装置和系统
JP5930990B2 (ja) 光受信器
JP6262050B2 (ja) 光通信システムおよびその制御方法
WO2022262799A1 (zh) 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质
JP5846007B2 (ja) 加入者側装置登録方法及び光ネットワークシステム
WO2019109252A1 (zh) Pon系统中的数据发送和接收方法、网络设备及系统
JP6134247B2 (ja) 光通信システム、信号送信制御方法及び局側光回線終端装置
JP5761415B1 (ja) 加入者側装置登録方法
JP2013207716A (ja) 加入者側装置登録方法
US20080267625A1 (en) Multi-Rate Multi-Wavelength Optical Burst Detector
JP5482931B1 (ja) 加入者側装置登録方法及び光ネットワークシステム
JP2016015640A (ja) 受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002587.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866494

Country of ref document: EP

Kind code of ref document: A1