WO2012161392A1 - 하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치 - Google Patents

하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치 Download PDF

Info

Publication number
WO2012161392A1
WO2012161392A1 PCT/KR2011/009226 KR2011009226W WO2012161392A1 WO 2012161392 A1 WO2012161392 A1 WO 2012161392A1 KR 2011009226 W KR2011009226 W KR 2011009226W WO 2012161392 A1 WO2012161392 A1 WO 2012161392A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
artificial wetland
tank
aerobic
air
Prior art date
Application number
PCT/KR2011/009226
Other languages
English (en)
French (fr)
Inventor
김성철
조광주
박구현
현문식
양희진
한설희
Original Assignee
주식회사 성일엔텍
한국바이오시스템(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20110049236A external-priority patent/KR101106779B1/ko
Priority claimed from KR20110049235A external-priority patent/KR101106778B1/ko
Priority claimed from KR20110049374A external-priority patent/KR101127474B1/ko
Application filed by 주식회사 성일엔텍, 한국바이오시스템(주) filed Critical 주식회사 성일엔텍
Priority to US14/119,863 priority Critical patent/US9221698B2/en
Priority to BR112013030062A priority patent/BR112013030062A2/pt
Priority to EP11866328.5A priority patent/EP2716607B1/en
Publication of WO2012161392A1 publication Critical patent/WO2012161392A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/10Collecting-tanks; Equalising-tanks for regulating the run-off; Laying-up basins
    • E03F5/103Naturals or landscape retention bodies, e.g. ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/201Perforated, resilient plastic diffusers, e.g. membranes, sheets, foils, tubes, hoses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a hybrid artificial wetland water purification system, a sewage treatment apparatus using the same, and a natural type of non-purifying apparatus capable of simultaneously purifying a stream or lake water, and more particularly, to be applied to treating point pollutants represented by sewage or wastewater.
  • Multi-functional hybrid artificial wetland water purification system of low energy consumption which can selectively or highly treat nonpoint pollutant spilled during rainfall in treating various pollutants contained in river, lake or lake water, sewage treatment device and river or
  • the present invention relates to a natural type non-ignition device capable of simultaneously purifying lake water.
  • water pollution sources are classified into point pollution sources and nonpoint pollution sources for the purpose of prevention and management.
  • the non-point source is a discharge source for discharging water pollutants at unspecified places such as land, roads, farmland, mountains, and construction sites, arable land, ranches, urban areas, forest areas, parking lots, roads, various construction areas, factories and industries. Pollutants contained in surface runoff or seeps into the ground are the main occurrences of nonpoint sources.
  • the conventional wetland purification technology uses a vertical reactor or a horizontal flow artificial wetland by using a single reactor, but in this case, it is difficult to efficiently process high concentration pollutants and eutrophic substances such as nitrogen and phosphorus.
  • high concentration pollutants and eutrophic substances such as nitrogen and phosphorus.
  • Non-point pollutants are also artificial and natural causes of pollutants, and their discharge points are unspecified, diluted and diffused, and are discharged to large areas, making it difficult to predict, difficult to collect, and inconsistent in processing efficiency. Has difficult characteristics.
  • non-point sources are nutrients that cause the most part of rainfall runoff, nutrients that cause eutrophication, such as nitrogen and phosphorus, oils that are fatal to aquatic organisms in small amounts, and fatal to aquatic organisms such as heavy metals, organics and pesticides. It can be classified into toxic substances, various bacteria and viruses, and other contaminants that are lost in industrial sites and wastes. The generation and discharge of nonpoint source materials is highly dependent on weather conditions such as rainfall.
  • control method of the conventional non-point source is divided into a physical method for installing and controlling various treatment facilities and structures and a method for applying non-physical techniques such as land use regulation.
  • infiltration type and device type which require much maintenance
  • free flow type artificial wetland and storage type such as reservoir pond, depending on the function of sedimentation and storage to remove pollutants, vegetation filtration system and vegetation channel, etc.
  • Vegetation type sewage treatment type such as ultrafast flocculation and sedimentation facilities, and complex catalytic oxidation facilities installed in riversides or streams to treat pollutants.
  • the treatment process is limited to physical treatment methods such as precipitation and filtration, the removal performance of non-point pollutants including nutrients such as nitrogen and phosphorus may be poor.
  • a simple filtration system using an underwater filter layer composed of gravel, crushed stone, etc. may have a weak management of the filter bed or have a poor ability to remove nutrients.
  • the technical problem to be achieved by the present invention is a hybrid artificial wetland water purification that can be highly processed to control a specific pollution source in general natural purification technology, including artificial wetland for the purpose of existing simple purification. To provide a system.
  • Another technical problem to be achieved by the present invention is the aerobic, non-aerobic region is divided according to the supply of air, each unit process provides the most optimal flow method for the treatment of organic matter, nitrogen and phosphorus, and the vertical and horizontal flow It is to provide a hybrid wetland water purification system which has different characteristics in the removal of each pollutant and shows a great difference in the residence time.
  • Another technical problem to be achieved by the present invention is that even though the main treatment method of the artificial wetland water purification system is the same, the pretreatment facilities to be applied vary according to the type and concentration of pollutants to be treated, and the appropriate residence time of each reactor is set. It is to provide a hybrid artificial wetland water purification system with the use of standardized and standardized media and a return line for recycling a certain amount of treated water in each unit process if necessary.
  • Another technical problem to be achieved by the present invention is to construct a hybrid artificial wetland by combining each artificial wetland reaction tank step by step from the conventional single-reaction artificial wetlands to enable the high-efficiency treatment of pollutants, and to functionalize each reaction tank, It is to provide a hybrid artificial wetland water purification system that can exhibit the optimum efficiency for treatment.
  • Another technical problem to be solved by the present invention is to provide a relatively high pollution concentration, to prevent void occlusion of artificial wetlands due to particulate matter such as sewage or wastewater containing a large amount of solid substances, and to at least provide for long-term stable use. It is to provide a high-efficiency hybrid artificial wetland water purification system in which a sedimentation separation tank having more than one settling chamber is installed, and the first aerobic, aerobic and selectively operated second aerobic artificial wetlands are sequentially installed and operated.
  • the non-point pollutant effectively treats a high concentration of particulate matter, and stores the reservoir and the filtration tank, which is a planned initial rainfall runoff irrespective of rainfall conditions, sequentially at the first aerobic,
  • the present invention provides a hybrid artificial wetland water purification system equipped with aerobic and second aerobic artificial wetlands.
  • Another technical problem to be achieved by the present invention is to install in separate reservoirs and filtration tanks that can increase the sedimentation efficiency and reduce the impact load of non-point pollutants in real time by measuring and transmitting the flow rate and water quality of inflow and discharge water. It is to provide a hybrid artificial wetland water purification system equipped with information technology (IT) and ubiquitous based real-time control device to control the inflow of nonpoint pollutants including rainfall runoff, and to control the discharge and transport of treated water.
  • IT information technology
  • Another technical problem to be achieved by the present invention is to provide a hybrid artificial wetland water purification system that can purify the non-point contaminated water due to rainfall during the rain in the summer season, and at the same time the stream or lake water at the same time, such as Cheoncheon or dry season. .
  • the present invention provides a first aerobic artificial wetland for removing contaminants while inducing a vertical flow of the purified water to be introduced; An aerobic artificial wetland for removing contaminants further while inducing a horizontal flow of the treated water flowing from the first aerobic wetland; And a hybrid artificial wetland water quality including a second aerobic artificial wetland which induces a vertical flow of the treated water flowing from the non-aerobic artificial wetland, and induces air to be supplied to increase the dissolved oxygen of the introduced treated water.
  • a purification system Provide a purification system.
  • the first breathable artificial wet paper the first filtration layer comprising an aggregate and a first filter provided on top of the aggregate is laminated from the bottom surface to prevent leakage, and the first filtration layer A first reed chip layer provided in the upper portion, a first distribution device for uniformly dispersing the treated water supplied by the purified water to be treated to the upper portion of the first reed chip layer, and to allow air to flow into the first filtration layer
  • the first air inlet tube and the first air inlet tube are connected to one end of the first air inlet tube, and the first air supply unit is configured to distribute the supply to the inside of the first filtration layer.
  • the first air inlet tube is provided in a vertical direction to guide the air to be discharged to the lower end after the air flows into the upper end and moved to the lower side, the first air supply is disposed in the horizontal direction in the first filtration layer And a connector formed at an upper portion thereof is connected to a lower end of the first air inlet tube, and includes a plurality of tunnel-type hole tubes having holes formed on the outer surface thereof to supply air introduced from the first air inlet tube to the first filtration layer. Is preferred.
  • tunnel-type perforated tubes are disposed on the bottom surface of the first filtration layer, the inner space is provided so as to communicate with each other to guide the treatment water to move, the first air inlet tube is provided spaced apart from each other by a predetermined distance desirable.
  • the aerobic artificial wet paper is provided on the bottom surface to prevent leakage
  • the first aggregate portion, the second aggregate portion, the third aggregate portion, the second aggregate from the front to the rear in the flow direction of the treated water Aggregate part and the first aggregate part is provided in sequence
  • the size of the aggregate is a second filtration layer and the second filtration layer which is composed of the first aggregate part, the second aggregate part and the third aggregate part in a large order It is preferably made to include a second filter that is entirely installed on the top of.
  • the second aerobic artificial wet paper the third filtration layer comprising an aggregate and a third filter provided on the top of the aggregate laminated from the bottom surface to prevent leakage, and the third filtration layer
  • the second reed chip layer provided in the upper portion, a second distribution device for evenly distributing the treated water to the upper portion of the second reed chip layer, and a second air inlet to allow air to flow into the third filtration layer
  • it comprises a tube and a second air supply unit connected to one end of the second air inlet tube so that the introduced air is distributed and supplied to the inside of the third filtration layer.
  • the second air inlet tube is provided in the vertical direction to guide the air to be discharged to the lower end after the air flows into the upper end to move to the lower side, the second air supply is disposed in the horizontal direction in the third filtration layer And a connector formed at an upper portion thereof is connected to a lower end of the second air inlet tube, and includes a plurality of tunnel-type hole tubes having holes formed on the outer surface thereof to supply air introduced from the second air inlet tube to the third filtration layer. Is preferred.
  • the tunnel-type perforated tubes are disposed on the bottom surface of the third filtration layer, the inner space is provided so as to communicate with each other to guide the treatment water to move, the air inlet tube is preferably provided spaced apart from each other by a predetermined distance. .
  • the present invention is a screen tank to collect the purified object water and to pass through the screen to filter the purified object present in the sewage, and the purification object remaining in the purified object filtered to the purified object in the screen tank connected to one side of the screen tank
  • a collecting tank including a settling tank to allow the settling tank to settle
  • a hybrid artificial wetland water purification system provided to process the treated water discharged from the sump
  • a discharge tank disposed at one side of the second aerobic artificial wetland of the hybrid artificial wetland water purification system, collecting the treated water purified through the second aerobic artificial wetland, and discharging the collected treated water to the outside.
  • a sewage treatment apparatus Provided is a sewage treatment apparatus.
  • the present invention is made of any one of a structure buried underground and a pond installed on the ground surface, the outer surface is provided with a water barrier to prevent leakage, is provided in the inlet through the inlet sluice operated in accordance with the first measurement value
  • a reservoir for storing purified water to be purified
  • a pretreatment unit to which treated water from the reservoir is introduced and pretreated
  • a hybrid artificial wetland water purification system provided to process the treated water discharged from the pretreatment unit;
  • the first measured value of the purified water flowing into the reservoir is obtained in real time to control the inflow amount of the purified water in real time, and the second measured value of the treated water finally discharged from the second aerobic wetland in real time. It provides a natural non-sintering device capable of simultaneously purifying the stream or lake water comprising a control device to obtain the discharge of the treated water in real time.
  • the pretreatment unit includes a filtration tank, a stirring tank, an agglomeration tank, a precipitation tank, and a pretreatment tank sequentially provided along the flow direction of the treated water supplied from the reservoir, and the filtration tank forms an appearance and is watertightly treated.
  • housing A packing box including an accommodating part filled with the plant filter material therein, and a lid part for opening and closing an upper part of the accommodating part, the packing being detached from the inside of the housing; And a distribution tube provided at an upper side of the packing box and having a plurality of perforations formed on the outer surface thereof so that the treated water transferred from the reservoir can be distributed to the packing box through the perforations.
  • the reservoir is introduced to the non-point contaminated water due to the rain flowing into the distribution pipe to move sequentially along the filtration tank, the stirring tank, the flocculation tank, the sedimentation tank and the pretreatment tank, and the inflow water It is preferable that the direct guide pipe is connected to the direct treatment to the pretreatment tank.
  • the second aerobic artificial wetland is preferably further provided with a discharge pipe for guiding the discharged treated water to be discharged to the river or lake.
  • Hybrid artificial wetland water purification system a sewage treatment apparatus using the same and a natural type of non-purifying device capable of simultaneously purifying a stream or lake water, the air supply unit of the first aerobic wetlands and the second aerobic artificial wetlands Since it is widely provided on the bottom and can smoothly supply air to the filtration layer, it is possible to stably supply air to aerobic microorganisms, thereby significantly increasing the oxidative decomposition ability of the suspended organic solids caused by the aerobic microorganisms.
  • a natural type of non-purifying apparatus capable of simultaneously purifying a stream or lake water using a hybrid artificial wetland water purification system is provided with a reservoir capable of storing 0.5 to 1.0Q of an expected initial rainfall boiling point.
  • a reservoir capable of storing 0.5 to 1.0Q of an expected initial rainfall boiling point.
  • the packaging box is provided on the inside of the filter tank detachably, the inside of the packaging box is filled with a filter medium reed chip is not only easy to replace, but also oil and soil contained in the treated water, etc. Further removal of can be achieved effectively.
  • the control device measures and analyzes the water quality and flow rate of the purified water and the final treated water flowing into the reservoir in real time, thereby controlling the inflow of the purified water and the discharge of the final treated water. By doing so, it is possible to block the inflow of unnecessary inflow in advance and to circulate the treated water selectively, thus enabling more efficient operation.
  • the treatment process by the aerobic and non-aerobic artificial wetland is applied as the main treatment process can increase the ease of maintenance and reduce the maintenance cost.
  • it can be installed in a variety of locations to prevent the inflow of water pollutants directly into the nearby water system in an unspecified place and to stably purify it can prevent contamination of the water supply or rivers.
  • the treated water discharged to be discharged to the reservoir can be used as landscaping water or to protect the vegetation and function as an ecological wetland park.
  • the drug administration and sterilization process is further added to improve the water quality Can be.
  • FIG. 1 is a cross-sectional view showing a hybrid artificial wetland water purification system according to a first embodiment of the present invention.
  • Figure 2 is a perspective view showing a first distribution device of the first aerobic artificial wetlands in a hybrid artificial wetland water purification system according to a first embodiment of the present invention.
  • FIG 3 is a perspective view showing an air inlet tube and an air supply unit of the first aerobic artificial wetland in the hybrid artificial wetland water purification system according to the first embodiment of the present invention.
  • FIG. 4 is a planar view showing aerobic artificial wetlands in the hybrid artificial wetlands water purification system according to a first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a second aerobic artificial wetland of the hybrid artificial wetland water purification system according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a sewage treatment apparatus using a hybrid artificial wetland water purification system according to a second embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing a sewage treatment apparatus using a hybrid artificial wetland water purification system according to a third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a natural type non-sintering device capable of simultaneously purifying a stream or lake water using a hybrid artificial wetland water purification system according to a fourth embodiment of the present invention.
  • Figure 9 is a planar view showing a natural type of non-purifying apparatus capable of simultaneous purification of rivers or lake water using a hybrid artificial wetland water purification system according to a fourth embodiment of the present invention.
  • FIG. 10 is a front view illustrating a pretreatment unit of a natural type non-sintering device capable of simultaneously purifying a stream or lake water using a hybrid artificial wetland water purification system according to a fourth embodiment of the present invention.
  • Figure 11 is an exemplary view showing the packaging of the filtration tank of the natural type of non-purifying apparatus capable of simultaneous purification of rivers or lake water using a hybrid artificial wetland water purification system according to a fourth embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a reuse facility using a hybrid artificial wetland water purification system according to a fifth embodiment of the present invention.
  • pretreatment tank 440 discharge pipe
  • FIG. 1 is a cross-sectional view showing a hybrid artificial wetlands water purification system according to a first embodiment of the present invention
  • Figure 2 is a first aerobic artificial wetlands of the artificial wetlands water purification system according to a first embodiment of the present invention
  • 3 is a perspective view illustrating a first distribution device
  • FIG. 3 is a perspective view illustrating an air inlet tube and an air supply unit of a first aerobic wetland in a hybrid artificial wetland water purification system according to a first embodiment of the present invention
  • FIG. 5 is a planar view showing an aerobic artificial wetland in the hybrid artificial wetland water purification system according to the first embodiment of the present invention
  • Figure 5 shows a second aerobic artificial wetland of the hybrid artificial wetland water purification system according to the first embodiment of the present invention Illustrated cross section.
  • the hybrid artificial wetland water purification system 10 may include a first aerobic artificial wetland 20, an aerobic artificial wetland 60, and a second aerobic artificial wetland 80. have.
  • the first aerobic artificial wetland 20 to remove the pollutants while inducing a vertical flow of the purified water to be introduced.
  • the non-aerobic artificial wetland 60 to further remove the contaminants while inducing a horizontal flow of the treated water flowing from the first aerobic artificial wetland (20).
  • the second aerobic artificial wetland 80 is to increase the dissolved oxygen of the treated water flowing in the aerobic artificial wetland (60).
  • the first breathable artificial wetland 20 may be configured to include a first filtration layer 21, a first distribution device 30, a first air inflow tube 48, and a first air supply unit 40. have.
  • the first filtration layer 21 may be configured to include an aggregate 22 stacked from the bottom surface of the order to prevent leakage, and the first filter 24 provided on the aggregate 22. have.
  • first plant 24 may be planted with a first plant 25, and the first plant 25 may be provided with reeds.
  • a plurality of the first distributing device 30 may be provided in a horizontal direction on the upper side of the first filtration layer 21, and the first dispensing device 30 may supply the purified water to the first aerobic property. Corresponding to the area of the upper surface of the artificial wet paper 20 to be evenly distributed.
  • the first distribution device 30 is preferably provided with a plurality of predetermined intervals in the longitudinal direction with respect to the upper surface area of the first aerobic artificial wetland 20.
  • the first distribution device 30 includes a support part 31 and a cover part 32.
  • the support 31 is composed of a support (33) spaced by a predetermined interval and the holder 34 is connected to the upper end of one side.
  • the cover part 32 includes a distribution pipe 35 connected to each of the upper ends of the support part 31 and a cover 36 covering the distribution pipe 35.
  • the distribution pipe 35 is connected to each of the upper end side of the cradle 34 spaced apart at regular intervals, each made of a tubular shape having a rectangular shape with an upper portion open to provide a flow path through which the introduced purification target water flows. .
  • the distribution pipe 35 has a discharge portion 37 having a 'V' shape at regular intervals on both left and right sides thereof so that the purified water can be evenly distributed on the upper surface of the first aerobic artificial wetland 20. .
  • the first air supply unit 40 is provided in the first filtration layer 21, and the first air supply unit 40 includes a plurality of tunnel-type oil holes 41.
  • the tunnel-type perforated pipe 41 is configured to allow the upper plate 42 and the lower plate 43 to be fastened to each other so that an inner space 44 is formed therein so that fluid such as water and air can flow.
  • through-holes 45 and 46 are formed in the upper plate 42 and the lower plate 43, respectively, so that water and air may flow in and out of the tunnel-type hole tube 41.
  • the upper plate 42 is formed with a connector 47, the connector 47 is connected to the first air inlet tube 48.
  • An upper end portion of the first air inflow tube 48 protrudes upward through the first filtration layer 21, and a plurality of through holes 49 are formed on a surface thereof.
  • atmospheric air may be introduced into the first air inlet tube 48 through the through-hole 49, and the introduced air moves to the first air supply unit 40 to allow the first filtration layer ( 21) can be supplied.
  • a cover (not shown) may be further provided at an upper end of the first air inflow tube 48 so that a substance such as dust does not flow in.
  • the cover is formed of a metal such as a nonwoven fabric or a vent hole.
  • a cover made of material or plastic material can be used in various ways.
  • first filter 23 and the aggregate 22 may be purged for the purified target water introduced by parasitic aerobic microorganisms, the air introduced through the first air inlet tube 48 is It is supplied to the aerobic microorganisms through the first air supply unit 40 can be active decomposition of the microorganisms.
  • the first air supply unit 40 is preferably made of the tunnel-type perforated pipes 41 are arranged in the grid type on the bottom surface of the first filtration layer 21.
  • tunnel-type perforated pipes 41 are preferably provided such that the inner space 44 communicates with each other, and the first air inlet tube 48 is fixed in the longitudinal direction of the first air supply part 40. It is preferable that a plurality is provided at intervals.
  • the connector 47 may be connected to a horizontal vent (not shown), wherein the first air inlet tube 48 and the horizontal vent may be connected in sequence.
  • the treated water discharged from the first aerobic artificial wetlands 20 is preferably supplied to the aerobic artificial wetlands 60 through the first discharge pipe (26).
  • a first water tank 50 may be further provided between the first aerobic artificial wetlands 20 and the aerobic artificial wetlands 60.
  • non-aerobic artificial wetland 60 is preferably the secondary purification of the treated water primarily purified by aerobic microorganisms in the first aerobic artificial wetland (20).
  • the aerobic artificial wetland 60 may be configured to include a second filtration layer 61 and the second filter (65).
  • the outermost parts such as the bottom and side portions of the aerobic artificial wetland 60 is made of a material that can ensure structural stability, such as concrete structure, glass fiber reinforced plastic (FRP), polyethylene (PE) and stainless steel Can be done.
  • FRP glass fiber reinforced plastic
  • PE polyethylene
  • stainless steel can be done.
  • the bottom portion and the side portion is preferably provided with a water-repellent film of the impermeable material, wherein the water-repellent film may be made of a high density polyethylene (HDPE) material.
  • HDPE high density polyethylene
  • the second filtration layer 61 is preferably provided above the bottom portion.
  • the second filter layer 61 is the first aggregate portion 62, the second aggregate portion 63, the third aggregate portion 64, the front to the rear in the horizontal flow direction of the treated water flows It is preferable that the second aggregate portion 63 and the first aggregate portion 62 are configured to be provided sequentially.
  • the size of the aggregate is preferably larger in the order of the first aggregate portion 62, the second aggregate portion 63 and the third aggregate portion 64.
  • the second filtration layer 61 is aggregated in order from large to medium to small to medium to large in size sequentially from the front to the rear along the horizontal flow direction of the treated water, and the treated water is the second filtration. As it passes through the layer 61, it can be transported while spreading.
  • the internal space of the aerobic artificial wetland 60 is partially partitioned to zigzag the flow of the treated water horizontally.
  • Guide partition 66 for guiding to may be further included.
  • the second plant 65 is preferably planted with a second plant (67), wherein the second plant (67) may be provided with reeds, mackerel, scallop sacho, yellow irises and the like. have.
  • the non-aerobic artificial wetland 60 is subjected to the secondary purification process of anaerobic microorganisms parasitic parasitic treatment in the second filtration layer 61 of the first purified water through the first aerobic artificial wetland 20, the anaerobic microorganism
  • the secondary purification process by the anaerobic microorganism may be maximized by evenly contacting the parasitic second filter material 65 and the second filter layer 61.
  • the treated water discharged from the non-aerobic artificial wetland 60 is preferably supplied to the second aerobic artificial wetland 80 through the second discharge pipe (68).
  • a second tank 70 may be further provided between the aerobic artificial wetland 60 and the second aerobic artificial wetland 80, and the pump 71 is provided in the second water tank 70. Can be.
  • treated water of the second water tank 70 may be supplied to the second aerobic artificial wetland 80 through the third discharge pipe (72).
  • the second breathable artificial wetland 80 may be divided by the first breathable artificial wetland 20 and the separating wall 27.
  • the second breathable artificial wetland 80 may include a third filtration layer 81, a second reed chip layer 84, and a second distribution device 85.
  • the outermost parts such as the bottom and side portions of the second aerobic artificial wetland 80 is a material capable of securing structural stability, such as a concrete structure, glass fiber reinforced plastic (FRP), polyethylene (PE) and stainless steel, etc. It may be made of.
  • FRP glass fiber reinforced plastic
  • PE polyethylene
  • stainless steel etc. It may be made of.
  • the bottom portion and the side portion is preferably provided with a water-repellent film of the impermeable material, wherein the water-repellent film may be made of a high density polyethylene (HDPE) material.
  • HDPE high density polyethylene
  • the third filtration layer 81 is preferably provided at the top of the bottom portion.
  • the third filtration layer 81 may be configured to include an aggregate 82 and the third filter 83, the aggregate 82 and the third filter 83 sequentially to the top of the bottom portion Can be stacked.
  • the aggregate 82 may be made of gravel or lightweight aggregate of 10 ⁇ 40mm size, it is preferably laminated to a height of 0.3 ⁇ 1.0m.
  • the third filter (83) may be made of a porous filter medium or filtered sand of 2 ⁇ 10mm size, 0.3 ⁇ 1.2m It is preferred to stack at height.
  • the aggregate (82) and the third filter (83) has a high porosity, excellent surface roughness, and high chemical ion exchange ability to remove the soil powder, the uniformity coefficient 3.0 or less, and improve the adhesion of microorganisms It is preferable that it is used.
  • the second reed chip layer 84 is preferably provided on the upper portion of the third filtration layer 81, the second reed chip layer 84 is laminated with a reed chip of 2 ⁇ 10cm size more than 5cm thickness. It is preferable that it is done.
  • the second distribution device 85 evenly distributes the treated water flowing through the third discharge pipe 72 to the upper portion of the second reed chip layer 84, the area of the second reed chip layer 84 Accordingly, the second distribution device 85 may be provided in plural numbers.
  • the treated water discharged from the second distribution device 85 is dropped into the second reed chip layer 84 and flows downward in the vertical direction to pass through the third media 83 and the aggregate 82.
  • additional non-point contaminants such as organic matter and nutrients may be removed by the mechanism of removing physical contaminants such as filtration and adsorption, biological removal by microorganisms, chemical bonding and ion exchange, and the like.
  • the second breathable artificial wetland 80 is provided in the horizontal direction so that the outside air flows in, and the second air supply unit for transferring the introduced air to the entire bottom of the second breathable artificial wetland 80 And a second air inflow tube 87 connected to the second air supply unit 86 and a lower end thereof open to the atmosphere.
  • the second air supply unit 86 and the second air inlet tube 87 may have the same configuration as the first air supply unit 40 and the first air inlet tube 48 described above.
  • the second breathable artificial wetland 80 is preferably provided with an air supply device 89, the inside of the second air supply unit 86 for distributing the air supplied from the air supply device (89) Air distribution device 88 may be further provided.
  • the second aerobic wetlands 80 may be artificially supplied with more air to increase the dissolved oxygen of the treated water passing through the second aerobic wetlands 80, further improving the water quality Can be done.
  • one end of the discharge pipe 90 is preferably provided near the bottom of the second aerobic artificial wetland 80, in this case, in order to allow the treated water to flow into one end of the discharge pipe (90). It is preferable that a plurality of perforations 91 are formed.
  • the first aerobic artificial wetlands 20, the aerobic artificial wetlands 60 and the second aerobic artificial wetlands 80 may form a hybrid type artificial artificial wetland water purification system 10 of the sequentially connected. Will be.
  • the first aerobic artificial wetland 20 in which air is supplied to maintain an aerobic atmosphere
  • the aerobic artificial wetland 60 in which no air is supplied
  • the second aerobic unit so as to increase the dissolved oxygen of the treated water It is composed of artificial wetland 80 so that the influent flows in order to remove organic matter, nitrogen and phosphorus simultaneously by microorganisms inhabiting the first, second and third filtration layers (21, 61, 81), nature-friendly type Hybrid artificial wetland water purification system 10 can be provided.
  • the energy consumed may be lower than that of the water treatment process using electricity.
  • FIG. 6 is a cross-sectional view showing a sewage treatment apparatus using a hybrid artificial wetland water purification system according to a second embodiment of the present invention.
  • the sewage treatment apparatus may be a device for treating public sewage.
  • the sewage treatment apparatus may include a water collecting tank 210, a hybrid artificial wetland water purification system 10, and a discharge tank 270. It can be made, including).
  • the collection tank 210 is connected to one side of the screen tank 220 through which sewage is introduced through the sewage inflow pipe 211, and one screen of the screen tank 220 by the screen 221 of the screen tank 220.
  • Solids may include a settling tank 230 for precipitating the solids remaining in the filtered sewage.
  • the screen 221 is provided to be inclined inside the screen tank 220, the coarse coarse containing coarse material such as branches, vinyl pieces present in the sewage introduced through the sewage inlet pipe 211. And solids may be filtered by the screen 221.
  • sewage from which the coarse contaminants and solids are filtered from the screen tank 220 is introduced into the sedimentation tank 230, and solids remaining in the introduced sewage are precipitated in the sedimentation tank 230.
  • the first breathable artificial wetland 20 is to be transferred.
  • the settling tank 230 may include a first settling tank 231, a second settling tank 232, a third settling tank 233 and a fourth settling tank 234 provided along the flow direction of the sewage, By including such a plurality of settling tank can maximize the sedimentation efficiency of the remaining solids.
  • the settling tank 230 may be made of only one or two settling tank in consideration of the installation cost.
  • one side of the sewage transport pipe 226 for introducing the sewage from which the remaining solid precipitates into the first aerobic wetland 20 is disposed in the fourth settling tank 234 disposed at the end of the settling tank 230.
  • the other side of the sewage transport pipe 226 may be disposed in the distribution pipe 35 of the first breathable artificial wetland 20.
  • the fourth settling tank 234 when the fourth settling tank 234 is located at a lower position than the first aerobic artificial wetland 20, the fourth settling tank is connected to one side of the sewage transport pipe 226 by a pump (not shown). The sewage in which the residual solids of 234 are precipitated may be transferred to the first aerobic wetland 20.
  • the fourth settling tank 234 may be installed on the same line as the first breathable artificial wetland 20 or higher than the first breathable artificial wetland 20, and in this case, the pump S) can be transferred to the first aerobic artificial wetland 20 with only the sewage transport pipe 211 without sewage sediment precipitated residual solids.
  • the sewage (purification target water) introduced into the hybrid artificial wetland water purification system 10 passes through the aerobic artificial wetland 60 and the second aerobic wetland 80 as described above in the first embodiment. It is treated and discharged through the discharge pipe 90.
  • FIG. 7 is a cross-sectional view showing a sewage treatment apparatus using a hybrid artificial wetland water purification system according to a third embodiment of the present invention.
  • the aerobic artificial wetland may be provided below the first aerobic artificial wetland and the second aerobic artificial wetland, and the other construction is the same as the above-described second embodiment, and thus description thereof is omitted.
  • a portion of the aerobic wetland 360 of the hybrid wetlands water purification system 310 may be provided directly below the first aerobic wetlands 320 and the second aerobic wetlands 380. have.
  • the area for installing the hybrid artificial wetland water purification system 310 can be reduced, so that it can be installed in a place where it is difficult to secure a large space.
  • one end of the first discharge pipe 326 is preferably provided near the bottom of the first breathable artificial wetland 320. In this case, one end of the first discharge pipe 326 may allow the treated water to flow therein. In order to accomplish this, a plurality of perforations 330 are preferably formed.
  • the other end of the first discharge pipe 326 is preferably connected to the perforated distribution pipe 370 provided in the aerobic artificial wetland 360.
  • the perforated distribution pipe 370 is preferably provided in the height direction in the aerobic artificial wetland 360, it is preferable that a plurality of perforations (not shown) is formed on the outer surface.
  • the treated water transferred through the first discharge pipe 326 can be evenly discharged to one side of the aerobic artificial wetland 360 by the distribution punching pipe 370.
  • FIG. 8 is a cross-sectional view illustrating a natural type non-sintering apparatus capable of simultaneously purifying a stream or lake water using a hybrid artificial wetland water purification system according to a fourth embodiment of the present invention
  • FIG. 9 is a fourth embodiment of the present invention.
  • This is a planar view showing a natural type non-purifying device capable of simultaneously purifying a stream or lake water using a hybrid artificial wetland water purification system according to the present invention.
  • the natural type of non-purifying apparatus capable of simultaneously purifying the stream or the lake water includes the reservoir 420, the pretreatment unit 430, the hybrid wetland water purification system 10, and the controller 449. It is preferably made to include.
  • the purified water may be discharged to the appeal 410 by effectively removing contaminants while sequentially passing through the reservoir 420, the pretreatment unit 430, and the hybrid artificial wetland water purification system 10. .
  • control device 449 is to control the flow rate in real time by analyzing the water quality of the incoming purification target water and the discharged treated water in real time, it is preferable to control the flow path of the treated water, through which, non-point pollution It is possible for the substance to be removed effectively and efficiently.
  • the reservoir 420 may be in the form of any one of a structure buried underground and a pond installed on the ground surface.
  • the structure is preferably a concrete structure, if necessary, glass fiber reinforced plastic (FRP), polyethylene (PE) and stainless steel (stainless steel) Of course, such materials may be used to ensure structural stability.
  • FRP glass fiber reinforced plastic
  • PE polyethylene
  • stainless steel stainless steel
  • the above-described materials may be used when the reservoir 420 forms a pond installed on the ground.
  • an outer membrane such as a bottom portion and a side portion of the reservoir 420 may further include an insulation layer for preventing leakage, wherein the insulation layer is preferably made of a high density polyethylene (HDPE) material.
  • HDPE high density polyethylene
  • the order film is preferably made of a thickness that can ensure sufficient strength while preventing leakage, for this purpose, the order film may be made of 1 ⁇ 2mm thickness.
  • the reservoir 420 is preferably installed to store 0.5 ⁇ 1.0Q of the expected initial rainfall boiling point generation.
  • Q non-point pollution amount caused by initial rainfall, m 3
  • A non-point source generation basin area
  • I rainfall intensity
  • the non-point source generation basin area is rainfall area, that is, when the rain falls on a certain area, the rain is concentrated in a certain direction and a specific space (for example, the installation location of the purification facility, etc.). It means the corresponding area to get off.
  • the rainfall intensity generally means cumulative rainfall amount, can be calculated based on 5 ⁇ 10mm, more specifically about 5mm may be applied.
  • the initial rainfall boiling point generation amount may refer to the generation amount (non-point contaminated water) of the non-point pollutant having a very high pollution degree up to a level of about 5 mm after the first rain, and the reservoir 420 is the initial rainfall boiling point generation amount.
  • an inlet pipe 411 connected to the reservoir 420 to guide the purification target water to be introduced into the reservoir 420 may be connected to the appeal 410.
  • the inlet pipe 411 may be provided with a lake water inlet tank 412, the lake water inlet tank 412 may be connected to the appeal 410 by the lake water inlet 413.
  • the lake water inlet tank 412 may be provided with a lake water inflow pump 414 for introducing the lake water of the appeal 410, the lake water inflow pump 414 to the first operation control unit (not shown)
  • the operation can be controlled by
  • the inlet pipe 411 may be further provided with a boiling point inlet tank 415, the boiling point inlet tank 415 may be provided with a boiling point inlet 416.
  • the boiling point inflow water tank 415 may be further provided with a boiling point inflow pump 417 for supplying the non-point contaminated water by rain to the inlet pipe 411, the boiling point inflow pump 417 is a second Operation may be controlled by an operation control unit (not shown).
  • the inlet pipe 411 may be provided with a first analysis device 491, the first analysis device 491 is a real-time measurement of the first measurement value from the purified water flowing into the reservoir 420 It is preferable to measure and analyze.
  • the first measurement value is the flow rate of the purified water to be introduced, pH (hydrogen ion concentration), water temperature, turbidity (oil), total organic carbon, biotoxicity, chemical oxygen It may include the required amount (COD), total nitrogen and total phosphorus, and for the measurement of the first measurement value, the first analysis device 491 may include a water quality analyzer 418 and a flow meter 419. have.
  • the inflow amount of the purified water and the flow path of the treated water in the pretreatment unit 430 may be controlled according to the first measured value.
  • the first and second operation controllers and the first analysis may be adjusted.
  • the device is included in the control device 449, and the control device may further include a central controller (not shown).
  • the central controller may be configured to change the number of purifying objects according to the variation of the first measured value during the cheoncheon and the rainfall.
  • the central control unit is preferably controlled so that the lake water inflow pump 414 is operated during the cheoncheon so that the lake water of the appeal 410 is introduced, the rain point inflow pump 417 is operated during rainfall. It is preferable to allow the non-point polluted water to be introduced by rainfall.
  • the reservoir 420 has a pretreatment function to stably remove sedimentary / floating substances, contaminants, oils, and suspended solids among the non-point pollutants of the introduced purified water, and the impact load is attenuated or impacted. It can function to respond effectively to fluctuations.
  • the reservoir 420 may be connected to the pretreatment unit 430 by the first transfer pipe 421, so that the treated water treated in the reservoir 420 is the first transfer pipe 421 It is transferred to the preprocessor 430 through.
  • FIG. 10 is a front view illustrating a pretreatment unit of a natural type non-tackifying apparatus capable of simultaneously purifying a stream or lake water using a hybrid artificial wetland water purification system according to a fourth embodiment of the present invention
  • FIG. 11 is a fourth exemplary embodiment of the present invention.
  • the pretreatment unit 430 may include a filtration tank 431, a stirring tank 432, an agglomeration tank 435, a precipitation tank 437, and a pretreatment water tank 438. .
  • the filtration tank 431 is connected to the reservoir 420 by a first transfer pipe 421, the control valve for selectively opening and closing the first transfer pipe 421 to the first transfer pipe (421) ( 422 is preferably provided.
  • control valve 422 is preferably controlled by a third operation control unit (not shown), the third operation control unit is preferably included in the control device 449.
  • the filtration tank 431 may include a housing 493, a packing box 493a, and a distribution tube 499.
  • the housing 493 forms an outer shape of the filtration tank 431.
  • the housing 493 may be made of a concrete material to ensure structural stability, and is preferably watertight.
  • the distribution pipe 499 is preferably provided at an inner upper portion of the housing 493, and at this time, a plurality of perforations 499a are formed on the outer surface of the distribution pipe 499, and the distribution pipe 499 may be connected to the first transport pipe 421.
  • the treated water transferred from the reservoir 420 to the distribution pipe 499 through the first transfer pipe 421 may be discharged through the perforation 499a.
  • the packing box 493a may be provided at a lower portion of the distribution tube 499 to the inside of the housing 493. Accordingly, the treated water discharged from the distribution tube 499 may be disposed at the lower side of the housing 493. It falls to the packing box 493a.
  • the packing box 493a may include a receiving portion 494 and a cover 495.
  • the accommodating part 494 is formed to have a space formed therein, and the net 496 may allow the treated water discharged from the perforations 499a of the distribution pipe 499 to pass through the accommodating part 494. It may be made or a plurality of holes may be formed.
  • a filter medium 497 is accommodated inside the accommodation portion 494.
  • the filter medium 497 is made of a material for easy replacement at a low cost and to effectively remove the solids and oil contained in the introduced treated water, preferably made of a plant filter medium.
  • the plant filter medium may be made of reed chips cut to a size of 3 ⁇ 10cm.
  • the reed chip can be densely packed inside the receiving portion 494 and thus can be efficiently accommodated, so that additional removal of oil and soil contained in the treated water passing through the reservoir 420 can be effectively performed. .
  • cover part 495 is preferably provided to open and close the upper part of the accommodating part 494, and the cover part 495 is locked to be fixed while covering the upper part of the accommodating part 494.
  • Device 498 may be further provided.
  • the filter medium 497 is accommodated so as not to be discharged from the container 494, and the cover 495 may be opened to replace the filter medium 497 if necessary.
  • the packing box 493a may be detachably attached to the inside of the housing 493 so that the filter material 497 may be easily exchanged, and the housing 493 may be disposed in consideration of the filtration amount and the filtering efficiency of the treated water. It may be provided with a plurality inside the.
  • the distribution pipe 499 is, of course, is preferably provided on the upper side of the packing box 493a so that the discharged treated water is evenly distributed to the packing box 493a.
  • the filtration tank 431 may be formed so that the treated water stays inside for a predetermined time so that effective filtration of the introduced treated water may be performed, and preferably, the introduced treated water may stay for 2 to 10 minutes. .
  • stirring tank 432 may be connected to the filtration tank 431 by the second transfer pipe 423 along the flow direction of the treated water introduced from the first transfer pipe 421.
  • the chemical injection device 433 may be further connected to the second transfer pipe 423 or the stirring vessel 432.
  • a chemical for injecting contaminants of the treated water passing through the filtration tank 431 may aggregate from the chemical injection device 433.
  • the drug injection device 433 is preferably controlled by a fourth operation control unit (not shown), it is preferable that the fourth operation control unit is included in the control device 449.
  • stirring tank 432 may be provided with a stirrer 434 so that the injected chemical is well stirred.
  • the stirrer 434 is preferably rotated at 120 ⁇ 150rpm.
  • the stirring tank 432 is preferably provided with the coagulation tank 435, the coagulation tank 435 may be provided with an agglomerator 436 for inducing coagulation of the injected medicine.
  • the agglomerator 436 is preferably rotated at 20 ⁇ 70rpm.
  • the precipitation tank 437 may be connected to one side of the coagulation tank 435. In the precipitation tank 437, aggregated by-products are precipitated while passing through the coagulation tank 435.
  • one side of the settling tank 437 is preferably provided with a pre-treatment tank 438 to collect the treated water passed through the settling tank 437.
  • the reservoir 420 is preferably connected to the direct guide pipe 424 further to the upper side of the first transfer pipe 421.
  • the direct guide pipe 424 is preferably provided so that the treated water flows naturally by gravity, and is preferably connected to the pretreatment tank 438.
  • the treated water stored in the reservoir 420 may flow directly to the pretreatment tank 438 through the direct guide tube 424.
  • the treated water of the reservoir 420 may be directly moved to the pretreatment tank 438 through the direct guide pipe 424.
  • the treated water of the reservoir 420 may flow to the filtration tank 431 through the first transfer pipe 421.
  • the flow of the treated water can be controlled by the central controller, for example, the deterioration of the water quality by the first measured value is severe, that is, the water quality by the first measured value is more than the reference value, When the rainfall and at least one of the case that the deterioration of the water quality due to the second measurement value to be described later (that is, when the water quality by the second measurement value is more than the reference value), so that the control valve 422 is opened. It is preferred to be controlled.
  • the treated water from the reservoir 420 passes through the filtration tank 431, the stirring tank 432, the coagulation tank 435, the precipitation tank 437, and the pretreatment water tank 438. All of the parts 430 go through the purification process.
  • the control valve 322 is preferably controlled to be closed, and thus, the treated water may be subjected to unnecessary purification. It can flow straight into the pretreatment tank 438 without passing through.
  • hybrid artificial wetland water purification system 10 is provided at one side of the pretreatment tank 438. Since the configuration of the hybrid artificial wetland water purification system 10 is the same as the first embodiment described above, a detailed description will be given. Omit.
  • the pretreatment tank 438 and the first breathable artificial wetland 450 may be connected by a third transfer pipe 425.
  • the treated water discharged from the first aerobic artificial wetland 450 is moved to the aerobic artificial wetland 460 through the first discharge pipe 455, the aerobic artificial wetland 460 is the second discharge pipe ( 465 may be connected to the second tank 470.
  • the discharge pipe 440 may be provided with a second analyzer 492, and the second analyzer 492 measures a second measurement value from the treated water discharged through the discharge pipe 440. It is preferable to.
  • the second measured value may include flow rate, pH, water temperature, turbidity, total organic carbon, chemical oxygen demand (COD), total nitrogen, and total phosphorus of the discharged treated water.
  • the second analyzer 497 may include a water analyzer 442 and a flow meter 443.
  • the sterilizer 445 may be a device using ultraviolet light.
  • the sterilization device 445 is preferably controlled by a fifth operation control unit (not shown), the fifth operation control unit is preferably included in the control device 449.
  • the central control unit discharges the flow rate of the purified water flowing into the reservoir 420 in real time according to the flow rate and the water quality measured by the second analyzer 492 and discharged from the second aerobic artificial wetland 480.
  • the flow rate of the treated water to be controlled is controlled.
  • the central control unit controls the lake water inflow pump 414 to operate so that the lake water flows into the purified water, and the lake water inflow pump 414 to allow the non-point contaminated water due to the rain to flow into the purified water. It is preferable to control the operation so that the operation of the boiling point inlet pump 417 is stopped.
  • control valve 422 is opened to allow the treated water to flow through all of the pretreatment unit 430, thereby ensuring a target water quality.
  • control valve 422 is sealed to allow the treated water to flow straight into the pretreatment tank 430 so as not to undergo an unnecessary purification process, thereby shortening the purification time and preventing unnecessary operation, thereby maintaining maintenance and economy. This can be improved.
  • FIG. 12 is a flowchart illustrating a recycling facility using a hybrid artificial wetland water purification system according to a fifth embodiment of the present invention.
  • the hybrid artificial wetland water purification system 10 may also be used as a tertiary treatment and reuse facility of sewage.
  • the treated water that has undergone the chemical treatment (620) in which total phosphorus (TP) is controlled is the hybrid artificial wetland water purification system ( 10) can be passed through.
  • the treated water discharged from the hybrid artificial wetland water purification system 10 may be discharged through a nitrogen / phosphorus removing process 630, or another treated water 640 may be used as reused water.
  • the monthly water flow (CSOs) of the resting sewage pipe before entering the primary sedimentation tank 600 may be introduced directly into the hybrid artificial wetland water purification system 10.

Abstract

본 발명은 하수나 폐수로 대표되는 점 오염원을 처리하는데 적용되거나, 하천수 또는 호소수 중에 포함된 다양한 오염물질을 처리하는데 있어 강우시 유출되는 비점오염원을 선택적으로 또는 동시에 고도처리할 수 있는 저에너지 소비형의 다기능 하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치에 관한 것이다. 본 발명의 실시예에 따른 하이브리드 인공습지 수질정화시스템은 제1호기성 인공습지, 비호기성 인공습지 그리고 제2호기성 인공습지를 포함하여 이루어진다. 여기서, 제1호기성 인공습지는 유입되는 정화대상수의 수직방향 흐름을 유도하면서 오염물질이 제거되도록 한다. 비호기성 인공습지는 제1호기성 인공습지로부터 유입되는 처리수의 수평방향 흐름을 유도하면서 오염물질이 추가로 제거되도록 한다. 그리고, 제2호기성 인공습지는 비호기성 인공습지로부터 유입되는 처리수의 수직흐름을 유도하고, 내측으로는 공기가 공급되도록 하여 유입된 처리수의 용존산소가 높아지도록 한다.

Description

하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치
본 발명은 하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치에 관한 것으로, 보다 상세하게는 하수나 폐수로 대표되는 점 오염원을 처리하는데 적용되거나, 하천수 또는 호소수 중에 포함된 다양한 오염물질을 처리하는데 있어 강우시 유출되는 비점오염원을 선택적으로 또는 동시에 고도처리할 수 있는 저에너지 소비형의 다기능 하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치에 관한 것이다.
일반적으로, 수질오염원은 방지와 관리의 목적으로 크게 점오염원(point pollution source)과 비점오염원(nonpoint pollution source)으로 구분한다.
여기서, 상기 점오염원은 생활하수나 공장폐수, 축산폐수 등과 같이 특정 위치에서 오염수를 배출하는 오염원을 칭한다.
그리고, 상기 비점오염원은 대지, 도로, 농지, 산지, 공사장 등의 불특정 장소에서 수질 오염물질을 배출하는 배출원이며, 경작지, 목장, 도시지역, 산림지역, 주차장, 도로, 각종 공사 지역, 공장 및 산업지역을 지나온 빗물의 지표 유출수 또는 땅속으로 스며드는 물에 포함된 오염물질이 비점오염원의 주요 발생사례들이다.
지금까지 상기 점 및 비점 수질오염원의 정화를 위해 다양한 기술이 적용되어 왔으며, 이 중 인공습지 수질정화기술은 시공비, 유지관리비 측면에서 경제적이면서도, 비교적 안정적인 수질정화효과를 얻을 수 있고, 저에너지 소비형으로 고장이 거의 없고, 정화시설의 운영이 편리한 장점으로 인해 그 적용성이 폭넓게 확대되고 있다.
하지만, 종래의 인공습지 정화기술은 단일 반응조를 활용하여 수직흐름 또는 수평흐름식의 인공습지를 활용하는 경우가 대부분이나, 이 경우 고농도 오염물질 및 질소와 인과 같은 부영양화 물질의 고효율 처리가 어렵고, 유량이나 수질의 변동에 따라 처리효율 역시 크게 달라질 수 있다는 측면에서 기존의 자연정화기술의 한계를 크게 벗어나지 못한 측면이 있었다.
또한, 인공습지 정화기술은 오염원의 종류에 따라 통상적으로 10∼30㎡/㎥·일 이상의 부지면적이 확보되어야 하므로 다양한 장점에도 불구하고 가장 큰 단점으로 지적되어 왔다.
상기 점오염원의 처리에 주로 적용되어 온 기계식 및 장치형 설비 위주의 처리방식은 고도로 훈련된 전문인력이 상주하면서 지속적인 관리를 요구하는 방식으로 고에너지 소비형 기술이라는 측면에서 대안기술을 찾고 있는 실정이며, 유지관리가 매우 까다롭고, 관리비가 매우 높다는 측면도 단점으로 지적되어 왔다.
따라서, 이전까지 자연정화기술로는 처리가 어렵다고 생각되어 왔던 고농도, 고효율 유입수에 대한 처리문제를 해결하고, 부영양화의 원인이 되는 질소 및 인의 처리가 가능한 자연형 정화기술의 개발이 필요한 실정이다.
비점오염원 역시 오염물질 발생원인이 인위적이고 자연적이며, 배출지점이 불특정하고 희석 및 확산 되면서 넓은 지역으로 배출되어 예측이 곤란할 뿐만 아니라 수집이 어렵고 처리효율이 일정하지 않아 정화시설의 설계 및 적용, 유지관리가 어려운 특성들을 가지고 있다.
이러한 비점오원원은 강우 유출수의 가장 많은 부분을 차지하는 침전 토사, 질소 및 인과 같은 부영양화를 야기하는 영양물질, 적은 양으로도 수생 생물에 치명적인 기름 및 중금속 물질, 유기물질, 농약과 같은 수생 생물에 치명적인 독성물질, 각종 박테리아 및 바이러스, 산업현장 및 쓰레기 등에서 유실되는 협잡물 등으로 구분될 수 있으며, 비점오염원의 물질들의 발생ㆍ배출량은 강우 등의 기상조건에 크게 좌우된다.
한편, 종래의 비점오염원의 제어방법은 각종 처리시설 및 구조물을 설치하여 제어하는 물리적인 방법과 토지 이용규제와 같은 비물리적인 기법을 적용하는 방법으로 구분되었다.
그리고, 전자의 경우 유지관리가 많이 필요한 침투형과 장치형, 오염물질의 제거를 침전 및 저류의 기능에 의존한 자유흐름형 인공습지와 저류연못과 같은 저류형, 식생여과대ㆍ식생수로 등의 식생형, 초고속 응집ㆍ침전시설과 같은 하수처리형, 하천변이나 하천 내에 설치하여 오염물질을 처리하는 복합 접촉산화시설 등이 있다.
그러나, 이러한 선행 기술들은 비점오염원 정화능력에 비하여 상대적으로 초기 투자비용이 높거나 유지관리의 어려움이 있을 수 있다.
또한, 후자의 경우 정화효율이 낮고 민원발생의 소지가 있어 적용이 어려울 수 있다.
그리고, 처리공정이 침전, 여과와 같이 물리적 처리방법에 국한되고 있어 질소 및 인과 같은 영양염류를 포함한 비점오염물질 제거 성능이 저조할 수 있다.
또한, 오염수에 포함된 현탁성 고형물질, 유기물 및 영양염류의 제거를 여과와 식물의 흡수 능력에 의존하고 있어 지역별, 계절별로 지속적인 성능 유지에 한계가 있을 수 있다.
그리고, 자갈, 쇄석 등으로 구성된 수중 여재층을 활용한 단순 여과 시스템으로 여재층 관리가 미약하거나 영양염류의 제거 성능이 미미할 수 있다.
또한, 과거 오염물질 관리와 저감에 있어서도 주로 점오염원 처리에 대한 수질 정화 정책이 이루어졌으나, 최근 생활수준의 향상과 도시화에 따라 지역의 불투수율의 증가로 인해 강우 유출특성이 변화되고 각종 오염물질이 수계로 다량 유출되어 수질저하의 원인이 되고 있어 정책적인 대안 마련과 비점오염원에 의한 하천 및 호소의 수질개선을 위해 강우 유출수를 포함한 비점오염원에 대한 적극적인 대처가 필요하다.
특히, 비점오염물질이 지표수나 지하수로 유입되면 오염물질의 직접 정화가 어렵고, 비점오염원 처리는 오염원에서 멀리 떨어질수록 처리비용이 증가하기 때문에 비점오염물질 발생지점에 정화시설 설치가 가능하고 정화능력이 우수한 정화시스템의 개발이 시급한 실정이다.
또한, 유량 및 수질에 따른 조건별 운영 및 감시가 실질적으로 이루어지지 못하여 정화시설 관리의 문제점 대두되고 있어 유지관리가 용이하고 저비용으로 효과적인 운영목표를 달성할 수 있는 운영시스템의 기술 도입이 필요하다.
나아가, 하절기의 강우시에는 강우로 인한 비점오염수를 정화하면서 청천(靑天)시나 갈수기(渴水期)와 같은 시기에 하천의 하천수나 호소수(湖沼水)를 정화하는 등 그 시기에 따라 유용하게 사용할 수 있는 기능까지 같이 갖춘 정화시스템의 개발이 요구된다.
상기와 같은 문제점을 해결하기 위하여, 본 발명이 이루고자 하는 기술적 과제는 기존 단순 정화를 목적으로 하는 인공습지를 비롯한 일반적 자연정화기술에서 특정한 오염원을 제어할 수 있도록 하는 고도처리가 가능한 하이브리드 인공습지 수질정화시스템을 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 공기의 공급유무에 따라 호기성, 비호기성 영역이 구분되고, 각 단위공정은 유기물, 질소 및 인의 처리에 가장 최적의 흐름방식이 제공되며, 수직흐름과 수평흐름의 인공습지가 각 오염물질의 제거에 있어 다른 특성을 가지고, 체류시간에서도 큰 차이를 나타내는 하이브리드 인공습지 수질정화시스템을 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 인공습지 수질정화시스템의 주된 처리방법이 동일하다 하더라도, 처리대상 오염물질의 종류와 농도에 따라 적용되는 전처리시설의 달라지고, 각 반응조의 적정 체류시간의 설정을 통해 표준화, 규격화된 여재의 사용과 필요한 경우 각 단위공정 처리수의 일정량이 재순환되기 위한 반송라인을 갖춘 하이브리드 인공습지 수질정화시스템을 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 고효율의 오염물질 처리가 가능하도록 종래의 단일반응조형 인공습지로부터 각 인공습지 반응조를 단계별로 조합, 각 반응조를 기능화시킨 하이브리드형 인공습지를 구성하고, 오염물질의 처리에 최적의 효율을 나타낼 수 있는 하이브리드 인공습지 수질정화시스템을 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 비교적 오염농도가 높고, 고형물질이 다량 포함된 하수 또는 폐수와 같은 점오염원의 입자상 물질로 인한 인공습지의 공극폐색이 방지되고, 장기간 안정적으로 사용하기 위해서 적어도 2단 이상의 침전실이 구비된 침전분리조가 설치되고, 제1호기성, 비호기성 및 선택적으로 운영되는 제2호기성 인공습지가 순차적으로 설치되어 운영되는 고효율의 하이브리드 인공습지 수질정화시스템을 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 비점오염물질은 고농도의 입자상 물질을 효과적으로 처리하고, 강우조건에 상관없이 계획된 초기강우유출수인 비점오염원을 저류하는 저류지와 여과조, 후단에 순차적으로 상기 제1호기성, 비호기성 및 제2호기성 인공습지가 구비된 하이브리드 인공습지 수질정화시스템을 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 비점오염물질의 침전효율 증대 및 충격부하를 감쇄할 수 있는 별도의 저류지 및 여과조에 설치되어 유입ㆍ방류수의 유량 및 수질을 실시간으로 측정ㆍ전송하여 유량 및 수질에 따른 강우 유출수를 포함한 비점오염물질의 유입을 조절하거나 처리수의 방류ㆍ반송을 제어할 수 있도록 정보기술(IT) 및 유비쿼터스 기반의 실시간 제어장치가 구비된 하이브리드 인공습지 수질정화시스템을 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 하절기의 강우시에는 강우로 인한 비점오염수를 정화하고, 청천시나 갈수기와 같은 시기에는 하천이나 호소수를 동시에 정화할 수 있는 하이브리드 인공습지 수질정화시스템을 제공하는 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명은 유입되는 정화대상수의 수직방향 흐름을 유도하면서 오염물질이 제거되도록 하는 제1호기성 인공습지; 상기 제1호기성 인공습지로부터 유입되는 처리수의 수평방향 흐름을 유도하면서 오염물질이 추가로 제거되도록 하는 비호기성 인공습지; 그리고 상기 비호기성 인공습지로부터 유입되는 처리수의 수직흐름을 유도하고, 내측으로는 공기가 공급되도록 하여 유입된 처리수의 용존산소가 높아지도록 하는 제2호기성 인공습지를 포함하여 이루어지는 하이브리드 인공습지 수질정화시스템을 제공한다.
여기서, 상기 제1호기성 인공습지는, 누수가 방지되도록 차수된 바닥면으로부터 적층되는 골재와 상기 골재의 상부에 구비되는 제1여재를 포함하여 구성되는 제1여과층과, 상기 제1여과층의 상부에 구비되는 제1갈대칩층과, 상기 정화대상수가 처리되어 공급되는 처리수를 상기 제1갈대칩층의 상부로 고르게 분산되도록 하는 제1분배장치와, 상기 제1여과층으로 공기가 유입되도록 하는 제1공기유입튜브와, 상기 제1공기유입튜브의 일단에 연결되어 유입된 공기가 상기 제1여과층의 내측으로 분산 공급되도록 하는 제1공기공급부를 포함하여 이루어짐이 바람직하다.
그리고, 상기 제1공기유입튜브는 수직방향으로 구비되어 대기의 공기가 상단부로 유입되어 하측으로 이동한 후 하단부로 배출되도록 안내하며, 상기 제1공기공급부는 상기 제1여과층에 수평방향으로 배치되고, 상부에 형성된 연결구가 상기 제1공기유입튜브의 하단부와 연결되며, 상기 제1공기유입튜브로부터 유입된 공기를 상기 제1여과층으로 공급할 수 있도록 외면에 통공이 형성된 다수개의 터널형 유공관으로 이루어짐이 바람직하다.
또한, 상기 터널형 유공관들은 상기 제1여과층의 바닥면에 배치되고, 내측 공간부가 상호 연통되도록 구비되어 처리수가 이동하도록 안내하며, 상기 제1공기유입튜브들은 서로 일정 거리만큼 격간되어 구비됨이 바람직하다.
그리고, 상기 비호기성 인공습지는, 누수가 방지되도록 차수된 바닥면에 구비되되, 처리수의 흐름 방향을 따라 전방에서 후방으로 제1골재부, 제2골재부, 제3골재부, 상기 제2골재부 및 상기 제1골재부가 순차적으로 구비되고, 골재의 크기는 상기 제1골재부, 상기 제2골재부 및 상기 제3골재부의 순서로 크게 구성되는 제2여과층과, 상기 제2여과층의 상부에 전체적으로 포설되는 제2여재를 포함하여 이루어짐이 바람직하다.
또한, 상기 제2호기성 인공습지는, 누수가 방지되도록 차수된 바닥면으로부터 적층되는 골재와 상기 골재의 상부에 구비되는 제3여재를 포함하여 구성되는 제3여과층과, 상기 제3여과층의 상부에 구비되는 제2갈대칩층과, 공급되는 처리수를 상기 제2갈대칩층의 상부로 고르게 분산되도록 하는 제2분배장치와, 상기 제3여과층의 내측으로 공기가 유입되도록 하는 제2공기유입튜브와, 상기 제2공기유입튜브의 일단에 연결되어 유입된 공기가 상기 제3여과층의 내측으로 분산 공급되도록 하는 제2공기공급부를 포함하여 이루어짐이 바람직하다.
그리고, 상기 제2공기유입튜브는 수직방향으로 구비되어 대기의 공기가 상단부로 유입되어 하측으로 이동한 후 하단부로 배출되도록 안내하며, 상기 제2공기공급부는 상기 제3여과층에 수평방향으로 배치되고, 상부에 형성된 연결구가 상기 제2공기유입튜브의 하단부와 연결되며, 상기 제2공기유입튜브로부터 유입된 공기를 상기 제3여과층으로 공급할 수 있도록 외면에 통공이 형성된 다수개의 터널형 유공관으로 이루어짐이 바람직하다.
또한, 상기 터널형 유공관들은 상기 제3여과층의 바닥면에 배치되고, 내측 공간부가 상호 연통되도록 구비되어 처리수가 이동하도록 안내하며, 상기 공기유입튜브들은 서로 일정 거리만큼 격간되어 구비됨이 바람직하다.
그리고, 본 발명은 정화대상수가 집수되고 스크린을 통과하여 하수 내에 존재하는 정화대상물이 걸러지도록 하는 스크린조와, 상기 스크린조 일측에 연결되어 상기 스크린조에서 정화대상물이 걸러진 정화대상수 내에 잔존하는 정화대상물이 침전되도록 하는 침전조를 포함하여 구성되는 집수조; 상기 집수조에서 배출되는 처리수를 처리하도록 구비되는 하이브리드 인공습지 수질정화시스템; 그리고 상기 하이브리드 인공습지 수질정화시스템의 제2호기성 인공습지의 일측에 배치되고, 상기 제2호기성 인공습지를 통하여 정화처리된 처리수가 집수되며, 집수된 처리수를 외부로 방류시키는 방류조를 포함하여 이루어지는 하수처리장치를 제공한다.
또한, 본 발명은 지하에 매설되는 구조물 및 지표면에 설치되는 연못 중 어느 하나로 이루어지고, 외면부는 누수가 방지되도록 차수막이 구비되며, 유입구에 구비되고 제1계측값에 따라 작동되는 유입수문을 통하여 유입되는 정화대상수를 저류하는 저류지; 상기 저류지에서 처리된 처리수가 유입되어 전처리되는 전처리부; 상기 전처리부에서 배출되는 처리수를 처리하도록 구비되는 하이브리드 인공습지 수질정화시스템; 그리고 상기 저류지로 유입되는 정화대상수의 제1계측값을 실시간으로 구하여 상기 정화대상수의 유입량을 실시간으로 제어하고, 상기 제2호기성 인공습지에서 최종 방류되는 처리수의 제2계측값을 실시간으로 구하여 상기 처리수의 방류량을 실시간으로 제어하는 제어장치를 포함하여 이루어지는 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치를 제공한다.
여기서, 상기 저류지는 예상되는 초기강우 비점 발생량의 0.5~1.0Q(초기강우에 의해 발생되는 비점오염량(Q,㎥)=비점오염원 발생유역 면적(A,㎡)×강우강도(I,㎜))를 저류하도록 이루어짐이 바람직하다.
그리고, 상기 전처리부는 상기 저류지에서 공급되는 처리수의 흐름방향을 따라 순차적으로 구비되는 여과조, 교반조, 응집조, 침전조 및 전처리수조를 포함하여 이루어지고, 상기 여과조는, 외형을 형성하고 수밀 처리되는 하우징; 내측에 상기 식물 여과재가 충진되는 수용부와, 상기 수용부의 상부를 개폐하는 덮개부를 포함하여 구성되고, 상기 하우징의 내측에 탈착되는 포장함; 및 상기 포장함의 상측에 구비되고, 외면에는 다수개의 타공이 형성되어 상기 저류지에서 이송되는 처리수가 상기 타공을 통해 상기 포장함으로 분배되도록 하는 분배관을 포함하여 구성됨이 바람직하다.
또한, 상기 저류지에는 유입되는 강우에 의한 비점오염수가 상기 분배관으로 안내되어 상기 여과조, 상기 교반조, 상기 응집조, 상기 침전조 및 상기 전처리수조를 따라 순차적으로 이동하도록 하는 제1이송관과, 유입수가 상기 전처리수조로 직접 이동하도록 안내하는 직접안내관이 연결됨이 바람직하다.
그리고, 상기 제2호기성 인공습지에는 배출되는 처리수가 하천 또는 호소로 방류되도록 안내하는 방류관이 더 구비됨이 바람직하다.
본 발명의 일실시예에 따른 하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치는 공기공급부가 제1호기성 인공습지 및 제2호기성 인공습지의 바닥에 넓게 구비되어 여과층으로 공기를 원활히 충분하게 공급시킬 수 있기 때문에, 호기성 미생물 등에 공기를 안정적으로 공급하여 호기성 미생물로 인한 부유성 유기고형물의 산화분해능을 현저히 높일 수 있다.
본 발명의 일실시예에 따르면, 인공습지의 상면에 갈대, 왕고랭이, 삿갓사초, 노랑꽃 창포 등의 식물을 식재함으로써 하수를 자연친화적으로 처리함과 동시에, 공공시설 및 공동주택인 아파트 등의 단지 내 조경효과를 구현시킬 수 있다.
본 발명의 다른 실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치는 예상되는 초기강우 비점 발생량의 0.5~1.0Q를 저류할 수 있는 저류지가 구비되어 오염도가 높은 비점오염수의 대부분을 저류할 수 있을 뿐만 아니라, 유입된 비점오염수의 비점오염물질 중 침전성ㆍ부유성 물질, 협잡물, 유분 및 현탁성 고형물 등이 안정적으로 제거되고 충격부하가 감쇄되도록 할 수 있다.
본 발명의 다른 실시예에 따르면, 여과조의 내측에 포장함이 탈착 가능하게 구비되고, 상기 포장함의 내측에는 갈대칩이 여과재로 충진됨으로써 교체가 용이할 뿐만 아니라, 처리수 중에 포함된 유분 및 토사 등의 추가적인 제거가 효과적으로 이루어질 수 있게 된다.
본 발명의 다른 실시예에 따르면, 제어장치가 저류지로 유입되는 정화대상수와 최종 처리수의 수질 및 유량을 실시간으로 계측ㆍ분석하고, 이에 따라 정화대상수의 유입과 최종 처리수의 방류를 제어함으로써 불필요한 유입수의 유입을 미연에 차단하고 선택적으로 처리수를 순환할 수 있기 때문에, 더욱 효율적인 운영이 가능하다.
본 발명의 다른 실시예에 따르면, 호기성ㆍ비호기성 인공습지에 의한 처리공정이 주처리 공정으로 적용됨으로써 유지관리의 편이성이 증가하고 유지관리 비용도 절감될 수 있다. 또한, 다양한 위치에 시공이 가능하여 불특정 장소에서 수질 오염물질이 인근 수계로 직접적으로 유입되는 것을 방지하고 이를 안정적으로 정화함으로써 상수원이나 하천이 오염되는 것을 방지할 수 있다.
본 발명의 다른 실시예에 따르면, 갈수기 때에는 최종처리되어 방류되는 처리수가 저류지로 순환되도록 하여 조경용수로 활용하거나 식생의 보호와 생태습지공원으로서의 기능을 수행할 수 있다.
본 발명의 다른 실시예에 따르면, 하절기의 강우시에는 강우로 인한 비점오염수를 정화하면서 청천시나 갈수기와 같은 시기에는 하천수나 호소수를 선택적으로 또는 동시에 정화할 수 있어 활용성이 향상될 수 있다.
본 발명의 다른 실시예에 따르면, 청천 시 및 강우 시에, 수질변동에 따라, 즉, 수질악화 시에는 전처리부의 전체 운영이 이루어지도록 하고, 약품투여 및 살균공정이 더 추가되도록 하여 수질개선이 향상될 수 있다.
도 1은 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템을 나타낸 단면예시도.
도 2는 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템에서 제1호기성 인공습지의 제1분배장치를 나타낸 사시도.
도 3은 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템에서 제1호기성 인공습지의 공기유입튜브 및 공기공급부를 나타낸 사시도.
도 4는 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템에서 호기성 인공습지를 나타낸 평면예시도.
도 5는 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템의 제2호기성 인공습지를 나타낸 단면예시도.
도 6은 본 발명의 제2실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하수처리장치를 나타낸 단면예시도.
도 7은 본 발명의 제3실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하수처리장치를 나타낸 단면예시도.
도 8은 본 발명의 제4실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치를 나타낸 단면예시도.
도 9는 본 발명의 제4실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치를 나타낸 평면예시도.
도 10은 본 발명의 제4실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치의 전처리부를 나타낸 정면예시도.
도 11은 본 발명의 제4실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치의 여과조의 포장함을 나타낸 예시도.
도 12는 본 발명의 제5실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 재이용시설을 나타낸 흐름도.
<도면의 주요 부분에 대한 보호의 설명>
10: 하이브리드 인공습지 수질정화시스템
20,320,450: 제1호기성 인공습지 30: 제1분배장치
40: 제1공기공급부 41: 터널형 유공관
48: 제1공기유입튜브 60,360,460: 비호기성 인공습지
80,380,480: 제2호기성 인공습지 86: 제2공기공급부
87: 제2공기유입튜브 89: 공기공급장치
90: 방류관 210: 집수조
270: 방류조 410: 호소
420: 저류지 422: 조절밸브
424: 직접안내관 430: 전처리부
431: 여과조 432: 교반조
433: 약품주입장치 435: 응집조
438: 전처리수조 440: 방류관
445: 살균장치
상기의 기술적 과제를 구체적으로 실현할 수 있는 본 발명의 바람직한 실시예를 첨부한 도면을 참고하여 설명한다.
도 1은 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템을 나타낸 단면예시도이고, 도 2는 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템에서 제1호기성 인공습지의 제1분배장치를 나타낸 사시도이고, 도 3은 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템에서 제1호기성 인공습지의 공기유입튜브 및 공기공급부를 나타낸 사시도이고, 도 4는 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템에서 호기성 인공습지를 나타낸 평면예시도이고, 도 5는 본 발명의 제1실시예에 따른 하이브리드 인공습지 수질정화시스템의 제2호기성 인공습지를 나타낸 단면예시도이다.
도 1 내지 도 5에서 보는 바와 같이, 하이브리드 인공습지 수질정화시스템(10)은 제1호기성 인공습지(20), 비호기성 인공습지(60) 및 제2호기성 인공습지(80)를 포함하여 이루어질 수 있다. 여기서, 상기 제1호기성 인공습지(20)는 유입되는 정화대상수의 수직방향 흐름을 유도하면서 오염물질이 제거되도록 한다. 그리고, 상기 비호기성 인공습지(60)는 상기 제1호기성 인공습지(20)로부터 유입되는 처리수의 수평방향 흐름을 유도하면서 오염물질이 추가로 제거되도록 하게 된다. 또한, 상기 제2호기성 인공습지(80)는 상기 비호기성 인공습지(60)에서 유입되는 처리수의 용존산소가 높아지도록 하게 된다.
상세히, 상기 제1호기성 인공습지(20)에는 제1여과층(21), 제1분배장치(30), 제1공기유입튜브(48) 및 제1공기공급부(40)가 포함되도록 구성될 수 있다.
그리고, 상기 제1여과층(21)은 누수가 방지되도록 차수된 바닥면으로부터 적층되는 골재(22)와, 상기 골재(22)의 상부에 구비되는 제1여재(24)를 포함하여 구성될 수 있다.
또한, 상기 제1여재(24)에는 제1식물체(25)가 식재될 수 있으며, 상기 제1식물체(25)로는 갈대 등이 제공될 수 있다.
그리고, 상기 제1여과층(21)의 상측에는 수평방향으로 상기 제1분배장치(30)가 다수개 구비될 수 있으며, 상기 제1분배장치(30)는 공급되는 정화대상수가 상기 제1호기성 인공습지(20)의 상면 면적에 대응되어 고르게 분산되도록 하게 된다.
여기서, 상기 제1분배장치(30)는 상기 제1호기성 인공습지(20)의 상면 면적에 대하여 길이방향으로 일정간격을 가지고 다수 개가 구비됨이 바람직하다.
그리고, 상기 제1분배장치(30)는 지지부(31) 및 커버부(32)를 포함하여 이루어진다.
또한, 상기 지지부(31)는 일정간격 이격된 지지대(33) 및 그 상단 일측에 연결 설치되는 거치대(34)로 구성된다.
그리고, 상기 커버부(32)는 상기 지지부(31)의 상단 일측에 각각 연결설치되는 분배관(35) 및 상기 분배관(35)을 덮는 커버(36)로 이루어진다.
여기서, 상기 분배관(35)은 일정 간격 이격된 상기 거치대(34)의 상단 일측에 각각 연결 설치되고, 유입된 정화대상수가 흐르는 유로를 제공하기 위하여 상부가 개방된 사각형 형상을 갖는 관 형상으로 이루어진다.
또한, 상기 분배관(35)은 좌우 양측에 일정간격으로 'V'자 형상의 방류부(37)가 형성되어 상기 제1호기성 인공습지(20)의 상면에 정화대상수를 고르게 분산시킬 수 있다.
그리고, 상기 제1여과층(21)에는 상기 제1공기공급부(40)가 구비되며, 상기 제1공기공급부(40)는 다수개의 터널형 유공관(41)으로 이루어진다.
여기서, 상기 터널형 유공관(41)은 상판(42) 및 하판(43)이 서로 체결되어 그 내부에는 내측 공간부(44)가 형성되도록 하여 물과 공기 등의 유체가 유동할 수 있도록 구성된다.
그리고, 상기 터널형 유공관(41)의 내부로 물과 공기가 유입, 배출될 수 있도록 상기 상판(42) 및 상기 하판(43)에는 각각 통공(45,46)이 형성된다.
또한, 상기 상판(42)에는 연결구(47)가 형성되며, 상기 연결구(47)에는 상기 제1공기유입튜브(48)가 연결된다.
상기 제1공기유입튜브(48)는 상단부가 상기 제1여과층(21)를 관통하여 상부로 돌출되며, 표면에는 다수개의 통공(49)이 형성된다.
이를 통해, 대기의 공기는 상기 통공(49)을 통해 상기 제1공기유입튜브(48)로 유입될 수 있고, 유입된 공기는 상기 제1공기공급부(40)로 이동하여 상기 제1여과층(21)으로 공급될 수 있게 된다.
이때, 상기 제1공기유입튜브(48)의 상단부에는 먼지와 같은 물질이 유입되지 않도록 덮개(미도시)가 더 구비될 수 있으며, 이때, 상기 덮개로는 부직포 등과 같은 직물이나 통기공이 형성된 금속 재질 또는 플라스틱 재질의 덮개 등이 다양하게 사용될 수 있다.
그리고, 상기 제1여재(23) 및 골재(22)에는 호기성 미생물이 기생하여 유입된 정화대상수에 대한 정화처리가 이루어질 수 있으며, 상기 제1공기유입튜브(48)를 통하여 유입된 공기가 상기 제1공기공급부(40)을 통하여 호기성 미생물에 공급되어 미생물의 활발한 분해활동이 이루어질 수 있다.
여기서, 상기 제1공기공급부(40)는 상기 제1여과층(21)의 바닥면에 격자타입으로 다수 개가 배치되는 상기 터널형 유공관(41)들로 이루어짐이 바람직하다.
그리고, 상기 터널형 유공관(41)들은 상기 내측 공간부(44)가 상호 연통되도록 구비됨이 바람직하며, 상기 제1공기유입튜브(48)는 상기 제1공기공급부(40)의 길이방향으로 일정거리 격간되어 다수 개가 구비됨이 바람직하다.
또한, 상기 연결구(47)에는 수평통기구(미도시)가 연결될 수도 있으며, 이때, 상기 제1공기유입튜브(48)와 상기 수평통기구는 순차적으로 연결될 수 있다.
한편, 상기 제1호기성 인공습지(20)에서 배출되는 처리수는 제1배출관(26)을 통해 상기 비호기성 인공습지(60)로 공급됨이 바람직하다.
이때, 상기 제1호기성 인공습지(20)와 상기 비호기성 인공습지(60)의 사이에는 제1수조(50)가 더 구비될 수 있다.
그리고, 상기 비호기성 인공습지(60)는 상기 제1호기성 인공습지(20)에서 호기성 미생물에 의해 1차 정화처리된 처리수를 2차적으로 정화처리함이 바람직하다.
또한, 상기 비호기성 인공습지(60)는 제2여과층(61)과 제2여재(65)를 포함하여 구성될 수 있다.
여기서, 상기 비호기성 인공습지(60)의 바닥부와 측면부와 같은 제일 외측부분은 콘크리트 구조물, 유리섬유강화플라스틱(FRP), 폴리에틸렌(PE) 및 스테인리스강 등과 같이 구조안정성을 확보할 수 있는 재질로 이루어질 수 있다.
또한, 상기 바닥부 및 측면부에는 불투성 소재의 차수막이 더 구비됨이 바람직하며, 이때, 상기 차수막은 고밀도 폴리에틸렌(HDPE) 재질로 이루어질 수 있다.
그리고, 상기 바닥부의 상부에는 상기 제2여과층(61)이 구비됨이 바람직하다.
여기서, 상기 제2여과층(61)은 유입된 처리수의 수평 흐름 방향을 따라 전방에서 후방으로 제1골재부(62), 제2골재부(63), 제3골재부(64), 상기 제2골재부(63) 및 상기 제1골재부(62)가 순차적으로 구비되도록 구성됨이 바람직하다.
그리고 이때, 상기 제1골재부(62), 상기 제2골재부(63) 그리고 상기 제3골재부(64)의 순서로 그 골재의 크기가 큼이 바람직하다.
이에 따라, 상기 제2여과층(61)은 처리수의 수평 흐름 방향을 따라 전방에서 후방으로 순차적으로 골재가 대→중→소→중→대의 크기별로 포설되게 되고, 처리수는 상기 제2여과층(61)을 통과하면서 퍼져 나아가면서 이송할 수 있게 된다.
한편, 상기 비호기성 인공습지(60)의 면적이 넓어 처리수의 편류 발생이 우려되는 경우에는, 상기 비호기성 인공습지(60)의 내부공간을 부분적으로 구획하여 처리수의 흐름을 수평방향으로 지그재그로 안내하기 위한 가이드격벽(66)이 더 포함될 수 있다.
그리고, 상기 제2여재(65)에는 제2식물체(67)가 식재됨이 바람직하며, 여기서, 상기 제2식물체(67)로는 갈대, 왕고랭이, 삿갓사초, 노랑꽃 창포 등이 제공될 수 있다.
상기 비호기성 인공습지(60)는 상기 제1호기성 인공습지(20)를 통하여 1차정화처리된 처리수를 상기 제2여과층(61)에 기생하는 혐기성 미생물을 통하여 2차정화처리시키며, 혐기성 미생물이 기생하는 상기 제2여재(65) 및 제2여과층(61)과 고르게 전체적으로 접촉시킴으로써 혐기성 미생물에 의한 2차정화처리 효율을 극대화시킬 수 있다.
그리고, 상기 비호기성 인공습지(60)에서 배출되는 처리수는 제2배출관(68)을 통해 상기 제2호기성 인공습지(80)로 공급됨이 바람직하다.
이때, 상기 비호기성 인공습지(60)와 상기 제2호기성 인공습지(80)의 사이에는 제2수조(70)가 더 구비될 수 있으며, 상기 제2수조(70)에는 펌프(71)가 구비될 수 있다.
또한, 상기 제2수조(70)의 처리수는 제3배출관(72)을 통해 상기 제2호기성 인공습지(80)로 공급될 수 있다.
그리고, 상기 제2호기성 인공습지(80)는 상기 제1호기성형 인공습지(20)와 분리벽(27)에 의해 나뉠 수 있다.
또한, 상기 제2호기성 인공습지(80)는 제3여과층(81), 제2갈대칩층(84) 및 제2분배장치(85)를 포함하여 이루어질 수 있다.
먼저, 상기 제2호기성 인공습지(80)의 바닥부와 측면부와 같은 제일 외측 부분은 콘크리트 구조물, 유리섬유강화플라스틱(FRP), 폴리에틸렌(PE) 및 스테인리스강 등과 같이 구조안정성을 확보할 수 있는 재질로 이루어질 수 있다.
또한, 상기 바닥부 및 측면부에는 불투성 소재의 차수막이 더 구비됨이 바람직한데, 이때, 상기 차수막은 고밀도 폴리에틸렌(HDPE) 재질로 이루어질 수 있다.
그리고, 상기 바닥부의 상부에는 상기 제3여과층(81)이 구비됨이 바람직하다.
여기서, 상기 제3여과층(81)은 골재(82)와 제3여재(83)를 포함하여 구성될 수 있는데, 상기 바닥부의 상부로 상기 골재(82)와 상기 제3여재(83)가 순차적으로 적층될 수 있다.
상세히, 상기 골재(82)는 10~40mm 크기의 자갈 또는 경량골재를 포함하여 이루어질 수 있으며, 0.3~1.0m 높이로 적층됨이 바람직하다.
그리고, 상기 골재(82)의 상부에는 상기 제3여재(83)가 구비되는데, 상기 제3여재(83)는 2~10mm 크기의 다공성 여재 또는 여과사를 포함하여 이루어질 수 있으며, 0.3~1.2m 높이로 적층됨이 바람직하다.
여기서, 상기 골재(82) 및 상기 제3여재(83)는 토분이 제거되고 균등계수가 3.0 이하이며 미생물의 부착능력이 향상되도록 하기 위하여 공극이 발달하고 표면 거칠기가 우수하며 화학적 이온교환능력이 큰 것이 사용되는 것이 바람직하다.
또한, 상기 제3여과층(81)의 상부에는 상기 제2갈대칩층(84)이 구비됨이 바람직한데, 상기 제2갈대칩층(84)은 2~10cm 크기의 갈대칩이 5cm 두께 이상으로 적층되어 이루어짐이 바람직하다.
그리고, 상기 제2갈대칩층(84)의 상부에는 상기 제2분배장치(85)가 구비됨이 바람직하며, 상기 제2분배장치(85)는 전술한 제1분배장치(30)와 동일하게 구성될 수 있다.
상기 제2분배장치(85)는 상기 제3배출관(72)을 통해 유입되는 처리수를 상기 제2갈대칩층(84)의 상부로 균등하게 분배하게 되며, 상기 제2갈대칩층(84)의 면적에 따라 상기 제2분배장치(85)는 복수개가 구비될 수 있다.
그리고, 상기 제2갈대칩층(84)에는 제3식물체(미도시)가 더 식재될 수 있으며, 여기서, 상기 제3식물체로는 특정한 식물이 한정되는 것은 아니다.
이에 따라, 상기 제2분배장치(85)로부터 배출되는 처리수는 상기 제2갈대칩층(84)으로 낙하된 후 수직방향으로 아래로 흐르면서 상기 제3여재(83) 및 상기 골재(82)를 거치게 되고, 이러한 과정에서 여과 및 흡착 등의 물리적 제거, 미생물에 의한 생물학적 제거, 화학적 결합 및 이온교환 등에 의한 화학적 오염물질 제거 기작에 의하여 유기물 및 영양염류와 같은 추가적인 비점오염물질 제거가 이루어질 수 있게 된다.
한편, 상기 제2호기성 인공습지(80)에는 수평방향으로 구비되어 외부의 공기가 유입되도록 하고, 유입된 공기를 상기 제2호기성 인공습지(80)의 바닥 전체로 이송시키도록 하는 제2공기공급부(86)와, 하단부가 상기 제2공기공급부(86)에 연결되고, 상단부는 대기 중으로 개방되는 제2공기유입튜브(87)를 더 포함하여 이루어질 수 있다.
여기서, 상기 제2공기공급부(86)와 상기 제2공기유입튜브(87)는 전술한 제1공기공급부(40)와 상기 제1공기유입튜브(48)와 동일한 구성일 수 있다.
그리고, 제2호기성 인공습지(80)에는 공기공급장치(89)가 구비됨이 바람직하며, 상기 제2공기공급부(86)의 내측에는 상기 공기공급장치(89)로부터 공급되는 공기를 분배하기 위한 공기분배장치(88)가 더 구비될 수 있다.
이를 통해, 상기 제2호기성 인공습지(80)에는 인위적으로 공기가 더 많이공급될 수 있어 상기 제2호기성 인공습지(80)를 통과하는 처리수의 용존산소를 상승시킬 수 있고, 추가적인 수질 개선이 이루어질 수 있다.
그리고, 상기 제2호기성 인공습지(80)의 바닥부 근처에는 방류관(90)의 일단부가 구비됨이 바람직하며, 이때, 상기 방류관(90)의 일단부에는 처리수가 유입될 수 있도록 하기 위하여 다수개의 타공(91)이 형성됨이 바람직하다.
이를 통해, 상기 제1호기성 인공습지(20), 상기 비호기성 인공습지(60) 및 상기 제2호기성 인공습지(80)는 순차적으로 연결된 혼합형의 하이브리드 인공습지 수질정화시스템(10)을 형성할 수 있게 된다.
그리고, 이와 같이 공기가 공급되어 호기성 분위기가 유지되는 상기 제1호기성 인공습지(20)와, 공기가 공급되지 않는 비호기성 인공습지(60)와, 처리수의 용존산소가 높아지도록 하는 제2호기성 인공습지(80)로 이루어져 유입수가 차례로 통과하도록 하면서 제1,제2,제3여과층(21,61,81)에 서식하는 미생물에 의해 유기물 및 질소, 인이 동시에 제거되도록 하는, 자연친화형 하이브리드 인공습지 수질정화시스템(10)이 제공될 수 있게 된다.
또한, 상기 하이브리드 인공습지 수질정화시스템(10)에서는 상술한 바와 같은 수처리 공정이 이루어짐에 따라 전기를 이용하지 않음으로 인해서, 전기를 이용한 수처리 공정보다 소비되는 에너지가 낮아질 수 있게 된다.
도 6은 본 발명의 제2실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하수처리장치를 나타낸 단면예시도이다.
도 6은 보는 바와 같이, 상기 하수처리장치는 공공하수를 처리하기 위한 장치일 수 있으며, 이를 위해, 상기 하수처리장치는 집수조(210), 하이브리드 인공습지 수질정화시스템(10) 그리고 방류조(270)를 포함하여 이루어질 수 있다.
그리고, 상기 집수조(210)는 하수가 하수유입관(211)을 통하여 유입되는 스크린조(220)와, 상기 스크린조(220) 일측에 연결되어 상기 스크린조(220)의 스크린(221)에 의해 고형물이 걸러진 하수 내에 잔존하는 고형물을 침전시키는 침전조(230)를 포함할 수 있다.
이때, 상기 스크린(221)은 상기 스크린조(220)의 내측에 경사지게 구비되며, 상기 하수유입관(211)을 통해 유입된 하수 내에 존재하는 나뭇가지, 비닐조각 등의 조대물질을 포함하는 조대협잡물 및 고형물은 상기 스크린(221)에 의해 걸러질 수 있다.
또한, 상기 침전조(230)로는 상기 스크린조(220)로부터 조대협잡물 및 고형물이 걸러진 하수가 유입되며, 유입된 하수 내에 잔존하는 고형물은 상기 침전조(230)에서 침전되게 되며, 이렇게 처리된 처리수는 상기 제1호기성 인공습지(20)로 이송되게 된다.
여기서, 상기 침전조(230)는 하수의 흐름방향을 따라 구비되는 제1침전조(231), 제2침전조(232), 제3침전조(233) 및 제4침전조(234)를 포함하여 이루어질 수 있으며, 이러한 다수 개의 침전조를 포함함으로써 잔존 고형물의 침전분리 효율을 극대화시킬 수 있다.
물론, 상기 침전조(230)는 설치비용을 감안하여 하나 또는 둘의 침전조만으로 이루어질 수도 있다.
또한, 상기 침전조(230) 중에 가장 마지막에 배치된 상기 제4침전조(234)에는 잔존 고형물이 침전분리된 하수를 제1호기성 인공습지(20)로 유입시키는 하수이송관(226)의 일측이 배치되고, 상기 하수이송관(226)의 타측은 상기 제1호기성 인공습지(20)의 분배관(35)에 배치될 수 있다.
이때, 상기 제4침전조(234)가 상기 제1호기성 인공습지(20)보다 낮은 위치에 있는 경우에는 상기 하수이송관(226) 일측에 펌프(미도시)를 연결하여 펌핑에 의해 상기 제4침전조(234)의 잔여 고형물이 침전된 하수를 상기 제1호기성 인공습지(20)로 이송시킬 수 있다.
물론, 상기 제4침전조(234)는 상기 제1호기성 인공습지(20)와 동일선상 또는 상기 제1호기성 인공습지(20)보다 높은 위치에 배치되도록 설치될 수 있으며, 이러한 경우에는 상기 펌프(미도시)가 없이 상기 하수이송관(211)만으로 상기 제1호기성 인공습지(20)로 잔여 고형물이 침전된 하수를 이송시킬 수 있다.
이후, 상기 하이브리드 인공습지 수질정화시스템(10)으로 유입된 하수(정화대상수)는 제1실시예에서 전술한 바와 같이 비호기성 인공습지(60)와 제2호기성 인공습지(80)를 거치면서 처리되어 방류관(90)을 통해 방류되게 된다.
도 7은 본 발명의 제3실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하수처리장치를 나타낸 단면예시도이다. 본 실시예에 따른 하처수리장치에서는 호기성 인공습지가 제1호기성 인공습지 및 제2호기성 인공습지의 하측에 구비될 수 있으며, 다른 구성은 전술한 제2실시예와 동일하므로 설명을 생략한다.
도 7에서 보는 바와 같이, 하이브리드 인공습지 수질정화시스템(310)의 호기성 인공습지(360)의 일부는 제1호기성 인공습지(320) 및 제2호기성 인공습지(380)의 바로 하측에 구비될 수 있다.
이에 따라, 상기 하이브리드 인공습지 수질정화시스템(310)를 설치하기 위한 면적이 줄어들 수 있게 되어 넓은 공간을 확보하기 어려운 장소에도 설치가 가능하게 된다.
그리고, 상기 제1호기성 인공습지(320)의 바닥부 근처에는 제1배출관(326)의 일단부가 구비됨이 바람직하며, 이때, 상기 제1배출관(326)의 일단부에는 처리수가 유입될 수 있도록 하기 위하여 다수개의 타공(330)이 형성됨이 바람직하다.
또한, 상기 제1배출관(326)의 타단부는 호기성 인공습지(360)에 구비되는 분배 타공관(370)에 연결됨이 바람직하다.
여기서, 상기 분배 타공관(370)은 상기 호기성 인공습지(360)에 높이방향으로 구비됨이 바람직하며, 외측면에는 다수개의 타공(미도시)이 형성됨이 바람직하다.
이를 통해, 상기 제1배출관(326)을 통해 이송된 처리수는 상기 분배 타공관(370)에 의해 상기 호기성 인공습지(360)의 일측으로 골고루 넓게 배출될 수 있게 된다.
도 8은 본 발명의 제4실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치를 나타낸 단면예시도이고, 도 9는 본 발명의 제4실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치를 나타낸 평면예시도이다.
도 8 및 도 9에서 보는 바와 같이, 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치는 저류지(420), 전처리부(430), 하이브리드 인공습지 수질정화시스템(10) 그리고 제어장치(449)를 포함하여 이루어짐이 바람직하다. 그리고, 정화대상수는 상기 저류지(420), 상기 전처리부(430), 상기 하이브리드 인공습지 수질정화시스템(10)을 순차적으로 거치면서 오염물질이 효과적으로 제거되어 호소(410)로 방류될 수 있게 된다. 여기서, 상기 제어장치(449)는 유입되는 정화대상수와 방류되는 처리수의 수질을 실시간으로 분석하여 유량을 실시간으로 제어하고, 처리수의 흐름 경로를 제어함이 바람직하며, 이를 통해, 비점오염물질이 효과적이고 효율적으로 제거되는 것이 가능하게 된다.
상세히, 상기 저류지(420)는 지하에 매설되는 구조물 및 지표면에 설치되는 연못 중 어느 하나의 형태로 이루어질 수 있다.
여기서, 상기 저류지(420)가 지하에 매설되는 구조물의 형태를 이루는 경우, 상기 구조물은 콘크리트 구조물임이 바람직하나, 필요에 따라, 유리섬유강화플라스틱(FRP), 폴리에틸렌(PE) 및 스테인리스강(stainless steel) 등과 같이 구조안정성을 확보할 수 있는 재질이 더 사용될 수도 있음은 물론이다.
또한, 상기 저류지(420)가 지표면에 설치되는 연못의 형태를 이루는 경우에도 상술한 재질이 사용될 수 있다.
나아가, 상기 저류지(420)의 바닥부 및 측면부와 같은 외면부에는 누수가 방지되도록 하기 위한 차수막이 더 구비될 수 있으며, 이때, 상기 차수막은 고밀도 폴리에틸렌(HDPE) 재질을 포함하여 이루어짐이 바람직하다.
또한, 상기 차수막은 누수를 방지하면서 충분한 강도가 보장될 수 있는 두께로 이루어짐이 바람직한데, 이를 위해, 상기 차수막은 1~2mm 두께로 이루어질 수 있다.
그리고, 상기 저류지(420)는 예상되는 초기강우 비점 발생량의 0.5~1.0Q를 저류할 수 있도록 설치됨이 바람직하다.
여기서, 상기 Q(초기강우에 의해 발생되는 비점오염량, ㎥)는 비점오염원 발생유역 면적(A,㎡)×강우강도(I,㎜)로 정의된다.
그리고, 상기 비점오염원 발생유역 면적은 강우면적으로, 즉, 일정 면적에 비가 내렸을 때, 일정한 방향 및 특정 공간으로 강우가 모여드는 곳(예를 들면, 정화시설의 설치위치 등)을 기준으로 그 비가 내리는 해당 면적을 의미한다.
또한, 상기 강우강도는 통상적으로 누적강우량을 의미하며, 5~10mm를 기준으로 산정될 수 있으며, 보다 구체적으로는 5mm 정도가 적용될 수 있다.
따라서, 상기 초기강우 비점 발생량은 비가 처음 오고 나서 누적강우량으로 5mm 정도의 수준까지 오염도가 매우 높은 비점오염원의 발생량(비점오염수)을 의미할 수 있으며, 상기 저류지(420)는 상기 초기강우 비점 발생량의 0.5~1.0Q를 저류함으로써 오염도가 매우 높은 비점오염수의 대부분을 저류할 수 있게 된다.
그리고, 상기 저류지(420)와 연결되어 정화대상수가 상기 저류지(420)로 유입되도록 안내하는 유입관(411)은 호소(410)와 연결될 수 있다.
이때, 상기 유입관(411)에는 호소수 유입수조(412)가 구비될 수 있으며, 상기 호소수 유입수조(412)는 호소수 유입구(413)에 의해 상기 호소(410)와 연결될 수 있다.
또한, 상기 호소수 유입수조(412)에는 상기 호소(410)의 호소수를 유입시키기 위한 호소수 유입펌프(414)가 구비될 수 있으며, 상기 호소수 유입펌프(414)는 제1작동제어부(미도시)에 의해 작동이 제어될 수 있다.
그리고, 상기 유입관(411)에는 비점 유입수조(415)가 더 구비될 수 있으며, 상기 비점 유입수조(415)에는 비점 유입구(416)가 구비될 수 있다.
또한, 상기 비점 유입수조(415)에는 강우에 의한 비점오염수를 상기 유입관(411)으로 공급하기 위한 비점 유입펌프(417)가 더 구비될 수 있으며, 상기 비점 유입펌프(417)는 제2작동제어부(미도시)에 의해 작동이 제어될 수 있다.
그리고, 상기 유입관(411)에는 제1분석장치(491)가 구비될 수 있으며, 상기 제1분석장치(491)는 상기 저류지(420)로 유입되는 정화대상수로부터 제1계측값을 실시간으로 측정ㆍ분석함이 바람직하다.
이때, 상기 제1계측값은 유입되는 상기 정화대상수의 유량, pH(수소이온농도), 수온, 탁도(turbidity), 오일(oil), 총유기탄소(total organic carbon), 생물독성, 화학적 산소 요구량(COD), 총질소 및 총인을 포함하여 이루어질 수 있으며, 상기 제1계측값의 측정을 위해, 상기 제1분석장치(491)는 수질분석기(418)와 유량계(419)를 포함하여 이루어질 수 있다.
또한, 상기 제1계측값에 따라 상기 정화대상수의 유입량 및 상기 전처리부(430)에서 처리수의 흐름 경로가 조절됨이 바람직하며, 이를 위해, 상기 제1,제2작동제어부및 상기 제1분석장치는 상기 제어장치(449)에 포함됨이 바람직하며, 상기 제어장치는 중앙제어부(미도시)를 더 포함하여 이루어질 수 있다.
그리고, 상기 중앙제어부는 청천 시 및 강우 시에, 상기 제1계측값의 변동에 따라 정화대상수가 달라지도록 함이 바람직하다.
즉, 상기 중앙제어부는 청천 시에는 상기 호소수 유입펌프(414)가 작동되도록 제어하여 상기 호소(410)의 호소수가 유입되도록 함이 바람직하며, 강우 시에는 상기 비점 유입펌프(417)가 작동되도록 제어하여 강우에 의한 비점오염수가 유입되도록 함이 바람직하다.
그리고, 상기 저류지(420)는 유입된 정화대상수의 비점오염물질 중 침전성ㆍ부유성 물질, 협잡물, 유분 및 현탁성 고형물 등이 안정적으로 제거되도록 하는 전처리 기능과, 충격부하가 감쇄하거나 충격부하 변동에 효과적으로 대응될 수 있도록 하는 기능을 할 수 있다.
한편, 상기 저류지(420)는 제1이송관(421)에 의해 상기 전처리부(430)와 연결될 수 있으며, 이에 따라, 상기 저류지(420)에서 처리된 처리수는 상기 제1이송관(421)을 통해 상기 전처리부(430)로 이송하게 된다.
도 10은 본 발명의 제4실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치의 전처리부를 나타낸 정면예시도이고, 도 11은 본 발명의 제4실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치의 여과조의 포장함을 나타낸 예시도이며, 이하에서는 도 10 및 도 11을 포함하여 설명한다.
도 8 내지 도 11에서 보는 바와 같이, 상기 전처리부(430)는 여과조(431), 교반조(432), 응집조(435), 침전조(437) 및 전처리수조(438)를 포함하여 이루어질 수 있다.
여기서, 상기 여과조(431)는 제1이송관(421)에 의해 상기 저류지(420)와 연결되고, 상기 제1이송관(421)에는 제1이송관(421)을 선택적으로 개폐하는 조절밸브(422)가 구비됨이 바람직하다.
그리고, 상기 조절밸브(422)는 제3작동제어부(미도시)에 의해 작동제어됨이 바람직하며, 상기 제3작동제어부는 상기 제어장치(449)에 포함됨이 바람직하다.
또한, 상기 여과조(431)는 하우징(493), 포장함(493a) 그리고 분배관(499)을 포함하여 이루어질 수 있다.
먼저, 상기 하우징(493)은 상기 여과조(431)의 외형을 형성하는데, 구조적 안정성이 확보될 수 있도록 콘크리트 재질로 이루어질 수 있으며, 수밀 처리됨이 바람직하다.
그리고, 상기 하우징(493)의 내측 상부에는 상기 분배관(499)이 구비됨이 바람직하며, 이때, 상기 분배관(499)의 외면에는 다수개의 타공(499a)이 형성됨이 바람직하고, 상기 분배관(499)은 상기 제1이송관(421)과 연결될 수 있다.
이를 통해, 상기 저류지(420)로부터 상기 제1이송관(421)을 통해 상기 분배관(499)으로 이송된 처리수는 상기 타공(499a)을 통해 배출될 수 있게 된다.
그리고, 상기 하우징(493)의 내측으로 상기 분배관(499)의 하부에는 상기 포장함(493a)이 구비됨이 바람직하며, 이에 따라, 상기 분배관(499)으로부터 배출되는 처리수는 하측의 상기 포장함(493a)으로 낙하하게 된다.
한편, 상기 포장함(493a)은 수용부(494)와 덮개부(495)를 포함하여 구성될 수 있다.
여기서, 상기 수용부(494)는 내측에 공간이 형성되도록 형성되며, 상기 분배관(499)의 타공(499a)으로부터 배출된 처리수가 상기 수용부(494)를 관통해 흐를 수 있도록 망(496)으로 이루어지거나 다수개의 구멍이 형성될 수도 있다.
그리고, 상기 수용부(494)의 내측에는 여과재(497)가 수용된다.
이때, 상기 여과재(497)는 저비용으로 교체가 용이하고 유입된 처리수 중에 포함된 고형물 및 유분 등이 효과적으로 제거될 수 있도록 하기 위한 재질로 이루어지는데, 바람직하게는 식물 여과재로 이루어질 수 있다.
그리고, 상기 식물 여과재는 3~10cm의 크기로 절단된 갈대칩으로 이루어질 수 있다.
상기 갈대칩은 상기 수용부(494)의 내측에 촘촘히 충진될 수 있어 효율적인 수용이 가능하므로, 상기 저류지(420)를 통과한 처리수 중에 포함된 유분 및 토사 등의 추가적인 제거가 효과적으로 이루어질 수 있게 된다.
그리고, 상기 덮개부(495)는 상기 수용부(494)의 상부를 개폐하도록 구비됨이 바람직하며, 상기 덮개부(495)가 상기 수용부(494)의 상부를 덮은 상태로 고정될 수 있도록 잠금장치(498)가 더 구비될 수 있다.
따라서, 상기 여과재(497)는 상기 수용부(494)에서 배출되지 않도록 수용되게 되고, 필요시에는 상기 덮개부(495)를 열어 상기 여과재(497)를 교환하는 것이 용이하게 된다.
그리고, 상기 포장함(493a)은 상기 여과재(497)의 교환이 용이하도록 상기 하우징(493)의 내측에 탈착됨이 바람직하며, 처리수의 여과량 및 여과효율 등을 고려하여 상기 하우징(493)의 내측에 복수개가 구비될 수 있다.
이때, 상기 분배관(499)은 배출되는 처리수가 상기 포장함(493a)으로 골고루 분배될 수 있도록 상기 포장함(493a)의 상측에 넓고 균일하게 구비됨이 바람직함은 물론이다.
상기 여과조(431)는 유입된 처리수의 효과적인 여과가 이루어질 수 있도록 상기 처리수가 일정시간 동안 내측에 체류되도록 형성되며, 바람직하게는 유입된 처리수가 2~10분 동안 체류될 수 있도록 형성될 수 있다.
그리고, 상기 제1이송관(421)으로부터 유입된 처리수의 흐름 방향을 따라 상기 여과조(431)에는 제2이송관(423)에 의해 상기 교반조(432)가 연결될 수 있다.
또한, 상기 제2이송관(423) 또는 상기 교반조(432)에는 약품주입장치(433)가 더 연결될 수 있다.
여기서, 상기 약품주입장치(433)로부터는 상기 여과조(431)를 통과한 처리수의 오염물질이 응집될 수 있도록 하기 위한 약품이 투입될 수 있다.
그리고, 상기 약품주입장치(433)는 제4작동제어부(미도시)에 의해 작동제어됨이 바람직하며, 상기 제4작동제어부는 상기 제어장치(449)에 포함됨이 바람직하다.
또한, 상기 교반조(432)에서는 투입된 약품이 잘 교반될 수 있도록 교반기(434)가 구비될 수 있다.
이때, 상기 교반기(434)는 120~150rpm으로 회전함이 바람직하다.
또한, 상기 교반조(432)의 일측에는 상기 응집조(435)가 구비됨이 바람직하며, 상기 응집조(435)에는 투입된 약품의 응집을 유도하기 위한 응집기(436)가 구비될 수 있다.
이때, 상기 응집기(436)는 20~70rpm으로 회전함이 바람직하다.
그리고, 상기 응집조(435)의 일측에는 상기 침전조(437)가 연결될 수 있으며, 상기 침전조(437)에서는 상기 응집조(435)를 거치면서 응집된 부산물이 침전되게 된다.
또한, 상기 침전조(437)의 일측에는 상기 침전조(437)를 거친 처리수가 집수되도록 하는 전처리수조(438)가 구비됨이 바람직하다.
그리고, 상기 저류지(420)에는 제1이송관(421)의 상측으로 직접안내관(424)이 더 연결됨이 바람직하다.
이때, 상기 직접안내관(424)은 처리수가 중력에 의해 자연적으로 흐르도록 구비됨이 바람직하며, 상기 전처리수조(438)에 연결됨이 바람직하다.
이를 통해, 상기 저류지(420)에 저류된 처리수는 상기 직접안내관(424)을 통해, 곧장 상기 전처리수조(438)로 흐를 수도 있게 된다.
즉, 상기 제3작동제어부에 의해 상기 조절밸브(422)가 밀폐되도록 제어되면 상기 저류지(420)의 처리수는 상기 직접안내관(424)을 통해 상기 전처리수조(438)로 바로 이동할 수 있게 된다.
그리고, 상기 제3작동제어부에 의해 상기 조절밸브(422)가 개방되도록 제어되면 상기 저류지(420)의 처리수는 상기 제1이송관(421) 통해 상기 여과조(431)로 흐를 수 있게 된다.
이러한, 처리수의 흐름은 상기 중앙제어부에 의해 제어될 수 있는데, 예를 들면, 상기 제1계측값에 의한 수질의 악화가 심하거나, 즉, 상기 제1계측값에 의한 수질이 기준값 이상이거나, 강우 시, 그리고, 후술할 제2계측값에 의한 수질의 악화가 심한 경우(즉, 상기 제2계측값에 의한 수질이 기준값 이상인 경우) 중 적어도 어느 한 경우에는 상기 조절밸브(422)가 개방되도록 제어됨이 바람직하다.
이에 따라, 상기 저류지(420)로부터 나온 처리수는 상기 여과조(431), 상기 교반조(432), 상기 응집조(435), 상기 침전조(437) 및 상기 전처리수조(438)를 거치면서 상기 전처리부(430)를 모두 거치게 되어 정화작용을 거치게 된다.
그러나, 상기 제1계측값에 의한 수질이 심하게 악화되지 않은 상태이거나, 즉, 상기 제1계측값에 의한 수질이 기준값 이하이거나, 청천 시, 그리고, 후술할 제2계측값에 의한 수질의 악화가 심하지 않은 경우(즉, 상기 제2계측값에 의한 수질이 기준값 이하인 경우) 중 적어도 어느 한 경우에는 상기 조절밸브(322)가 밀폐되도록 제어됨이 바람직하며, 이에 따라, 처리수는 불필요한 정화과정을 거치지 않고 곧장 상기 전처리수조(438)로 흐를 수 있게 된다.
그리고, 상기 전처리수조(438)의 일측에는 상기 하이브리드 인공습지 수질정화시스템(10)이 구비되는데, 상기 하이브리드 인공습지 수질정화시스템(10)의 구성은 전술한 제1실시예와 동일하므로, 자세한 설명을 생략한다.
상기 전처리수조(438)와 제1호기성 인공습지(450)는 제3이송관(425)에 의해 연결될 수 있다.
그리고, 상기 전처리수조(438)에는 제1펌프(439)가 구비됨이 바람직하며, 상기 제1펌프(439)에 의해 상기 전처리수조(438)의 처리수는 상기 제3이송관(425)을 통해 상기 제1호기성 인공습지(450)로 정량적으로 배출될 수 있게 된다.
한편, 상기 제1호기성 인공습지(450)에서 배출되는 처리수는 제1배출관(455)을 통해 비호기성 인공습지(460)로 이동하게 되며, 상기 비호기성 인공습지(460)는 제2배출관(465)에 의해 제2수조(470)와 연결될 수 있다.
그리고, 상기 제2수조(470)에는 제3배출관(475)의 일단부가 연결되고, 상기 제3배출관(475)의 타단부는 제2호기성 인공습지(480)와 연결됨이 바람직하다.
그리고, 상기 제2호기성 인공습지(480)의 바닥부 근처에는 방류관(440)의 일단부가 구비됨이 바람직하며, 상기 방류관(440)의 타단부는 상기 호소(410)로 연결됨이 바람직하다.
그리고, 상기 방류관(440)에는 제2분석장치(492)가 구비될 수 있으며, 상기 제2분석장치(492)는 상기 방류관(440)을 통해 방류되는 처리수로부터 제2계측값을 측정함이 바람직하다.
이때, 상기 제2계측값은 상기 방류되는 처리수의 유량, pH, 수온, 탁도, 총유기탄소, 화학적 산소 요구량(COD), 총질소(total nitrogen) 및 총인(total phosphorus)을 포함하여 이루어질 수 있으며, 상기 제2계측값의 측정을 위해, 상기 제2분석장치(497)는 수질분석기(442)와 유량계(443)를 포함하여 이루어질 수 있다.
이를 통해, 상기 제2호기성 인공습지(480)에서 방류되는 처리수의 상태를 확인할 수 있게 된다.
그리고, 상기 방류관(440)에는 살균장치(445)가 더 구비될 수 있다.
여기서, 상기 살균장치(445)는 자외선을 이용한 장치일 수 있다.
또한, 상기 살균장치(445)는 제5작동제어부(미도시)에 의해 제어됨이 바람직하며, 상기 제5작동제어부는 제어장치(449)에 포함됨이 바람직하다.
그리고, 상기 중앙제어부는 상기 제2분석장치(492)에서 측정된 유량과 수질에 따라 실시간으로 상기 저류지(420)로 유입되는 정화대상수의 유량과, 상기 제2호기성 인공습지(480)에서 방류되는 처리수의 유량이 제어되도록 함이 바람직하다.
이와 같이, 상기 제어장치(449)는 유입되는 정화대상수 및 방류되는 처리수의 유량, 수질을 실시간으로 계측ㆍ분석하여 감시하고, 청천 시에는 호소수가 유입되도록 하고, 강우 시에는 강우에 의한 비점오염수가 유입되도록 제어할 수 있다.
이때, 상기 중앙제어부는 정화대상수로써 호소수가 유입되도록 하기 위해서는 상기 호소수 유입펌프(414)가 작동되도록 제어하고, 정화대상수로써 강우에 의한 비점오염수가 유입되도록 하기 위해서는 상기 호소수 유입펌프(414)의 작동은 정지되도록 하고 상기 비점 유입펌프(417)가 작동되도록 제어함이 바람직하다.
그리고, 강우에 의한 비점오염수가 유입시에는 상기 조절밸브(422)를 개방하여 처리수가 상기 전처리부(430)를 모두 통과하여 흐르도록 하여, 목표수질을 확보할 수 있다.
또한, 호소수가 유입시에는 상기 조절밸브(422)를 밀폐하여 처리수가 곧장 전처리수조(430)로 흐르도록 하여 불필요한 정화공정을 거치지 않도록 하여 정화시간을 단축하고, 불필요한 가동을 방지하여 유지관리 및 경제성이 향상되도록 할 수 있다.
도 12는 본 발명의 제5실시예에 따른 하이브리드 인공습지 수질정화시스템을 이용한 재이용시설을 나타낸 흐름도이다.
도 12에서 보는 바와 같이, 상기 하이브리드 인공습지 수질정화시스템(10)은 하수의 3차 처리 및 재이용시설로도 사용될 수 있다.
예를 들면, 1차 침전조(600)로 유입되어 하수종말처리장(610)을 거쳐 방류된 후, 총인(T-P)이 제어되는 화학처리(620)를 거친 처리수는 상기 하이브리드 인공습지 수질정화시스템(10)을 통과하도록 할 수 있다.
이후, 상기 하이브리드 인공습지 수질정화시스템(10)에서 방류된 처리수는 질소/인 제거공정(630)을 거쳐 방류되거나, 다른 처리수(640)는 재이용수로 활용될 수 있다.
이때, 상기 1차 침전조(600)로 유입되기 전의 합휴식 하수관거의 월수류(CSOs)는 상기 하이브리드 인공습지 수질정화시스템(10)으로 바로 유입되도록 할 수 있다.
본 발명은 상술한 특정한 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형의 실시가 가능하고 이러한 변형은 본 발명의 범위에 속한다.

Claims (14)

  1. 유입되는 정화대상수의 수직방향 흐름을 유도하면서 오염물질이 제거되도록 하는 제1호기성 인공습지;
    상기 제1호기성 인공습지로부터 유입되는 처리수의 수평방향 흐름을 유도하면서 오염물질이 추가로 제거되도록 하는 비호기성 인공습지; 그리고
    상기 비호기성 인공습지로부터 유입되는 처리수의 수직흐름을 유도하고, 내측으로는 공기가 공급되도록 하여 유입된 처리수의 용존산소가 높아지도록 하는 제2호기성 인공습지를 포함하여 이루어지는 하이브리드 인공습지 수질정화시스템.
  2. 제1항에 있어서,
    상기 제1호기성 인공습지는,
    누수가 방지되도록 차수된 바닥면으로부터 적층되는 골재와, 상기 골재의 상부에 구비되는 제1여재를 포함하여 구성되는 제1여과층과,
    상기 제1여과층의 상부에 구비되는 제1갈대칩층과,
    상기 정화대상수가 처리되어 공급되는 처리수를 상기 제1갈대칩층의 상부로 고르게 분산되도록 하는 제1분배장치와,
    상기 제1여과층으로 공기가 유입되도록 하는 제1공기유입튜브와,
    상기 제1공기유입튜브의 일단에 연결되어 유입된 공기가 상기 제1여과층의 내측으로 분산 공급되도록 하는 제1공기공급부를 포함하여 이루어짐을 특징으로 하는 하이브리드 인공습지 수질정화시스템.
  3. 제2항에 있어서,
    상기 제1공기유입튜브는 수직방향으로 구비되어 대기의 공기가 상단부로 유입되어 하측으로 이동한 후 하단부로 배출되도록 안내하며,
    상기 제1공기공급부는 상기 제1여과층에 수평방향으로 배치되고, 상부에 형성된 연결구가 상기 제1공기유입튜브의 하단부와 연결되며, 상기 제1공기유입튜브로부터 유입된 공기를 상기 제1여과층으로 공급할 수 있도록 외면에 통공이 형성된 다수개의 터널형 유공관으로 이루어짐을 특징으로 하는 하이브리드 인공습지 수질정화시스템.
  4. 제3항에 있어서,
    상기 터널형 유공관들은 상기 제1여과층의 바닥면에 배치되고, 내측 공간부가 상호 연통되도록 구비되어 처리수가 이동하도록 안내하며, 상기 제1공기유입튜브들은 서로 일정 거리만큼 격간되어 구비됨을 특징으로 하는 하이브리드 인공습지 수질정화시스템.
  5. 제1항에 있어서,
    상기 비호기성 인공습지는,
    누수가 방지되도록 차수된 바닥면에 구비되되, 처리수의 흐름 방향을 따라 전방에서 후방으로 제1골재부, 제2골재부, 제3골재부, 상기 제2골재부 및 상기 제1골재부가 순차적으로 구비되고, 골재의 크기는 상기 제1골재부, 상기 제2골재부 및 상기 제3골재부의 순서로 크게 구성되는 제2여과층과,
    상기 제2여과층의 상부에 전체적으로 포설되는 제2여재를 포함하여 이루어짐을 특징으로 하는 하이브리드 인공습지 수질정화시스템.
  6. 제1항에 있어서,
    상기 제2호기성 인공습지는,
    누수가 방지되도록 차수된 바닥면으로부터 적층되는 골재와, 상기 골재의 상부에 구비되는 제3여재를 포함하여 구성되는 제3여과층과,
    상기 제3여과층의 상부에 구비되는 제2갈대칩층과,
    공급되는 처리수를 상기 제2갈대칩층의 상부로 고르게 분산되도록 하는 제2분배장치와,
    상기 제3여과층의 내측으로 공기가 유입되도록 하는 제2공기유입튜브와,
    상기 제2공기유입튜브의 일단에 연결되어 유입된 공기가 상기 제3여과층의 내측으로 분산 공급되도록 하는 제2공기공급부를 포함하여 이루어짐을 특징으로 하는 하이브리드 인공습지 수질정화시스템.
  7. 제6항에 있어서,
    상기 제2공기유입튜브는 수직방향으로 구비되어 대기의 공기가 상단부로 유입되어 하측으로 이동한 후 하단부로 배출되도록 안내하며,
    상기 제2공기공급부는 상기 제3여과층에 수평방향으로 배치되고, 상부에 형성된 연결구가 상기 제2공기유입튜브의 하단부와 연결되며, 상기 제2공기유입튜브로부터 유입된 공기를 상기 제3여과층으로 공급할 수 있도록 외면에 통공이 형성된 다수개의 터널형 유공관으로 이루어짐을 특징으로 하는 하이브리드 인공습지 수질정화시스템.
  8. 제7항에 있어서,
    상기 터널형 유공관들은 상기 제3여과층의 바닥면에 배치되고, 내측 공간부가 상호 연통되도록 구비되어 처리수가 이동하도록 안내하며, 상기 공기유입튜브들은 서로 일정 거리만큼 격간되어 구비됨을 특징으로 하는 하이브리드 인공습지 수질정화시스템.
  9. 정화대상수가 집수되고 스크린을 통과하여 하수 내에 존재하는 정화대상물이 걸러지도록 하는 스크린조와, 상기 스크린조 일측에 연결되어 상기 스크린조에서 정화대상물이 걸러진 정화대상수 내에 잔존하는 정화대상물이 침전되도록 하는 침전조를 포함하여 구성되는 집수조;
    상기 집수조에서 배출되는 처리수를 처리하도록 구비되는 제1항 내지 제8항 중 어느 한 항에 따른 하이브리드 인공습지 수질정화시스템; 그리고
    상기 하이브리드 인공습지 수질정화시스템의 제2호기성 인공습지의 일측에 배치되고, 상기 제2호기성 인공습지를 통하여 정화처리된 처리수가 집수되며, 집수된 처리수를 외부로 방류시키는 방류조를 포함하여 이루어지는 하수처리장치.
  10. 지하에 매설되는 구조물 및 지표면에 설치되는 연못 중 어느 하나로 이루어지고, 외면부는 누수가 방지되도록 차수막이 구비되며, 유입구에 구비되고 제1계측값에 따라 작동되는 유입수문을 통하여 유입되는 정화대상수를 저류하는 저류지;
    상기 저류지에서 처리된 처리수가 유입되어 전처리되는 전처리부;
    상기 전처리부에서 배출되는 처리수를 처리하도록 구비되는 제1항 내지 제8항 중 어느 한 항에 따른 하이브리드 인공습지 수질정화시스템; 그리고
    상기 저류지로 유입되는 정화대상수의 제1계측값을 실시간으로 구하여 상기 정화대상수의 유입량을 실시간으로 제어하고, 상기 제2호기성 인공습지에서 최종 방류되는 처리수의 제2계측값을 실시간으로 구하여 상기 처리수의 방류량을 실시간으로 제어하는 제어장치를 포함하여 이루어지는 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치.
  11. 제10항에 있어서,
    상기 저류지는 예상되는 초기강우 비점 발생량의 0.5~1.0Q(초기강우에 의해 발생되는 비점오염량(Q,㎥)=비점오염원 발생유역 면적(A,㎡)×강우강도(I,㎜))를 저류하도록 이루어짐을 특징으로 하는 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치.
  12. 제10항에 있어서,
    상기 전처리부는 상기 저류지에서 공급되는 처리수의 흐름방향을 따라 순차적으로 구비되는 여과조, 교반조, 응집조, 침전조 및 전처리수조를 포함하여 이루어지고,
    상기 여과조는, 외형을 형성하고 수밀 처리되는 하우징; 내측에 상기 식물 여과재가 충진되는 수용부와, 상기 수용부의 상부를 개폐하는 덮개부를 포함하여 구성되고, 상기 하우징의 내측에 탈착되는 포장함; 및 상기 포장함의 상측에 구비되고, 외면에는 다수개의 타공이 형성되어 상기 저류지에서 이송되는 처리수가 상기 타공을 통해 상기 포장함으로 분배되도록 하는 분배관을 포함하여 구성됨을 특징으로 하는 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치.
  13. 제12항에 있어서,
    상기 저류지에는 유입되는 강우에 의한 비점오염수가 상기 분배관으로 안내되어 상기 여과조, 상기 교반조, 상기 응집조, 상기 침전조 및 상기 전처리수조를 따라 순차적으로 이동하도록 하는 제1이송관과, 유입수가 상기 전처리수조로 직접 이동하도록 안내하는 직접안내관이 연결됨을 특징으로 하는 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치.
  14. 제10항에 있어서,
    상기 제2호기성 인공습지에는 배출되는 처리수가 하천 또는 호소로 방류되도록 안내하는 방류관이 더 구비됨을 특징으로 하는 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치.
PCT/KR2011/009226 2011-05-24 2011-11-30 하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치 WO2012161392A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/119,863 US9221698B2 (en) 2011-05-24 2011-11-30 Hybrid artificial wetland water purification system, sewage treatment device using same, and natural nonpoint purification device capable of simultaneously purifying river and lake water
BR112013030062A BR112013030062A2 (pt) 2011-05-24 2011-11-30 dispositivo de purificação difusa natural, dispositivo de tratamento de esgoto, e sistema de purificação de água de zona úmida artificial híbrida
EP11866328.5A EP2716607B1 (en) 2011-05-24 2011-11-30 Hybrid artificial wetland water purification system, sewage treatment device using same, and natural nonpoint purification device capable of simultaneously purifying river and lake water

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0049236 2011-05-24
KR20110049236A KR101106779B1 (ko) 2011-05-24 2011-05-24 하천 정화가 가능한 자연형 비점정화장치 및 자연형 비점정화방법
KR20110049235A KR101106778B1 (ko) 2011-05-24 2011-05-24 공공시설 및 공동주택용 자연정화형 하폐수·빗물처리시설과 이를 이용한 하폐수·빗물처리방법 및 물순환 시스템
KR10-2011-0049235 2011-05-24
KR20110049374A KR101127474B1 (ko) 2011-05-25 2011-05-25 저수지 정화가 가능한 자연형 비점정화장치 및 자연형 비점정화방법
KR10-2011-0049374 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012161392A1 true WO2012161392A1 (ko) 2012-11-29

Family

ID=47217439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009226 WO2012161392A1 (ko) 2011-05-24 2011-11-30 하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치

Country Status (4)

Country Link
US (1) US9221698B2 (ko)
EP (1) EP2716607B1 (ko)
BR (1) BR112013030062A2 (ko)
WO (1) WO2012161392A1 (ko)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745783A (zh) * 2017-01-23 2017-05-31 岭南新科生态科技研究院(北京)有限公司 一种水平流人工湿地
KR20180051954A (ko) * 2016-11-09 2018-05-17 한국건설기술연구원 수면 부유형 방사성 물질 흡착매체 확산장치 및 이의 부력제어방법
CN108529752A (zh) * 2018-06-15 2018-09-14 亿利首建生态科技有限公司 生态浮岛
CN108558002A (zh) * 2018-01-18 2018-09-21 海南天鸿市政设计股份有限公司 逆向循环生态净化塘
CN108726686A (zh) * 2018-08-16 2018-11-02 武汉紫光能控科技有限公司 一种自然复氧人工湿地污水处理系统
CN108840445A (zh) * 2018-09-12 2018-11-20 安徽师范大学 一种治理农村生活污水的人工湿地处理系统
CN109508816A (zh) * 2018-10-20 2019-03-22 华北水利水电大学 一种城市园林植被空气污染物吸收净化能力预测方法
CN111056700A (zh) * 2019-12-05 2020-04-24 上海市建工设计研究总院有限公司 用于微污染水体修复的新型复合湿地系统
CN111977809A (zh) * 2020-08-25 2020-11-24 重庆大学 一种电活性填料导管折流人工湿地
CN112047477A (zh) * 2020-07-10 2020-12-08 东北师范大学 一种复合流人工湿地生活污水净化系统
CN113880372A (zh) * 2021-11-15 2022-01-04 北京广诚环境科技有限公司 一种生活污水人工湿地处理系统及施工工艺
CN113945694A (zh) * 2021-09-16 2022-01-18 湖北同源环境科技有限公司 一种用于人工湿地生活污水处理检测装置
CN115215446A (zh) * 2022-07-29 2022-10-21 江苏河马井股份有限公司 一种添加双氧水的污水处理的方法
CN115490400A (zh) * 2022-10-11 2022-12-20 长江生态环保集团有限公司 一种适用于山地的人工湿地净化系统

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223273B (zh) * 2013-04-25 2015-04-29 哈尔滨工业大学 一种寒区净水构筑物太阳能联合增温水循环系统
CN103936159B (zh) * 2014-03-21 2015-07-08 南大(常熟)研究院有限公司 人工湿地污水处理装置及其处理污水的方法
CN104016489A (zh) * 2014-06-27 2014-09-03 贵州华源环保科技发展有限公司 悬浮式生物床小型生活污水处理系统
CN104129857B (zh) * 2014-07-29 2017-08-01 青海省环境科学研究设计院 一种高寒地区中水深度净化人工湿地系统
CN104496106B (zh) * 2014-10-30 2016-04-06 杭州师范大学 一种校园雨水生态净化集成处理方法及生态净化集成系统
CN104355411A (zh) * 2014-11-11 2015-02-18 河海大学 一种生态湿地装置
CN104773835B (zh) * 2015-03-30 2016-08-24 河海大学 一种灌区水田四周定点排水湿地构建系统
CN104790698B (zh) * 2015-04-27 2017-08-11 河海大学 灌区旱地漫流式排水调蓄净化湿地构建系统
CN104860480A (zh) * 2015-05-22 2015-08-26 浙江海洋学院 规模化富营养化降解方法
CN105169803B (zh) * 2015-08-14 2018-01-02 深水海纳水务集团股份有限公司 一种环保高效污水过滤系统
CN105152344B (zh) * 2015-09-08 2017-09-26 中国科学院南京地理与湖泊研究所 干旱地区湖滨带湿地干湿交替生态修复系统
CN105152487B (zh) * 2015-09-16 2018-03-23 北京首创清源环境科技有限公司 水域污水处理装置和方法
CN105152345B (zh) * 2015-09-28 2018-09-18 四川靓固科技集团有限公司 修复已有湖泊水生态系统的方法
US9884780B2 (en) * 2015-10-21 2018-02-06 Ton Duc Thang University Wetland roof technology for treating domestic wastewater
CN105645677B (zh) * 2016-01-06 2018-11-27 南京柯若环境技术有限公司 一种水平流和垂直流一体化人工湿地及其运行方法
CN105600940B (zh) * 2016-03-18 2018-01-30 河海大学 自溃散型长效缓释水质净化填料砖的制备方法及制备装置
CN105817076A (zh) * 2016-05-25 2016-08-03 王杨 一种矿石生产用污水处理装置
CN206352078U (zh) * 2016-06-21 2017-07-25 浙江大学 一种闭环河道水环境治理系统
CN106223261B (zh) * 2016-08-23 2018-05-15 重庆大方生态环境治理股份有限公司 一种控制农业面源污染的多塘系统的构建方法
CN107540153A (zh) * 2016-09-23 2018-01-05 上海碧兰环保技术开发有限公司 一种小型综合人工湿地装置
AR106837A1 (es) * 2016-11-25 2018-02-21 Maria Chiodo Luis Estructura de un espacio acuático y procedimiento para conservar grandes cuerpos de agua
CN106673198A (zh) * 2016-12-26 2017-05-17 埃瑞弗(上海)规划设计工程咨询股份有限公司 一种兼具水体自净化功能的屋顶绿化用种植装置
CN106746351A (zh) * 2017-01-16 2017-05-31 深圳市碧园环保技术有限公司 一种针对农村生活污水的处理系统
CN106869079A (zh) * 2017-04-01 2017-06-20 王寿兵 一种河道原位净化与蓄水系统
CN107410140B (zh) * 2017-05-03 2023-06-23 江苏省淡水水产研究所 一种池塘生态工业化循环水养殖与净化系统
CN108249580B (zh) * 2018-03-09 2023-11-24 江苏省环境科学研究院 一种人工湿地自动进水方式的控制系统及方法
CN108585177A (zh) * 2018-06-08 2018-09-28 华东师范大学 一种竖流强化式生物净水装置及净水方法
CN109607952B (zh) * 2018-12-28 2024-04-12 中煤紫光湖北环保科技有限公司 一种强化除磷复合人工湿地处理系统
CN109851165A (zh) * 2019-01-28 2019-06-07 西安科技大学 一种小型废水处理回用一体化绿化装置及方法
CN109806663B (zh) * 2019-02-02 2021-10-29 衢州职业技术学院 具有沉淀机构的自动化污水处理设备及方法
CN111056640A (zh) * 2019-12-17 2020-04-24 深圳市碧园环保技术有限公司 一种适用于寒冷地区的人工湿地结构
CN111732203B (zh) * 2020-06-09 2022-07-15 上海中汇水生态科技有限公司 一种人工水草净水装置
CN111777276B (zh) * 2020-07-13 2023-04-18 福建省蓝深环保技术股份有限公司 一种分散式污水处理装置及其施工方法
CN112047480A (zh) * 2020-08-24 2020-12-08 同济大学建筑设计研究院(集团)有限公司 一种复合垂直流人工湿地及配水方法
CN112225390A (zh) * 2020-08-26 2021-01-15 中国农业大学 一种污水处理装置
CN112499909A (zh) * 2020-12-18 2021-03-16 长春工程学院 一种湖库水体循环净化利用系统及其循环净化方法
CN112592000B (zh) * 2020-12-23 2023-04-25 河南永泽环境科技有限公司 一种雨水公园循环回用水处理系统
CN113735272A (zh) * 2021-09-13 2021-12-03 河北工业大学 一种自然通风型潜流人工湿地装置及其运行方法
CN113845232A (zh) * 2021-11-04 2021-12-28 盐城师范学院 一种治理河道污染的湿地系统
FR3129389A1 (fr) * 2021-11-22 2023-05-26 E.R.S.E. Dispositif de traitement des eaux usées par filtre planté équipé d’un ouvrage de type chasse ou poste
CN114452710A (zh) * 2022-01-24 2022-05-10 朱海平 一种用于酸性污水的过滤净化设备
CN114409199B (zh) * 2022-02-09 2023-01-03 长江生态环保集团有限公司 一种人工湿地净化污水装置及其污水处理方法
CN115231708B (zh) * 2022-09-23 2023-07-07 湖南先导洋湖再生水有限公司 一种分区强化功能微生物作用的立体潜流人工湿地系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200293086Y1 (ko) * 2002-07-26 2002-10-25 주식회사 성일엔텍 자연친화형 무동력 하수 처리장치
JP2006150351A (ja) * 2004-11-05 2006-06-15 Kato Construction Co Ltd 湿地型水質浄化処理システム
KR101006170B1 (ko) * 2010-03-17 2011-01-07 지유 주식회사 에너지 순환형 하천정화장치
KR101030860B1 (ko) * 2011-03-09 2011-04-22 신명옥 저류조를 이용한 인공습지형 비점오염원 저감시스템 및 그 방법
KR101030690B1 (ko) * 2011-01-24 2011-04-26 한국과학기술연구원 하수처리상등수 및 하수관거월류수 복합처리장치 및 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU174397B (hu) * 1977-08-04 1979-12-28 Varosepitesi Tudomanyos Sposob raffinirovki vod popadajuhhikh v priemnuju vodu i soderzhahhikh materialov prichinjajuhhikh ee eutrofizaciju, i apparat dlja sposoba
US5174897A (en) * 1991-09-24 1992-12-29 The United States Of America As Represented By The Secretary Of Agriculture Constructed wetlands to control nonpoint source pollution
US6409788B1 (en) * 1998-01-23 2002-06-25 Crystal Peak Farms Methods for producing fertilizers and feed supplements from agricultural and industrial wastes
AUPR012400A0 (en) * 2000-09-13 2000-10-05 Rootzone Australia Pty Ltd Polluted water treatment system
MXPA04004493A (es) * 2001-11-14 2005-09-12 Dharma Living Systems Inc Sistemas integrados de tratamiento de aguas residuales hidroponico y de pelicula fija y etodos asociados.
EP1451113A4 (en) * 2001-11-14 2006-06-21 Dharma Living Systems Inc INTEGRATED HYDROPONIC AND WET-WASTE WASTEWATER TREATMENT SYSTEMS AND RELATED METHODS
KR100375237B1 (en) 2002-07-26 2003-03-08 Dong Keun Lee Nature friendly non-powered sewage treatment method and apparatus
DE602005024581D1 (de) * 2004-09-16 2010-12-16 Phytorestore Verfahren zur behandlung von schadstoffen durch pflanzenauslaugung
EP1925598A1 (de) * 2006-11-25 2008-05-28 Joachim Böttcher Vertikal-Horizontal-Filteranlage zur biologischen Reinigung von Schmutzwässern
US7470362B2 (en) * 2007-04-13 2008-12-30 Modular Wetland Systems, Inc. In line wetland water treatment system and method
US7927484B2 (en) * 2008-09-11 2011-04-19 University Of Central Florida Research Foundation, Inc. Passive underground drainfield for septic tank nutrient removal using functionalized green filtration media
US7790035B2 (en) * 2008-03-13 2010-09-07 Premier Tech Technologies Ltee Tertiary system and process for treating a liquid effluent from an onsite domestic secondary treatment unit
US8021551B2 (en) * 2008-03-27 2011-09-20 Mark Harrison Eco-treatment system
WO2009129533A2 (en) * 2008-04-18 2009-10-22 The Ohio State University Bi-phasic bioretention system
FR2961504A1 (fr) * 2010-06-17 2011-12-23 Phytorestore Traitement de depollution d'une eau contaminee par des micro-polluants et/ou des polluants emergents, notamment pär des composes organochlores

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200293086Y1 (ko) * 2002-07-26 2002-10-25 주식회사 성일엔텍 자연친화형 무동력 하수 처리장치
JP2006150351A (ja) * 2004-11-05 2006-06-15 Kato Construction Co Ltd 湿地型水質浄化処理システム
KR101006170B1 (ko) * 2010-03-17 2011-01-07 지유 주식회사 에너지 순환형 하천정화장치
KR101030690B1 (ko) * 2011-01-24 2011-04-26 한국과학기술연구원 하수처리상등수 및 하수관거월류수 복합처리장치 및 방법
KR101030860B1 (ko) * 2011-03-09 2011-04-22 신명옥 저류조를 이용한 인공습지형 비점오염원 저감시스템 및 그 방법

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180051954A (ko) * 2016-11-09 2018-05-17 한국건설기술연구원 수면 부유형 방사성 물질 흡착매체 확산장치 및 이의 부력제어방법
KR101889881B1 (ko) 2016-11-09 2018-08-21 한국건설기술연구원 수면 부유형 방사성 물질 흡착매체 확산장치 및 이의 부력제어방법
CN106745783A (zh) * 2017-01-23 2017-05-31 岭南新科生态科技研究院(北京)有限公司 一种水平流人工湿地
CN108558002A (zh) * 2018-01-18 2018-09-21 海南天鸿市政设计股份有限公司 逆向循环生态净化塘
CN108529752B (zh) * 2018-06-15 2024-01-30 亿利首建生态科技有限公司 生态浮岛
CN108529752A (zh) * 2018-06-15 2018-09-14 亿利首建生态科技有限公司 生态浮岛
CN108726686A (zh) * 2018-08-16 2018-11-02 武汉紫光能控科技有限公司 一种自然复氧人工湿地污水处理系统
CN108726686B (zh) * 2018-08-16 2024-04-09 中煤紫光湖北环保科技有限公司 一种自然复氧人工湿地污水处理系统
CN108840445A (zh) * 2018-09-12 2018-11-20 安徽师范大学 一种治理农村生活污水的人工湿地处理系统
CN109508816A (zh) * 2018-10-20 2019-03-22 华北水利水电大学 一种城市园林植被空气污染物吸收净化能力预测方法
CN111056700A (zh) * 2019-12-05 2020-04-24 上海市建工设计研究总院有限公司 用于微污染水体修复的新型复合湿地系统
CN112047477B (zh) * 2020-07-10 2022-11-04 东北师范大学 一种复合流人工湿地生活污水净化系统
CN112047477A (zh) * 2020-07-10 2020-12-08 东北师范大学 一种复合流人工湿地生活污水净化系统
CN111977809A (zh) * 2020-08-25 2020-11-24 重庆大学 一种电活性填料导管折流人工湿地
CN113945694A (zh) * 2021-09-16 2022-01-18 湖北同源环境科技有限公司 一种用于人工湿地生活污水处理检测装置
CN113880372A (zh) * 2021-11-15 2022-01-04 北京广诚环境科技有限公司 一种生活污水人工湿地处理系统及施工工艺
CN115215446A (zh) * 2022-07-29 2022-10-21 江苏河马井股份有限公司 一种添加双氧水的污水处理的方法
CN115490400A (zh) * 2022-10-11 2022-12-20 长江生态环保集团有限公司 一种适用于山地的人工湿地净化系统

Also Published As

Publication number Publication date
EP2716607A1 (en) 2014-04-09
US20140124420A1 (en) 2014-05-08
BR112013030062A2 (pt) 2017-12-05
EP2716607A4 (en) 2014-11-12
EP2716607B1 (en) 2019-11-13
US9221698B2 (en) 2015-12-29

Similar Documents

Publication Publication Date Title
WO2012161392A1 (ko) 하이브리드 인공습지 수질정화시스템, 이를 이용한 하수처리장치 및 하천 또는 호소수의 동시 정화가 가능한 자연형 비점정화장치
WO2019107948A2 (ko) 생물반응조 종합관리 자동제어 시스템과 신재생 발전기능을 구비하여 하수 처리 및 에너지 효율을 향상시킨 하수 고도처리장치 및 하수 고도처리방법
WO2014137061A1 (ko) 생태복원을 위한 수생식물을 이용한 수질정화장치
KR100897258B1 (ko) 우수에 포함된 비점오염물 처리 장치
WO2013005952A2 (ko) 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템
KR101175305B1 (ko) 비점오염물질처리를 위한 친환경 인공습지시스템
KR101815246B1 (ko) 고효율 복합 인공습지 시스템
CN101767911A (zh) 一种坡岸截留强化处理方法和装置
KR101179566B1 (ko) 습지를 이용한 비점오염원 처리 및 하천유지수 공급 시스템
KR20130114765A (ko) 네트워크를 이용한 실시간 수질측정 및 수질정화 시스템
KR101186604B1 (ko) 활성바이오 담체를 이용한 비점오염처리장치
WO2013012233A2 (ko) 폐수 처리 장치
KR101402687B1 (ko) 공기공급 및 sob 매체를 이용한 악취 저감 장치 및 악취 저감 방법
KR20120009030A (ko) 비점오염수 정화장치
WO2013005951A2 (ko) 수질자동측정기기 및 상압부상을 이용한 하수 월류수 처리시스템
CN212713180U (zh) 一种净化污水的生态处理系统
KR101806838B1 (ko) 우수 처리 장치
KR100952117B1 (ko) 초기우수 비점오염 처리 장치를 이용한 자연형 비점오염 처리 시스템
KR101328734B1 (ko) 하수처리 시스템을 이용한 준설토 처리장치 및 방법
JP4919688B2 (ja) 廃棄物最終処分場
KR101020484B1 (ko) 컨테이너형 이동식 하수처리장치
KR101532191B1 (ko) 비점오염저감을 위한 역세척 기능이 가능한 여과블록 시스템 및 그의 시공방법
Ning et al. Systematic treatment of urban river pollution
KR20180051864A (ko) 블록 모듈형 초기우수처리장치
KR200252264Y1 (ko) 광산폐수처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866328

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011866328

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14119863

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013030062

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013030062

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013030062

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131122