WO2013005952A2 - 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템 - Google Patents

수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템 Download PDF

Info

Publication number
WO2013005952A2
WO2013005952A2 PCT/KR2012/005181 KR2012005181W WO2013005952A2 WO 2013005952 A2 WO2013005952 A2 WO 2013005952A2 KR 2012005181 W KR2012005181 W KR 2012005181W WO 2013005952 A2 WO2013005952 A2 WO 2013005952A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
overflow
water quality
sludge
treating
Prior art date
Application number
PCT/KR2012/005181
Other languages
English (en)
French (fr)
Other versions
WO2013005952A3 (ko
Inventor
김현욱
이재경
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2013005952A2 publication Critical patent/WO2013005952A2/ko
Publication of WO2013005952A3 publication Critical patent/WO2013005952A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • B03D1/028Control and monitoring of flotation processes; computer models therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/04Settling tanks with single outlets for the separated liquid with moving scrapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1431Dissolved air flotation machines
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure

Definitions

  • the present invention relates to a sewage overflow water treatment system
  • CSOs Sewerage Overflows
  • the flow rate is exceeded, the water quality of the actual sewage overflow water is measured by using an automatic water quality measurement device.
  • the excess excess water is discharged, but when the water quality of the overflow water does not meet the standard, the treatment is performed using a pressure flotation treatment apparatus including a pressure flotation treatment tank, thereby increasing the treatment efficiency for non-point source and greatly improving the management efficiency. It is related with the sewage overflow water treatment system which it improved.
  • DISSOLVED AIR FLOTATION induces solid-liquid separation by attaching a small bubble to the suspended phase contained in the dispersion medium to the limit surface where the dispersion medium and air are in contact. It is used to purify wastewater by separating suspended solids, oil and grease from water, and to separate and concentrate sludge.
  • the representative dissolved air flotation method dissolves air in water at high pressure and injects it into raw water to be treated. It is formed and combined with the floc in the treated water, which is a water treatment technique in which the bubble-floc conjugate rises rapidly from the water to the water surface to achieve solid-liquid separation.
  • the registered patent is to disperse / foam the raw sediment sludge of the sewage treatment plant and the final sediment surplus sludge or mixed sludge with the surfactant micro-bubble, improve the surface concentration of the mixed sludge solids and treatment efficiency of the return water, independent sludge of the sewage treatment plant It improves the efficiency of the treatment process and at the same time reduces the economic cost of the dewatering facility due to the high water content of the sludge and improves the operational problems, thereby increasing the compositional efficiency between the linked processes in a small area, and thus the gravity treatment method of the conventional sewage treatment plant sludge treatment method.
  • the registered patent is a pressure dissolving apparatus for dissolving oxygen in a supersaturated state by pressurizing water and air;
  • a water treatment tank provided with at least one water treatment means selected from a filter bed, a separation membrane module, and a biofilm contact material;
  • a water intake passage which takes in supersaturated water and supplies it to the pressure dissolving apparatus;
  • the supersaturated water generated in the pressurized dissolution device is made of a supersaturated water supply passage to be supplied to the water treatment tank, the intake and supply flow passage is provided with a flow control means for changing the intake source and the supersaturated water supply position according to the operating conditions, Since the sludge removal apparatus is installed on the upper portion of the water treatment tank, the load of solids added to the water treatment means such as the filter bed, the membrane module and the biofilm contact material is reduced, the backwash cycle is long, and the aerobic microorganism can be grown at a high concentration.
  • the technology suggests that sludge treatment is easy and an appropriate flow path
  • the patent discloses water purification treatment of small and medium-sized ponds, lakes and small streams where water pollution is being progressed due to the generation of algae due to eutrophication, inflow of nutrients such as phosphorus and nitrogen, turbid water or other pollutants.
  • a water treatment apparatus utilizing Dissolved Air Floatation (DAF) is mounted on a movable vehicle equipped with its own power source so that power from a separate external source such as power supply from a utility company is not required.
  • DAF Dissolved Air Floatation
  • the registered patent relates to an advanced sewage and wastewater treatment apparatus using a flocculation flotation device, and more specifically, using a flocculation flotation using treated water in which air is supersaturated by an ultrasonic wave generator, an ozone generator, a venturi tube and a cyclone.
  • This not only removes organic matter and total nitrogen (TN) sufficiently, but also easily floats and separates the treated water in the flocculation flotation tank and the solid particles in the treated water flowing into the flocculation flotation tank so that the suspended solids (SS), total phosphorus (TP), and organic substances
  • the present invention relates to a flocculation flotation device for advanced sewage and wastewater treatment that can easily remove (B0D, COD).
  • the present invention measures the water quality of the actual sewage overflow water by using the automatic water quality measuring device for the monthly water of the combined sewage overflow overflow (CSO: Combined Sewerage Overflow).
  • CSO Combined Sewerage Overflow
  • the present invention comprises a water quality automatic measuring device consisting of a device capable of measuring some or all of the COD, BOD, TOC, TN, TP, DO and pH, and the controller by PLC (programmable logic controller) or microcomputer, etc. It is an object of the present invention to provide a sewage overflow water treatment system capable of real-time control of overflow water.
  • the present invention has a very short load time and a very small installation area within 15 minutes due to high surface area load, and the required area is low compared to the precipitation process. It is an object of the present invention to provide a combined sewage sewer overflow treatment system that is effective in shortening low specific gravity particles and having a relatively stable treatment water even during periods of deterioration of raw water quality such as a dry season.
  • the sewage overflow water treatment system using the automatic water quality measuring device and the pressure flotation according to the present invention is a sewage overflow water treatment system using the automatic water quality measuring device and the pressure flotation according to the present invention.
  • Automatic water quality measuring device for measuring the water quality of sewage overflow water
  • a pressurized flotation treatment apparatus including a pressurized flotation treatment tank for treating sewage overflow water;
  • the pressurized floatation treatment tank is provided with a pressurized floatation sludge storage unit and a skimmer to collect the pressurized sludge into the sludge storage unit.
  • the water quality automatic measuring device is preferably a device for measuring some or all of the COD, BOD, TOC, T-N, T-P, DO and pH.
  • the sewage overflow water treatment system using the automatic water quality measuring device and the pressure flotation according to the present invention is provided at the bottom of the storage tank, the sedimentation basin, the sedimentation basin or the pressure flotation treatment tank, and surrounds the plurality of wedge-type scrapers and the ends of each wedge-type scraper and downwards.
  • It further comprises a sludge collection device comprising a rail including an open pocket, wherein each wedge-type scraper is manufactured by integrally bending the panel, a rake to collect the sludge, a wedge to dig the sludge, Dovetail-type fitting portion formed on the bottom surface, and the recessed portion formed on the upper wedge portion,
  • a wiper formed integrally with a corresponding fitting portion coupled to the dovetail type fitting portion and a wing portion surrounding the rake portion.
  • the guide assembly further comprises a shaft fixed to the rotating plate, a wheel coupled to the shaft and moving along the pocket of the rail.
  • the sewage overflow water treatment system using the automatic water quality measurement device and the pressure flotation according to the present invention measures the water quality of the actual sewage overflow water by using the automatic water quality measurement device, especially for the overflow water of the combined sewer overflow (CSO). If it is satisfactory, the excess water is discharged, but if the quality of the overflow water does not meet the standard, the treatment is carried out using a pressurized flotation treatment apparatus including a pressurized floatation treatment tank to increase the treatment efficiency for non-point source and greatly improve the management efficiency.
  • the automatic water quality measuring device is composed of a device capable of measuring some or all of COD, BOD, TOC, TN, TP, DO and pH
  • the controller is composed of PLC (programmable logic controller) or microcomputer.
  • the present invention includes 1 reduction of non-point source, 2 securing of normal river flow rate and conservation of river water quality, 3 securing of groundwater content and water resources, 4 elimination of flooded areas, 5 prevention of ground subsidence, 6 prevention of vegetation death, 7 prevention of desalination by reverse osmosis of seawater, 8 prevention of expansion of water treatment plant, etc., which will be described in detail below.
  • FIG. 1 is a block diagram of the sewage overflow water treatment system according to the present invention.
  • Figure 2 is a conceptual view of the pressure flotation treatment apparatus applied to the sewage overflow water treatment system according to the present invention.
  • FIG. 3 is a conceptual diagram of a pressurized floatation treatment apparatus different from FIG.
  • FIG. 4 is a perspective view of the embodiment of the sludge collection device conceptually shown in FIG.
  • Figure 5 is a perspective view showing the main portion of the sludge collection device.
  • FIG. 6 is a view of a modification of the scraper which is one of the main parts of the sludge collection device.
  • the same reference numerals in particular, the tens and ones digits, or the same digits, tens, ones, and alphabets refer to members having the same or similar functions, and unless otherwise specified, each member in the figures The member referred to by the reference numeral may be regarded as a member conforming to these criteria.
  • the sewage overflow water treatment system using the automatic water quality measuring device and the pressurized flotation is particularly suitable for treating the combined sewer overflow (CSO), basically sewage overflow water And a pressurized floatation treatment apparatus (A) including a pressurized floatation treatment tank (T) for treating the sewage overflowed water.
  • CSO combined sewer overflow
  • A pressurized floatation treatment apparatus
  • T pressurized floatation treatment tank
  • Water pollutants generated in urban areas can be classified into point sources and nonpoint sources by source. Since nonpoint source sources are generally associated with surface runoff due to rainfall, changes in daily and seasonal emissions are large and difficult to predict and quantify.
  • Rainfall runoff is most affected by watershed characteristics and rainfall events. Since rainfall runoff is collected and transported through a combined sewer system along the surface, it is combined with sewage and finally overflowed from the outlet, thus affecting the water quality characteristics of the CSO. The arguments are compounded.
  • Combined sewage pipe overflow overflows contain various pollutants such as suspended solids and organics, and are known to cause pollution of rivers.
  • urban runoff during rainfall is known to contain a large amount of harmful substances such as oils, heavy metals, aromatic hydrocarbon compounds, as well as pollutants contained in sewage itself.
  • pollutants increase the discharge pollutant because a large amount of the pollutant is discharged to the discharge vessel through the overland port in a short time.
  • the rainfall delivery time is shortened and the runoff rate is increased.
  • the characteristics of combined sewer drainage and sewage can be categorized into four types according to rainfall duration, and the pollution characteristics of runoff from each section are also different.
  • Combined Sewer systems contain relatively high concentrations of pollutants due to pre-drying days, rainfall intensity, land use type and impervious pavement and surface sediment wash, and rainfall characteristics and land use status of the survey area. There are various characteristics of the pollution load caused by the light.
  • Effluent discharged after rainfall water quality is similar to extended duration flow and consists mostly of domestic sewage and infiltrated ground water.
  • sewage overflow treatment during rainfall is preferably focused on initial rainfall.
  • First Flush the impact on the water quality characteristics through the generation of the runoff during the early rainfall periods is that It absorbs fine dust and flows along the surface to dissolve and contain dissolved and suspended contaminants.
  • sediments in the conduit are disturbed and suspended, so that the load of the overflowed water generated at the end of the rainy season in the early stage of rainfall shows a significantly higher pollution concentration than the dry-water sewage.
  • the EPA defines rainfall from the beginning of the rainfall to about 30 minutes as initial rainfall, but it is difficult to interpret in terms of time without considering the effects of rainfall characteristics, regional characteristics, and overflow control facilities.
  • the difference between the time of overflow and the duration of overflow in storm sediments occurs depending on rainfall characteristics such as rainfall intensity, rainfall duration, runoff coefficient, etc. Is usually only a few millimeters.
  • rainfall characteristics such as rainfall intensity, rainfall duration, runoff coefficient, etc.
  • the sewage overflow water treatment system is a water quality automatic measuring device (S) for measuring the water quality of the sewage overflow water, and the pressure flotation treatment tank (T) for treating the sewage overflow water It comprises a pressurized flotation treatment device (A) comprising.
  • the present invention is a controller (C) for discharging the overflow water when the measured value of the automatic water quality measuring device (S) satisfies the reference value, and transfers the overflow water to the pressure flotation processing device (A) if the reference value is not satisfied )
  • the controller is configured through a programmable logic controller (PLC), a microcomputer, or the like, and receives and reads the measured values of various water quality automatic measuring devices (S), stores data, and determines whether or not the overflowed water is discharged. As shown in FIG. 1, the valve V (or gate) is displaced to determine the direction of overflow of the overflowed water.
  • PLC programmable logic controller
  • the automatic water quality measurement device may be configured as a device for measuring some or all of the COD, BOD, TOC, T-N, T-P, DO and pH.
  • a controller (C) configured through a programmable logic controller (PLC) or a microcomputer, etc. determines the flow direction (draining or flotation) of the overflow water according to the measured values of various automatic water quality measuring devices S, and stores the water quality data.
  • the operating power (air supply increase / decrease) of the air supply means (E) is appropriately changed in the flotation treatment apparatus (A), and the turbidity measurement, sludge in the storage tank, the settlement basin, the sedimentation basin, or the pressure flotation treatment tank (T), or The sediment deposit height of the contaminants, etc.
  • the system can be configured to contribute to overall management.
  • Pressurized Flotation is used to pressurize air at 3 ⁇ 5kg / cm2 and dissolve it in water while leaking it at normal pressure, so it is fine in suspended phase (precipitated fine particles or floc) contained in dispersion medium.
  • One bubble (bubble) is attached to induce a solid-liquid separation by floating up to the limit surface where the dispersion medium and air contact, can be divided into the following five types.
  • a method of producing air bubbles by blowing air through a propeller force or through a perforated plate under atmospheric pressure is provided.
  • a method of floating by using bubbles made of fine hydrogen or oxygen bubbles generated by electrolysis of water A method of floating by using bubbles made of fine hydrogen or oxygen bubbles generated by electrolysis of water.
  • the pressurized floatation treatment device (A) in particular, it is preferable to employ a dissolved air flotation (Dissolved Air Flotation, 'DAF', hereinafter used in combination) in consideration of facility ease of use, facility cost and operating cost.
  • a dissolved air flotation Dissolved Air Flotation, 'DAF', hereinafter used in combination
  • Flotation refers to inducing solid-liquid separation by attaching tiny bubbles to the suspended phase contained in a dispersion medium to float to the limit surface where the dispersion medium and air are in contact. It is used to purify wastewater by separating oil, grease, etc. from water, and to separate and concentrate sludge.
  • Dissolved air flotation method is to dissolve the air in the water at high pressure and inject it into the raw water to be treated, and the water which is decompressed again in the water is formed into fine bubbles of supersaturated water and combines with the floc in the treated water.
  • This bubble-floc conjugate is a water treatment technique that rapidly rises in water to the surface of the water to achieve solid-liquid separation.
  • factors affecting the operation of DAF include raw water phase and concentration, quantity and quality of influent, pressure, residence time, temperature, type and amount of flocculant.
  • Collision efficiency is affected by the interaction of the potential between the particle and the bubble and the hydrophilic nature of the particle. Therefore, the chemical pretreatment increases the collision efficiency by changing the particle and dislocation action, and the coagulant and pH conditions can affect the hydrophilic properties of the particle to increase the cohesive effect.
  • the concentration of particles is affected by flocculants and flocculation time. Indeed, the addition of flocculants increases the number of particles, but flocculation increases the diameter of the floc, reducing Np.
  • the collection efficiency is influenced by diffusion and blocking. ⁇ T is minimum when the particle diameter is 1 ⁇ m, and ⁇ T increases when the floc size is several tens of ⁇ m.
  • the size of air bubbles necessary for flotation is absolutely influenced by saturator pressure. Small air bubbles have a large contact surface with surface forces between particles. Small air bubbles increase ⁇ T.
  • the concentration of air bubble particles in the flotation tank depends on the pressure and recycle ratio. Larger ⁇ b results in a smaller floc density and more chance of colliding, resulting in better flotation effects.
  • the bubble volume concentration represents the bubble volume (cm 3) in the flotation tank per volume (m 3) of raw water to be treated, so in general, the same dimensions are used to uniformize ppm (volume) units (Edzwald, 1993).
  • bubble volume concentration means the amount of bubbles generated from the pressurized water in the flotation tank.
  • the factors related to the bubble volume include saturator pressure, recycle ratio, temperature and solubility of air (Edzwald, Walsh; 1992). )
  • the storage tank T0 serves as a flow regulating tank, and is provided with a stirrer (ST) for pretreatment, and receives some air from the rear air supply means (E) for DAF treatment.
  • the overflow water supply line is provided with an air supply means (E) associated with the pump (P1) for the pressure injury.
  • Air supply means (E) serves to supply the outside air to the pressure flotation treatment tank (T) by the difference between the pipe pressure and the atmospheric pressure during pressurized water flow.
  • Various other air supply means can be introduced.
  • the overflowed water flowing into the pressurized flotation treatment tank (T) is floated because the microbubbles supplied from the air supply means (E) adhere to suspended phases such as particulates or flocs contained in the overflowed water. It rises from the primary floating part SP1 in front of the relatively narrow pressurization treatment tank T, and enters the floating treatment part SP2 beyond the front inner wall.
  • the sludge that floats on the surface of the flotation part SP2 is transferred to the pressurized sludge storage part SP3 through the rear inner wall by a known skimmer SK, and the overflowed water from which the sludge is floated is discharged through the discharge part SP4. It is discharged to the river (D2).
  • the discharge part SP4 is provided with a well-known telescopic valve TV, and can control the discharge of the overflow water.
  • Sludge precipitated in the primary floatation part SP1 and the flotation treatment part SP2 of the pressurized flotation treatment tank T and the flotation sludge in the pressurized flotation sludge storage part SP3 pass through the pump P2 to post-treatment such as a dehydrator. It is processed in the apparatus and discharged in the form of a dehydrated cake.
  • the sewage, rainwater, sewage, etc. that are not overdone are treated by various known treatment methods, as shown in the primary settling cell (T20) to precipitate and remove the solid particles, for example, aeration tank for advanced water treatment (T30) ) And various post-processing units P such as secondary sedimentation battery T40 which finally precipitates the foreign matter, and then finally discharged D3.
  • T20 primary settling cell
  • T30 aeration tank for advanced water treatment
  • various post-processing units P such as secondary sedimentation battery T40 which finally precipitates the foreign matter
  • FIG. 3 shows a pressurized floatation treatment device A different from FIG. 2, wherein the bottom of the floating portion SP2 of the pressurized floatation treatment tank T of the pressurized floatation treatment apparatus of FIG. 2 has a high center and a deep edge.
  • the sewage overflow water treatment system using the automatic water quality measurement device and pressurized flotation according to the present invention is a facility capable of simultaneously reducing nonpoint source pollution and rainwater discharge, and improving water quality, quantity improvement, hydrophilicity improvement, flood prevention, etc. There is an effect, which will be described in more detail as follows.
  • Non-point pollutants released by rainfall can be stored and infiltrated to reduce the load on the streams and lakes.
  • Groundwater filled using underground infiltration facilities and storage facilities can supply water to downstream streams in case of rain, so that not only a certain amount of river flow can be secured, but also the prevention of water deterioration due to lack of river flow do.
  • Infiltration facilities can be used to infiltrate and store rainwater, thereby reducing peak flows and reducing flood damage.
  • Groundwater filled through infiltration and detention facilities can prevent ground subsidence due to a decrease in the groundwater level.
  • groundwater Even when water is repelled, groundwater can be secured to prevent the loss of vegetation due to the depletion of groundwater.
  • a non-strict approximate direction reference is specified with reference to FIGS. 4 and 5, and the top, bottom, left, right, and right sides are divided in the same state as shown.
  • the direction is specified according to the standard.
  • the sludge collection device (CS) of the present invention is a water tank in which sludge sedimentation, such as sedimentation tank is generated, in particular a storage tank, sedimentation basin, sedimentation basin or pressure flotation treatment tank (conveniently unlike FIG. 3 for convenience) 3, 4, and 5 show that the collecting device CS is installed in the pressure flotation treatment tank T for convenience, but for convenience of understanding, Accordingly, the present invention should not be construed as limiting, therefore, hereinafter, referred to as 'tank for convenience' with reference to 'T' regardless of FIG. 2),
  • the wedge type scraper 10 is preferably manufactured integrally by bending a panel, in particular an iron plate,
  • the connecting projection 11C is omitted for simplicity
  • it is in close contact with the bottom surface T1 of the water tank T and performs a linear reciprocating motion.
  • the rake portion 11A forms a concave groove so that the sludge can be moved stably as much as possible.
  • Two connecting protrusions 11C are formed at the upper portion of the scraper 10 (particularly, the upper inclined surface of the wedge portion 11B) to connect the connecting body 20 and the scraper.
  • Figure 6 [B] (simplified illustration by omitting the connecting projection (11C)) is shown a deformed scraper 10, the modified scraper 10 is also manufactured by bending molding the panel,
  • the wiper 15 is introduced into the deformed scraper 10 to improve the sludge collection efficiency by assisting the function of the rake portion 11A.
  • the wiper 15 is provided with a dovetail shaped male fitting portion 15B corresponding to the female fitting portion 13A of the scraper,
  • the wiper 15 is preferably made of soft synthetic resin or elastomeric material such as synthetic rubber or silicon.
  • the guide assembly 17 including the wheel 17E received and moved in the pocket 61 of the rail 60 is coupled.
  • the guided assembly 17 is located in the recess 13B of the wedge-type scraper 10, as can be seen in the cross-sectional view of FIG. 6B (and the right and left one-dot chain lines with different viewing directions).
  • the vertical plate 17A to be coupled and the horizontal plate 17B connected to the upper end of the vertical plate are integrally formed,
  • the rotating plate 17C which is hinged to the horizontal plate 17B through a hinge pin 17b, is coupled thereto.
  • the shaft 17e is coupled to this rotating plate.
  • the locker 17D is further provided on the horizontal plate 17B through the shaft pin 17d 'to lock the horizontal plate 17B and the pivoting plate 17C.
  • the locker 17D has a receiving portion 17d, and the horizontal plate 17B has a state where it is horizontal with the receiving portion.
  • the rotary plate 17C is fitted in an interference fit shape and the horizontal state is fixed.
  • the upwardly protruding wheel 17E can be easily accommodated in the downwardly open pocket 61 of the rail 60 so that the assemblability can be improved.
  • both ends of the unit 20U constituting the connecting body 20 are installed in such a manner as to be coupled to the connecting protrusion 11C of the scraper 10.
  • the axis of rotation is horizontal and rides on the bottom of the upper wall of the pocket. It is also possible to introduce a moving wheel.
  • the deformable scraper 10 of FIG. 6 after the connecting projection 11C is fitted into the recess 13B, the deformable scraper 10 is fastened by riveting (or welding).
  • connection protrusion shape is formed by the intermediate portion through the inclined surface and the concave portion 13B of the wedge portion 11B, the coupling durability of the connection protrusion 11C may be further increased, and manufacturing convenience may be further enhanced. Productivity is possible.
  • the panel is bent to form the recess 13B, and then, the vertical plate 17A and the connecting protrusion 11C of the guide assembly 917 are inserted and riveted (or welded). Or bolt joining) process,
  • the iron plate may be bent to process the rake portion 11A and the wedge portion 11B, and the wiper 15 may be coupled as necessary.
  • the introduction of the wiper 15 and the processing of the fitting portion 13A, the introduction of the guide assembly 17, the processing of the recessed portion 13B, and the introduction of the connecting projection fitted to the recessed portion can be selected independently of each other.
  • the connecting body 20 is composed of a plurality of unit connecting body (20U) connecting the connecting projection (11C) protruding on the upper portion of each scraper 10, it is possible to adjust the length according to the site situation Convenience of assembly is greatly improved.
  • each unit connection body 20U of each unit connection body is provided with the fastening disk 23 in the both ends, and the connection with the connection protrusion 11C is easily made through this fastening disk 23. As shown in FIG.
  • the fastening disk 23 is preferably blocked in the form of a blind flange to prevent foreign matter from entering.
  • the driving means 30 includes an electric motor 31, and a reduction gear 33 for improving torque and a rotating body 35 for reciprocating motion characteristics are introduced.
  • PLC programmable logic controller
  • the upper end of the elevating bar 43 is pivotally arranged at a position deviating from the center of rotation of the rotating body 35 of the driving means 30,
  • the lower end of the elevating bar 43 is connected to the first pivot 45b of the triangular member 45 so as to allow a swing motion.
  • the triangular member 45 is fixed to the wall (T2) of the water tank (T) is provided with a fixing member 41 having a fixed shaft (41a),
  • the fixed shaft 41a is provided with the pivoting part 45a of the triangular member 45 so that rotation is possible
  • the relay bar 47 is connected to the second pivot 45c, which is the last vertex portion of the triangular member 45,
  • the relay bar 47 is the first connection of each of the two lines of the connecting body 20 formed of each unit connecting unit (20U) in a row by connecting the two connecting projections (11C) on both sides of each of the scrub leaf (10) It is connected to the connecting bar 49 connecting the sieve 20A.
  • the triangular member 45 having the first pivoting portion 45b connected to the lower portion of the elevating portion 43 and the universal joint, etc., swings around the fixed shaft 41a of the fixing member 41,
  • the scraper 10 moves forward (forward movement) so that sludge is collected stepwise as a function of the rake part 11A, and finally, the collecting part T3 of the tank T ),
  • the scraper 10 reverses (reverses the movement) to dig the sludge so that the wedge portion 11B does not rise by stirring the settled sludge and moves to a state in preparation for the next forward collecting operation.
  • the stroke of the reciprocating section of the development scraper 10 may be about 650 to 700 mm.
  • the sludge collection device CS of the present invention as shown in Figs. 4 and 5, the guide 50A (50B) is provided in the first and the final connecting body (21A) (21B), stable horizontal reciprocating It is possible to exercise and prevent the injuries of the scraper and the linkage inherently, and the scraper is always in contact with the bottom of the tank (T) T1 to ensure a stable sludge collection.
  • first and second guides 50A and 50B fixed to the tank T wall T2 are male and female coupled to each of the first and last connecting bodies 21A and 21B to guide linear motion. do.
  • Each of the guides 50A and 50B is fitted to the first and second wallpaper members 51a and 51b fixed to the tank T2 and the first and last connecting members 21A and 21B.
  • the slit 21a of the original connecting body 21A is opened downward, and the first supporter 55a has a lower end at the bottom of the water tank T, in particular, the initial inclined surface T3a of the collecting part T3 (the lower one point of FIG. 5). Fixed through a slanted panel)
  • the top of the pipe having a circular cross-sectional shape coupled inside the 'L' shaped steel is a shape welded to the first bar 53a,
  • the upper end of the circular pipe is guided in a manner moving along the slit 21a of the initial connecting body 21A.
  • the slit 21b of the final connector 21B has a lateral opening (opened toward the opposite surface of the two final connectors), and the second supporter 55b has a shape of forming the letter 'T'.
  • the transverse direction (direction orthogonal to the direction in which the scraper 10 moves) connects the two second bars 53b and moves along the slit 21b opened laterally,
  • the rear end of the longitudinal direction (scraper 10 movement direction) member (welded to the center of the transverse member) is fixed to the wall T2 of the water tank T. As shown in FIG.
  • a flat type flat rail R is separately installed on the bottom surface T1 of the water tank T in consideration of a large frictional floor state such as concrete to smoothly move forward and backward of the scraper 10. Operation can be guaranteed.
  • the pressure floating method in particular DAF or air supply means

Abstract

본 발명은 하수 월류수 처리시스템에 관한 것으로, 특히 합류식 하수관거 월류수(CSO : Combined Sewerage Overflow)에 대하여 기존에는 일정 용량까지만 처리하고 유량이 초과되면 수질에 관계없이 무단 방류하던 방식에서 벗어나 수질자동측정기기를 이용하여 실제 하수 월류수의 수질을 측정하여 수질이 양호한 경우에는 용량 초과 월류수를 방류하나 월류수의 수질이 기준에 미달하는 경우에는 가압부상처리조를 포함하는 가압부상처리장치를 이용하여 처리를 함으로써 비점오염원에 대한 처리효율을 증대시키고 관리 효율성도 크게 제고한 하수 월류수 처리시스템에 관한 것이다. 본 발명에 따른 하수 월류수 처리시스템은 하수 월류수에 대한 수질을 측정하는 수질자동측정기기; 하수 월류수를 처리하는 가압부상처리조를 포함하는 가압부상처리장치; 및 상기 수질자동측정기기의 측정값이 기준값을 충족하는 경우에는 월류수를 방류하고, 기준값에 불충족하는 경우에는 상기 가압부상처리장치로 월류수를 이송하는 컨트롤러;를 포함하여 이루어진다.

Description

수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템
본 발명은 하수 월류수 처리시스템에 관한 것으로,
특히 합류식 하수관거 월류수(CSOs : Combined Sewerage Overflows)에 대하여 기존에는 일정 용량까지만 처리하고 유량이 초과되면 수질에 관계없이 무단 방류하던 방식에서 벗어나 수질자동측정기기를 이용하여 실제 하수 월류수의 수질을 측정하여 수질이 양호한 경우에는 용량 초과 월류수를 방류하나 월류수의 수질이 기준에 미달하는 경우에는 가압부상처리조를 포함하는 가압부상처리장치를 이용하여 처리를 함으로써 비점오염원에 대한 처리효율을 증대시키고 관리 효율성도 크게 제고한 하수 월류수 처리시스템에 관한 것이다.
가압부상 분리법(DISSOLVED AIR FLOTATION)은 분산매(dispersion medium)중에 함유된 부유상(suspended phase)에 미소한 기포(bubble)를 부착시켜 분산매와 공기가 접하고 있는 한계면까지 부상시켜 고액분리를 유도하는 것을 말하며 부유물질, 유분, 그리스 등을 물로부터 분리하여 폐수를 정화하고 슬러지를 분리, 농축하는데 사용된다.
이 중 대표적인 용존공기부상법(Dissolved Air Flotation, DAF)은 높은 압력으로 물에 공기를 충분히 용해시켜 이를 처리하고자 하는 원수에 주입시키면, 수중에서 다시 감압된 물은 과포화된 만큼의 공기가 미세한 기포로 형성되어 처리수중의 플록과 결합하게 되는데, 이 기포-플록 결합체가 빠르게 수중에서 수표면으로 상승하여 고액분리가 달성되는 수처리 기법이다.
종래 부상 분리법과 관련된 기술로는
(주)수산이엔씨의 특허등록 제0786944호(등록일자 2007년12월11일) [계면활성제 미세기포를 이용한 하수 슬러지 상압부상 고농축 방법]이 있는데,
상기 등록특허는 하수처리장의 침사지 생슬러지와 최종침전지 잉여슬러지 또는 혼합슬러지를 계면활성제 미세기포와 분산/발포 반응시켜, 혼합 슬러지 고형물의 수면 농축과 반류수의 처리효율을 개선하고, 하수처리장의 독립적 슬러지 처리공정의 효율을 높이는 동시에 슬러지의 높은 수분 함유로 인한 탈수시설의 경제적 비용 절감과 운전상의 문제점을 보완하여 적은 부지면적 내에서 연계 공정간 구성 효율을 증가시켜, 종래의 하수처리장 슬러지 처리 방식인 중력식 농축 및 가압부상농축 시설의 운영상 문제점을 보완하고, 슬러지 처리에 소요되는 약품 사용량을 절감시키므로서, 경제적 비용지출을 줄이는 동시에 농축슬러지의 함수 저감을 극대화하여 소화조의 원활한 처리를 유도함으로서 처리효율 개선 및 고도처리 효율증가를 위한 계면활성제 미세기포를 이용한 하수 슬러지 상압부상 고농축 방법을 제시하고 있다.
또 한상배의 특허등록 제0806472호(등록일자 2008년02월15일) [부상분리와 여과, 막분리 및 바이오필터 기능이 구비된수처리장치]가 있는데,
상기 등록특허는 물과 공기를 가압하여 산소를 과포화 상태로 용해시키는 가압용해장치와; 여과상, 분리막 모듈 및 생물막접촉재 중에서 선택된 어느 하나 이상의 수처리 수단이 설치된 수처리조와; 과포화수용 용수를 취수하여 상기 가압용해장치로 공급하는 취수유로와; 상기 가압용해장치에서 생성된 과포화수가 상기 수처리조로 공급되도록 하는 과포화수 공급유로로 이루어지고, 상기 취수 및 공급 유로에는 운전조건에 따라 취수원과 과포화수 공급 위치를 변경할 수 있는 유로조절수단이 구비되며, 상기 수처리조의 상부에는 부유슬러지 제거장치가 설치되므로, 여과상, 분리막 모듈 및 생물막접촉재 등과 같은 수처리수단에 부가되는 고형물 부하가 감소되고, 역세척 주기가 길며, 호기성 미생물을 고농도로 증식할 수 있고, 슬러지 처리처분이 용이하고, 운전단계에 맞추어 적절한 유로를 선택할 수 있는 기술을 제시하고 있다.
아울러 한국건설기술연구원의 특허공개 제2011-0037668호(공개일자 2011년04월13일) [용존공기부상법을 이용한 자가동력식 이동형 수처리 시스템 및 이를 이용한 중소규모 수체에 대한 자동제어 방식의 수처리 방법]가 있는데,
상기 공개특허는 부영양화로 인한 조류의 발생이나, 인 및 질소 등의 영양물질, 탁수 또는 기타 오염물질 등의 유입으로 인해 수질 오염이 진행되고 있는 중소규모의 연못, 호소, 소하천 등의 수질정화 처리를 위하여, 전력회사로부터의 전력공급 등과 같은 별도의 외부 공급원으로부터의 동력 공급이 필요 없도록 자체 동력원을 갖춘 이동 가능한 차량에 용존공기부상법(DAF; Dissolved Air Floatation)을 활용한 수처리 장치를 탑재하여, 이를 이용하여 고정적인 수처리 설비가 어려운 중소규모의 연못, 호소, 소하천을 찾아다니면서 수질정화작업을 수행할 수 있는 자가동력식 이동형 수처리 시스템 및 이를 이용한 중소규모 수체에 대한 자동제어 방식의 수처리 방법을 제시하고 있다.
나아가 플러스이앤씨(주)의 특허등록 제0948807호(등록일자 2010년03월15일) [응집 부상장치를 이용한 하·폐수 고도처리장치]가 있는데,
상기 등록특허는 응집 부상장치를 이용한 하·폐수 고도처리장치에 관한 것으로서, 더욱 상세하게는 초음파발생기, 오존발생기, 벤트리관과 사이클론에 의해 공기가 과포화상태로 용해된 처리수를 이용하는 응집 부상치를 이용함으로써 유기질과 총질소(T-N)를 충분히 제거할 뿐만 아니라 응집부상조 내의 처리수와 응집부상조로 유입되는 처리수 내의 고형물 입자를 용이하게 부상 분리하여 부유물질(SS)과 총인(T-P), 유기물질(B0D,COD)을 용이하게 제거할 수 있도록 하는 하·폐수 고도처리용 응집 부상장치에 관한 것이다.
그러나 이들 기술은 모두 다양한 오폐수에 대한 부상 분리 및 처리 효율성 향상 방안이나, 다른 수처리시스템과의 연계 구성, 그리고 편리성 등에 관한 것일 뿐 합류식 하수관거 월류수(CSO : Combined Sewerage Overflow) 처리와 관련하여 기존 시설이 일정 용량의 월류수만을 처리하고 유량이 초과되면 수질에 관계없이 무단 방류하던 방식에서 오는 문제점을 해결하는 방안을 제시하고 있지 못하다.
특히 지구 온난화 등의 영향으로 기상이변이 잦은 현실에서 기성 합류식 하수관거의 수처리 시스템이 변화된 강수량에 효과적으로 대처하지 못하고 있는 현실에서 월류수에 대한 효율적인 대처 방안이 절실한 시점이다.
이에 본 발명은 특히 합류식 하수관거 월류수(CSO : Combined Sewerage Overflow)의 월류수에 대하여 수질자동측정기기를 이용하여 실제 하수 월류수의 수질을 측정하여 수질이 양호한 경우에는 용량 초과 월류수를 방류하나 월류수의 수질이 기준에 미달하는 경우에는 가압부상처리조를 포함하는 가압부상처리장치를 이용하여 처리를 함으로써 비점오염원에 대한 처리효율을 증대시키고 관리 효율성도 크게 제고한 하수 월류수 처리시스템을 제공하는 것을 목적으로 한다.
또 본 발명은 수질자동측정기기를 COD, BOD, TOC, T-N, T-P, DO 및 pH의 일부 또는 모두를 측정할 수 있는 기기로 구성하고 PLC(programmable logic controller)나 마이컴 등으로 컨트롤러를 구성하여 하수 월류수에 대한 실시간 제어가 가능하도록 한 하수 월류수 처리시스템을 제공하는 것을 목적으로 한다.
나아가 본 발명은 높은 수면적 부하로 처리시간이 15분 이내로 매우 짧고 설치면적이 매우 적게 소요되며, 침전공정에 비해 소요면적이 적어 초기 시설투자비가 낮으며 깊지 않은 시설이 가능하고, 여과지속시간을 단축시키는 저비중 입자 제거에 효과적이고, 갈수기 등 원수 수질이 다소 악화되는 기간에도 비교적 안정된 처리수를 얻을 수 있는 장점을 갖는 합류식 하수관거 월류수 처리시스템을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템은
하수 월류수에 대한 수질을 측정하는 수질자동측정기기;
하수 월류수를 처리하는 가압부상처리조를 포함하는 가압부상처리장치; 및
상기 수질자동측정기기의 측정값이 기준값을 충족하는 경우에는 월류수를 방류하고, 기준값에 불충족하는 경우에는 상기 가압부상처리장치로 월류수를 이송하는 컨트롤러;
를 포함하여 이루어진다.
또 본 발명에 따른 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템에서 상기 가압부상처리조에는 가압부상 슬러지저장부와, 가압부상된 슬러지를 슬러지저장부로 모으는 스키머가 구비되어 있고,
상기 수질자동측정기기는 COD, BOD, TOC, T-N, T-P, DO 및 pH의 일부 또는 모두를 측정하는 기기인 것이 바람직하다.
나아가 본 발명에 따른 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템은 저류조, 침사지, 침전지 또는 가압부상처리조의 저면에 구비되어 있고, 복수의 웨지타입 스크레이퍼와, 각 웨지타입 스크레이퍼 양단을 감싸고 하향 개구된 포켓을 포함하는 레일을 포함하는 슬러지 수거장치를 더 포함하여 이루어지되 상기 각 웨지타입 스크레이퍼는 패널을 절곡하여 일체로 제조된 것으로, 슬러지를 모으는 갈퀴부와, 슬러지를 파고드는 쐐기부와, 저면에 형성된 도브테일타입 끼움부와, 상기 쐐기부 상부에 형성된 요입부를 갖고,
상기 도브테일타입 끼움부에 결합되는 대응 끼움부와, 상기 갈퀴부를 감싸는 날개부가 일체로 형성된 와이퍼를 더 구비하고 있으며,
상기 요입부에 결합되는 수직판, 상기 수직판 상단에 연결된 수평판, 상기 수평판에 힌지결합된 회동판, 상기 수평판과 상기 회동판이 수평을 이룬 상태를 록킹하도록 상기 수평판에 축설되어 있는 록커, 상기 회동판에 고정된 샤프트, 상기 샤프트에 결합되고 상기 레일의 포켓을 따라 움직이는 휠을 포함하는 피안내조립체를 더 포함하고 있는 것이 바람직하다.
본 발명에 따른 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템은 특히 합류식 하수관거 월류수(CSO : Combined Sewerage Overflow)의 월류수에 대하여 수질자동측정기기를 이용하여 실제 하수 월류수의 수질을 측정하여 수질이 양호한 경우에는 용량 초과 월류수를 방류하나 월류수의 수질이 기준에 미달하는 경우에는 가압부상처리조를 포함하는 가압부상처리장치를 이용하여 처리를 함으로써 비점오염원에 대한 처리효율을 증대시키고 관리 효율성도 크게 제고할 수 있으며, 또 수질자동측정기기를 COD, BOD, TOC, T-N, T-P, DO 및 pH의 일부 또는 모두를 측정할 수 있는 기기로 구성하고 PLC(programmable logic controller)나 마이컴 등으로 컨트롤러를 구성하여 하수 월류수에 대한 실시간 제어가 가능하며, 나아가 높은 수면적 부하로 처리시간이 15분 이내로 매우 짧고 설치면적이 매우 적게 소요되며, 침전공정에 비해 소요면적이 적어 초기 시설투자비가 낮으며 깊지 않은 시설이 가능하고, 여과지속시간을 단축시키는 저비중 입자 제거에 효과적이고, 갈수기 등 원수 수질이 다소 악화되는 기간에도 비교적 안정된 처리수를 얻을 수 있는 장점을 갖는다.
그 외에도 본 발명은 ① 비점오염원의 저감, ② 평상시의 하천 유량의 확보 및 하천수질 보전, ③ 지하수의 함량과 수자원의 확보, ④ 침수지역의 해소, ⑤ 지반침하의 방지, ⑥ 식생고사의 방지, ⑦ 바닷물의 역침투에 의한 염수화 방지, ⑧ 수처리 시설 규모의 확대 방지 등의 효과를 얻을 수 있는바, 이에 대해서는 아래에서 구체적으로 설명한다.
도 1은 본 발명에 따른 하수 월류수 처리시스템의 블록도.
도 2는 본 발명에 따른 하수 월류수 처리시스템에 적용되는 가압부상처리장치에 대한 개념도.
도 3은 도 2와는 다른 가압부상처리장치에 대한 개념도.
도 4는 도 3에 개념적으로 도시된 슬러지 수거장치를 구체화한 사시도.
도 5는 슬러지 수거장치의 요부를 도시한 사시도.
도 6은 슬러지 수거장치의 요부 중 하나인 스크레이퍼의 변형예에 대한 도면.
*도면의 주요 부분에 대한 부호 설명*
A: 가압부상처리장치 T10: 침사지
T: 가압부상처리조 S: 수질자동측정기기
C: 컨트롤러 T0: 저류조
E: 공기공급수단 P: 후속수처리부
CS: 슬러지 수거장치
10: 스크레이퍼 11A: 갈퀴부
11B: 쐐기부 13A: 끼움부
13B: 요입부 15: 와이퍼
15A: 날개부 15B: 끼움부
17: 피안내조립체 17A: 수직판
17B: 수평판 17C: 회동판
17D: 록커 17E: 휠
20,20U,21A,21B: 연결체 21a,21b: 슬릿
23: 체결디스크 30: 구동수단
31: 모터 33: 감속기
40: 링크어셈블리 41: 고정부재
43: 승강바 45: 삼각부재
47: 중계바 49: 연결바
50A,50B: 가이드 51a,51b: 벽지지체
53a,53b: 막대 55a,55b: 서포터
R,60: 레일
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하도록 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 구현예(態樣, aspect)(또는 실시예)들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면에서 동일한 참조부호, 특히 십의 자리 및 일의 자리 수, 또는 십의 자리, 일의 자리 및 알파벳이 동일한 참조부호는 동일 또는 유사한 기능을 갖는 부재를 나타내고, 특별한 언급이 없을 경우 도면의 각 참조부호가 지칭하는 부재는 이러한 기준에 준하는 부재로 파악하면 된다.
또 각 도면에서 구성요소들은 이해의 편의 등을 고려하여 크기나 두께를 과장되게 크거나(또는 두껍게) 작게(또는 얇게) 표현하거나, 단순화하여 표현하고 있으나 이에 의하여 본 발명의 보호범위가 제한적으로 해석되어서는 안 된다.
본 명세서에서 사용한 용어는 단지 특정한 구현예(태양, 態樣, aspect)(또는 실시예)를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, ~포함하다~ 또는 ~이루어진다~ 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 명세서에서 기재한 ~제1~, ~제2~ 등은 서로 다른 구성 요소들임을 구분하기 위해서 지칭할 것일 뿐, 제조된 순서에 구애받지 않는 것이며, 발명의 상세한 설명과 청구범위에서 그 명칭이 일치하지 않을 수 있다.
본 발명에 따른 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템을 설명함에 있어 편의를 위하여 엄밀하지 않은 대략의 방향 기준을 도 1 내지 도 3를 참고하여 특정하면, 도시한 그대로의 상태에서 월류수 및 슬러지의 흐름방향에 따라 전후를 정한다.
먼저 도 1, 도 2 및 도 3에 도시된 바와 같이, 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템은 특히 합류식 하수관거 월류수(CSO : Combined Sewerage Overflow)를 처리하는데 적합하며, 기본적으로 하수 월류수에 대한 수질을 측정하는 수질자동측정기기(S)와, 하수 월류수를 처리하는 가압부상처리조(T)를 포함하는 가압부상처리장치(A)를 구비하고 있다.
도시지역에서 발생되는 수질오염 물질은 발생원 별로 크게 점오염원과 비점오염원으로 구분할 수 있다. 이중 비점오염원은 일반적으로 강우로 인한 지표면의 유출과 관련이 있으므로 일간, 계절간 배출량 변화가 크고, 예측과 정량화가 어렵다.
특히 도시지역에서 발생되는 강우 유출수는 주로 하수관거를 통해 도시 인근 수계로 유출되는데 크게 합류식 하수관에서 하수 차집관거의 용량을 초과할 경우 합류식 하수관거에서 배출되는 월류수(combined sewer overflow, 'CSO' 이하 병용한다.)와 우수관거에서의 월류수(separated sewer overflow, 'SSO' 이하 병용한다)가 있다. CSO와 SSO는 도시지역 비점오염 부하중 가장 큰 비중을 차지하며, 도시하천 생태계를 크게 악화시키는 것으로 조사된 외국의 연구에서 지적한 바와 같이, CSO 및 SSO에 대한 처리 대책이 없는 한 도시하천의 수질개선을 기대하기란 어려운 실정에 도달하였다.
강우유출수는 유역특성과 강우사상에 의해 가장 크게 영향을 받는데, 강우유출수는 지표면을 따라 합류식 하수관거시스템으로 수집, 운반되는 과정에서 하수와 합류되고 최종적으로 방류구에서 월류되므로 CSO의 수질특성에는 여러 가지 영향인자가 복합적으로 영향을 미치게 된다.
합류식하수관거 월류수는 부유물질, 유기물질등의 각종 오염성분들을 포함하고 있어 월류수의 주요 방류선인 하천을 오염시키는 원인으로 알려져 있다. 일반적으로 강우시 도시유출수는 하수자체에 함유된 오염물뿐만 아니라 오일, 중금속, 방향족 탄화수소화합물 등의 유해물질도 다량 함유되어 있는 것으로 알려져 있다. 이러한 오염물질들은 월류토구를 통해 방류선으로 짧은 시간에 많은 양이 유출되므로 방류선 오염을 가중시키고 있다. 도시지역은 지속적인 개발로 인해 불투수층이 증가함으로서 강우유달시간이 짧아지고 유출율이 증가하게 되어 강우초기에 고농도의 오염물질이 다량 유출되는 현상이 두드러지게 나타난다.
합류식하수관거 우수 및 오수수의 성상변화는 강우지속시간에 따라 다음과 같이 네 가지 형태로 분류할 수 있으며, 각각의 구간에서 발생하는 유출수의 오염특성 또한 다르다.
가. 초기강우 유출(First-Flush)
합류식하수관거(Combined Sewer) 시스템은 선행건기일수, 강우강도, 토지이용형태와 불투수성 포장도로 및 지표퇴적물 세척(Wash-Off)으로 인하여 상대적으로 고농도의 오염물을 함유하며 조사지역의 강우특성, 토지이용현황 등에 따라 발생오염부하의 특성이 다양하게 나타난다.
나. 지속강우 유출량(Extended Duration Flow)
초기강우 이후의 지속되는 강우에 의한 유출 유량으로 빗물과 생활하수가 혼합된 형태이고 초기강우에 비해 발생오염부하가 낮은 특성이 있다.
다. 후속강우유출(Post Rainfall Runoff)
강우종료후 배출되는 유출수로 수질특성은 강우지속유량(Extended Duration Flow)과 비슷한 성상으로 대부분 생활하수와 침투된 지하수(Infiltrated Ground Water)로 구성된다.
라. 건기유출(Dry Weather Condition Flow)
강우에 의한 영향이 배재된 생활하수이다.
위에서 기술한 바와 같이, 강우시의 하수 월류수 처리는 초기강우에 중점을 두는 것이 바람직하다. 일반적으로 First Flush(초기세척)로 일컬어지는 초기강우 유출수의 한계를 명확히 규정하기는 어려우나, 강우초기에 유출수의 발생과정을 통해 수질변화특성에 미치는 영향을 살펴보면 빗물이 지표면에 떨어지는 과정에서 대기중의 미세먼지를 흡수하고, 지표면을 따라 흐르면서 용존성, 부유성 오염물을 용해, 포함하게 된다. 또한 유입유량이 늘어남에 따라 관거내 퇴적물을 교란, 부유시키므로 강우초기에 관거말단에서 발생하는 월류수의 오염부하는 건기하수에 비해 상당히 높은 오염농도를 나타내고 있다.
미국의 EPA에서는 강우시작부터 대략 30분정도까지의 강우를 초기강우로 정의하고 있으나 강우의 특성이나 지역특성, 월류조절시설 등에 의한 영향을 고려하지 않고 시간적인 의미로만 해석하기에는 어려운 점이 많다.
다른 초기강우를 정의하는 이론은 오염물(특히 TSS)의 농도가 증가한 후 건기하수의 농도로 회복하는 시간까지로 해석하는 것이다(Thomas and Saui, 1986). 이 이론은 다른 시간적 개념의 초기강우보다는 합리적이라 할 수 있다
국내에서 강우발생특성은 선행건기일수가 일반적으로 길고, 특히 겨울철 강우발생빈도 및 강우강도가 작아 봄철 월류수의 농도가 타계절에 비해 높은 현상을 보인다. 이에 따라 평상시 하수관거내 고형물 퇴적은 미국에서는 1일 하수오염부하량의 약 5~30%로 보고되고 있으며, 국내에서는 약 20%로 보고되고 있다.
작은 강우강도에도 국내 우수토실에서는 월류수가 발생하고 있으며 물사용량이 많은 시간대와 강우발생시기가 겹칠 경우 강우시작시점부터 월류가 발생하는 곳도 많다.
오염원별 강우지속시간에 따른 월류수의 청천시 대비 수질특성은 BOD와 COD는 강우초기에는 청천시 수질과 비교해 상당히 큰 값을 보이나 강우지속시간이 길어지면 오히려 청천시보다 낮은 값을 보인다. SS의 경우 강우지속시간에 관계없이 청천시보다 높은 값을 보이고 있다.
평상시 하수관거 내에 퇴적되는 고형물 양에 대해 EPA에서는 하수관거로 유입되는 1일 오탁부하량의 약 5~30%가 관거내에 퇴적하는 것으로 보고하고 있다(Sewer and Tank Sediment Flushing : Case Studies, EPA, 1998).
국내에서는 관거 내 퇴적량을 일오염부하량의 약 20%(하수도정비 기본계획, 서울특별시, 1998)로 계획하고 있으나 국내에서 최소유속미달 관거가 약 30%임을 감안하고 국내 하수관거현황이 미국에 비해 열악하다는 것을 감안할 때 그 상황은 더 심각할 것으로 판단된다. 상하수도 관망 최적관리기술(건설기술연구원, 2002) 보고서에 의하면 도심지 일오염부하량 중 25%가 하수관거내에 퇴적되고 선행건기일수가 4일, 강우지속시간이 2시간인 강우가 발생했다고 가정하면 평상시 관거내로 유입되는 일오염부하량이 강우시작 2시간만에 하천으로 월류된다고 볼 수 있으므로 하천에 미치는 영향은 크다고 할 수 있다. 특히 국내 강우발생특성이 겨울철 거의 비가 내리지 않는 것을 감안할 때 봄철 하천으로 방류되는 월류수가 하천수질오염에 미치는 영향은 엄청나다고 볼 수 있다.
국내 우수토실의 월류 특성과 관련하여, 강우강도, 강우지속시간, 유출계수등 강우특성에 따라 우수토실에서의 월류발생시점 및 월류지속시간 차이가 발생하지만 국내 하수관거 현실에서 우수토실의 위어(Weir)는 보통 몇 mm정도에 불과하다. 특히 지역주민의 물사용량이 증가하는 저녁 시간대와 강우발생시기가 일치하는 경우 강우초기부터 월류현상이 발생하며 이로 인해 고농도의 하수가 하천으로 유입되고 있다.
따라서 합류식 하수관거 월류수(CSO : Combined Sewerage Overflow)에 대한 기존의 방식에서 벗어나
일정 용량까지만 처리하고 유량이 초과되면 수질에 관계없이 무단 방류하는 것이 아니라
수질 측정을 통한 기준 충족시에만 방류하고 불충족시에는 이를 처리하는 방안의 제시가 절실하다.
또 일반적인 와류(vortex) 방식을 채용한 시설에 비하여 입자성 및 용존성 처리물질에 대한 처리효율이 월등하게 좋은 가압부상법을 이용한 처리시스템을 구현하는 것이 바람직하다.
한편, 2004년말 현재 우리나라에 시설된 하수관거 보급률은 68.1%로서 이중 58%는 합류식이며, 42%는 분류식으로 되어 있어, 강우시 합류식 하수관거 월류수에 의한 하천오염이 크게 우려되고 있는 실정에 기초하여, 본 명세서에서는 합류식 하수관거 월류수에 대한 처리에 중점을 두고 기술하나, 분류식 하수관거 지역의 우수관거 월류수에도 본 발명의 개념이 적용될 수 있으므로, 이에 의하여 본 발명이 제한 해석되어서는 안 된다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명에 따른 하수 월류수 처리시스템은 하수 월류수에 대한 수질을 측정하는 수질자동측정기기(S)와, 하수 월류수를 처리하는 가압부상처리조(T)를 포함하는 가압부상처리장치(A)를 포함하여 이루어진다.
또 본 발명은 상기 수질자동측정기기(S)의 측정값이 기준값을 충족하는 경우에는 월류수를 방류하고, 기준값에 불충족하는 경우에는 상기 가압부상처리장치(A)로 월류수를 이송하는 컨트롤러(C)를 포함하여 이루어진다. 이 컨트롤러는 PLC(programmable logic controller)나 마이컴 등을 통하여 구성되며, 다양한 수질자동측정기기(S)의 측정값을 수신하고 이를 판독하여 데이터를 저장하고, 월류수의 방류 여부를 결정하는데, 특히 도 1에 도시된 바와 같이 밸브(V)(또는 게이트)를 변위하여 월류수의 이송 방향을 결정한다.
상기 수질자동측정기기는 COD, BOD, TOC, T-N, T-P, DO 및 pH의 일부 또는 모두를 측정하는 기기로 구성될 수 있다.
수질자동측정기기의 측정항목 및 측정방법을 표로 정리하면 다음과 같다.
표 1
측정항목 측정방법
COD 중크롬산, 칼륨법, 과망간산, 칼륨산성법, 과망간산칼륨 알칼리법, 전기화학적 분해법, 오존산화법
BOD UV/VIS, Respiration technology, 미생물연료전지를 이용한 혐기호흡법
TOC 고온산화/NDIR, UV산화/NDIR, UV산화/막전도도방식,UV산화/이온전극법, 오존산화/NDIR, 적외선 분광탐지에 의한 습식과화물 반응, 저온연소산화
T-N 흡광광도법, UV산화 비색법, 약품산화 비색법, 고온열연소법/CLD,화학발광법
T-P 흡광광도법, UV산화 비색법, 약품산화 비색법
DO 갈바닉셀법, 폴라로 그래픽법, 발광법, 무격막(2종금속전위차방식)
pH 유리전극법, 안티몬 전극법
Flow meter 초음파식, 전자기 측정방식, 프로트식, 볼텍스(와류), 임펠라식, 열식질량 압력식
PLC(programmable logic controller) 또는 마이컴 등을 통하여 구성된 컨트롤러(C)는 다양한 수질자동측정기기(S)의 측정값에 따라 월류수의 이송 방향(방류 또는 부상처리)을 결정하고 수질 데이터를 저장함은 몰론, 오염도에 따라 부상처리장치(A)에서 공기공급수단(E)의 운전파워(공기공급량 증감)를 알맞게 변경하고, 또 탁도 측정이나 저류조, 침사지, 침전지 또는 가압부상처리조(T) 등에서의 슬러지 또는 협잡물 등의 침전물 퇴적 높이를 측정하여 슬러지 수거장치(CS)의 가동 여부를 결정하며, 부상처리 전후 수질측정값이나 부상처리장치(A)의 운전상태 등을 중앙 제어실로 전송하여, 관할 구역의 전체적인 종합 관리에 기여하도록 시스템을 구성할 수 있다.
합류식 하수관거, 특히 침사지(T10)(다양한 합류식 하수관거 시스템의 구성 중 침사지를 대표하여 지칭한 것임, 그 외 다양한 합류식 또는 분류식 하수관거의 구성요소일 수 있음)에서 하수 월류수에 대한 수질자동측정기기(S) 및 컨트롤러(C)의 판단에 따라 월류수가 방류(D1) 수질을 충족하지 못하는 경우 월류수는 밸브(C)를 거쳐 가압부상처리장치(A)로 이송된다.
가압부상분리법(Pressure Flotation)은 공기를 3~5kg/㎠로 가압하여 물에 용해시키면서 상압으로 누출시킬 때 분산매(dispersion medium)중에 함유된 부유상(suspended phase)(석출한 미립자나 floc)에 미소한 기포(bubble)를 부착시켜 분산매와 공기가 접하고 있는 한계 면까지 부상시켜 고액분리를 유도하는 것으로, 부상법의 종류를 구분해 보면 아래의 다섯 종류로 나눌 수 있다.
0. 용존공기부상법(Dissolved Air Flotation)
과포화 상태로 있는 기체와 액체의 혼합액을 대기중에서 압력을 감소시켜서 기포를 발생하도록 하는 방법.
0. 분산공기부상법(Dispersed Air or Cavitational Air Flotation)
대기압하에서 프로펠러의 힘이나 다공판을 통해 공기를 불어넣어 기포를 생성하는 방법.
0. 진공 부상법(Vacuum Flotation)
대기압하에서 공기를 포화시켜서 감압된 밀폐조에 집어넣은 후 공기의 용해도를 감소시켜서 기포를 발생시키는 방법.
0. 전해 부상법(Electro Flotation)
물을 전기분해하여 생기는 미세한 수소나 산소 Bubble로 이루어진 기포를 이용하여 부상시키는 방법.
0. 미생물학적 부상법(Microbiological Autoflotation)
생물학적 질화/탈질화(nitrification/denitrification)System에 의하여 질소나 이산화탄소 같은 기포를 생성하거나, 혹은 조류(algae)가 왕성한 성장으로 광합성에 의한 과포화 상태의 산소를 배출하면 물로부터 용출되어 나오는 산소와 함께 부유물을 떠올리는 방법.
본 발명에서 가압부상처리장치(A)는 특히 시설용이성, 시설비용 및 운전비용 등을 고려하여 용존공기부상 (Dissolved Air Flotation, 'DAF', 이하 병용한다)을 채용하는 것이 바람직하다.
가압부상법, 특히 DAF의 특징을 표로 정리하면 다음과 같다.
표 2
구분 가압부상(DAF)
부상원리 ◈ 처리수를 가압(4-10kg/㎠)하여 air를 용해시킨 후 대기상태로 전환 시 발생하는 air bubble을 SS물질에 부착, 부상시킴으로서 고액분리
수면적부하 3m3/m2·hr
순환수사용 50-100%
운전압력 4-10kg/㎠
처리효율 ◈ bubble size가 큼◈ 저농도 폐수처리 시 유리함
운전시특징 ◈ 가격이 쌈◈ 중력식 농축보다 소요면적이 작음◈ 운전의 중단과 재가동이 용이함◈ 정수장, 호소부유물 등 저농도 대상폐수 선택 사용 시 좋은 효율을 나타냄
SS 처리효율 70-80%
한편, 가압부상기술의 개요 및 원리를 살펴보면 이하와 같다.
○ 용존공기부상 (Dissolved Air Flotation, DAF)의 개요
부상분리(flotation)는 분산매(dispersion medium)중에 함유된 부유상(suspended phase)에 미소한 기포(bubble)를 부착시켜 분산매와 공기가 접하고 있는 한계면까지 부상시켜 고액분리를 유도하는 것을 말하며 부유물질, 유분, 그리스 등을 물로부터 분리하여 폐수를 정화하고 sludge를 분리, 농축하는데 사용된다.
용존공기부상(DAF)의 수처리 핵심인 공기방울과 고형물입자의 결합 및 부상에 의한 불순물 제거개념은 다음의 그림 1.과 같다.
[규칙 제91조에 의한 정정 23.07.2012] 
그림 1. 공기방울과 고형물입자의 결합 및 부상에 의한 불순물 제거개념
용존공기 부상법이란 높은 압력으로 물에 공기를 충분히 용해시켜 이를 처리하고자 하는 원수에 주입시키면, 수중에서 다시 감압된 물은 과포화된 만큼의 공기가 미세한 기포로 형성되어 처리수중의 플록과 결합한다. 이 기포-플록 결합체는 빠르게 수중에서 수표면으로 상승하여 고액분리가 달성되는 수처리 기법이다.
이 기술을 CSOs의 처리에 적용함으로써 나타날 수 있는 효과는 다음과 같다.
□ 높은 수면적 부하로 처리시간이 15분 이내로 매우 짧고 설치면적이 매우 적게 소요된다.
□ 침전공정에 비해 소요면적이 적어 초기 시설투자비가 낮으며 깊지 않은 시설이 가능하다.
□ 여과지속시간을 단축시키는 저비중 입자 제거에 효과적이다.
□ 갈수기 등 원수 수질이 다소 악화되는 기간에도 비교적 안정된 처리수를 얻을 수 있다.
일반적인 경우 DAF의 운영상에 영향을 주는 인자에는 원수성상과 농도, 유입원수의 양과 질, 압력, 체류시간, 온도, 응집제의 종류와 양등을 들 수 있다. 이들을 정리하면 다음과 같다.
전처리 인자
(1) αpb(particle-bubble attachment efficiency)
충돌효율은 입자와 공기방울간의 전위의 상호작용과 입자의 친수적 성질에 영향을 받는다. 따라서 화확적 전처리를 통하여 입자와 전위작용을 변화시켜서 충돌효율을 증가시키고, 응집제와 pH 조건변화로 입자의 친수적 성질에 영향을 주어 응집효과를 높일 수 있다.
(2) Np (particle number concentration)
입자의 농도는 응집제와 flocculation time에 영향을 받는다. 실제로 응집제의 첨가는 입자수를 늘리지만 flocculation은 floc의 직경을 커지게 하여 Np를 감소시킨다.
(3) ηT(total single-collector efficiency)
포집효율은 확산과 차단의 여향을 받는데 입자의 직경이 1㎛일 때 ηT가 최소가 되며, floc의 크기가 수십 ㎛가 되면 ηT가 증가한다.
보통 단순포집효율(single-collector efficiency)
η = (particle - bubble collision rate) / (particle - bubble approach rate)
로 정의될 수 있는데 Brownian diffusion, interception and gravity settling의 세가지 충돌기작(collision mechanism)이 고려되어야 한다.
부상조 인자
(1) ㏈ (bubble diameter)
부상에 필요한 공기방울의 크기는 토출압력(saturator pressure)의 의해서 절대적으로 영향을 받는데 작은 크기의 공기방울은 입자와의 사이에 표면력과 넓은 접촉면을 가진다. 크기가 작은 공기방울은 ηT를 증가시킨다.
(2) Φb (bubble volume concentration)
부상조안에서 생성되는 공기방울입자의 농도는 압력과 가압수량비(recycle ratio)에의해 좌우된다. Φb가 커지면 floc의 밀도가 작아지고 충돌할 수 있는 기회가 많아져서 보다 나은 부상효과를 가져온다.
Bubble volume concentration은 처리할 원수의 체적(㎥)당 부상조내의 기포체적(㎤)을 나타내므로 일반적으로 표현할 때 동일한 dimension으로 통일하여 ppm(volume)단위를 사용한다.(Edzwald, 1993). 또한 bubble volume concentration 은 가압수로부터 공급되어 부상조내에서 생성하는 기포량의 의미를 가지는데 이에 관여하는 인자로는 saturator압력, recycle ratio, 온도 및 공기의 용해도 등이 있다.(Edzwald, Walsh ; 1992.)
도 1 내지 도 3에서, 합류식 하수관거, 특히 침사지(T10)에서 하수 월류수에 대한 수질자동측정기기(S) 및 컨트롤러(C)의 판단에 따라 월류수가 방류(D1) 수질을 충족하지 못하는 경우 월류수는 밸브(C)를 거쳐 가압부상처리장치(A)의 저류조(T0)로 유입된다.
저류조(T0)는 유량조정조의 기능을 겸하며, 전처리를 위하여 교반기(ST)(stirrer)가 구비되어 있으며, DAF 처리를 위한 후단 공기공급수단(E)으로부터 일부공기를 공급받도록 되어 있다.
저류조(T0)에서 펌프(P1)에 의하여 강제 이송된 월류수는 가압부상처리조(T)로 유입된다.
이때 가압부상을 위하여 월류수 공급라인에는 펌프(P1)와 연계된 공기공급수단(E)이 구비되어 있다. 공기공급수단(E)은 월류수 가압 이송시 파이프압과 대기압 차에 의해 외기를 가압부상처리조(T)로 공급하는 역할을 한다. 기타 다양한 공기공급수단이 도입될 수 있다.
가압부상처리조(T)에 유입된 월류수는 공기공급수단(E)에서 공급된 미세기포가 월류수에 포함된 미립자나 플록(floc)과 같은 부유상(suspended phase)에 달라붙게 되어 부상하게 되는데, 상대적으로 좁은 가압부상처리조(T) 전단의 1차 부상부(SP1)에서 부상하고, 전방 내벽을 넘어 부상처리부(SP2)로 진입하게 된다.
부상처리부(SP2)의 수면 위로 부상한 슬러지는 공지의 스키머(SK)에 의하여 후방 내벽을 넘어 가압부상 슬러지저장부(SP3)이 이송되며, 슬러지가 부상 분리된 월류수는 방류부(SP4)를 거쳐 하천으로 방류(D2)된다. 방류부(SP4)에는 공지의 텔레스코픽밸브(TV)가 구비되어 있어, 월류수의 방류를 조절할 수 있다.
가압부상처리조(T)의 1차부상부(SP1) 및 부상처리부(SP2)에 침전된 슬러지 및 가압부상 슬러지저장부(SP3)에 있는 부상 슬러지는 펌프(P2)를 거쳐 탈수기 등의 후처리 장치에서 처리되어 탈수케익 등의 형태로 배출된다.
도 1에서, 월류되지 않은 하수, 우수, 오수 등은 공지의 다양한 처리공법에 의하여 처리되며, 예로써 도시한 바와 같이 고형물입자를 침전, 제거하는 일차침전지(T20), 고도수처리를 위한 포기조(T30)와, 이물질을 최종적으로 침전시키는 이차침전지(T40)와 같은 다양한 후속처리부(P)를 통하여 처리된 후, 최종 방류(D3)된다.
다음으로 도 3에는 도 2와는 다른 가압부상처리장치(A)가 도시되어 있는데, 도 2의 가압부상처리장치의 가압부상처리조(T)의 부상처리부(SP2) 저면이 중앙이 높고 가장자리가 깊게 파인 구조인 것에 비하여, 도 3의 가압부상처리장치(A) 전방측만이 깊게 파여 있고 후방 상승부 저면에는 슬러지 수거장치, 특히 웨지(wedge)타입 스크레이퍼(scraper)를 구비한 슬러지 수거장치(CS)가 구비되어 있다. 이는 도 4 내지 도 6을 참조하여 상세하게 설명한다.
이상과 같은 본 발명에 따른 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템은 비점오염원 저감과 우수유출량을 동시에 저감할 수 있는 시설로, 수질개선, 수량개선, 친수개선, 홍수방지 등의 다양한 효과가 있는데, 이를 보다 상술하면 다음과 같다.
① 비점오염원의 저감
강우에 의해 유출되는 비점오염물질을 저류 및 침투시켜 하천 및 호소로의 오염부하량을 감소시킬 수 있다.
② 평상시의 하천 유량의 확보 및 하천수질 보전
지하침투시설 및 저류시설의 이용하여 충진된 지하수는 비강우시 하류부 하천으로 물을 계속적으로 공급할 수 있음으로 일정 하천유량을 확보할 수 있을 뿐만 아니라, 하천유량의 부족에 의한 수질악화의 방지에도 도움이 된다.
③ 지하수의 함량과 수자원의 확보
우수 침투를 통해 지하수의 함량이 높아지며, 따라서 수자원을 확보할 수 있다.
④ 침수지역의 해소
침투시설을 설치하여 우수를 침투, 저류 시켜 첨두 유량을 감소시켜 홍수피해를 저감시킬 수 있다.
⑤ 지반침하의 방지
침투시설 및 저류시설을 통해 충진된 지하수로 인해 지하 수위의 저하로 인한 지반침하를 방지할 수 있다.
⑥ 식생고사의 방지
갈수시에도 지하수를 확보함으로써 지하수의 고갈로 인한 식생의 고사를 방지 할 수 있다.
⑦ 바닷물의 역침투에 의한 염수화 방지
바다에 인접한 유역의 경우 지하수가 고갈되면 인접한 바다로부터 해수 유입이 진행되어 염수화 현상이 발생한다. 따라수 우수 저류 및 침투시설을 설치하여 일정 지하수위를 유지하여 해수 유입을 방지할 수 있다.
⑧ 수처리 시설 규모의 확대 방지
저류시설의 이용하여 사용가능한 물을 확보함으로써, 필요한 수처리 시설의 규모를 축소할 수 있다.
다음으로 도 4 내지 도 6을 참조하여, 본 발명에 따른 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템을 위한 슬러지 수거장치(CS)를 설명한다.
슬러지 수거장치(CS)를 설명함에 있어 편의를 위하여 엄밀하지 않은 대략의 방향 기준을 도 4 및 도 5를 참고하여 특정하면, 도시한 그대로의 상태에서 상하좌우를 나누고, 다른 도면과 관련된 설명에서도 이 기준에 따라 방향을 특정한다.
먼저 도 4 및 도 5에 도시된 바와 같이, 본 발명의 슬러지 수거장치(CS)는 침전조 등의 슬러지 침강이 발생되는 수조, 특히 저류조, 침사지, 침전지 또는 가압부상처리조(편의상 도 3과 달리 구체 형상을 단순화시켜 도시하고 있다) 등에 설치되며(도 3, 도 4 및 도 5에서는 수거장치(CS)가 편의상 가압부상처리조(T)에 설치된 것으로 도시하고 있으나, 이는 이해의 편의를 위한 것이며, 이에 의하여 본 발명이 제한 해석되어서는 안된다, 따라서 이하에서는 도 2와 무관하게 참조부호 'T'와 관련하여 편의상 '수조'로 통칭한다),
크게 복수의 웨지타입 스크레이퍼(10), 상기 스크레이퍼 각각을 잇는 연결체(20), 모터(31)를 포함하는 구동수단(30), 상기 구동수단과 상기 연결체를 연결하여 상기 연결체의 왕복직선운동을 일으키는 링크어셈블리(40), 수조(T) 벽체(T2)(도 3을 기준으로 보면 부상처리부(SP2)의 전방 내측벽체)에 고정되고 최초 및 최종 연결체에 암수 결합되어 직선운동을 안내하는 가이드(20A)(20B)를 포함하여 이루어진다.
상기 웨지(wedge)타입 스크레이퍼(scraper)(10)는 패널, 특히 철판을 절곡하여 일체로 제조된 것이 바람직하며,
도 5의 확대된 일점 쇄선 원 내 측면도에서 확인할 수 있는 바와 같이(연결돌기(11C)는 생략하고 단순화하여 도시함), 수조(T)의 저면(T1)에 밀착되어 직선 왕복 운동을 하며, 정방향 진행시 수조(T)의 수거부(T3)를 향하여 슬러지를 모으는 갈퀴부(11A)와, 역방향 진행으로 다음 번 수거 동작 준비상태로 복귀하도록 슬러지를 파고드는 쐐기부(11B)를 포함한다.
특히 상기 갈퀴부(11A)는 오목홈을 이루는 형태여서 가능한 많은 슬러지를 안정되게 이동시킬 수 있도록 되어 있다.
상기 스크레이퍼(scraper)(10)의 상부(특히 쐐기부(11B)를 이루는 상부측 경사면)에는 연결체(20)와 스크레이퍼를 연결하도록 두 연결돌기(11C)가 형성되어 있다.
한편, 도 6 [B](연결돌기(11C)를 생략하여 단순화하여 도시함)에는 변형 스크레이퍼(10)가 도시되어 있는데, 변형예의 스크레이퍼(10)는 역시 패널을 절곡 성형하여 제조하되,
오목홈을 갖는 갈퀴부(11A)와 쐐기부(11B) 외에, 저면에 형성된 도브테일타입 끼움부(13A) 및 상기 쐐기부 상부(즉, 쐐기부(11B)를 이루는 상부측 경사면)에 형성된 요입부(13B)가 더 형성되어 있다.
이러한 변형 스크레이퍼(10)에는 갈퀴부(11A)의 기능을 보조하여 슬러지 수집효율을 향상하기 위한 와이퍼(15)가 도입된다.
상기 와이퍼(15)는 상기 스크레이퍼의 암(雌) 끼움부(13A)에 대응되는 도브테일(dove-tail) 형상의 수(雄) 끼움부(15B)가 구비되고,
또 상기 스크레이퍼의 갈퀴부(11A)를 감싸는 날개부(15A)를 갖고, 우측 단부에는 걸림부(15C)가 구비되어 있어 상기 끼움부(15B)와 함께 날개부(15A) 및 걸림부(15C)를 통하여 스크레이퍼(10)의 반복된 왕복운동에도 와이퍼(15)가 분리 이탈되는 사태의 발생을 원천 차단할 수 있도록 되어 있다. 상기 와이퍼(15)는 연질 합성수지 또는 합성고무나 실리콘 등의 엘라스토머 소재로 이루어진 것이 바람직하다.
나아가 상기 변형 스크레이퍼(10)의 요입부(13B)에는 스크레이퍼의 보다 안정된 왕복동작을 위하여 포켓(61)을 구비한 레일(60)(도 6 [A] 참조)을 도입하는 경우,
상기 레일(60)의 포켓(61)에 수용되어 움직이는 휠(17E)을 포함하는 피안내조립체(17)가 결합된다.
상기 피안내조립체(17)는 도 6 [B]의 단면도(그리고 관찰방향을 달리한 우측 상하 일점 쇄선 원 내 참조)에서 확인할 수 있는 바와 같이, 웨지타입 스크레이퍼(10)의 요입부(13B)에 결합되는 수직판(17A)과 상기 수직판 상단에 연결된 수평판(17B)이 일체로 형성되어 있고,
상기 수평판(17B)에는 힌피핀(17b)을 통하여 힌지결합된 회동판(17C)이 결합되어 있고,
이 회동판에는 샤프트(17e)가 결합되어 있다.
상기 샤프트(17e)에는 코일스프링(17e')에 상향 탄지되는 휠(17E)이 결합되어 있으며,
상기 수평판(17B)과 상기 회동판(17C)이 수평을 이룬 상태를 록킹하도록 상기 수평판(17B)에 축핀(17d')을 통하여 축설되어 있는 록커(17D)가 더 구비되어 있다.
도 6 [B]의 우측 상부 및 하부 일점 쇄선 원 내에서 확인할 수 있는 바와 같이, 상기 록커(17D)는 수용부(17d)를 가져, 이 수용부에 수평을 이룬 상태를 수평판(17B)과 회동판(17C)이 억지끼움 형태로 끼워져 수평 상태가 고정된다.
설치시 이 레일(60)이 포설되어 있고 스크레이퍼(10)에 피안내조립체(17)가 결합된 상태에서,
도 6 [B]의 우측 하부 상태에서 스크레이퍼(10)의 양단이 양 측 레일(60)에 수용되도록 하고,
이어 도 6 [B]의 우측 상부 상태로 회동판(17C)을 올리고 록커(17D)로 수평판(17B)과 회동판(17C)을 고정하면
상향 돌출된 휠(17E)이 쉽게 레일(60)의 하향 개구된 포켓(61)에 수용될 수 있어 조립성이 향상될 수 있다.
이어 연결체(20)를 이루는 단위체(20U)의 양단을 스크레이퍼(10)의 연결돌기(11C)에 체결하는 방식으로 설치를 한다.
대안적으로는 레일(60)의 포켓(61) 측벽을 타고 움직이도록 회동축(샤프트)(17e)이 수직 형태인 휠(17E) 대신에, 회동축이 수평을 이루어 포켓의 상부 벽체 저면을 타고 움직이는 휠을 도입하는 것도 가능하다.
나아가 도 5의 스크레이퍼(10)의 연결돌기(11C)가 용접 결합되는 형태인 것에 비하여,
도 6의 변형 스크레이퍼(10)에서는 요입부(13B)에 연결돌기(11C)가 끼워진 후 리벳팅(또는 용접)에 의하여 체결되는 형태로 되어 있다.
이러한 연결돌기 형태는 쐐기부(11B)의 경사면과 요입부(13B)를 통하여 중접 부위가 형성되므로 연결돌기(11C)의 상대적으로 결합 내구성이 더 증가될 수 있고, 제조 편리성이 더 증진될 수 있어 생산성 향상이 가능하다.
스크레이퍼(10) 제조시 패널을 절곡하여 우선적으로 요입부(13B)를 형성한 후, 여기에 피안내조립체917)의 수직판(17A) 및 연결돌기(11C) 부품을 끼우고 리벳팅(또는 용접이나 볼트 결합) 공정을 거쳐 결합하고,
추가적으로 철판을 절곡 가공하여 갈퀴부(11A) 및 쐐기부(11B)를 가공하고, 필요에 따라 와이퍼(15)를 결합할 수 있다.
도 6 [B]에서 와이퍼(15)의 도입 및 끼움부(13A)의 가공, 피안내조립체(17)의 도입, 요입부(13B)의 가공 및 요입부에 끼워져 결합되는 연결돌기의 도입 여부는 필요에 따라 상호 무관하게 선택될 수 있다.
다음으로 다시 도 4 및 도 5에서, 상기 각 스크레이퍼(10)는 연결체(20)에 의하여 상호 이어져 있어 연동이 가능하다.
특히 본 발명에서는 상기 연결체(20)가 각 스크레이퍼(10)의 상부에 돌출된 연결돌기(11C)를 잇는 복수의 단위 연결체(20U)로 구성되어, 현장 상황에 맞게 길이를 조절하는 것이 가능하여 조립 편리성이 획기적으로 증진되며,
스크레이퍼 파손시 개별적으로 스크레이퍼를 교체할 수 있어 유지 보수 편리성이 획기적으로 증진될 수 있다.
각 단위 연결체(20U)는 양단부에 체결 디스크(23)가 구비되어 있어, 이 체결디스크(23)를 통하여 연결돌기(11C)와의 결합이 쉽게 이루어진다.
스크레이퍼(10) 사이의 간격이 예를 들어 650mm를 유지하도록 파이프 타입의 단위 연결체(20U)를 선택하며,
경량화 특성 등을 고려하여 파이프 타입의 단위 연결체(20U)를 채용하는 경우, 상기 체결 디스크(23)는 블라인드 플랜지(blind flange) 형태로 막혀 있어 이물질 침투가 방지되는 형태인 것이 바람직하다.
다음으로 상기 구동수단(30)은 전동 모터(31)를 포함하고, 토크 향상을 위한 감속기(33)와 왕복운동 특성을 위한 회전체(35)가 도입되어 있다.
슬러지 수집을 위하여 수조(T)의 수거부(T3)를 향하여 스크레이퍼(10)의 갈퀴부(11A)가 기능하도록 정방향 이동하는 경우와
다음 번 수거 동작을 위하여 쐐기부(11B)가 기능하도록 역방향 이동하는 경우에 각각
서로 다른 속도(예를 들어 전자의 동작시에는 상대적으로 빨리, 후자의 동작시에는 침전된 슬러지를 부상시키지 않도록 상대적으로 느리게 이동 가능)로 스크레이퍼(10)가 이동하도록
모터(31)의 회전 속도를 제어하기 위하여 PLC(programmable logic controller)를 사용하거나, 기타 공지의 제어패널이나 인버터 등을 채용하는 것이 가능하다.
이어서 상기 구동수단(30)과 상기 연결체(20)를 연결하여 상기 연결체의 왕복직선운동을 일으키는 링크어셈블리(40)를 살펴본다.
도 4에서, 구동수단(30)의 회전체(35)의 회전중심에서 벗어난 위치에는 승강바(43)의 상단부가 선회가능하게 축설되어 있으며,
이 승강바(43)의 하단은 삼각부재(45)의 제1회동부(45b)와 스윙운동이 가능하게 연결되어 있다.
상기 삼각부재(45)는 수조(T)의 벽체(T2)에 고정되고 고정축(41a)을 갖는 고정부재(41)가 구비되어 있고,
이 고정축(41a)에는 삼각부재(45)의 축설부(45a)가 선회 가능하게 구비되어 있고,
삼각부재(45)의 마지막 꼭지점 부위인 제2회동부(45c)에는 중계바(47)가 연결되어 있고,
이 중계바(47)는 각 스크레잎(10) 양측에 두 연결돌기(11C)들을 연결하여 일렬을 이루는 각 단위 연결체(20U)들로 형성된 두 줄의 연결체(20) 각각의 최초 연결체(20A)를 잇는 연결바(49)와 이어져 있다.
모터(31)의 회전에 따라 회전체(35)가 감속 선회하면, 이에 편심 연결된 승강바(43)가 상하 운동을 하게 되고,
이 승강부(43) 하단과 유니버설 조인트 등을 통하여 연결된 제1회동부(45b)를 갖는 삼각부재(45)는 고정부재(41)의 고정축(41a)을 중심으로 스윙운동을 하게 되고,
이에 따라 전후진 하는 중계바(47)의 움직임에 따라 스크레이퍼(10)는 전진(정방향 이동)하여 갈퀴부(11A)의 기능으로 슬러지가 단계적으로 수집되어 최종적으로 수조(T)의 수거부(T3)로 수집되고,
다시 스크레이퍼(10)는는 후진(역방향 이동)하여 쐐기부(11B)가 침강된 슬러지를 교반하여 부상시키지 않도록 슬러지를 파고들어 다음 번 정방향 수집 동작을 대비하는 상태로 이동한다.
개발 스크레이퍼(10)의 왕복운동 구간 길이(stroke)는 약 650~700mm일 수 있다.
한편, 본 발명의 슬러지 수거장치(CS)는 도 4 및 도 5에 도시된 바와 같이, 최초 및 최종 연결체(21A)(21B)에 가이드(50A)(50B)가 구비되어 있어, 안정된 수평 왕복운동이 가능하고 스크레이퍼 및 연결체의 부상을 원천적으로 방지하고 상시적으로 스크레이퍼가 수조(T) 저면(T1)과 접촉한 상태로 이동하여 안정된 슬러지 수집을 보장할 수 있다.
즉, 상기 수조(T) 벽체(T2)에 고정된 제1 및 제2 가이드(50A)(50B)는 최초 및 최종 연결체(21A)(21B) 각각에 암수 결합되어 직선운동을 안내하는 역할을 한다.
상기 가이드(50A)(50B) 각각은 수조(T)벽체(T2)에 고정된 제1 및 제2 벽지지체(51a)(51b), 최초 및 최종 연결체(21A)(21B)에 끼워지는 제1 및 제2 막대(53a)(53b), 최초 및 최종 연결체(21A)(21B)의 슬릿(21a)(21b)을 따라 움직이는 제1 및 제2 서포터(55a)(55b)를 포함한다.
최초 연결체(21A)의 슬릿(21a)은 하향 개구되어 있고, 제1서포터(55a)는 하단이 수조(T)의 저면, 특히 수거부(T3)의 초입 경사면(T3a)(도 5 하부 일점 쇄선 원 내 측면도 참조)에 경사형 고정 패널을 통하여 고정되고,
도 5 하부 일점 쇄선으로 구분 된 두 원 내 도면에서 확인할 수 있는 바와 같이, 평단면 형상이 알파벳 'L'자 형강이 경사형 고정 패널 상부에 돌출되어 있고,
이 'L'자 형강 내측에 결합된 평단면 형상이 원형인 파이프 상단이 제1막대(53a)에 용접 결합된 형상이며,
원형 파이프 상단이 하향 개구된 최초 연결체(21A)의 슬릿(21a)을 따라 움직이는 형태로 가이드하게 된다.
또 최종 연결체(21B)의 슬릿(21b)은 측향 개구(두 최종연결체의 마주보는 면을 향하여 개구된 형태)되어 있고, 제2서포터(55b)는 알파벳 'T'자를 이루는 형상으로,
횡방향(스크레이퍼(10) 이동 방향에 직교하는 방향) 부재가 두 제2막대(53b)를 연결하고 측향 개구된 슬릿(21b)을 따라 움직이며,
종방향(스크레이퍼(10) 이동 방향) 부재(횡방향 부재 중앙에 용접 결합됨)의 후단부가 수조(T)의 벽체(T2)에 고정되어 있는 형태이다.
이러한 가이드(50A)(50B)를 통하여 안정되고 확실한 슬러지 수집 동작이 가능하다.
한편, 도 4 및 도 5에서 수조(T) 저면(T1)에는 콘크리트 등의 마찰이 큰 바닥 상태를 고려하여 별도로 플랫(flat) 타입 평판레일(R)을 포설하여 스크레이퍼(10)의 원활한 전후진 동작을 보장할 수 있다.
만약 도 6과 같이 스크레이퍼(10) 양단에 별도로 하향 개구된 포켓(61)을 갖는 레일(60)을 도입하는 경우, 필요에 따라 평판레일(R)은 생략 될 수 있다.
이상의 설명에서 가압부상법, 특히 DAF나 공기공급수단 등이나,
또 슬러지 수거장치의 구동수단의 속도 제어 및 구체 재원 등과 관련된 통상의 공지된 기술을 생략되어 있으나, 당업자라면 용이하게 이를 추측 및 추론하고 재현할 수 있다.
나아가 이상에서 본 발명을 설명함에 있어 첨부된 도면을 참조하여 특정 형상과 구조를 갖는 슬러지 수거장치를 위주로 설명하였으나 본 발명은 당업자에 의하여 다양한 수정, 변경 및 치환이 가능하고, 이러한 수정, 변경 및 치환은 본 발명의 보호범위에 속하는 것으로 해석되어야 한다.

Claims (4)

  1. 하수 월류수에 대한 수질을 측정하는 수질자동측정기기;
    하수 월류수를 처리하는 가압부상처리조를 포함하는 가압부상처리장치; 및
    상기 수질자동측정기기의 측정값이 기준값을 충족하는 경우에는 월류수를 방류하고, 기준값에 불충족하는 경우에는 상기 가압부상처리장치로 월류수를 이송하는 컨트롤러;
    를 포함하여 이루어진 하수 월류수 처리시스템.
  2. 제 1 항에 있어서,
    상기 가압부상처리조에는 가압부상 슬러지저장부와, 가압부상된 슬러지를 슬러지저장부로 모으는 스키머가 구비되어 있는 것을 특징으로 하는 하수 월류수 처리시스템.
  3. 제 1 항에 있어서,
    상기 수질자동측정기기는 COD, BOD, TOC, T-N, T-P, DO 및 pH의 일부 또는 모두를 측정하는 기기인 것을 특징으로 하는 하수 월류수 처리시스템.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    저류조, 침사지, 침전지 또는 가압부상처리조의 저면에 구비되어 있고, 복수의 웨지타입 스크레이퍼와, 각 웨지타입 스크레이퍼 양단을 감싸고 하향 개구된 포켓을 포함하는 레일을 포함하는 슬러지 수거장치를 더 포함하여 이루어지되
    상기 각 웨지타입 스크레이퍼는
    패널을 절곡하여 일체로 제조된 것으로, 슬러지를 모으는 갈퀴부와, 슬러지를 파고드는 쐐기부와, 저면에 형성된 도브테일타입 끼움부와, 상기 쐐기부 상부에 형성된 요입부를 갖고,
    상기 도브테일타입 끼움부에 결합되는 대응 끼움부와, 상기 갈퀴부를 감싸는 날개부가 일체로 형성된 와이퍼를 더 구비하고 있으며,
    상기 요입부에 결합되는 수직판, 상기 수직판 상단에 연결된 수평판, 상기 수평판에 힌지결합된 회동판, 상기 수평판과 상기 회동판이 수평을 이룬 상태를 록킹하도록 상기 수평판에 축설되어 있는 록커, 상기 회동판에 고정된 샤프트, 상기 샤프트에 결합되고 상기 레일의 포켓을 따라 움직이는 휠을 포함하는 피안내조립체를 더 포함하는 것을 특징으로 하는 하수 월류수 처리시스템.
PCT/KR2012/005181 2011-07-01 2012-06-29 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템 WO2013005952A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110065255A KR101305225B1 (ko) 2011-07-01 2011-07-01 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템
KR10-2011-0065255 2011-07-01

Publications (2)

Publication Number Publication Date
WO2013005952A2 true WO2013005952A2 (ko) 2013-01-10
WO2013005952A3 WO2013005952A3 (ko) 2013-03-14

Family

ID=47437536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005181 WO2013005952A2 (ko) 2011-07-01 2012-06-29 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템

Country Status (3)

Country Link
KR (1) KR101305225B1 (ko)
MY (1) MY180923A (ko)
WO (1) WO2013005952A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759024A (zh) * 2021-02-07 2021-05-07 森诺科技有限公司 多级无压损油田采出水压力气浮除油设备
CN116573824A (zh) * 2023-05-30 2023-08-11 山东广晟环保科技有限公司 一种污水处理厂用污水浓缩池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3265196A4 (en) * 2015-03-03 2018-08-15 Biocheminsights Inc. Methods and systems for post-fermentation lignin recovery
KR20170038452A (ko) 2015-09-30 2017-04-07 (주) 삼진정밀 복합형 가압부상 여과처리 장치
CN108535409A (zh) * 2018-03-07 2018-09-14 广州众顶建筑工程科技有限公司 一种改进型的污染源自动监测系统
CN111579744B (zh) * 2020-05-28 2022-09-16 江苏省东台中等专业学校 一种水质监测装置
CN113312844B (zh) * 2021-05-28 2022-07-29 重庆工商大学 基于机器学习的循环水养殖监测系统
CN114593955B (zh) * 2022-03-01 2023-04-07 北华航天工业学院 一种一体式人居环境污水采集分析装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138189A (ja) * 1997-11-10 1999-05-25 Hitachi Ltd 水浄化装置
JP2004275829A (ja) * 2003-03-13 2004-10-07 Toshiba Corp 合流式下水道処理設備の水質改善制御装置
KR100960015B1 (ko) * 2009-08-28 2010-05-28 주식회사 부강테크 초기우수 유출수를 효율적으로 처리할 수 있는 오폐수 처리장치 및 그 방법
KR20110032355A (ko) * 2009-09-22 2011-03-30 한국건설기술연구원 유출오염부하 저감을 위한 처리시스템 및 처리방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307253B1 (ko) * 1999-07-23 2001-09-24 임정규 용존공기부상법을 이용한 조류 제거방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138189A (ja) * 1997-11-10 1999-05-25 Hitachi Ltd 水浄化装置
JP2004275829A (ja) * 2003-03-13 2004-10-07 Toshiba Corp 合流式下水道処理設備の水質改善制御装置
KR100960015B1 (ko) * 2009-08-28 2010-05-28 주식회사 부강테크 초기우수 유출수를 효율적으로 처리할 수 있는 오폐수 처리장치 및 그 방법
KR20110032355A (ko) * 2009-09-22 2011-03-30 한국건설기술연구원 유출오염부하 저감을 위한 처리시스템 및 처리방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN, HEUNG SIK: 'Build of DAF(Dissolved Air Flotation) System' PROCEEDINGS OF THE KFMA ANNUAL MEETING 06 December 2003, pages 431 - 447 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759024A (zh) * 2021-02-07 2021-05-07 森诺科技有限公司 多级无压损油田采出水压力气浮除油设备
CN116573824A (zh) * 2023-05-30 2023-08-11 山东广晟环保科技有限公司 一种污水处理厂用污水浓缩池
CN116573824B (zh) * 2023-05-30 2023-11-07 山东广晟环保科技有限公司 一种污水处理厂用污水浓缩池

Also Published As

Publication number Publication date
KR101305225B1 (ko) 2013-09-12
WO2013005952A3 (ko) 2013-03-14
MY180923A (en) 2020-12-12
KR20130003739A (ko) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2013005952A2 (ko) 수질자동측정기기 및 가압부상을 이용한 하수 월류수 처리시스템
CA2433226C (en) Method and plant for thickening sludge derived from water treatment by flocculation-decantation with ballasted floc
WO2011139089A2 (ko) 에너지 절감형 자연유하식 상수 및 하폐수 처리장치
CN207760200U (zh) 餐厨垃圾污水处理系统
KR101288298B1 (ko) 잉여슬러지를 이용한 초기우수 및 월류수 처리장치
KR20160069899A (ko) 수처리용 침전조 및 이를 포함하는 수처리장치
CN110294573A (zh) 一种利用uasb厌氧反应器、mbr、超滤及反渗透处理垃圾渗滤液系统
WO2013048010A1 (ko) 반류수의 인성분과 막폐색 물질 제거를 이용한 막분리 고도수처리 시스템
WO2013005951A2 (ko) 수질자동측정기기 및 상압부상을 이용한 하수 월류수 처리시스템
CN1706760A (zh) 一种城市污水处理方法及系统
KR100850162B1 (ko) 하수처리조의 부유물 처리장치
WO2013151196A1 (ko) 초기우수 월류수 처리와 1차 처리를 동시에 수행하는 오폐수 처리장치 및 그에 따른 오폐수 처리방법
KR100957695B1 (ko) 하수처리조의 플록 및 이끼 저감 배출장치
CN207512032U (zh) 用于高cod高氨氮含油废水的处理装置
CN208054996U (zh) 絮凝澄清污水处理设备
KR101267092B1 (ko) 수질자동측정기기를 구비한 하수 월류수 소독시스템
US11530151B2 (en) Continuous-, linear-, flexible-channel sewage treatment process, through a modified aerobic biological reactor system, or transformation of an existing anaerobic biological reactor into a modified aerobic biological reactor, coupled with a modified flexible flotation/decanting system
CN216513177U (zh) 浮选装置及水体净化集成系统
KR101080805B1 (ko) 합류식 하수관거 월류수 처리장치 및 방법
KR200442572Y1 (ko) 하수 중의 선 브러시를 이용한 머리카락 제거기
CN210457857U (zh) 一种用于河道整治的排污口污水处理系统
KR101431649B1 (ko) 초기우수 월류수 처리와 1차 처리를 동시에 수행하는 오폐수 처리장치 및 그에 따른 오폐수 처리방법
WO2022146265A1 (en) Single unit vertical aerobic / anaerobic biological wastewater treatment plant without pre-setllement unit
KR100837293B1 (ko) 하수처리조의 부유물 처리장치
KR20150101524A (ko) 수처리 여과 및 세척장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807779

Country of ref document: EP

Kind code of ref document: A2