WO2012161365A1 - 회절격자를 이용한 디지털 이미지 검출기 및 검출방법 - Google Patents

회절격자를 이용한 디지털 이미지 검출기 및 검출방법 Download PDF

Info

Publication number
WO2012161365A1
WO2012161365A1 PCT/KR2011/003914 KR2011003914W WO2012161365A1 WO 2012161365 A1 WO2012161365 A1 WO 2012161365A1 KR 2011003914 W KR2011003914 W KR 2011003914W WO 2012161365 A1 WO2012161365 A1 WO 2012161365A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
diffraction grating
axis
light
fluorescent screen
Prior art date
Application number
PCT/KR2011/003914
Other languages
English (en)
French (fr)
Inventor
신동준
Original Assignee
Seen Dong June
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seen Dong June filed Critical Seen Dong June
Priority to US14/122,142 priority Critical patent/US9000383B2/en
Priority to EP11866130.5A priority patent/EP2716220B1/en
Publication of WO2012161365A1 publication Critical patent/WO2012161365A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging

Definitions

  • the present invention relates to a digital image detector and a detection method thereof, and more particularly to a digital image detector and a detection method using a diffraction grating.
  • the digital image detector is input to the fluorescent screen after the X-ray emitted from the X-ray generator passes through the object. X-rays input to the fluorescent screen are converted into visible light and then output from the fluorescent screen.
  • the output visible light is reflected by the reflector and input to the CCD camera.
  • the CCD camera has a charge-coupled device (CCD), an imaging device that receives visible light and converts the image into an electrical signal. Therefore, the visible light input to the CCD camera is imaged and converted into an electric signal.
  • CCD charge-coupled device
  • the digital image detector has to minimize the length from the fluorescent screen to the CCD camera because sufficient visible light is not output from the fluorescent screen into which the X-ray is input.
  • the present invention has been made to solve the above-described problems, and to provide a digital image detector and a method for detecting the same, which can be made flat by solving the problem of keeping the optical path long in the digital image detector.
  • the technical solution to be achieved by the present invention is to minimize the angle of view required by the optical system by directly reducing the vertical axis and horizontal axis to the reflection surface using a diffraction grating to solve the problem that the optical path in the digital image detector long 1 This can be solved by transferring the image of the horizontal and vertical axes reduced to a reflecting surface using a 1: 1 diffraction grating.
  • a digital image detector includes a fluorescent screen that receives an X-ray transmitted through an object, converts the light into a light beam, and outputs the image by the light beam output from the fluorescent screen to a first axis using a diffraction grating.
  • the digital image detector according to the present invention may have one or more of the following features.
  • the first reflection surface may reduce the image output from the fluorescent screen with respect to the vertical direction
  • the second reflection surface may reduce the image output from the first reflection surface with respect to the horizontal direction.
  • the first reflection surface may reduce the image output from the fluorescent screen with respect to the horizontal direction
  • the second reflection surface may reduce the image output from the first reflection surface with respect to the vertical direction.
  • the front surface of the diffraction grating may have a reflecting portion protruding at a constant braided angle. And a slit having a constant braided angle may be formed in the diffraction grating.
  • the image reflected from the second reflecting surface may enter the photographing apparatus after passing through the total reflection prism.
  • a method of detecting a digital image comprising: receiving an X-ray transmitted through an object and converting the light into a light beam; reducing the image of the converted light beam with respect to a first axis by using a diffraction grating; Reducing the image reduced on the first axis with respect to the second axis using a diffraction grating, and converting the image reduced on the second axis into an electrical signal.
  • the digital image detection method according to the present invention may have one or more of the following features.
  • the reducing of the first axis may reduce the image in the horizontal direction
  • the reducing of the second axis may reduce the image in the vertical direction.
  • the reduction of the image about the first axis may reduce the image in the vertical direction
  • the reduction of the image about the second axis may reduce the image in the horizontal direction.
  • X-rays transmitted through the object may be converted into any one of visible light, infrared light, or ultraviolet light.
  • the light beam output from the fluorescent screen is reduced to the first axis while passing through the first reflection plane using the diffraction grating, and the second axis is passing through the second reflection plane using the diffraction grating. This reduces the aberration of the optical system by minimizing the angle of view regardless of the length from the fluorescent screen to the imaging device.
  • the conventional digital image detector required a considerable internal space to secure the optical path, but the digital image detector and the detection method according to the present invention do not need to secure such an optical path to the reflective surface using a diffraction grating.
  • the configuration of the flat plate can minimize the volume of the device.
  • FIG. 1 is a perspective view of a digital image detector according to an embodiment of the present invention.
  • FIG. 2 is a side view of the first reflective surface in FIG. 1.
  • FIG. 2 is a side view of the first reflective surface in FIG. 1.
  • FIG. 3 is a side view of the second reflective surface in FIG. 1;
  • FIG. 4 is a diagram illustrating a process in which an image from a fluorescent screen is reduced with respect to a first axis and a second axis in the digital image detector according to FIG. 1.
  • FIG. 5 is a perspective view of a digital image detector according to another embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a process in which an image from a fluorescent screen is reduced with respect to a first axis and a second axis in the digital image detector according to FIG. 5.
  • FIG. 7 is a perspective view of a digital image detector according to another embodiment of the present invention.
  • FIG. 8 is a side view of the first reflective surface in FIG. 7.
  • FIG. 8 is a side view of the first reflective surface in FIG. 7.
  • FIG. 9 is a flowchart illustrating an image detection method according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a perspective view of a digital image detector 100 according to an embodiment of the present invention
  • FIG. 2 is a side view of the first reflective surface 140 in FIG. 1
  • FIG. 3 is a second reflective surface in FIG. 1.
  • 160 is a side view. 2 to 3 correspond to an enlarged view of the diffraction grating.
  • 4 illustrates a process in which the image from the fluorescent screen 120 is reduced with respect to the first axis (vertical direction) and the second axis (horizontal direction) which are perpendicular to each other in the digital image detector 100 according to FIG. 1.
  • the digital image detector 100 may display an image 130 by X-rays transmitted through an object (not shown) among X-rays emitted from the X-ray generator 110.
  • a fluorescent screen 120 that receives the input and converts the light into a light beam
  • a first reflecting surface 140 which reduces the image of the light beam output from the fluorescent screen 120 to a vertical axis by using a diffraction grating
  • a first panel The second reflecting surface 160 which reduces the image reduced by the slope 140 to the horizontal axis and the image reflected from the second reflecting surface 160 are inputted to the image pickup device to form an image and convert the image into an electrical signal. It includes a photographing device 180.
  • the image 130 of the object output from the fluorescent screen 120 is a vertical axis corresponding to the first axis while passing through the first reflecting surface 140 using a diffraction grating Is reduced.
  • the image reduced on the vertical axis is reduced on the horizontal axis corresponding to the second axis while passing through the second reflective surface 160 using the diffraction grating. Therefore, the digital image detector 100 according to the present embodiment can reduce the aberration of the optical system by minimizing the angle of view irrespective of the length from the fluorescent screen 120 to the imaging device 180, and the optical path as a reflecting surface using a diffraction grating.
  • the fluorescent screen 120 receives an image 130 of X-rays transmitted through an object (not shown) and outputs visible light corresponding thereto. Fluorescent particles (not shown) are finely dispersed in the fluorescent screen 120, and the fluorescent particles are excited by X-rays to generate visible light. In addition, the fluorescent screen 120 may output not only visible light but also ultraviolet rays or infrared rays. In this case, the photographing apparatus 180 may be configured as a device capable of converting ultraviolet rays or infrared rays into electrical signals.
  • the first reflecting surface 140 is disposed with a constant inclination angle m with respect to the fluorescent screen 120 positioned vertically.
  • the first reflecting surface 140 and the fluorescent screen 120 are both rectangular in shape, and the upper side of the first reflecting surface 140 and the upper side of the fluorescent screen 120 are in contact with each other.
  • the image 130 passing through the object is incident on the first reflective surface 140 as it is.
  • the first reflective surface 140 is formed by a grating.
  • a diffraction grating is an optical element formed with dozens or hundreds of equally spaced grooves per mm with diamond bits on a glass or plastic plate. Such a diffraction grating is mainly used to select the wavelength of light according to the diffraction and interference of the light.
  • the number of the sawet-shaped reflectors 142 is formed at regular intervals, and the brazed angle a is changed. Incident light and diffracted light can be adjusted. 2 to 3, the braided angle a of the first reflective surface 140 is formed such that incident light and diffracted light form 90 degrees.
  • the digital image detector 100 is input to the fluorescent screen 120 after X-rays emitted from the X-ray generator 110 pass through the object. X-rays input to the fluorescent screen 120 are converted into visible light and then output from the fluorescent screen 120.
  • the visible light output from the fluorescent screen 120 is mainly in the form of a single color. Therefore, the use of the diffraction grating does not disperse the spectrum of light, but rather reflects it using the brazed angle a. Depending on the size of the braided angle (a), such as the vertical axis or the horizontal axis, it is possible to obtain the effect of reducing the image based on one axis.
  • incident light incident on the first reflecting surface 140 is reflected vertically downward (parallel to the fluorescent screen 120) by the reflecting portion 142 of the diffraction grating, thereby reflecting the second reflecting surface 160. Will be incident.
  • the image 130 of the object does not change in the transverse direction but its height is reduced from h to h 'for the longitudinal direction.
  • the second reflecting surface 160 is also formed by the Eschlet diffraction grating.
  • the reflecting portion 162 formed on the second reflective surface 160 also has a constant brazed angle b. 2 to 3, the second reflection surface 160 is alternately disposed at an angle of 90 degrees with respect to the first reflection surface 140, and has a constant inclination angle n.
  • the diffracted light emitted from the first reflecting surface 140 is incident on the second reflecting surface 160 and is reflected by the reflecting unit 162 to become diffracted light that forms 90 degrees with respect to the incident light, and then enters the imaging device 180.
  • Light incident on the fluorescent screen 120 and light incident on the photographing apparatus 180 are orthogonal to each other.
  • the horizontal width of the image 130 of the object is reduced from a to a 'while the vertical height h is maintained by the second reflecting surface 160.
  • the image 130 of the object is reflected by the first reflecting surface 140 and is reduced in the vertical direction corresponding to the first axis (h to h ′), and the second reflecting surface 160 Is reflected by the light source and is reduced in the horizontal direction corresponding to the second axis (a to a ').
  • the first reflecting surface 140 and the second reflecting surface 160 using the diffraction grating are configured as a double, the image is reduced in both the vertical axis corresponding to the first axis and the horizontal axis corresponding to the second axis. You can get it.
  • the incident light of the first reflecting surface 140 and the diffracted light of the first reflecting surface 140 form 90 degrees
  • the diffracted light of the first reflecting surface 140 is incident light of the second reflecting surface 160.
  • the first half so that the incident light of the second reflecting surface 160 and the diffracted light of the second reflecting surface 160 form 90 degrees
  • the diffracted light of the second reflecting surface 160 becomes incident light of the imaging device 180.
  • the braid angles a and b of the slope 140 and the second reflective surface 160 are adjusted, light with the interference suppressed as much as possible enters the imaging device 180, thereby obtaining an excellent image.
  • FIG. 5 is a perspective view illustrating a digital image detector 200 according to another embodiment of the present invention
  • FIG. 6 shows that the image 130 of the object in FIG. 5 includes a first reflecting surface 240 and a second reflecting surface 260. It is a figure which illustrates the state reduced by).
  • the digital image detector 200 may include an image 130 by X-rays transmitted through an object (not shown) among X-rays emitted from the X-ray generator 110.
  • a fluorescent screen 120 that receives the input and converts the light into a light beam
  • a first reflective surface 240 that reduces the image of the light beam output from the fluorescent screen 120 to a horizontal axis by using a diffraction grating
  • a first panel The second reflecting surface 260 for reducing the image reduced by the slope 240 back to the vertical axis and the image reflected from the second reflecting surface 160 are inputted to the image pickup device to form an image and convert the image into an electrical signal. It includes a photographing device 180.
  • the first reflecting surface 240 reduces the image 130 of the object with respect to the horizontal axis corresponding to the first axis, and the second reflecting surface 260 is horizontally.
  • the image of the reduced object is vertically reduced.
  • the first reflecting surface 240 is disposed with a predetermined inclination angle at one side of the rectangular fluorescent screen 120. Like the first reflecting surface 140 described above, the first reflecting surface 240 uses a diffraction grating, and the incident light and the diffraction angle of the first reflecting surface 240 are adjusted by 90 degrees by adjusting the brazed angle of the diffraction grating. To achieve.
  • the image 130 of the object is reduced in width from a to a 'in the horizontal direction corresponding to the first axis in the process of being incident and reflected on the first reflecting surface 240.
  • the second reflecting surface 260 is positioned on a plane perpendicular to the fluorescent screen 120 with an inclination angle with respect to one side of the rectangular fluorescent screen 120.
  • the second reflecting surface 260 also uses a diffraction grating in the same manner as the first reflecting surface 240, and adjusts the brazed angle of the diffraction grating so that the incident light and the diffraction angle with respect to the second reflecting surface 260 are 90 degrees. do.
  • the image 130 of the object reduced in the horizontal direction by the first reflecting surface 240 has the height h in the vertical direction corresponding to the second axis in the process of being incident and reflected on the second reflecting surface 260. Is reduced to '.
  • FIG. 7 is a perspective view of a digital image detector 300 according to another embodiment of the present invention
  • FIG. 8 is a side view of the digital image detector 300 illustrated in FIG.
  • both the first reflection surface 340 and the second reflection surface 360 of the digital image detector 300 is a slit grating.
  • the first and second reflecting surfaces 140 and 240 and the second and second reflecting surfaces 160 and 260 of the digital image detectors 100 and 200 according to the above-described embodiment are all formed as an etchant diffraction grating having a sawtooth reflecting portion formed thereon.
  • the reflection is performed at, the first reflection surface 340 and the second reflection surface 360 according to the present embodiment are both characterized in that reflection is made at the inner surface of the slit 342.
  • the diffracted light for the image of the object reduced in the horizontal and vertical directions using the digital image detectors 100, 200, and 300 according to the above embodiments is input to the photographing apparatus 180, and the photographing apparatus 180 is provided. Converts it to a digital image and outputs it.
  • the photographing apparatus 180 may be, for example, a charge coupled device (CCD) camera or a complementary metal-oxide-semiconductor (CMOS) camera. Anything may be used as long as it can change an image into an electrical signal.
  • CCD charge coupled device
  • CMOS complementary metal-oxide-semiconductor
  • the digital image output from the photographing apparatus 180 is transmitted to a storage device 190 such as a personal computer.
  • the photographing apparatus passes through the total reflection prism (not shown) after the image of the object reduced in the horizontal and vertical directions by the first reflection surface 140, 240, 340 and the second reflection surface 160, 260, 360. It may be input to 180.
  • the first reflecting surfaces 140 and 240 and the second reflecting surfaces 160 and 260 using the Esslet diffraction grating light scattering may occur at the end portions of the sawtooth. Because it is not reflected perpendicularly to the lens, the quality of the reduced image is deteriorated. Therefore, such scattered light can be removed by using a total reflection prism reflecting only light incident vertically.
  • FIG. 9 is a flowchart illustrating an image detection method using a diffraction grating according to an embodiment of the present invention.
  • the image detection method using the diffraction grating includes the steps of receiving an X-ray transmitted through an object and converting the light into a light beam, and converting the image of the converted light beam into a first axis by using the diffraction grating. And reducing the image reduced with respect to the first axis with respect to the second axis using a diffraction grating, and converting the image reduced with respect to the second axis into an electrical signal.
  • Receiving an X-ray transmitted through an object and converting the light into visible light or the like is generally performed by the fluorescent screen 120.
  • X-rays transmitted through the object may be converted into infrared or ultraviolet rays as well as visible light.
  • the image by the converted light beam is reduced about the first axis by the first reflecting surfaces 140, 240, 340 using the diffraction grating, and about the second axis by the second reflecting surfaces 160, 260, 360. Is reduced.
  • the first axis may be either horizontal or vertical with respect to the front of the fluorescent screen 120, and the second axis may be the other of horizontal or vertical with respect to the front of the fluorescent screen 120.
  • the image 130 of the object is reduced in the horizontal direction and then in the vertical direction. Or reduced in the reverse order.
  • the image of the object reduced about the first axis (horizontal or vertical direction) and the second axis (vertical or horizontal direction) perpendicular to each other is captured by the photographing apparatus 180 implemented by a CCD camera or a CMOS camera. And converted into an electrical signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

회절격자를 이용한 디지털 이미지 검출기 및 검출방법이 개시된다. 본 발명의 일 측면에 따른 디지털 이미지 검출기는, 물체를 투과한 엑스레이를 입력받아 이를 광선으로 변환하여 출력하는 형광스크린과, 형광스크린으로부터 출력된 광선에 의한 이미지를 회절격자를 이용하여 제1축에 대해 축소하는 제1반사면과, 제1반사면에 의해 축소된 이미지를 회절격자를 이용하여 제2축에 대해 축소하는 제2반사면과, 제2반사면으로부터 반사되어 나오는 이미지를 입력받아 결상하고 이를 전기신호로 변환하는 촬영장치를 포함한다.

Description

회절격자를 이용한 디지털 이미지 검출기 및 검출방법
본 발명은 디지털 이미지 검출기 및 그 검출방법에 관한 것으로, 회절격자를 이용한 디지털 이미지 검출기 및 검출방법에 관한 것이다.
병원에서 환자의 상태를 파악하기 위하여 사용되는 종래의 엑스레이 촬영장치는, 환자의 상태가 기록된 엑스레이 필름의 현상과 보관 등에 있어서 많은 문제점을 가지고 있다. 따라서 이러한 문제점을 해결하기 위하여 점차 디지털 이미지 검출기를 탑재한 디지털 엑스레이 촬영장치가 사용되고 있다.
일반적으로 디지털 이미지 검출기는 엑스레이 발생장치로부터 방출된 엑스레이가 물체를 통과한 이후에 형광스크린으로 입력된다. 형광스크린으로 입력된 엑스레이는 가시광선으로 변환된 후 형광스크린으로부터 출력된다.
출력된 가시광선은 반사경에 반사되어 CCD 카메라로 입력된다. CCD 카메라는 가시광선을 입력 받아 그 상을 전기신호로 변화시키는 촬상소자인 CCD(전하결합소자, Charge-Coupled Device)를 가지고 있다. 따라서, CCD 카메라로 입력된 가시광선은 결상되어 전기신호로 변환된다.
이러한 디지털 이미지 검출기는 엑스레이가 입력되는 형광스크린으로부터 충분한 가시광선이 출력되지 않기 때문에 형광스크린에서 CCD 카메라까지의 길이를 최소화하여야 한다. 그러나 형광스크린과 CCD 카메라 사이의 거리를 가깝게 할수록 광로가 짧아지게 되어 CCD 카메라에서 형광스크린을 바라보는 각도 즉 화각이 커지게 된다. 화각이 커지게 되면 화각에 비례하여 광학계의 수차가 커지는 문제점이 있기 때문에 우수한 화상을 얻을 수 없게 된다.
본 발명은 상술한 문제점을 해결하기 위해 도출된 것으로, 디지털 이미지 검출기에서 광로를 길게 유지해야 하는 문제점을 해결하여 평판형으로 만들 수 있는 디지털 이미지 검출기 및 그 검출방법을 제공하고자 한다.
본 발명의 다른 목적들은 이하에 서술되는 실시예를 통하여 더욱 명확해질 것이다.
본 발명이 이루고자 하는 기술적 해결은 디지털 이미지 검출기에서 광로를 길게 유지해야 하는 문제점을 회절격자를 이용한 반사면으로 세로축과 가로축을 충분히 축소한 화상을 만들어 광학계가 요구하는 화각을 최소화하거나 직접 촬영장치에 1:1로 회절격자를 이용한 반사면으로 가로축과 세로축을 축소한 화상을 전달하여 해결할 수 있다.
본 발명의 일 측면에 따른 디지털 이미지 검출기는, 물체를 투과한 엑스레이를 입력받아 이를 광선으로 변환하여 출력하는 형광스크린과, 형광스크린으로부터 출력된 광선에 의한 이미지를 회절격자를 이용하여 제1축에 대해 축소하는 제1반사면과, 제1반사면에 의해 축소된 이미지를 회절격자를 이용하여 제2축에 대해 축소하는 제2반사면과, 제2반사면으로부터 반사되어 나오는 이미지를 입력받아 결상하고 이를 전기신호로 변환하는 촬영장치를 포함한다.
본 발명에 따른 디지털 이미지 검출기는 다음과 같은 특징들을 하나 또는 그 이상 구비할 수 있다. 예를 들면, 제1반사면은 형광스크린에서 출력된 이미지를 세로 방향에 대해 축소하고, 제2반사면은 제1반사면에서 출력된 이미지를 가로 방향에 대해 축소할 수 있다. 그리고 제1반사면은 형광스크린에서 출력된 이미지를 가로 방향에 대해 축소하고, 제2반사면은 제1반사면에서 출력된 이미지를 세로 방향에 대해 축소할 수 있다.
회절격자의 전면에는 일정한 브레이즈드각을 갖고 돌출된 반사부가 형성될 수 있다. 그리고 회절격자에는 일정한 브레이즈드각을 갖는 슬릿이 형성될 수 있다.
제2반사면으로부터 반사되어 나오는 이미지는 전반사 프리즘을 통과한 후 촬영장치에 입사할 수 있다.
본 발명의 일 측면에 따른 디지털 이미지 검출방법은, 물체를 투과한 엑스레이를 입력 받아서 광선으로 변환하는 단계와, 변환된 광선에 의한 이미지를 회절격자를 이용하여 제1축에 대해 축소하는 단계와, 제1축에 대해 축소된 이미지를 회절격자를 이용하여 제2축에 대해 축소하는 단계와, 제2축에 대해 축소된 이미지를 전기신호로 변환하는 단계를 포함한다.
본 발명에 따른 디지털 이미지 검출방법은 다음과 같은 특징들을 하나 또는 그 이상 구비할 수 있다. 예를 들면, 제1축에 대해 축소되는 단계는 이미지를 가로 방향으로 축소하고, 제2축에 대해 축소되는 단계는 이미지를 세로 방향으로 축소할 수 있다. 그리고 제1축에 대해 축소되는 단계는 이미지를 세로 방향으로 축소하고, 제2축에 대해 축소되는 단계는 이미지를 가로 방향으로 축소할 수 있다.
물체를 투과한 엑스레이는 가시광선, 적외선 또는 자외선 중 어느 하나로 변환될 수 있다.
본 발명의 디지털 이미지 검출기 및 검출방법은, 형광스크린으로부터 출력된 광선은 회절격자를 이용한 제1반사면을 거치면서 제1축으로 축소되고, 회절격자를 이용한 제2반사면을 거치면서 제2축으로 축소되어 형광스크린에서 촬영장치까지의 길이와 관계없이 화각을 최소화화여 광학계의 수차를 줄일 수 있다.
또한, 기존의 디지털 이미지 검출기는 광로를 확보하기 위하여 필요한 내부공간이 상당히 필요하였으나, 본 발명에 따른 디지털 이미지 검출기 및 검출방법은 회절격자를 이용한 반사면으로 이러한 광로를 확보할 필요가 없기 때문에 내부공간을 최소화하여 평판형으로 구성하여 장치의 부피를 최소화할 수 있다.
도 1은 본 발명의 일 실시예에 따른 디지털 이미지 검출기에 대한 사시도이다.
도 2는 도 1에서 제1반사면에 대한 측면도이다.
도 3은 도 1에서 제2반사면에 대한 측면도이다.
도 4는 도 1에 따른 디지털 이미지 검출기에서, 형광스크린에서 나온 이미지가 제1축 및 제2축에 대해 축소되는 과정을 예시한 도면이다.
도 5는 본 발명의 다른 실시예에 따른 디지털 이미지 검출기에 대한 사시도이다.
도 6은 도 5에 따른 디지털 이미지 검출기에서, 형광스크린에서 나온 이미지가 제1축 및 제2축에 대해 축소되는 과정을 예시한 도면이다.
도 7은 본 발명의 또 다른 실시예에 따른 디지털 이미지 검출기에 대한 사시도이다.
도 8은 도 7에서 제1반사면에 대한 측면도이다.
도 9는 본 발명의 일 실시예에 따른 이미지 검출방법에 대한 순서도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
이하, 첨부한 도면들을 참조하여 본 발명에 따른 실시예들을 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어 도면 부호에 상관없이 동일하거나 대응하는 구성 요소는 동일한 참조번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 디지털 이미지 검출기(100)에 대한 사시도이고, 도 2는 도 1에서 제1반사면(140)에 대한 측면도이며, 도 3은 도 1에서 제2반사면(160)에 대한 측면도이다. 도 2 내지 도 3에서 원의 내부는 회절격자를 확대한 도면에 해당한다. 그리고 도 4는 도 1에 따른 디지털 이미지 검출기(100)에서, 형광스크린(120)에서 나온 이미지가 상호 수직인 제1축(세로 방향) 및 제2축(가로 방향)에 대해 축소되는 과정을 예시한 도면이다.
도 1 내지 도 4를 참고하면, 본 실시예에 따른 디지털 이미지 검출기(100)는, 엑스선 발생장치(110)에서 방사되는 엑스선 중에서 물체(도시하지 않음)를 투과한 엑스선에 의한 이미지(130)를 입력 받아 이를 광선으로 변환하여 출력하는 형광스크린(120)과, 형광스크린(120)에서 출력된 광선에 의한 이미지를 회절격자를 이용하여 세로축으로 축소하는 제1반사면(140)과, 제1반사면(140)에 의해 축소된 이미지를 가로축으로 다시 축소하는 제2반사면(160)과, 제2반사면(160)에서 반사되어 나오는 이미지를 촬상소자에 입력 받아 결상하고 이를 전기적 신호로 변환시키는 촬영장치(180)를 포함한다.
본 발명에 따른 디지털 이미지 검출기(100)에 있어서, 형광스크린(120)에서 출력된 물체의 이미지(130)는 회절격자를 이용한 제1반사면(140)을 거치면서 제1축에 해당하는 세로축으로 축소된다. 그리고 세로축으로 축소된 이미지는 회절격자를 이용한 제2반사면(160)을 거치면서 제2축에 해당하는 가로축으로 축소된다. 따라서 본 실시예에 따른 디지털 이미지 검출기(100)는 형광스크린(120)에서 촬영장치(180)까지의 길이와 상관없이 화각을 최소화 하여 광학계의 수차를 줄일 수 있고, 회절격자를 이용한 반사면으로 광로 확보를 위한 내부 공간을 최소화 하여 평판형으로 구성할 수 있는 장점이 있다.
형광스크린(120)은 물체(도시하지 않음)를 투과한 엑스선의 이미지(130)를 입력 받아서 이에 대응하는 가시광선을 출력한다. 형광스크린(120)의 내부에는 형광입자(도시하지 않음)가 미세하게 분산되어 있으며, 이와 같은 형광입자는 엑스선에 의해 여기되어 가시광선을 생성하게 된다. 그리고 형광스크린(120)은 가시광선 뿐만 아니라 자외선 또는 적외선을 출력할 수도 있으며, 이때 촬영장치(180)는 자외선 또는 적외선을 전기 신호로 변환할 수 있는 장치로 구성할 수 있다.
제1반사면(140)은, 수직으로 위치하는 형광스크린(120)에 대해 일정한 경사각 m을 가지고 배치되어 있다. 그리고 제1반사면(140)과 형광스크린(120)은 모두 직사각 형상을 갖는데, 제1반사면(140)의 윗변과 형광스크린(120)의 윗변은 상호 접하고 있다. 제1반사면(140)에는 물체를 투과한 이미지(130)가 그대로 입사된다.
제1반사면(140)은 회절격자(grating)에 의해 형성된다. 일반적으로 회절격자는 유리 또는 플라스틱판 위에 다이아몬드 비트로 1mm당 수십~수백 개 정도의 등 간격 홈을 형성한 광학소자이다. 이와 같은 회절격자는 주로 빛의 회절과 간섭에 따라 빛의 파장을 선택하는데 사용된다. 그리고 이와 같은 회절격자 중에서 에슐레트 회절격자(Echelette grating)는 도 2에서와 같이 톱니 모양의 반사부(142)가 일정한 간격으로 다수 개가 형성되어 있는 것으로, 브레이즈드각(brazed angle)(a)을 이용하여 입사광과 회절광을 조절할 수 있다. 도 2 내지 도 3을 참고하면, 제1반사면(140)의 브레이즈드각(a)은 입사광과 회절광이 90도를 이루도록 형성되어 있다.
디지털 이미지 검출기(100)는 엑스레이 발생장치(110)로부터 방출된 엑스선이 물체를 통과한 이후에 형광스크린(120)에 입력된다. 형광스크린(120)에 입력된 엑스선은 가시광선으로 변환된 후 형광스크린(120)으로부터 출력된다.
형광스크린(120)으로부터 출력되는 가시광선은 주로 단색의 형태를 가지고 있다. 따라서 회절격자를 이용하면 빛의 스펙트럼을 분산시키는 효과가 아니라, 브레이즈드각(a)을 이용하여 반사시키는 효과를 얻는다. 브레이즈드각(a)의 크기에 따라서 세로축 또는 가로축과 같이, 하나의 축을 기준으로 이미지를 축소하는 효과를 얻을 수 있게 되는 것이다.
도 2를 참고하면, 제1반사면(140)에 입사한 입사광은 회절격자의 반사부(142)에 의해서 수직(형광스크린(120)과 평행하게) 하방으로 반사되어 제2반사면(160)으로 입사하게 된다. 이 과정에서, 물체의 이미지(130)는 가로 방향에 대해서는 변하지 않지만 세로 방향에 대해서는 그 높이가 h에서 h'로 축소된다.
제2반사면(160)도 에슐레트 회절격자에 의해 형성된다. 제2반사면(160)에 형성되어 있는 반사부(162)도 일정한 브레이즈드각(b)을 갖는다. 도 2 내지 도 3을 참고하면, 제2반사면(160)은 제1반사면(140)에 대해 90도의 각도를 가지고 엇갈리게 배치되어 있으며, 일정한 경사각 n을 갖는다.
제1반사면(140)에서 나온 회절광은 제2반사면(160)에 입사하여 반사부(162)에서 반사되어 입사광에 대해 90도를 이루는 회절광으로 되어 촬영장치(180)로 입사하게 된다. 형광스크린(120)에 입사하는 빛과 촬영장치(180)에 입사하는 빛은 상호 직교한다. 그리고 제2반사면(160)에 의해 물체의 이미지(130)는 세로 높이(h )는 그대로 유지된 상태에서 가로 폭이 a에서 a'로 축소된다.
따라서 도 4를 참고하면, 물체의 이미지(130)는 제1반사면(140)에 의해 반사되면서 제1축에 해당하는 세로 방향으로 축소되고(h에서 h'), 제2반사면(160)에 의해 반사되면서 제2축에 해당하는 가로 방향으로 축소된다(a에서 a').
이와 같이, 회절격자를 이용한 제1반사면(140) 및 제2반사면(160)을 이중으로 구성하면, 제1축에 해당하는 세로축과 제2축에 해당하는 가로축에 대해 모두 축소된 이미지를 얻을 수 있다. 이때, 제1반사면(140)의 입사광과 제1반사면(140)의 회절광이 90도를 이루며, 제1반사면(140)의 회절광이 제2반사면(160)의 입사광으로, 제2 반사면(160)의 입사광과 제2반사면(160)의 회절광이 90도를 이루고, 제2반사면(160)의 회절광이 촬영장치(180)의 입사광이 되도록, 제1반사면(140) 및 제2반사면(160)의 브레이즈드각(a, b)을 조정하면, 촬영장치(180)에는 간섭이 최대한 억제된 빛이 입사하게 되어 우수한 화상을 얻을 수 있게 된다.
도 5는 본 발명의 다른 실시예에 따른 디지털 이미지 검출기(200)를 예시하는 사시도이고, 도 6은 도 5에서 물체의 이미지(130)가 제1반사면(240) 및 제2반사면(260)에 의해 축소된 상태를 예시하는 도면이다.
도 5 내지 도 6을 참고하면, 본 실시예에 따른 디지털 이미지 검출기(200)는, 엑스선 발생장치(110)에서 방사되는 엑스선 중에서 물체(도시하지 않음)를 투과한 엑스선에 의한 이미지(130)를 입력 받아 이를 광선으로 변환하여 출력하는 형광스크린(120)과, 형광스크린(120)에서 출력된 광선에 의한 이미지를 회절격자를 이용하여 가로축으로 축소하는 제1반사면(240)과, 제1반사면(240)에 의해 축소된 이미지를 세로축으로 다시 축소하는 제2반사면(260)과, 제2반사면(160)에서 반사되어 나오는 이미지를 촬상소자에 입력 받아 결상하고 이를 전기적 신호로 변환시키는 촬영장치(180)를 포함한다.
본 실시예에 따른 디지털 이미지 검출기(200)는, 제1반사면(240)이 물체의 이미지(130)를 제1축에 해당하는 가로축에 대해 축소하고, 제2반사면(260)이 가로로 축소된 물체의 이미지를 세로로 축소하는 것을 특징으로 한다.
제1반사면(240)은 사각 형상의 형광스크린(120)의 일 측변에서 일정한 경사각을 가지고 배치되어 있다. 제1반사면(240)은 위에서 설명한 제1반사면(140)과 마찬가지로 회절격자를 이용하는데, 회절격자의 브레이즈드각을 조절하여 제1반사면(240)에 대한 입사광과 회절각이 90도를 이루도록 한다.
물체의 이미지(130)는 제1반사면(240)에 입사하여 반사되는 과정에서 제1축에 해당하는 가로 방향으로 그 폭이 a에서 a'로 축소된다.
제2반사면(260)은 사각 형상의 형광스크린(120)의 일 측에 대해 경사각을 가지고 형광스크린(120)과 수직인 평면 상에 위치하고 있다. 제2반사면(260)도 제1반사면(240)과 동일하게 회절격자를 이용하는데, 회절격자의 브레이즈드각을 조절하여 제2반사면(260)에 대한 입사광과 회절각이 90도를 이루도록 한다.
제1반사면(240)에 의해 가로 방향으로 축소된 물체의 이미지(130)는 제2반사면(260)에 입사하여 반사되는 과정에서 제2축에 해당하는 세로 방향으로 그 높이가 h에서 h'로 축소된다.
도 7은 본 발명의 또 다른 실시예에 따른 디지털 이미지 검출기(300)에 대한 사시도이고, 도 8은 도 7에 예시된 디지털 이미지 검출기(300)의 측면에 대한 도면이다.
도 7 내지 도 8에 예시된 디지털 이미지 검출기(300)의 제1반사면(340) 및 제2반사면(360)은 모두 슬릿 회절격자(slit grating)인 것을 특징으로 한다. 위에서 설명한 실시예에 따른 디지털 이미지 검출기(100, 200)의 제1반사면(140, 240) 및 제2반사면(160, 260)은 모두 톱니 형상의 반사부가 형성된 에슐레트 회절격자로서 그 전면에서 반사가 이루어지지만, 본 실시예에 따른 제1반사면(340) 및 제2반사면(360)은 모두 슬릿(342)의 내부면에서 반사가 이루어진다는 점에 특징이 있다.
이상과 같은 실시예들에 따른 디지털 이미지 검출기(100, 200, 300)를 이용하여 가로 및 세로 방향으로 축소한 물체의 이미지에 대한 회절광은 촬영장치(180)에 입력되고, 촬영장치(180)는 이를 디지털 이미지로 변환하여 출력한다. 촬영장치(180)는 예를 들어 CCD(Charge Coupled Device) 카메라 또는 CMOS(Complementary metal-oxide-semiconductor) 카메라일 수 있으며, 영상을 전기 신호로 변경할 수 있는 것이라면 어떠한 것도 가능함은 물론이다.
촬영장치(180)에서 출력된 디지털 이미지는 퍼스널 컴퓨터와 같은 저장장치(190)로 전송된다.
그리고 제1반사면(140, 240, 340) 및 제2반사면(160, 260 ,360)에 의해 가로 및 세로 방향으로 축소된 물체의 이미지는 전반사 프리즘(도시하지 않음)을 통과한 후 촬영장치(180)에 입력될 수 있다. 에슐레트 회절격자를 이용하는 제1반사면(140, 240) 및 제2반사면(160, 260)의 경우에는 톱니 모양의 끝부분에서 빛의 산란이 발생할 수 있는데, 이와 같은 산란광은 입사 방향에 대해 수직으로 반사되지 않기 때문에 축소된 이미지의 품질을 저하하는 요인이 된다. 따라서 수직으로 입사된 빛만을 반사하는 전반사 프리즘을 이용하여 이와 같은 산란광을 제거할 수 있게 된다.
도 9는 본 발명의 일 실시예에 따른 회절격자를 이용한 이미지 검출방법에 대한 순서도이다.
도 9를 참고하면, 본 실시예에 따른 회절격자를 이용한 이미지 검출방법은, 물체를 투과한 엑스레이를 입력 받아서 광선으로 변환하는 단계와, 변환된 광선에 의한 이미지를 회절격자를 이용하여 제1축에 대해 축소하는 단계와, 제1축에 대해 축소된 이미지를 회절격자를 이용하여 제2축에 대해 축소하는 단계와, 제2축에 대해 축소된 이미지를 전기신호로 변환하는 단계를 포함한다.
물체를 투과한 엑스레이를 입력 받아서 가시광선 등의 광선으로 변환하는 것은 일반적으로 형광스크린(120)에 의해 이루어진다. 그리고 물체를 투과한 엑스레이는 가시광선 뿐만 아니라 적외선 또는 자외선으로 변환될 수 있다.
변환된 광선에 의한 이미지는 회절격자를 이용한 제1반사면(140, 240, 340)에 의해 제1축에 대해 축소되고, 제2반사면(160, 260, 360)에 의해 제2축에 대해 축소된다. 제1축은 형광스크린(120)의 정면에 대해 가로 또는 세로 방향 중 어느 하나이고, 제2축은 형광스크린(120)의 정면에 대해 가로 또는 세로 방향 중 나머지 다른 하나일 수 있다. 위에서 설명한 바와 같이, 제1반사면(140, 240, 340)과 제2반사면(160, 260, 360)의 배치 방향에 따라서 물체의 이미지(130)가 가로 방향으로 축소된 후 세로 방향으로 축소되거나 또는 그 반대의 순서로 축소될 수 있다.
이와 같이, 상호 수직하는 제1축(가로 또는 세로 방향) 및 제2축(세로 또는 가로 방향)에 대해 축소된 물체의 이미지는 CCD 카메라 또는 CMOS 카메라에 의해 구현되는 촬영장치(180)에 의해 촬상되어 전기신호로 변환된다.
상기에서는 본 발명의 일 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 물체를 투과한 엑스레이를 입력받아 이를 광선으로 변환하여 출력하는 형광스크린;
    상기 형광스크린으로부터 출력된 광선에 의한 이미지를 회절격자를 이용하여 제1축에 대해 축소하는 제1반사면;
    상기 제1반사면에 의해 축소된 이미지를 회절격자를 이용하여 제2축에 대해 축소하는 제2반사면; 및
    상기 제2반사면으로부터 반사되어 나오는 이미지를 입력받아 결상하고 이를 전기신호로 변환하는 촬영장치를 포함하는 회절격자를 이용한 이미지 검출기.
  2. 제1항에 있어서,
    상기 제1반사면은 상기 형광스크린에서 출력된 이미지를 세로 방향에 대해 축소하고, 상기 제2반사면은 상기 제1반사면에서 출력된 이미지를 가로 방향에 대해 축소하는 것을 특징으로 하는 회절격자를 이용한 이미지 검출기.
  3. 제1항에 있어서,
    상기 제1반사면은 상기 형광스크린에서 출력된 이미지를 가로 방향에 대해 축소하고, 상기 제2반사면은 상기 제1반사면에서 출력된 이미지를 세로 방향에 대해 축소하는 것을 특징으로 하는 회절격자를 이용한 이미지 검출기.
  4. 제1항에 있어서,
    상기 회절격자의 전면에는, 일정한 브레이즈드각을 갖는 반사부가 형성되어 있는 것을 특징으로 하는 회절격자를 이용한 이미지 검출기.
  5. 제1항에 있어서,
    상기 회절격자에는, 일정한 브레이즈드각을 갖는 슬릿이 형성되어 있는 것을 특징으로 하는 회절격자를 이용한 이미지 검출기.
  6. 제1항에 있어서,
    상기 제2반사면으로부터 반사되어 나오는 이미지는 전반사 프리즘을 통과하는 것을 특징으로 하는 회절격자를 이용한 이미지 검출기.
  7. 물체를 투과한 엑스레이를 입력 받아서 광선으로 변환하는 단계;
    변환된 광선에 의한 이미지를 회절격자를 이용하여 제1축에 대해 축소하는 단계;
    제1축에 대해 축소된 이미지를 회절격자를 이용하여 제2축에 대해 축소하는 단계;
    제2축에 대해 축소된 이미지를 전기신호로 변환하는 단계를 포함하는 회절격자를 이용한 이미지 검출방법.
  8. 제7항에 있어서,
    상기 제1축에 대해 축소되는 단계는 상기 이미지를 가로 방향으로 축소하고,
    상기 제2축에 대해 축소되는 단계는 상기 이미지를 세로 방향으로 축소하는 것을 특징으로 하는 회절격자를 이용한 이미지 검출방법.
  9. 제7항에 있어서,
    상기 제1축에 대해 축소되는 단계는 상기 이미지를 세로 방향으로 축소하고,
    상기 제2축에 대해 축소되는 단계는 상기 이미지를 가로 방향으로 축소하는 것을 특징으로 하는 회절격자를 이용한 이미지 검출방법.
  10. 제7항에 있어서,
    물체를 투과한 엑스레이는 가시광선, 적외선 또는 자외선 중 어느 하나로 변환되는 것을 특징으로 하는 회절격자를 이용한 이미지 검출방법.
PCT/KR2011/003914 2011-05-26 2011-05-27 회절격자를 이용한 디지털 이미지 검출기 및 검출방법 WO2012161365A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/122,142 US9000383B2 (en) 2011-05-26 2011-05-27 Digital image detector and digital image detecting method using gratings
EP11866130.5A EP2716220B1 (en) 2011-05-26 2011-05-27 Digital image detector using a diffraction grating and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0050267 2011-05-26
KR1020110050267A KR101202777B1 (ko) 2011-05-26 2011-05-26 회절격자를 이용한 디지털 이미지 검출기 및 검출방법

Publications (1)

Publication Number Publication Date
WO2012161365A1 true WO2012161365A1 (ko) 2012-11-29

Family

ID=47217422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003914 WO2012161365A1 (ko) 2011-05-26 2011-05-27 회절격자를 이용한 디지털 이미지 검출기 및 검출방법

Country Status (4)

Country Link
US (1) US9000383B2 (ko)
EP (1) EP2716220B1 (ko)
KR (1) KR101202777B1 (ko)
WO (1) WO2012161365A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919037A1 (fr) * 2014-03-13 2015-09-16 Université de Technologie de Troyes Procédé d'optimisation de la collection de photons dans des cristaux scintillateurs, cristal et utilisations associés

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727722A (ja) * 1993-07-13 1995-01-31 Fujitsu Ltd X線断層撮影装置及び方法
JP2007125102A (ja) * 2005-11-01 2007-05-24 Toshiba Corp 医用画像表示装置及び医用画像診断装置
JP2008224661A (ja) * 2007-02-14 2008-09-25 Konica Minolta Medical & Graphic Inc X線撮像素子、装置及び方法
JP2011007775A (ja) * 2009-05-22 2011-01-13 Canon Inc 撮像装置及び撮像方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910688Y2 (ja) * 1977-09-14 1984-04-03 富士通株式会社 電子検出器
US4413353A (en) * 1981-09-03 1983-11-01 Albert Macovski X-Ray encoding system using an optical grating
US5289012A (en) * 1992-04-30 1994-02-22 Alvarez Robert E X-ray image encoding by spatial modulation of a storage phosphor screen
US7010092B2 (en) * 2003-08-08 2006-03-07 Imaging Dynamics Company Ltd. Dual energy imaging using optically coupled digital radiography system
US7947946B2 (en) * 2005-03-30 2011-05-24 Koninklijke Philps Electronics N.V. Optical system for mapping signal light onto a detector
US7732788B2 (en) * 2007-10-23 2010-06-08 Hamamatsu Photonics K.K. Radiation image converting panel, scintillator panel and radiation image sensor
US7910891B2 (en) * 2008-09-24 2011-03-22 James Edward Cannon Method and apparatus for photographing “small” x-ray scintillation images at the same(“full”) camera resolution normally available for “large” scintillation images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727722A (ja) * 1993-07-13 1995-01-31 Fujitsu Ltd X線断層撮影装置及び方法
JP2007125102A (ja) * 2005-11-01 2007-05-24 Toshiba Corp 医用画像表示装置及び医用画像診断装置
JP2008224661A (ja) * 2007-02-14 2008-09-25 Konica Minolta Medical & Graphic Inc X線撮像素子、装置及び方法
JP2011007775A (ja) * 2009-05-22 2011-01-13 Canon Inc 撮像装置及び撮像方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919037A1 (fr) * 2014-03-13 2015-09-16 Université de Technologie de Troyes Procédé d'optimisation de la collection de photons dans des cristaux scintillateurs, cristal et utilisations associés
WO2015136165A1 (fr) * 2014-03-13 2015-09-17 Université de Technologie de Troyes Procédé d'optimisation de la collection de photons dans des cristaux scintillateurs, cristal et utilisations associés

Also Published As

Publication number Publication date
KR101202777B1 (ko) 2012-11-19
US9000383B2 (en) 2015-04-07
EP2716220B1 (en) 2017-08-23
US20140151568A1 (en) 2014-06-05
EP2716220A1 (en) 2014-04-09
EP2716220A4 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
US20210145284A1 (en) Method for surface scanning in medical imaging and related apparatus
US20080297612A1 (en) Image pickup device
US6038286A (en) Optical arrangement and method for electronically detecting an X-ray image
CN203616268U (zh) 放射线图像取得装置
WO2013137637A1 (en) Imaging apparatus and image sensor thereof
JP2007155653A (ja) 放射線観察装置
WO2013051744A1 (ko) 단일렌즈로 전방위를 촬영하는 동기식 카메라 렌즈모듈
KR100368808B1 (ko) 디지털 엑스선 촬영 장치
KR100942616B1 (ko) X-레이 컨버터
KR100353591B1 (ko) 다수의 촬상소자를 이용한 고해상도 디지털 방사선 촬영장치
JP2014056067A5 (ja) 撮像素子及びそれを用いた撮像装置
WO2012161365A1 (ko) 회절격자를 이용한 디지털 이미지 검출기 및 검출방법
WO2021187775A1 (ko) 이동 통신 단말기
JPH03137599A (ja) 放射性蛍光スクリーン
GB2299726A (en) Diffusers for film scanners and the like
WO2016104868A1 (ko) 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법
JP3703856B2 (ja) 高解像度リアルタイムx線画像装置
JP2004295890A (ja) 光ファイバフェースプレートを用いるスキャナ透明媒体アダプタ
KR101528778B1 (ko) 디지털 이미지 검출기에 사용되는 반사판
JPH04309834A (ja) レンズ検査装置及びそれを用いたレンズの製造方法
WO2024107011A1 (ko) 카메라 모듈 및 이를 갖는 전자 장치
WO2023191429A1 (ko) 카메라 교환렌즈 제어장치 및 그를 포함하는 카메라
CA2210853C (en) Optical arrangement and process for transmitting and converting primary x-ray images
RU2008131815A (ru) Рентгенооптический эндоскоп
US20100316189A1 (en) Object scanning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011866130

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14122142

Country of ref document: US