WO2012161264A1 - 単環芳香族炭化水素の製造方法 - Google Patents
単環芳香族炭化水素の製造方法 Download PDFInfo
- Publication number
- WO2012161264A1 WO2012161264A1 PCT/JP2012/063351 JP2012063351W WO2012161264A1 WO 2012161264 A1 WO2012161264 A1 WO 2012161264A1 JP 2012063351 W JP2012063351 W JP 2012063351W WO 2012161264 A1 WO2012161264 A1 WO 2012161264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- monocyclic aromatic
- cracking
- reaction step
- toluene
- aromatic hydrocarbons
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
- C07C4/02—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C6/00—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
- C07C6/08—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
- C07C6/12—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
- C07C6/126—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of more than one hydrocarbon
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/06—Catalytic reforming characterised by the catalyst used
- C10G35/065—Catalytic reforming characterised by the catalyst used containing crystalline zeolitic molecular sieves, other than aluminosilicates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/06—Catalytic reforming characterised by the catalyst used
- C10G35/095—Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/10—Catalytic reforming with moving catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/44—Hydrogenation of the aromatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/888—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/405—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1044—Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/301—Boiling range
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4081—Recycling aspects
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/30—Aromatics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing monocyclic aromatic hydrocarbons.
- LCO Light cycle oil
- FCC fluid catalytic cracking
- the present invention has been made in view of the above circumstances, and an object of the present invention is to produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms in a high yield from a raw material oil containing a polycyclic aromatic hydrocarbon.
- a further object is to provide a method for producing monocyclic aromatic hydrocarbons capable of producing benzene and xylene in a relatively high yield with respect to toluene.
- the method for producing monocyclic aromatic hydrocarbons according to the first aspect of the present invention comprises a C 6 to C 6 feedstock having a 10 vol% distillation temperature of 140 ° C. or higher and a 90 vol% distillation temperature of 380 ° C. or lower.
- a method for producing monocyclic aromatic hydrocarbons for producing monocyclic aromatic hydrocarbons of No. 8, comprising: The raw material oil is contacted with a catalyst for producing monocyclic aromatic hydrocarbons containing crystalline aluminosilicate and reacted to produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy hydrocarbon having 9 or more carbon atoms.
- the heavy fraction having 9 or more carbon atoms separated from the product produced in the cracking and reforming reaction step is used. It is preferable that the method for producing a monocyclic aromatic hydrocarbon according to the first aspect includes a second returning step for returning to the cracking and reforming reaction step.
- the method for producing monocyclic aromatic hydrocarbons according to the third aspect of the present invention is a method for producing a heavy fraction having 9 or more carbon atoms separated from a product produced in the cracking and reforming reaction step.
- the first or second aspect of the present invention has a hydrogenation reaction step to be converted and a recycling step for returning the hydrogenation reaction product of the heavy fraction obtained by the hydrogenation reaction step to the cracking reforming reaction step A method for producing the monocyclic aromatic hydrocarbon is preferred.
- the first return step supplies the toluene in the middle of the hydrogenation reactor used in the hydrogenation reaction step.
- the method for producing the monocyclic aromatic hydrocarbon according to the third aspect is preferable.
- the monocyclic aromatic hydrocarbon production method according to the fifth aspect of the present invention is produced in the cracking and reforming reaction step between the cracking and reforming reaction step and the hydrogenation reaction step.
- a method for producing the monocyclic aromatic hydrocarbon according to the third or fourth aspect comprising a dilution step of adding a diluent comprising a hydrocarbon to a heavy fraction having 9 or more carbon atoms separated from a product. It is preferable.
- the method for producing a monocyclic aromatic hydrocarbon according to the sixth aspect of the present invention relates to the fifth aspect, wherein at least a part of toluene obtained in the purification and recovery step is used as the diluent.
- a method for producing the monocyclic aromatic hydrocarbon is preferred.
- the method for producing a monocyclic aromatic hydrocarbon according to the seventh aspect of the present invention is the method of separating and removing the diluent from the hydrogenation reaction product obtained in the hydrogenation reaction step after the hydrogenation reaction step.
- the method for producing the monocyclic aromatic hydrocarbon according to the fifth aspect preferably includes a diluent recovery step that is recovered and reused as a diluent in the dilution step.
- the method for producing a monocyclic aromatic hydrocarbon of the present invention it is possible to produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms in a high yield from a raw material oil containing a polycyclic aromatic hydrocarbon. Moreover, since it has the 1st return process which returns at least one part of toluene obtained at the refinement
- purification recovery process to a cracking reforming reaction process by making reaction, such as disproportionation, with respect to toluene at a cracking reforming reaction process Benzene and xylene can be obtained from toluene.
- benzene and xylene can be selectively produced so that the yield of benzene and xylene is higher than that of toluene, particularly when the demand for benzene and xylene is relatively higher than that of toluene.
- FIG. 1 is a diagram for explaining a first embodiment of a method for producing monocyclic aromatic hydrocarbons according to the present invention.
- the method for producing monocyclic aromatic hydrocarbons according to this embodiment uses carbon from raw material oil. This is a method for producing a monocyclic aromatic hydrocarbon of formula 6-8.
- the method for producing monocyclic aromatic hydrocarbons of the present embodiment preferably includes the steps shown in FIG. (1) Production containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by contacting and reacting the feedstock with a catalyst for producing monocyclic aromatic hydrocarbons Decomposition and reforming reaction step to obtain products. (2) A separation step of separating the product produced in the cracking and reforming reaction step into a plurality of fractions. (3) A purification and recovery step for purifying and recovering the monocyclic aromatic hydrocarbons separated in the separation step. (4) The 1st return process which returns at least one part of toluene obtained at the refinement
- the feedstock oil is brought into contact with the catalyst for producing monocyclic aromatic hydrocarbons
- the saturated hydrocarbon contained in the feedstock oil is used as the hydrogen donor source
- the polycyclic aromatic is obtained by hydrogen transfer reaction from the saturated hydrocarbon.
- Group hydrocarbons are partially hydrogenated, ring-opened and converted to monocyclic aromatic hydrocarbons. It can also be converted to monocyclic aromatic hydrocarbons by cyclization and dehydrogenation of saturated hydrocarbons obtained in the feedstock or in the separation process. Furthermore, it is possible to obtain monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms by decomposing monocyclic aromatic hydrocarbons having 9 or more carbon atoms.
- toluene that has passed through the first return step is sent to a conversion step to benzene, xylene, etc., which is different from the cracking and reforming reaction step, and the conversion product is circulated to the purification and recovery step so that a single ring It is also possible to increase the yield of benzene and xylene among aromatic hydrocarbons.
- This product contains hydrogen, methane, ethane, ethylene, LPG (propane, propylene, butane, butene, etc.), etc., in addition to monocyclic aromatic hydrocarbons and heavy fractions.
- the heavy fraction contains a large amount of bicyclic aromatic hydrocarbons such as naphthalene, methylnaphthalene, and dimethylnaphthalene, and also contains tricyclic or higher aromatic hydrocarbons such as anthracene depending on the feedstock. Yes.
- these two-ring aromatic hydrocarbons and three or more ring aromatic hydrocarbons are collectively referred to as polycyclic aromatic hydrocarbons.
- the feedstock oil used in the present embodiment is an oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower. With an oil having a 10% by volume distillation temperature of less than 140 ° C., a monocyclic aromatic hydrocarbon is produced from a light oil, which does not meet the gist of the present embodiment. In addition, when oil having a 90% by volume distillation temperature exceeding 380 ° C. is used, the yield of monocyclic aromatic hydrocarbons is lowered and coke deposition on the catalyst for producing monocyclic aromatic hydrocarbons The amount tends to increase and cause a sharp decrease in catalyst activity.
- the 10 vol% distillation temperature of the feedstock oil is preferably 150 ° C or higher, and the 90 vol% distillation temperature of the feedstock oil is preferably 360 ° C or lower.
- the 10 vol% distillation temperature and 90 vol% distillation temperature mentioned here mean values measured in accordance with JIS K2254 “Petroleum products-distillation test method”.
- feedstocks having a 10% by volume distillation temperature of 140 ° C. or more and a 90% by volume distillation temperature of 380 ° C. or less include LCO, LCO hydrorefined oil, coal liquefied oil, heavy oil hydrocracking refining Examples thereof include oil, straight-run kerosene, straight-run light oil, coker kerosene, coker light oil, and oil sand hydrocracked refined oil.
- Polycyclic aromatic hydrocarbons have low reactivity and are difficult to convert to monocyclic aromatic hydrocarbons in the cracking and reforming reaction step of this embodiment.
- it when hydrogenated in the hydrogenation reaction step in the second embodiment to be described later, it is converted into naphthenobenzenes and recycled to the cracking and reforming reaction step, thereby being monocyclic aromatic hydrocarbons. Can be converted. Therefore, it does not specifically limit regarding containing many polycyclic aromatic hydrocarbons in raw material oil.
- aromatic hydrocarbons having 3 or more rings consume a large amount of hydrogen in the hydrogenation reaction step, and even in the hydrogenation reaction product, the reactivity in the cracking and reforming reaction step is low. Since it is low, it is not preferable to contain a lot. Therefore, the aromatic hydrocarbon of 3 or more rings in the feed oil is preferably 25% by volume or less, and more preferably 15% by volume or less.
- the distillation temperature is 330 ° C. or lower.
- the polycyclic aromatic hydrocarbon referred to here is measured according to JPI-5S-49 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method”, or FID gas chromatograph method or two-dimensional gas chromatograph. It means the total value of the bicyclic aromatic hydrocarbon content (bicyclic aromatic content) and the tricyclic or higher aromatic hydrocarbon content (tricyclic or higher aromatic content) analyzed by the tograph method.
- reaction format examples of the reaction mode when the raw material oil is brought into contact with and reacted with the catalyst for producing a monocyclic aromatic hydrocarbon include a fixed bed, a moving bed, and a fluidized bed.
- a fluidized bed that can continuously remove the coke component adhering to the catalyst and can stably perform the reaction is preferable.
- a continuous regenerative fluidized bed in which the catalyst circulates between the reactor and the regenerator and the reaction-regeneration can be continuously repeated is particularly preferable.
- mold normally as a fluidized bed
- the feedstock oil in contact with the catalyst for producing monocyclic aromatic hydrocarbons is preferably in a gas phase. Moreover, you may dilute a raw material with gas as needed.
- the catalyst for monocyclic aromatic hydrocarbon production contains crystalline aluminosilicate.
- the crystalline aluminosilicate is preferably a medium pore zeolite and / or a large pore zeolite because the yield of monocyclic aromatic hydrocarbons can be further increased.
- the medium pore zeolite is a zeolite having a 10-membered ring skeleton structure. Examples of the medium pore zeolite include AEL type, EUO type, FER type, HEU type, MEL type, MFI type, NES type, and TON type. And zeolite having a WEI type crystal structure. Among these, the MFI type is preferable because the yield of monocyclic aromatic hydrocarbons can be further increased.
- the large pore zeolite is a zeolite having a 12-membered ring skeleton structure.
- Examples of the large pore zeolite include AFI type, ATO type, BEA type, CON type, FAU type, GME type, LTL type, and MOR type. , Zeolites of MTW type and OFF type crystal structures.
- BEA type, FAU type, and MOR type are preferable from the viewpoint of industrial use, and since the yield of monocyclic aromatic hydrocarbons can be further increased, BEA type and MOR type are more preferable.
- the crystalline aluminosilicate may contain, in addition to the medium pore zeolite and the large pore zeolite, a small pore zeolite having a skeleton structure having a 10-membered ring or less, and a very large pore zeolite having a skeleton structure having a 14-membered ring or more.
- examples of the small pore zeolite include zeolites having crystal structures of ANA type, CHA type, ERI type, GIS type, KFI type, LTA type, NAT type, PAU type, and YUG type.
- Examples of the ultra-large pore zeolite include zeolites having CLO type and VPI type crystal structures.
- the content of the crystalline aluminosilicate in the monocyclic aromatic hydrocarbon production catalyst is 100% by mass based on the entire monocyclic aromatic hydrocarbon production catalyst. Is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, and particularly preferably 90 to 100% by mass. If the content of the crystalline aluminosilicate is 60% by mass or more, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased.
- the content of crystalline aluminosilicate in the monocyclic aromatic hydrocarbon production catalyst is 100% by mass of the total monocyclic aromatic hydrocarbon production catalyst. Is preferably 20 to 60% by mass, more preferably 30 to 60% by mass, and particularly preferably 35 to 60% by mass.
- the content of the crystalline aluminosilicate is 20% by mass or more, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased.
- the content of the crystalline aluminosilicate exceeds 60% by mass, the content of the binder that can be blended with the catalyst is reduced, which may be unsuitable for fluidized beds.
- the catalyst for producing monocyclic aromatic hydrocarbons can contain gallium and / or zinc, if necessary. If gallium and / or zinc is contained, the production rate of monocyclic aromatic hydrocarbons can be increased.
- the gallium-containing form in the monocyclic aromatic hydrocarbon production catalyst is one in which gallium is incorporated into the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate), and gallium is supported on the crystalline aluminosilicate. And those containing both (gallium-supporting crystalline aluminosilicate).
- the zinc-containing form is one in which zinc is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminodine silicate), or zinc is supported on crystalline aluminosilicate.
- crystalline aluminosilicate crystalline aluminodine silicate
- Crystalline aluminogallosilicate and crystalline aluminodine silicate have a structure in which SiO 4 , AlO 4 and GaO 4 / ZnO 4 structures are present in the skeleton.
- crystalline aluminogallosilicate and crystalline aluminodine silicate are, for example, gel crystallization by hydrothermal synthesis, a method of inserting gallium or zinc into the lattice skeleton of crystalline aluminosilicate, or crystalline gallosilicate or crystalline It is obtained by inserting aluminum into the lattice skeleton of zincosilicate.
- the gallium-supporting crystalline aluminosilicate is obtained by supporting gallium on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method.
- the gallium source used in this case is not particularly limited, and examples thereof include gallium salts such as gallium nitrate and gallium chloride, and gallium oxide.
- the zinc-supporting crystalline aluminosilicate is obtained by supporting zinc on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method. Although it does not specifically limit as a zinc source used in that case, Zinc salts, such as zinc nitrate and zinc chloride, zinc oxide, etc. are mentioned.
- the content of gallium and / or zinc in the catalyst for monocyclic aromatic hydrocarbon production is based on 100% by mass of the entire catalyst.
- the content is preferably 0.01 to 5.0% by mass, more preferably 0.05 to 2.0% by mass. If the content of gallium and / or zinc is 0.01% by mass or more, the production rate of monocyclic aromatic hydrocarbons can be increased, and if it is 5.0% by mass or less, the monocyclic aromatic hydrocarbons The yield can be higher.
- the catalyst for producing monocyclic aromatic hydrocarbons preferably contains phosphorus and / or boron. If the catalyst for producing monocyclic aromatic hydrocarbons contains phosphorus and / or boron, it is possible to prevent the yield of monocyclic aromatic hydrocarbons from decreasing with time, and to suppress the formation of coke on the catalyst surface.
- phosphorus is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminodine silicate by an ion exchange method, an impregnation method, or the like.
- Examples thereof include a method, a method in which a phosphorus compound is contained during zeolite synthesis and a part of the skeleton of the crystalline aluminosilicate is replaced with phosphorus, and a method in which a crystal accelerator containing phosphorus is used during zeolite synthesis.
- the phosphate ion-containing aqueous solution used at that time is not particularly limited, but phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates are dissolved in water at an arbitrary concentration. What was prepared in this way can be used preferably.
- boron is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminodine silicate by an ion exchange method, an impregnation method, or the like.
- Examples thereof include a method, a method in which a boron compound is contained at the time of zeolite synthesis and a part of the skeleton of the crystalline aluminosilicate is replaced with boron, and a method in which a crystal accelerator containing boron is used at the time of zeolite synthesis.
- the phosphorus and / or boron content in the catalyst for producing monocyclic aromatic hydrocarbons is preferably 0.1 to 10% by mass, based on 100% by mass of the entire catalyst, and preferably 0.5 to 9% by mass. More preferably, it is more preferably 0.5 to 8% by mass. If the phosphorus and / or boron content is 0.1% by mass or more, the yield over time can be further prevented, and if it is 10% by mass or less, the yield of monocyclic aromatic hydrocarbons is increased. it can.
- the catalyst for monocyclic aromatic hydrocarbon production is, for example, in the form of powder, granules, pellets, etc., depending on the reaction mode.
- a fluidized bed it is in the form of powder, and in the case of a fixed bed, it is in the form of particles or pellets.
- the average particle size of the catalyst used in the fluidized bed is preferably 30 to 180 ⁇ m, more preferably 50 to 100 ⁇ m.
- the bulk density of the catalyst used in the fluidized bed is preferably 0.4 to 1.8 g / cc, more preferably 0.5 to 1.0 g / cc.
- the average particle size represents a particle size of 50% by mass in the particle size distribution obtained by classification by sieving, and the bulk density is a value measured by the method of JIS standard R9301-2-3.
- an inert oxide may be blended into the catalyst as a binder and then molded using various molding machines.
- the catalyst for monocyclic aromatic hydrocarbon production contains an inorganic oxide such as a binder, one containing phosphorus as the binder may be used.
- reaction temperature when the raw material oil is brought into contact with and reacted with the catalyst for producing monocyclic aromatic hydrocarbons is not particularly limited, but is preferably 400 to 650 ° C. If the minimum of reaction temperature is 400 degreeC or more, raw material oil can be made to react easily, More preferably, it is 450 degreeC or more. Moreover, if the upper limit of reaction temperature is 650 degrees C or less, the yield of monocyclic aromatic hydrocarbon can be made high enough, More preferably, it is 600 degrees C or less.
- reaction pressure About the reaction pressure at the time of making a raw material oil contact and react with the catalyst for monocyclic aromatic hydrocarbon production, it is preferable to set it as 1.5 MPaG or less, and it is more preferable to set it as 1.0 MPaG or less. If the reaction pressure is 1.5 MPaG or less, the by-product of light gas can be suppressed and the pressure resistance of the reactor can be lowered.
- the contact time between the feedstock and the catalyst for producing monocyclic aromatic hydrocarbons is not particularly limited as long as the desired reaction proceeds substantially.
- gas passing over the catalyst for producing monocyclic aromatic hydrocarbons The time is preferably 1 to 300 seconds, more preferably a lower limit of 5 seconds and an upper limit of 150 seconds. If the contact time is 1 second or longer, the reaction can be performed reliably, and if the contact time is 300 seconds or shorter, accumulation of carbonaceous matter in the catalyst due to excessive coking or the like can be suppressed. Or the generation amount of the light gas by decomposition
- the separation step the product produced in the cracking and reforming reaction step is separated into a plurality of fractions.
- a known distillation apparatus or gas-liquid separation apparatus may be used.
- a distillation apparatus what can distill and isolate
- the gas-liquid separation device a gas-liquid separation tank, a product introduction pipe for introducing the product into the gas-liquid separation tank, a gas component outflow pipe provided at the upper part of the gas-liquid separation tank, What comprises the liquid component outflow pipe
- the separation step at least the gas component and the liquid fraction are separated, and the liquid fraction is further separated into a plurality of fractions.
- a separation step include a form in which a gas component mainly containing a component having 4 or less carbon atoms (for example, hydrogen, methane, ethane, LPG, etc.) and a liquid fraction are separated, and a component having 2 or less carbon atoms (
- a gas component containing hydrogen, methane, ethane) and a liquid fraction are separated.
- the liquid fraction is further separated into a fraction containing a monocyclic aromatic hydrocarbon and a heavy fraction, and the liquid fraction is further separated by LPG, a fraction containing a monocyclic aromatic hydrocarbon,
- LPG liquid fraction containing a monocyclic aromatic hydrocarbon
- segments the said liquid fraction into LPG, the fraction containing a monocyclic aromatic hydrocarbon, a some heavy fraction, etc. are mentioned.
- the liquid fraction is separated into a gas component containing a component having 4 or less carbon atoms (for example, hydrogen, methane, ethane, LPG, etc.) and a liquid fraction, and the liquid fraction is further separated into single components having 6 to 8 carbon atoms.
- a form that is separated into a fraction containing a cyclic aromatic hydrocarbon and a heavier fraction (heavy fraction having 9 or more carbon atoms) separated therefrom is suitably employed.
- the heavy fraction having 9 or more carbon atoms separated in the separation step varies depending on the properties of the feedstock, the cracking reforming reaction step, the separation step, etc., but the concentration of polycyclic aromatic hydrocarbons Is as high as 50 to 95% by mass.
- the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms obtained in the separation step is purified and recovered.
- a fraction heavier than monocyclic aromatic hydrocarbons is separated in the separation step, a fraction containing 6 to 8 carbon monocyclic aromatic hydrocarbons is separated from benzene / A process of recovering toluene / xylene separately is employed.
- the heavier fraction than the monocyclic aromatic hydrocarbon is a heavy fraction having 9 or more carbon atoms, mainly composed of a polycyclic aromatic hydrocarbon, and particularly a bicyclic aromatic such as naphthalenes. Contains a lot of hydrocarbons.
- the liquid fraction is not fractionated as the separation step, a fraction heavier than the monocyclic aromatic hydrocarbon is separated and removed from the liquid fraction in this purification and recovery step, A step of separately collecting benzene / toluene / xylene (monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms) as monocyclic aromatic hydrocarbons is employed. Further, the liquid fraction is not well fractionated in the separation step, and when the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms is recovered, a large amount of fraction other than the monocyclic aromatic hydrocarbon is contained. In particular, it is preferable that the heavy fraction having 9 or more carbon atoms in this fraction is separated and supplied to the second return step described later.
- the fraction heavier than the monocyclic aromatic hydrocarbon is mainly composed of polycyclic aromatic hydrocarbons, and particularly contains a large amount of bicyclic aromatic hydrocarbons such as naphthalenes.
- first return step At least a part of the toluene obtained in the purification and recovery step is returned to the cracking and reforming reaction step. That is, in this first return step, at least a part of toluene is returned to the cracking and reforming reaction step among benzene / toluene / xylene obtained separately by distillation and purification in the purification and recovery step.
- the returned toluene undergoes a reaction such as disproportionation in the cracking reforming reaction step as described above, and becomes benzene and xylene.
- the amount of toluene to be returned (returned) to the cracking / reforming reaction step is such that, in the cracking / reforming reaction step, monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and carbon atoms of 9
- the amount is within a range in which the above-described reaction such as disproportionation of toluene occurs favorably without impairing the reaction for obtaining the product containing the above heavy fraction. Such an amount can be obtained in advance by experiments or simulations.
- the heavy fraction having 9 or more carbon atoms separated from the product produced in the cracking and reforming reaction step is returned to the cracking and reforming reaction step. That is, the heavy fraction having 9 or more carbon atoms separated in the separation step is returned to the cracking and reforming reaction step.
- the liquid fraction is not well fractionated in the separation step, and the monocyclic aromatic hydrocarbon (benzene / toluene / xylene) is recovered when the monocyclic aromatic hydrocarbon (benzene / toluene / xylene) having 6 to 8 carbon atoms is recovered.
- the second return step may be performed independently of the first return step. However, in order to simplify the apparatus configuration, a route such as piping constituting the first return step as shown in FIG. In addition, it is preferable that the second return step is configured to join together a route such as a pipe.
- ⁇ Hydrogen recovery process hydrogen is recovered from the gas component obtained in the separation step.
- the method for recovering hydrogen is not particularly limited as long as hydrogen contained in the gas component obtained in the separation step and other gas can be separated.
- the pressure fluctuation adsorption method (PSA method) the cryogenic separation method, Examples thereof include a membrane separation method.
- the feedstock oil is brought into contact with the catalyst for producing monocyclic aromatic hydrocarbons containing crystalline aluminosilicate in the cracking reforming reaction step, and reacted. Therefore, a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms can be produced with high yield. Moreover, since it has the 1st return process which returns at least one part of toluene obtained at the refinement
- purification recovery process to a cracking reforming reaction process by making reaction, such as disproportionation, with respect to toluene at a cracking reforming reaction process Benzene and xylene can be obtained from toluene.
- FIG. 2 is a diagram for explaining a second embodiment of the method for producing monocyclic aromatic hydrocarbons of the present invention, and the method for producing monocyclic aromatic hydrocarbons of this embodiment is also based on carbon from raw material oil. This is a method for producing a monocyclic aromatic hydrocarbon of formula 6-8.
- the method for producing monocyclic aromatic hydrocarbons of the present embodiment preferably includes the steps shown in FIG. (7) Production containing raw material oil containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by contacting and reacting with a catalyst for producing monocyclic aromatic hydrocarbons Decomposition and reforming reaction step to obtain products. (8) A separation step of separating the product produced in the cracking reforming reaction step into a plurality of fractions. (9) A purification and recovery step for purifying and recovering the monocyclic aromatic hydrocarbons separated in the separation step.
- the 1st return process which returns at least one part of toluene obtained at the refinement
- a hydrogen recovery step of recovering hydrogen by-produced in the cracking and reforming reaction step from the gas component separated in the separation step.
- the steps (7), (9), (10), (12), and (13) are steps included in the third aspect of the present invention.
- Steps 8), (11), (14), and (15) are optional steps.
- the cracking and reforming reaction step can be performed in the same manner as the (1) cracking and reforming reaction step in the first embodiment.
- the separation step can be performed in the same manner as the (2) separation step in the first embodiment.
- the purification / recovery step can be performed in the same manner as the (3) purification / recovery step in the first embodiment.
- 10 In the first return step, at least a part of the toluene obtained in the (9) purification and recovery step is supplied in the middle of the hydrogenation reactor used in the (12) hydrogenation reaction step described later. Toluene is indirectly returned to the (7) decomposition reforming reaction step.
- the heavy fraction having 9 or more carbon atoms separated from the product generated in the (7) cracking reforming reaction step is provided to the (12) hydrogenation reaction step described later.
- the heavy fraction having 9 or more carbon atoms is indirectly returned to the (7) cracking reforming reaction step.
- the hydrogen recovery step can be performed in the same manner as the (6) hydrogen recovery step in the first embodiment.
- the heavy fraction having 9 or more carbon atoms separated from the product produced in the cracking and reforming reaction step is hydrogenated.
- the heavy fraction and hydrogen are supplied to a hydrogenation reactor, and at least a part of the polycyclic aromatic hydrocarbons contained in the mixture is hydrotreated using a hydrogenation catalyst.
- the (11) second return step includes a step of supplying a heavy fraction having 9 or more carbon atoms separated from the product generated in the cracking and reforming reaction step to the hydrogenation reaction step. Is done.
- the second returning step includes the hydrogenation reaction step and the subsequent recycling step, so that the heavy fraction having 9 or more carbon atoms separated from the product generated in the cracking and reforming reaction step can be obtained. It is a process to return to the decomposition reforming reaction process.
- the second returning step may be provided independently so as to return directly to the cracking and reforming reaction step without going through these steps, separately from the hydrogenation reaction step and the recycling step. In that case, the second return step is substantially provided in two systems.
- a heavy fraction having 9 or more carbon atoms separated in the separation step and further in the purification and recovery step is supplied.
- the heavy fraction used in this hydrogenation reaction step that is, the heavy fraction having 9 or more carbon atoms, contains a large amount of bicyclic aromatic hydrocarbons (polycyclic aromatic hydrocarbons) such as naphthalene. Yes.
- naphthalene is preferably hydrogenated to tetralin (naphthenobenzene).
- tetralin naphthenobenzene
- alkylnaphthalene such as methylnaphthalene and dimethylnaphthalene
- naphthenobenzene that is, an aromatic ring having a tetralin skeleton is preferably one aromatic hydrocarbon.
- indene may be an aromatic hydrocarbon having an indane skeleton
- anthracene may be an aromatic hydrocarbon having an octahydroanthracene skeleton
- phenanthrene may be an aromatic hydrocarbon having an octahydrophenanthrene skeleton. preferable.
- the hydrogenation reaction product particularly an aromatic carbon having a tetralin skeleton is obtained. Hydrogen is easily converted to monocyclic aromatic hydrocarbons.
- the polycyclic aromatic hydrocarbon content in the hydrogenation reaction product obtained in the hydrogenation reaction step is set to 40%. It is preferable to set it as mass% or less, It is more preferable to set it as 25 mass% or less, It is more preferable to set it as 15 mass% or less.
- the polycyclic aromatic hydrocarbon content in the obtained hydrogenation reaction product is preferably less than the polycyclic aromatic hydrocarbon content of the feedstock oil.
- the concentration of the polycyclic aromatic hydrocarbon the concentration may be decreased by increasing the amount of the hydrogenation catalyst or increasing the reaction pressure. it can. However, it is not necessary to hydrotreat all the polycyclic aromatic hydrocarbons until they become saturated hydrocarbons. Excessive hydrogenation causes an increase in hydrogen consumption and an excessive increase in calorific value.
- a fixed bed is preferably employed.
- a known hydrogenation catalyst for example, nickel catalyst, palladium catalyst, nickel-molybdenum catalyst, cobalt-molybdenum catalyst, nickel-cobalt-molybdenum catalyst, nickel-tungsten catalyst, etc.
- the hydrogenation reaction temperature varies depending on the hydrogenation catalyst used, but is usually in the range of 100 to 450 ° C., more preferably 200 to 400 ° C., and still more preferably 250 to 380 ° C.
- the hydrogenation reaction pressure is preferably 0.7 MPa or more and 13 MPa or less. In particular, it is more preferably 1 MPa or more and 10 MPa or less, and further preferably 1 MPa or more and 7 MPa or less. If the hydrogenation pressure is 13 MPa or less, a hydrogenation reactor having a relatively low service pressure can be used, and the equipment cost can be reduced. Moreover, since the pressure of the hydrogen recovered in the hydrogen recovery step is usually 13 MPa or less, the recovered hydrogen can be used without increasing the pressure. On the other hand, if the pressure is 0.7 MPa or more, the yield of the hydrogenation reaction can be maintained sufficiently appropriately.
- Hydrogen consumption is preferably not more than 3000scfb (506Nm 3 / m 3) , more preferably less 2500scfb (422Nm 3 / m 3) , more preferably not more than 1500scfb (253Nm 3 / m 3) .
- the hydrogen consumption is preferably 300 scfb (50 Nm 3 / m 3 ) or more from the viewpoint of the yield of the hydrogenation reaction.
- Liquid hourly space velocity of the heavy fraction (LHSV) is preferably set to below 0.1 h -1 or 20h -1, and more preferably to 0.2 h -1 or 10h -1 or less.
- polycyclic aromatic hydrocarbons for example, bicyclic aromatic hydrocarbons occupying most of them, generate a large amount of heat during the hydrogenation reaction. Therefore, in the case of a raw material having a high polycyclic aromatic hydrocarbon content, it is desirable to take a technique for suppressing an excessive increase in the reaction temperature in order to carry out the reaction stably. Also in the present embodiment, as a method for suppressing the reaction temperature, a general method can be adopted, and a method such as circulating hydrogen gas quench adopted in a normal kerosene oil desulfurization apparatus can be used. However, the heavy fraction separated in the separation step has a very high polycyclic aromatic hydrocarbon concentration of, for example, 50 to 95% by mass.
- Quench equipment close to two digits is required, and the configuration around the reaction apparatus for suppressing heat generation becomes very complicated. Moreover, since it becomes a reactor with a very large calorific value, it is evaluated as a device having a large risk in an emergency operation.
- toluene returned to the cracking and reforming reaction step by the first return step is halfway through the hydrogenation reactor used in the hydrogenation reaction step (between the inlet and outlet of the hydrogenation reactor). Supply).
- toluene when toluene is supplied in the middle of the hydrogenation reactor, the toluene is vaporized by being exposed to the high temperature in the hydrogenation reactor without being substantially hydrogenated. Therefore, by depriving the heat of vaporization from the hydrogenation reactor, toluene functions as a coolant (quenching agent).
- the hydrogenation reaction product of the mixture obtained in the hydrogenation reaction step is mixed with the raw material oil or separately returned to the cracking and reforming reaction step.
- the hydrogenation reaction product of the mixture is mixed with the raw material oil or separately returned to the cracking and reforming reaction step.
- the gas component is returned to the cracking and reforming reaction step through the recycling step, or partly diluted. It is also possible to use for a hydrogenation reaction process as an agent.
- the entire hydrogenation reaction product does not necessarily have to be recycled to the raw material oil in the cracking and reforming reaction step.
- the hydrogenated reactant that has not been recycled can also be used as a fuel substrate.
- the yield of monocyclic aromatic hydrocarbons is little because of the low reactivity of polycyclic aromatic hydrocarbons. Does not improve.
- the hydrogen obtained in the hydrogen recovery step is supplied to the hydrogenation reactor in the hydrogenation reaction step.
- the hydrogen supply amount at that time is adjusted according to the amount of the mixture to be subjected to the hydrogenation reaction step. If necessary, the hydrogen pressure is adjusted.
- the mixture can be hydrogenated using hydrogen by-produced in the cracking and reforming reaction step. Covering part or all of the hydrogen with by-product hydrogen makes it possible to reduce part or all of the external hydrogen supply.
- the monocyclic aromatic hydrocarbons are also produced from the heavy fraction that was a byproduct as a raw material. Obtainable. Therefore, the amount of by-products can be reduced and the amount of monocyclic aromatic hydrocarbons produced can be increased. Therefore, it is possible to produce monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms with high yield from raw material oils containing polycyclic aromatic hydrocarbons.
- the toluene functions as a coolant (quenching agent).
- toluene is returned to the cracking and reforming reaction step through the recycling step without being hydrogenated in the hydrogenation reaction step. Therefore, by performing a reaction such as disproportionation of toluene in the cracking and reforming reaction step, as in the first embodiment, benzene and xylene are further added so that the yield of benzene and xylene is higher than that of toluene. Many can be manufactured.
- FIG. 3 is a view for explaining a third embodiment of the method for producing monocyclic aromatic hydrocarbons of the present invention, and the method for producing monocyclic aromatic hydrocarbons of this embodiment is also based on carbon from feedstock oil. This is a method for producing a monocyclic aromatic hydrocarbon of formula 6-8.
- the method for producing monocyclic aromatic hydrocarbons of the present embodiment preferably includes the steps shown in FIG. (16) Production containing raw material oil containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by contacting and reacting with a catalyst for producing monocyclic aromatic hydrocarbons Decomposition and reforming reaction step to obtain products. (17) A separation step of separating the product produced in the cracking reforming reaction step into a plurality of fractions. (18) A purification and recovery step for purifying and recovering the monocyclic aromatic hydrocarbons separated in the separation step. (19) A first return step for returning at least a part of the toluene obtained in the purification and recovery step to the cracking and reforming reaction step.
- the steps (16) to (25) the steps (16), (18), (19), (21), (22), and (23) are included in the fifth and sixth aspects.
- the processes (17), (20), (24), and (25) are optional processes.
- the cracking and reforming reaction step can be performed in the same manner as the (1) cracking and reforming reaction step in the first embodiment.
- the separation step can be performed in the same manner as the (2) separation step in the first embodiment.
- the purification / recovery step can be performed in the same manner as the (3) purification / recovery step in the first embodiment.
- toluene is indirectly returned to the (16) decomposition reforming reaction step by supplying at least a part of toluene to the (21) dilution step described later.
- the heavy fraction having 9 or more carbon atoms separated from the product produced in the (16) cracking reforming reaction step is subjected to (21) a dilution step described later ( 22)
- the heavy fraction having 9 or more carbon atoms is indirectly returned to the (16) cracking reforming reaction step by subjecting it to a hydrogenation reaction step.
- the hydrogenation reaction step can be performed in the same manner as the (12) hydrogenation reaction step in the second embodiment.
- the recycling process can be performed in the same manner as the (13) recycling process in the second embodiment.
- the hydrogen recovery step can be performed in the same manner as the (6) hydrogen recovery step in the first embodiment.
- the hydrogen supply step can be performed in the same manner as the (15) hydrogen supply step in the second embodiment.
- ⁇ Dilution process> (21)
- a diluent composed of hydrocarbon is added to the heavy fraction having 9 or more carbon atoms separated from the product produced in the cracking and reforming reaction step, and the heavy matter having 9 or more carbon atoms is added.
- the polycyclic aromatic hydrocarbon concentration in the mixture of the fraction and the diluent is made lower than the polycyclic aromatic hydrocarbon concentration in the heavy fraction. Thereby, the polycyclic aromatic hydrocarbon density
- the first return process includes a dilution process, a hydrogenation reaction process, and a recycling process.
- other part of toluene obtained in the purification and recovery step is in the middle of a hydrogenation reactor (hydrogenation reaction step) (hydrogen) as in the second embodiment. (Between the inlet and outlet of the chemical reactor) and may function as a coolant (quenching agent).
- the heavy fraction (heavy fraction obtained by removing the diluent from the mixture) separated in the separation step and directly used for the hydrogenation reaction step has a polycyclic aromatic hydrocarbon concentration of, for example, 50 to 95. Mass% is very high.
- This polycyclic aromatic hydrocarbon for example, the bicyclic aromatic hydrocarbon occupying most of the polycyclic aromatic hydrocarbon, has a very large calorific value during the hydrogenation reaction. Therefore, in this embodiment, toluene is used as a diluent, the concentration of the polycyclic aromatic hydrocarbon in the oil (mixture) used in the hydrogenation reaction step is adjusted in advance by the dilution step, and hydrogen of the polycyclic aromatic hydrocarbon is obtained. The heat generated by the hydrogenation is suppressed, and a sufficiently general hydrogenation reaction can be performed even in a conventional general hydrogenation reactor.
- another hydrocarbon (other than toluene) can be used as a diluent.
- it has the 1st return process which returns at least one part of the toluene obtained by the refinement
- purification collection process like a 1st embodiment directly to a cracking reforming reaction process, or this toluene of 2nd Embodiment.
- purification collection process like a 1st embodiment directly to a cracking reforming reaction process, or this toluene of 2nd Embodiment.
- hydrocarbon diluents other than toluene include hydrocarbons that are difficult to be hydrogenated compared to polycyclic aromatic hydrocarbons, such as trimethylbenzene and tetramethylbenzene (including various isomers) in the hydrogenation reaction step.
- Aromatic hydrocarbons, naphthenes such as cyclohexanes and decalins, and hydrocarbons including paraffins are preferably used. At that time, it is necessary to select a raw material in which the diluent and the heavy fraction are compatible. When the concentration of the polycyclic aromatic hydrocarbon is extremely high, it is desirable to select a monocyclic aromatic hydrocarbon or the like. .
- the hydrogenation reaction conditions are set to a high pressure of 7 MPa or more, for example, the monocyclic aromatic hydrocarbon itself as the diluent may be hydrogenated.
- the monocyclic aromatic hydrocarbon itself as the diluent may be hydrogenated.
- monocyclic aromatic hydrocarbons When recovering and reusing monocyclic aromatic hydrocarbons as diluents, monocyclic aromatic hydrocarbons also become saturated hydrocarbons and can be used as diluents. There is no problem to use it in the process. However, in this case, attention must be paid because a sufficient exothermic suppression effect may not be obtained in the hydrogenation reaction step.
- the diluent may contain the polycyclic aromatic hydrocarbon as long as the concentration (content) of the polycyclic aromatic hydrocarbon is lower than that of the heavy fraction. Compared to a diluent that does not contain a ring aromatic hydrocarbon, the effect of suppressing heat generation is reduced.
- refinery bases containing the above monocyclic aromatic hydrocarbons, naphthenes, paraffins, etc., and also containing polycyclic aromatic hydrocarbons, such as LCO used as the feedstock These various decomposition-type base materials, straight-running base materials, and the like can also be used.
- the polycyclic aromatic hydrocarbon concentration of such a diluent may be any concentration that can lower the polycyclic aromatic hydrocarbon concentration in the mixture to be formed to an appropriate concentration, and is preferably 50% by mass. Hereinafter, it is more preferably 30% by mass or less, and further preferably 20% by mass or less.
- a diluent is stored, for example, in a separately prepared storage tank, and is supplied to a line for transferring the heavy fraction from there and mixed with the heavy fraction. This reduces the polycyclic aromatic hydrocarbon concentration in the resulting mixture to an appropriate concentration.
- a mixture comprising a heavy fraction having 9 or more carbon atoms separated from the product produced in the cracking and reforming reaction step and a diluent. That is, the diluent is added to the heavy fraction to form a mixture so that the polycyclic aromatic hydrocarbon concentration in the mixture actually subjected to the hydrogenation reaction step is 5% by mass or more and 50% by mass or less. It is preferable to do this. Moreover, it is more preferable to add a diluent so that the polycyclic aromatic hydrocarbon concentration in the mixture is 15% by mass or more and 35% by mass or less.
- the polycyclic aromatic hydrocarbon concentration in the mixture By setting the polycyclic aromatic hydrocarbon concentration in the mixture to 50% by mass or less, heat generation due to the hydrogenation reaction in the hydrogenation reaction step, which will be described later, is suppressed, and an extreme increase in the reaction temperature in the hydrogenation reactor is prevented.
- an appropriate hydrogenation reaction for example, conversion from a bicyclic aromatic hydrocarbon to naphthenobenzenes
- a general hydrogenation reactor can be used.
- the polycyclic aromatic hydrocarbon concentration in the mixture to 5% by mass or more, the conversion from polycyclic aromatic hydrocarbons, which is the main purpose of the hydrogenation reaction step, to naphthenobenzenes can be performed as desired. Can be done with efficiency.
- the polycyclic aromatic hydrocarbon concentration in the mixture is more preferably 15% by mass or more as described above. Further, in order to sufficiently suppress the heat generation due to the hydrogenation reaction, it is more preferable that the polycyclic aromatic hydrocarbon concentration in the mixture is 35% by mass or less.
- the amount of diluent to be supplied is appropriately determined in order to adjust the polycyclic aromatic hydrocarbon concentration in the mixture to the above-described concentration.
- the amount of the diluent is greatly influenced by the polycyclic aromatic hydrocarbon concentration in the heavy fraction having 9 or more carbon atoms separated from the product produced in the cracking and reforming reaction step. That is, if the polycyclic aromatic hydrocarbon concentration in the heavy fraction is high, it is necessary to relatively increase the amount of the diluent, and if the polycyclic aromatic hydrocarbon concentration in the heavy fraction is low. The amount of diluent can be relatively reduced.
- the concentration of polycyclic aromatic hydrocarbons in the diluent is greatly affected. That is, if the polycyclic aromatic hydrocarbon concentration in the diluent is high, the amount of the diluent needs to be relatively large, and if the polycyclic aromatic hydrocarbon concentration in the diluent is low, the amount of the diluent Can be relatively reduced.
- the concentration of polycyclic aromatic hydrocarbons in the heavy fraction separated from the product in the separation step is 50 to 95% by mass. Therefore, when diluting heavy fractions, especially when hydrocarbons other than toluene are used as diluents, the concentration of polycyclic aromatic hydrocarbons in the heavy fraction (product) and the polycycles in the diluent Aromatic hydrocarbon concentration is measured according to, for example, JPI-5S-49 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method” or confirmed by FID gas chromatograph method or two-dimensional gas chromatograph method.
- the mixture of the heavy fraction and the diluent is adjusted so that the polycyclic aromatic hydrocarbon concentration in the mixture after dilution with the diluent is 5 to 50% by mass, preferably 15 to 35% by mass as described above. Determine the ratio.
- concentration of the polycyclic aromatic hydrocarbon in the diluent is, for example, 20% by mass or less
- the heavy fraction separated in the separation step separated from the product produced in the cracking and reforming reaction step, hydrogen
- the mass ratio (mixing ratio) (heavy fraction: diluent) of the heavy fraction having 9 or more carbon atoms and the diluent used in the chemical reaction step is in the range of 10:90 to 80:20. It is adjusted to be inside.
- the polycyclic aromatic hydrocarbon concentration can be calculated as 0% by mass.
- the diluent When the flow rate per unit time of the heavy fraction supplied from the separation step to the hydrogenation reaction step is constant, the diluent is also per unit time under the conditions within the above mass ratio range. Is added to the heavy fraction at a constant flow rate. When the flow rate per unit time of the heavy fraction changes, the diluent also changes its flow rate in response to this change.
- the hydrogenation reaction step can be performed in the same manner as the (12) hydrogenation reaction step in the second embodiment. That is, a mixture formed by adding a diluent to the heavy fraction having 9 or more carbon atoms in the dilution step is hydrogenated in the same manner as the (12) hydrogenation reaction step in the second embodiment.
- a part of toluene obtained in the purification and recovery step is used as a coolant (quenching agent) in the middle of the hydrogenation reactor (hydrogenation reaction step) (hydrogen Between the inlet and the outlet of the polymerization reactor).
- Toluene supplied as a diluent is not hydrogenated by this hydrogenation reaction, and therefore functions only as a diluent that lowers the polycyclic aromatic hydrocarbon concentration and suppresses heat generation due to the hydrogenation reaction. .
- the recycling process can be performed in the same manner as the (13) recycling process in the second embodiment. That is, the hydrogenation reaction product of the mixture obtained in the hydrogenation reaction step is mixed with the raw material oil or separately returned to the cracking and reforming reaction step.
- toluene used as a diluent causes a reaction such as disproportionation, thereby causing benzene.
- xylene a reaction such as disproportionation
- hydrocarbons other than toluene When hydrocarbons other than toluene are used as diluents, hydrocarbons other than toluene, such as naphthenes and paraffins, contribute to the production of monocyclic aromatic hydrocarbons in the cracking and reforming reaction step. Therefore, this diluent contributes to the improvement of the yield of monocyclic aromatic hydrocarbons.
- the monocyclic aromatic hydrocarbons are also produced from the heavy fraction that was a by-product as a raw material. Obtainable. Therefore, the amount of by-products can be reduced and the amount of monocyclic aromatic hydrocarbons produced can be increased. Therefore, it is possible to produce monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms with high yield from raw material oils containing polycyclic aromatic hydrocarbons. Further, a diluent is added to the heavy fraction having 9 or more carbon atoms separated from the product produced in the cracking and reforming reaction step, and the polycyclic aromatic hydrocarbon concentration in the resulting mixture is determined as the heavy fraction.
- toluene obtained in the purification and recovery step is added as a diluent to a heavy fraction having 9 or more carbon atoms. Since toluene is difficult to be hydrogenated in the hydrogenation reaction step, heat generated by hydrogenation of polycyclic aromatic hydrocarbons can be more effectively suppressed. In addition, toluene is returned to the cracking and reforming reaction step through the recycling step without being substantially hydrogenated in the hydrogenation reaction step.
- benzene and xylene are added so that the yield of benzene and xylene is higher than that of toluene. More can be manufactured.
- FIG. 4 is a view for explaining a fourth embodiment of the method for producing monocyclic aromatic hydrocarbons of the present invention, and the method for producing monocyclic aromatic hydrocarbons of this embodiment is also based on carbon from raw material oil. This is a method for producing a monocyclic aromatic hydrocarbon of formula 6-8.
- the method for producing monocyclic aromatic hydrocarbons of the present embodiment preferably includes the steps shown in FIG. (26) Production containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by contacting and reacting the feedstock with a catalyst for producing monocyclic aromatic hydrocarbons Decomposition and reforming reaction step to obtain products. (27) A separation step of separating the product produced in the cracking and reforming reaction step into a plurality of fractions. (28) A purification and recovery step for purifying and recovering the monocyclic aromatic hydrocarbons separated in the separation step. (29) A first return step for returning at least a part of the toluene obtained in the purification and recovery step to the cracking and reforming reaction step.
- a diluent recovery step in which the diluent is separated and removed from the hydrogenation reaction product of the mixture obtained in the hydrogenation reaction step, the diluent is recovered and reused as the diluent in the dilution step.
- a hydrogen recovery step of recovering hydrogen by-produced in the cracking and reforming reaction step from the gas component separated in the separation step.
- a hydrogen supply step of supplying the hydrogen recovered in the hydrogen recovery step to the hydrogenation reaction step.
- the cracking and reforming reaction step can be performed in the same manner as the (1) cracking and reforming reaction step in the first embodiment.
- the separation step can be performed in the same manner as the (2) separation step in the first embodiment.
- the purification / recovery step can be performed in the same manner as the (3) purification / recovery step in the first embodiment.
- the first return step can be performed in the same manner as the (10) first return step in the second embodiment. Moreover, you may use for a dilution process a part of toluene obtained at the refinement
- the (30) second return step can be performed in the same manner as the (20) second return step in the third embodiment.
- the hydrogenation reaction step can be performed in the same manner as the (12) hydrogenation reaction step in the second embodiment. That is, toluene returned to the cracking and reforming reaction step by the first return step is supplied in the middle of the hydrogenation reactor used in the hydrogenation reaction step (between the inlet and the outlet of the hydrogenation reactor).
- the hydrogen recovery step can be performed in the same manner as the (24) hydrogen recovery step in the third embodiment.
- the hydrogen supply step can be performed in the same manner as the (25) hydrogen supply step in the third embodiment.
- ⁇ Dilution process> in the (31) dilution step in the present embodiment, in the heavy fraction having 9 or more carbon atoms separated in the separation step, as in the example described in the (21) dilution step in the third embodiment.
- a diluent composed of hydrocarbons other than toluene is added, and the concentration of polycyclic aromatic hydrocarbons in the mixture composed of the heavy fraction having 9 or more carbon atoms and the diluent is determined as the polycyclic aromatic hydrocarbon concentration in the heavy fraction. Lower than the ring aromatic hydrocarbon concentration.
- a part of toluene obtained in the purification and recovery step may be used as a part of the diluent together with a diluent made of hydrocarbons other than toluene.
- the diluent made of hydrocarbons other than toluene used in the present embodiment is reused.
- hydrocarbons are supplied from a separately prepared storage tank or the like when starting up or in a case where the diluent cannot be recovered in the diluent recovery process and the diluent is insufficient.
- the diluent unlike the one shown in the third embodiment, one that is easily separated and recovered from the hydrogenation reaction product in the diluent recovery step, specifically, a polycyclic aromatic by distillation operation. Those easily separated from hydrocarbon hydrides (particularly naphthenobenzene) are used. As the diluent, hydrocarbons that are difficult to be hydrogenated are used as in the third embodiment. Therefore, polycyclic aromatic hydrocarbons having a boiling point higher than that of naphthenobenzene and easily subjected to a hydrogenation reaction are not mainly contained. As shown in FIG.
- the diluent of the present embodiment circulates through the hydrogenation reaction step, the diluent recovery step, and the dilution step many times, so that a part of the diluent cannot be recovered from the diluent recovery step and the like. Or the heavy fraction may be partially decomposed and recovered as a diluent in the diluent recovery step, and the diluent may increase. Therefore, it is necessary to control the diluent circulation amount as necessary. However, in any case, a material that is less susceptible to hydrogenation and decomposition than necessary in the hydrogenation reaction step is preferable.
- a hydrocarbon having a boiling point lower than that of t-decalin (t-decahydronaphthalene) having a boiling point of 185 ° C. generated in the hydrogenation reaction step is preferably used. That is, naphthene, paraffin, or monocyclic aromatic compounds that are easily separated from polycyclic aromatic hydrocarbons or naphthenobenzene by distillation and are not easily hydrogenated are suitably used as diluents.
- the dilution process of this embodiment is the same as the dilution process of 3rd Embodiment except mainly using such a diluent.
- the polycyclic aromatic hydrocarbon concentration of the mixture formed by diluting with a diluent is the same as in the dilution step of the third embodiment.
- the dilution rate by the diluent that is, the mass ratio (mixing ratio) between the heavy fraction and the diluent
- diluent recovery process In the diluent recovery step, the diluent is separated and removed from the hydrogenation reaction product of the mixture obtained in the hydrogenation reaction step, and the diluent is recovered. The recovered diluent is reused as a diluent to be added to the heavy fraction having 9 or more carbon atoms in the dilution step.
- the diluent collected here is only a diluent made of hydrocarbons other than toluene. When a part of toluene obtained in the purification and recovery process is used in combination as a diluent, this toluene is not recovered and decomposed. Return to the reforming reaction process.
- the distillation operation is suitably employed as a method for separating and removing the diluent from the hydrogenation reaction product of the mixture. That is, in this diluent recovery step, for example, the distillation tower separates into components having a boiling point lower than 185 ° C. and components higher than this. Thereby, for example, a component having a boiling point lower than 185 ° C. can be separated from a component having a boiling point higher than 185 ° C. Therefore, the diluent can be regenerated by cooling and condensing the separated component having a boiling point lower than 185 ° C., that is, the diluent component. However, since the component having a boiling point lower than 185 ° C. includes toluene, the toluene is returned to the cracking and reforming reaction step by a recycling step without being separated and recovered.
- each component when each component is separated by a distillation column, not only the component having a boiling point lower than 185 ° C. but also a component having a higher boiling point is separated.
- the component (toluene) having a 90% by volume distillation temperature of 140 ° C. or lower is separated. And it cools and condenses the component except the component (toluene) which is a component lower than 185 degreeC, and 10 volume% distillation temperature is 85 degreeC or more and 90 volume% distillation temperature is 140 degrees C or less, Return to the dilution process as diluent.
- toluene is separated from components once having a boiling point lower than 185 ° C., and components other than toluene are collected and returned to the dilution step as a diluent.
- the diluent separated and recovered in this manner is sent to the dilution step, and added to the heavy fraction to form a mixture.
- the hydrogenation reaction step, the diluent recovery step, and the dilution step are sequentially circulated.
- the recycling step is different from the (23) recycling step in the third embodiment in that the total amount of the hydrogenation reactant of the mixture obtained in the hydrogenation reaction step is directly returned to the cracking reforming reaction step. Then, the fraction from which the diluent has been separated in the diluent recovery step (the fraction containing toluene) is mixed with the raw material oil or returned separately to the cracking and reforming reaction step.
- toluene is used as a coolant.
- a quenching agent heat generation caused by hydrogenation of polycyclic aromatic hydrocarbons in the hydrogenation reaction step can be suppressed. Therefore, a sufficiently appropriate hydrogenation reaction can be performed even in a conventional general hydrogenation reactor.
- toluene is returned to the cracking and reforming reaction step through the recycling step without being hydrogenated in the hydrogenation reaction step.
- the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
- the hydrogen used in the hydrogenation reaction step is not produced as a by-product in the cracking and reforming reaction step, and hydrogen obtained by a known hydrogen production method may be used. Further, hydrogen produced as a by-product in other catalytic cracking methods may be used.
- the heavy fraction discharge process of extracting a fixed amount of a part of heavy fractions having 9 or more carbon atoms obtained from the fraction separated in the separation step and discharging it out of the system. It may be provided.
- a decomposition reforming reaction is performed, and a single carbon atom having 6 to 8 carbon atoms.
- the ring aromatic hydrocarbon was recovered.
- benzene and xylene total amount of o-xylene, m-xylene and p-xylene
- the disproportionation reaction in which benzene and xylene are produced from toluene mainly occurs in a short contact time.
- the amount of benzene produced was larger than the amount of xylene produced as shown below.
- Toluene (100% by mass) ⁇ After decomposition and reforming reaction (contact time 12 seconds) Benzene (29% by mass) Toluene (45% by mass) m-, p-xylene (14% by mass) o-Xylene (4% by mass) (The total amount of xylene is 18% by mass) Therefore, it was confirmed that when the contact time was increased, the dealkylation reaction proceeded together with the disproportionation reaction.
- Example 1 based on the first embodiment shown in FIG. 1, monocyclic aromatic hydrocarbons are recovered from the product obtained in the cracking reforming reaction step through a separation step and a purification recovery step. Further, a fraction mainly composed of toluene was returned to the cracking and reforming reaction step by the first return step.
- Example 1 (10 vol% distillation temperature is 215 ° C, 90 vol% distillation temperature is 318 ° C) shown in Table 1 as a raw material oil, reaction temperature: 538 ° C, reaction pressure: 0.3 MPaG, included in LCO and catalyst A catalyst for producing monocyclic aromatic hydrocarbons in a fluidized bed reactor under the condition that the contact time with the zeolite component is 12 seconds (binder on MFI type zeolite carrying 0.2% by mass of gallium and 0.7% by mass of phosphorus) The product was brought into contact with and reacted with a product containing a thiophene) to carry out a decomposition and reforming reaction.
- Monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms were recovered from the product by gas-liquid separation and distillation.
- the amounts of benzene, toluene and xylene collected were measured using a two-dimensional gas chromatograph (KT2006 GC ⁇ GC system manufactured by ZOEX), and found to be 11% by mass, 17% by mass and 7% by mass, respectively.
- the recovered toluene was returned to the cracking and reforming reaction step, mixed with 100 parts by weight of the feed oil so as to be 17 parts by weight of toluene, and again subjected to the cracking and reforming reaction under the above reaction conditions.
- the amounts of xylene produced were 14% by mass, 21% by mass, and 9% by mass, respectively.
- Example 1 The same procedure as in Example 1 was performed except that the recovered toluene was not returned to the cracking and reforming reaction step.
- the production amounts of the obtained benzene, toluene and xylene were 11 mass%, 17 mass% and 7 mass%, respectively.
- Example 1 when compared with Comparative Example 1 in which toluene was not returned, it can be seen that toluene decreased and benzene and xylene increased. In Example 1, the process of returning the toluene and performing the decomposition and reforming reaction was repeated, so that the toluene finally disappeared to 20 mass% benzene and 12 mass% xylene.
- Example 2 based on the second embodiment shown in FIG. 2, monocyclic aromatic hydrocarbons are recovered from the product obtained in the cracking reforming reaction step through a separation step and a purification recovery step. Furthermore, the heavy fraction having 9 or more carbon atoms obtained from the separation step was sent to the hydrogenation reaction step in the second return step. The recovered toluene fraction was sent to the hydrogenation reaction step by the first return step, the heavy fraction was hydrotreated in the hydrogenation reaction step, and then returned to the cracking and reforming reaction step again in the recycling step. .
- Example 2 As in Example 1, LCO (10% by volume distillation temperature is 215 ° C. and 90% by volume distillation temperature is 318 ° C.) shown in Table 1 is used as the raw material oil, reaction temperature: 538 ° C., reaction pressure: 0.3 MPaG.
- the catalyst for monocyclic aromatic hydrocarbon production (gallium 0.2% by mass and phosphorus 0.7% by mass) in a fluidized bed reactor under the condition that the contact time between the LCO and the zeolite component contained in the catalyst is 12 seconds. The catalyst was brought into contact with and reacted with a supported MFI type zeolite containing a binder) to carry out a decomposition and reforming reaction.
- a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms (heavy fraction) were recovered from the product by gas-liquid separation and distillation.
- the amounts of benzene, toluene and xylene collected were measured using a two-dimensional gas chromatograph (KT2006 GC ⁇ GC system manufactured by ZOEX), and found to be 11% by mass, 17% by mass and 7% by mass, respectively.
- content of the polycyclic aromatic hydrocarbon in a heavy fraction was investigated, it was 81 mass%.
- the recovered toluene was supplied to the hydrogenation reactor as a quenching agent (40 parts by weight of toluene with respect to 100 parts by weight of the heavy fraction) to suppress heat generation in the reactor.
- the hydrogenation rate of toluene (calculated based on the amount of methylcyclohexane in the hydrogenation reaction product) was 4%.
- the hydrocarbon having one aromatic ring is 65% by mass, and the hydrocarbon having two or more aromatic rings (polycyclic aromatic).
- Group 29 hydrocarbon was contained.
- the hydrogenation reaction product was recycled to the cracking and reforming reaction step, mixed with 60 parts by weight of the hydrogenation reaction product with respect to 100 parts by weight of the feedstock, and subjected to the cracking and reforming reaction again under the above reaction conditions.
- a monocyclic aromatic hydrocarbon (benzene, toluene, xylene) having 6 to 8 carbon atoms was obtained in a yield of 43% by mass.
- the production amounts of the obtained benzene, toluene and xylene were 14 mass%, 20 mass% and 9 mass%, respectively.
- Example 2 it can be seen that the production amount of monocyclic aromatic hydrocarbons is increased as compared with Comparative Example 1 which does not go through the hydrogenation reaction step of heavy fraction, liquid quenching with toluene, and the recycling step. Moreover, it turns out that the toluene ratio in monocyclic aromatic hydrocarbons decreases and the ratio of benzene and xylene increases. By repeating the process of the second embodiment, it can be seen that the amount of toluene is reduced to benzene and xylene, and the amount of benzene and toluene is reduced accordingly.
- Example 3 based on the third embodiment shown in FIG. 3, monocyclic aromatic hydrocarbons are recovered from the product obtained in the cracking reforming reaction step through a separation step and a purification recovery step. Further, the heavy fraction having 9 or more carbon atoms obtained from the separation step was sent to the dilution step in the second return step. Next, the recovered toluene fraction is sent to the dilution step as a diluent in the first return step, mixed with a heavy fraction having 9 or more carbon atoms, and this mixed fraction is hydrotreated in the hydrogenation reaction step. Then, it returned to the decomposition reforming reaction process again in the recycling process.
- Example 3 As in Example 1, LCO (10% by volume distillation temperature is 215 ° C. and 90% by volume distillation temperature is 318 ° C.) shown in Table 1 is used as the raw material oil, reaction temperature: 538 ° C., reaction pressure: 0.3 MPaG.
- the catalyst for monocyclic aromatic hydrocarbon production (gallium 0.2% by mass and phosphorus 0.7% by mass) in a fluidized bed reactor under the condition that the contact time between the LCO and the zeolite component contained in the catalyst is 12 seconds. The catalyst was brought into contact with and reacted with a supported MFI type zeolite containing a binder) to carry out a decomposition and reforming reaction.
- a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms (heavy fraction) were recovered from the product by gas-liquid separation and distillation.
- the amounts of benzene, toluene and xylene collected were measured using a two-dimensional gas chromatograph (KT2006 GC ⁇ GC system manufactured by ZOEX), and found to be 11% by mass, 17% by mass and 7% by mass, respectively.
- content of the polycyclic aromatic hydrocarbon in a heavy fraction was investigated, it was 81 mass%.
- the hydrocarbon having one aromatic ring is 66% by mass and the hydrocarbon having two or more aromatic rings (polycyclic aromatic).
- Group hydrocarbon was contained by 28 mass%. This shows that heavy hydrocarbons are preferentially hydrogenated while toluene is hardly hydrogenated. Moreover, since the hydrogenation of toluene has hardly progressed, it is clear that the diluent suppresses heat generation per unit volume. On the other hand, the polycyclic aromatic hydrocarbons in the heavy fraction are greatly reduced, which is a preferable state as oil used in the cracking and reforming reaction step.
- the hydrogenation reaction product was recycled to the cracking and reforming reaction step, mixed with 60 parts by weight of the hydrogenation reaction product with respect to 100 parts by weight of the feedstock, and subjected to the cracking and reforming reaction again under the above reaction conditions.
- a monocyclic aromatic hydrocarbon (benzene, toluene, xylene) having 6 to 8 carbon atoms was obtained in a yield of 44% by mass.
- the production amounts of the obtained benzene, toluene and xylene were 15 mass%, 20 mass% and 9 mass%, respectively.
- Example 3 it can be seen that the production amount of monocyclic aromatic hydrocarbons is increased as compared with Comparative Example 1 that does not go through a dilution step with toluene, a hydrogenation reaction step for heavy fractions, and a recycling step. Moreover, it turns out that the toluene ratio in monocyclic aromatic hydrocarbons decreases and the ratio of benzene and xylene increases. By repeating the process of the third embodiment, it can be seen that the amount of toluene is reduced to benzene and xylene, so that the amount of production is reduced, and the amount of benzene and toluene produced is increased accordingly.
- Example 4 monocyclic aromatic hydrocarbons are recovered from the product obtained in the cracking and reforming reaction step through a separation step and a purification and recovery step based on the fourth embodiment shown in FIG. Further, the heavy fraction having 9 or more carbon atoms obtained from the separation step was sent to the hydrogenation reaction step through the dilution step. Next, the recovered toluene fraction is sent to the hydrogenation reaction step by the first return step, the heavy fraction is hydrotreated in the hydrogenation reaction step, and the hydrogenation reaction product recovers the diluent. It returned to the cracking reforming reaction process again through the process.
- Example 4 In the same manner as in Example 3, LCO (10 vol% distillation temperature is 215 ° C and 90 vol% distillation temperature is 318 ° C) shown in Table 1 is used as the raw material oil, reaction temperature: 538 ° C, reaction pressure: 0.3 MPaG
- the catalyst for monocyclic aromatic hydrocarbon production (gallium 0.2% by mass and phosphorus 0.7% by mass) in a fluidized bed reactor under the condition that the contact time between the LCO and the zeolite component contained in the catalyst is 12 seconds.
- the catalyst was brought into contact with and reacted with a supported MFI type zeolite containing a binder) to carry out a decomposition and reforming reaction.
- Monocyclic aromatic hydrocarbons and heavy fractions having 9 or more carbon atoms (heavy fraction) were recovered from the product by gas-liquid separation and distillation.
- the amounts of benzene, toluene and xylene collected were measured using a two-dimensional gas chromatograph (KT2006 GC ⁇ GC system manufactured by ZOEX), and found to be 11% by mass, 17% by mass and 7% by mass, respectively.
- content of the polycyclic aromatic hydrocarbon in a heavy fraction was investigated, it was 81 mass%.
- the hydrogenation rate of toluene (calculated based on the amount of methylcyclohexane in the hydrogenation reaction product) was 5%. Note that trimethylbenzene mixed as a diluent was hardly hydrogenated.
- the hydrotreated heavy fraction when the hydrotreated heavy fraction is 100% by mass, the hydrocarbon having one aromatic ring is 79% by mass and the hydrocarbon having two or more aromatic rings (polycyclic aromatic). Group hydrocarbon) was contained in an amount of 14% by mass.
- the hydrogenation reaction product is separated by distillation into a fraction containing toluene and methylcyclohexane, a fraction mainly containing trimethylbenzene (trimethylbenzene fraction), and a heavy fraction, and only the trimethylbenzene fraction is removed.
- the hydrogenation reaction was adjusted. It was confirmed that trimethylbenzene added as a diluent is hardly hydrogenated and can be repeatedly used as a diluent by collecting. From the fact that hydrogenation has not progressed, it is clear that the diluent suppresses heat generation per unit volume. Also in this example, toluene is hardly hydrogenated and it can be seen that it has an effect as a quenching agent.
- the bicyclic aromatic hydrocarbons in the heavy fraction were greatly reduced, and it was confirmed that the oil was suitable for use in the cracking and reforming reaction step. This is because, as in Example 3, polycyclic aromatic hydrocarbons are easier to be hydrogenated than monocyclic aromatic hydrocarbons.
- the hydrogenation reaction product from which the trimethylbenzene fraction was removed was mixed at 55 parts by weight with respect to 100 parts by weight of the feedstock, and the cracking and reforming reaction was performed again under the above reaction conditions.
- Monocyclic aromatic hydrocarbons (benzene, toluene, xylene) were obtained.
- the produced amounts of benzene, toluene and xylene obtained were 15 mass%, 20 mass% and 8 mass%, respectively.
- Example 4 the production amount of monocyclic aromatic hydrocarbons is increased as compared with Comparative Example 1 that does not go through a diluent process, liquid quenching with toluene, a hydrogenation reaction process, a diluent recovery process, and a recycling process.
- a diluent process liquid quenching with toluene
- a hydrogenation reaction process a hydrogenation reaction process
- a diluent recovery process a recycling process.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
この単環芳香族炭化水素の製造方法は、炭素数6~8の単環芳香族炭化水素を製造する単環芳香族炭化水素の製造方法であって、原料油を触媒に接触させ反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程と、分解改質反応工程にて生成した生成物より分離された炭素数6~8の単環芳香族炭化水素を精製し、回収する精製回収工程と、精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程と、を有する。
Description
本発明は、単環芳香族炭化水素の製造方法に関する。
本願は、2011年5月24日に、日本に出願された特願2011-115643号に基づき優先権を主張し、その内容をここに援用する。
本願は、2011年5月24日に、日本に出願された特願2011-115643号に基づき優先権を主張し、その内容をここに援用する。
流動接触分解(以下、「FCC」という。)装置で生成する分解軽油であるライトサイクル油(以下、「LCO」という。)は、多環芳香族炭化水素を多く含み、軽油または重油として利用されていた。しかし、近年ではLCOから、高オクタン価ガソリン基材や、石油化学原料として利用でき、付加価値の高い炭素数6~8の単環芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等)を得ることが検討されている。
例えば、特許文献1~3では、ゼオライト触媒を用いて、LCO等に多く含まれる多環芳香族炭化水素から、単環芳香族炭化水素を製造する方法が提案されている。
例えば、特許文献1~3では、ゼオライト触媒を用いて、LCO等に多く含まれる多環芳香族炭化水素から、単環芳香族炭化水素を製造する方法が提案されている。
しかしながら、特許文献1~3に記載の方法では、炭素数6~8の単環芳香族炭化水素の収率が十分に高いとは言えなかった。
また、炭素数6~8の単環芳香族炭化水素であるベンゼン、トルエン、キシレンは、いずれも製品価値として高いものであるが、市場の状況によっては、ベンゼンやキシレンの需要がトルエンの需要を上回ることがある。その場合に、炭素数6~8の単環芳香族炭化水素として、特にベンゼンやキシレンをトルエンに比べて高い収率で製造するのが好ましいものの、従来ではベンゼンやキシレンをトルエンに比べて相対的に高い収率で製造するプロセスは提供されていない。
また、炭素数6~8の単環芳香族炭化水素であるベンゼン、トルエン、キシレンは、いずれも製品価値として高いものであるが、市場の状況によっては、ベンゼンやキシレンの需要がトルエンの需要を上回ることがある。その場合に、炭素数6~8の単環芳香族炭化水素として、特にベンゼンやキシレンをトルエンに比べて高い収率で製造するのが好ましいものの、従来ではベンゼンやキシレンをトルエンに比べて相対的に高い収率で製造するプロセスは提供されていない。
本発明は前記事情に鑑みてなされたもので、その目的とするところは、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造できるとともに、トルエンに対してベンゼンやキシレンを相対的に高い収率で製造することが可能な、単環芳香族炭化水素の製造方法を提供することにある。
本発明の第一の態様に係わる単環芳香族炭化水素の製造方法は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から炭素数6~8の単環芳香族炭化水素を製造する単環芳香族炭化水素の製造方法であって、
前記原料油を、結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程と、
前記分解改質反応工程にて生成した生成物より分離された炭素数6~8の単環芳香族炭化水素を精製し、回収する精製回収工程と、
前記精製回収工程で得られたトルエンの少なくとも一部を前記分解改質反応工程に戻す第1返送工程と、を有することを特徴とする。
前記原料油を、結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程と、
前記分解改質反応工程にて生成した生成物より分離された炭素数6~8の単環芳香族炭化水素を精製し、回収する精製回収工程と、
前記精製回収工程で得られたトルエンの少なくとも一部を前記分解改質反応工程に戻す第1返送工程と、を有することを特徴とする。
また、本発明の第二の態様に係わる前記単環芳香族炭化水素の製造方法は、前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を前記分解改質反応工程に戻す第2返送工程、を有する第一の態様に係わる前記単環芳香族炭化水素の製造方法であることが好ましい。
また、本発明の第三の態様に係わる前記単環芳香族炭化水素の製造方法は、前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を水素化する水素化反応工程と、前記水素化反応工程により得られた重質留分の水素化反応物を前記分解改質反応工程に戻すリサイクル工程と、を有する第一又は第二の態様に係わる前記単環芳香族炭化水素の製造方法であることが好ましい。
また、本発明の第四の態様に係わる前記単環芳香族炭化水素の製造方法は、前記第1返送工程が、前記水素化反応工程で用いられる水素化反応器の途中に、前記トルエンを供給する、第三の態様に係わる前記単環芳香族炭化水素の製造方法であることが好ましい。
また、本発明の第五の態様に係わる前記単環芳香族炭化水素の製造方法は、前記分解改質反応工程と前記水素化反応工程との間に、前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に炭化水素からなる希釈剤を加える希釈工程、を有する第三又は第四の態様に係わる前記単環芳香族炭化水素の製造方法であることが好ましい。
また、本発明の第六の態様に係わる前記単環芳香族炭化水素の製造方法は、前記希釈剤として、前記精製回収工程で得られたトルエンの少なくとも一部を用いる、第五の態様に係わる前記単環芳香族炭化水素の製造方法であることが好ましい。
また、本発明の第七の態様に係わる前記単環芳香族炭化水素の製造方法は、前記水素化反応工程の後に、水素化反応工程にて得られた水素化反応物から希釈剤を分離除去し、回収して前記希釈工程の希釈剤として再利用する希釈剤回収工程を有する、第五の態様に係わる前記単環芳香族炭化水素の製造方法であることが好ましい。
本発明の単環芳香族炭化水素の製造方法によれば、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造することができる。
また、精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程を有するので、分解改質反応工程でトルエンに対して不均化などの反応をさせることにより、トルエンからベンゼンとキシレンとを得ることができる。したがって、特にベンゼンやキシレンの需要が相対的にトルエンよりも高い場合に、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンを選択的に製造することができる。
また、精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程を有するので、分解改質反応工程でトルエンに対して不均化などの反応をさせることにより、トルエンからベンゼンとキシレンとを得ることができる。したがって、特にベンゼンやキシレンの需要が相対的にトルエンよりも高い場合に、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンを選択的に製造することができる。
「第1の実施形態」
以下、本発明の単環芳香族炭化水素の製造方法の第1の実施形態について説明する。
図1は、本発明の単環芳香族炭化水素の製造方法の第1の実施形態を説明するための図であり、本実施形態の単環芳香族炭化水素の製造方法は、原料油から炭素数6~8の単環芳香族炭化水素を製造する方法である。
以下、本発明の単環芳香族炭化水素の製造方法の第1の実施形態について説明する。
図1は、本発明の単環芳香族炭化水素の製造方法の第1の実施形態を説明するための図であり、本実施形態の単環芳香族炭化水素の製造方法は、原料油から炭素数6~8の単環芳香族炭化水素を製造する方法である。
すなわち、本実施形態の単環芳香族炭化水素の製造方法は、図1に示す、各工程を有しているとよい。
(1)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程。
(2)分解改質反応工程にて生成した生成物を複数の留分に分離する分離工程。
(3)分離工程にて分離された単環芳香族炭化水素を精製し、回収する精製回収工程。
(4)精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程。
(5)前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す第2返送工程。
(6)分離工程にて分離したガス成分から、分解改質反応工程にて副生した水素を回収する水素回収工程。
上記(1)~(6)の工程のうち、(1),(3),(4)の工程は第一の態様に含まれる工程であり、(2),(5),(6)の工程は任意の工程であって、(5)の工程は第二の態様に含まれている。
(1)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程。
(2)分解改質反応工程にて生成した生成物を複数の留分に分離する分離工程。
(3)分離工程にて分離された単環芳香族炭化水素を精製し、回収する精製回収工程。
(4)精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程。
(5)前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す第2返送工程。
(6)分離工程にて分離したガス成分から、分解改質反応工程にて副生した水素を回収する水素回収工程。
上記(1)~(6)の工程のうち、(1),(3),(4)の工程は第一の態様に含まれる工程であり、(2),(5),(6)の工程は任意の工程であって、(5)の工程は第二の態様に含まれている。
以下、各工程について具体的に説明する。
<分解改質反応工程>
分解改質反応工程では、原料油を単環芳香族炭化水素製造用触媒に接触させて、原料油に含まれる飽和炭化水素を水素供与源とし、飽和炭化水素からの水素移行反応によって多環芳香族炭化水素を部分的に水素化し、開環させて単環芳香族炭化水素に転換する。また、原料油中もしくは分離過程で得られる飽和炭化水素を環化、脱水素することによっても単環芳香族炭化水素に転換できる。さらには、炭素数9以上の単環芳香族炭化水素を分解することによって、炭素数6~8の単環芳香族炭化水素を得ることもできる。これにより、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物が得られる。また、後述するように第1返送工程を経てトルエンの少なくとも一部は分解改質反応工程に戻されるが、このトルエンは前記単環芳香族炭化水素製造用触媒と接触することなどによって不均化、トランスアルキル、脱メチルなどの反応を起こす。これにより、トルエンからベンゼンとキシレンとが生成する。
なお、第1返送工程を経たトルエンの一部を、分解改質反応工程とは別のベンゼン、キシレン等への転化工程に送り、その転化生成物を上記精製回収工程に循環させて、単環芳香族炭化水素のうちベンゼン、キシレンの収率を増やすことも可能である。
<分解改質反応工程>
分解改質反応工程では、原料油を単環芳香族炭化水素製造用触媒に接触させて、原料油に含まれる飽和炭化水素を水素供与源とし、飽和炭化水素からの水素移行反応によって多環芳香族炭化水素を部分的に水素化し、開環させて単環芳香族炭化水素に転換する。また、原料油中もしくは分離過程で得られる飽和炭化水素を環化、脱水素することによっても単環芳香族炭化水素に転換できる。さらには、炭素数9以上の単環芳香族炭化水素を分解することによって、炭素数6~8の単環芳香族炭化水素を得ることもできる。これにより、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物が得られる。また、後述するように第1返送工程を経てトルエンの少なくとも一部は分解改質反応工程に戻されるが、このトルエンは前記単環芳香族炭化水素製造用触媒と接触することなどによって不均化、トランスアルキル、脱メチルなどの反応を起こす。これにより、トルエンからベンゼンとキシレンとが生成する。
なお、第1返送工程を経たトルエンの一部を、分解改質反応工程とは別のベンゼン、キシレン等への転化工程に送り、その転化生成物を上記精製回収工程に循環させて、単環芳香族炭化水素のうちベンゼン、キシレンの収率を増やすことも可能である。
なお、この生成物には、単環芳香族炭化水素や重質留分以外にも、水素、メタン、エタン、エチレン、LPG(プロパン、プロピレン、ブタン、ブテン等)などが含まれる。また、重質留分中には、ナフタレン、メチルナフタレン、ジメチルナフタレン等の2環芳香族炭化水素が多く含まれ、さらにアントラセン等の3環以上の芳香族炭化水素も原料油によっては含まれている。本願においては、これら2環芳香族炭化水素と3環以上の芳香族炭化水素とを合わせて、多環芳香族炭化水素と記している。
この分解改質反応工程では、原料油中のナフテノベンゼン類、パラフィン類、ナフテン類等の成分については単環芳香族炭化水素を製造することでその多くが消失する。また、多環芳香族炭化水素は、一部は分解並びに飽和炭化水素との水素移行により単環芳香族炭化水素へ転換されるが、同時にアルキル側鎖が切断されることにより、主にナフタレン、メチルナフタレン、ジメチルナフタレンといった側鎖の少ない2環芳香族炭化水素も副生される。したがって、この分解改質反応工程においては、単環芳香族炭化水素が高収率で製造されると同時に、2環芳香族炭化水素も炭素数9以上の重質留分として副生される。
(原料油)
本実施形態で使用される原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の油である。10容量%留出温度が140℃未満の油では、軽質のものから単環芳香族炭化水素を製造することになり、本実施形態の主旨にそぐわなくなる。また、90容量%留出温度が380℃を超える油を用いた場合には、単環芳香族炭化水素の収率が低くなる上に、単環芳香族炭化水素製造用触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にある。
原料油の10容量%留出温度は150℃以上であることが好ましく、原料油の90容量%留出温度は360℃以下であることが好ましい。
本実施形態で使用される原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の油である。10容量%留出温度が140℃未満の油では、軽質のものから単環芳香族炭化水素を製造することになり、本実施形態の主旨にそぐわなくなる。また、90容量%留出温度が380℃を超える油を用いた場合には、単環芳香族炭化水素の収率が低くなる上に、単環芳香族炭化水素製造用触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にある。
原料油の10容量%留出温度は150℃以上であることが好ましく、原料油の90容量%留出温度は360℃以下であることが好ましい。
なお、ここでいう10容量%留出温度、90容量%留出温度とは、JIS K2254「石油製品-蒸留試験方法」に準拠して測定される値を意味する。
10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油としては、例えば、LCO、LCOの水素化精製油、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油などが挙げられる。
10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油としては、例えば、LCO、LCOの水素化精製油、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油などが挙げられる。
多環芳香族炭化水素は反応性が低く、本実施形態の分解改質反応工程では単環芳香族炭化水素に転換されにくい物質である。しかし、一方で、後述する第2実施形態における水素化反応工程にて水素化されるとナフテノベンゼン類に転換され、再び分解改質反応工程にリサイクル供給されることで単環芳香族炭化水素に転換可能である。そのため、原料油において多環芳香族炭化水素を多く含むことに関しては特に限定されない。ただし、多環芳香族炭化水素の中でも3環以上の芳香族炭化水素は、水素化反応工程において多くの水素を消費し、かつ水素化反応物であっても分解改質反応工程における反応性が低いため、多く含むことは好ましくない。したがって、原料油中の3環以上の芳香族炭化水素は、25容量%以下であることが好ましく、15容量%以下であることがより好ましい。
なお、水素化反応工程でナフテノベンゼンに転換される2環芳香族炭化水素を含有し、かつ3環以上の芳香族炭化水素を削減するための原料油としては、例えば原料油の90容量%留出温度が330℃以下であることがより好ましい。
また、ここでいう多環芳香族炭化水素とは、JPI-5S-49「石油製品-炭化水素タイプ試験方法-高速液体クロマトグラフ法」に準拠して測定、あるいはFIDガスクロマトグラフ法または2次元ガスクロマトグラフ法にて分析される2環芳香族炭化水素含有量(2環芳香族分)、および3環以上の芳香族炭化水素含有量(3環以上の芳香族分)の合計値を意味する。以降、多環芳香族炭化水素、2環芳香族炭化水素、3環以上の芳香族炭化水素の含有量が容量%で示されている場合は、JPI-5S-49に準拠して測定されたものであり、質量%で示されている場合は、FIDガスクロマトグラフ法または2次元ガスクロマトグラフ法に基づいて測定されたものである。
また、ここでいう多環芳香族炭化水素とは、JPI-5S-49「石油製品-炭化水素タイプ試験方法-高速液体クロマトグラフ法」に準拠して測定、あるいはFIDガスクロマトグラフ法または2次元ガスクロマトグラフ法にて分析される2環芳香族炭化水素含有量(2環芳香族分)、および3環以上の芳香族炭化水素含有量(3環以上の芳香族分)の合計値を意味する。以降、多環芳香族炭化水素、2環芳香族炭化水素、3環以上の芳香族炭化水素の含有量が容量%で示されている場合は、JPI-5S-49に準拠して測定されたものであり、質量%で示されている場合は、FIDガスクロマトグラフ法または2次元ガスクロマトグラフ法に基づいて測定されたものである。
(反応形式)
原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応形式としては、固定床、移動床、流動床等が挙げられる。本実施形態においては、重質分を原料とするため、触媒に付着したコーク分を連続的に除去可能で、かつ安定的に反応を行うことができる流動床が好ましい。更に、反応器と再生器との間を触媒が循環し、連続的に反応-再生を繰り返すことができる、連続再生式流動床が特に好ましい。なお、流動床としては、通常ベッドクラッキング型とライザークラッキング型のものがあるが、本実施形態の場合は、ベッドクラッキング型によって、温和な条件で反応を行うことが望ましい。単環芳香族炭化水素製造用触媒と接触する際の原料油は、気相状態であることが好ましい。また、原料は、必要に応じてガスによって希釈してもよい。
原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応形式としては、固定床、移動床、流動床等が挙げられる。本実施形態においては、重質分を原料とするため、触媒に付着したコーク分を連続的に除去可能で、かつ安定的に反応を行うことができる流動床が好ましい。更に、反応器と再生器との間を触媒が循環し、連続的に反応-再生を繰り返すことができる、連続再生式流動床が特に好ましい。なお、流動床としては、通常ベッドクラッキング型とライザークラッキング型のものがあるが、本実施形態の場合は、ベッドクラッキング型によって、温和な条件で反応を行うことが望ましい。単環芳香族炭化水素製造用触媒と接触する際の原料油は、気相状態であることが好ましい。また、原料は、必要に応じてガスによって希釈してもよい。
(単環芳香族炭化水素製造用触媒)
単環芳香族炭化水素製造用触媒は、結晶性アルミノシリケートを含有する。
単環芳香族炭化水素製造用触媒は、結晶性アルミノシリケートを含有する。
[結晶性アルミノシリケート]
結晶性アルミノシリケートは、単環芳香族炭化水素の収率をより高くできることから、中細孔ゼオライトおよび/または大細孔ゼオライトであることが好ましい。
中細孔ゼオライトは、10員環の骨格構造を有するゼオライトであり、中細孔ゼオライトとしては、例えば、AEL型、EUO型、FER型、HEU型、MEL型、MFI型、NES型、TON型、WEI型の結晶構造のゼオライトが挙げられる。これらの中でも、単環芳香族炭化水素の収率をより高くできることから、MFI型が好ましい。
大細孔ゼオライトは、12員環の骨格構造を有するゼオライトであり、大細孔ゼオライトとしては、例えば、AFI型、ATO型、BEA型、CON型、FAU型、GME型、LTL型、MOR型、MTW型、OFF型の結晶構造のゼオライトが挙げられる。これらの中でも、工業的に使用できる点では、BEA型、FAU型、MOR型が好ましく、単環芳香族炭化水素の収率をより高くできることから、BEA型、MOR型がより好ましい。
結晶性アルミノシリケートは、単環芳香族炭化水素の収率をより高くできることから、中細孔ゼオライトおよび/または大細孔ゼオライトであることが好ましい。
中細孔ゼオライトは、10員環の骨格構造を有するゼオライトであり、中細孔ゼオライトとしては、例えば、AEL型、EUO型、FER型、HEU型、MEL型、MFI型、NES型、TON型、WEI型の結晶構造のゼオライトが挙げられる。これらの中でも、単環芳香族炭化水素の収率をより高くできることから、MFI型が好ましい。
大細孔ゼオライトは、12員環の骨格構造を有するゼオライトであり、大細孔ゼオライトとしては、例えば、AFI型、ATO型、BEA型、CON型、FAU型、GME型、LTL型、MOR型、MTW型、OFF型の結晶構造のゼオライトが挙げられる。これらの中でも、工業的に使用できる点では、BEA型、FAU型、MOR型が好ましく、単環芳香族炭化水素の収率をより高くできることから、BEA型、MOR型がより好ましい。
結晶性アルミノシリケートは、中細孔ゼオライトおよび大細孔ゼオライト以外に、10員環以下の骨格構造を有する小細孔ゼオライト、14員環以上の骨格構造を有する超大細孔ゼオライトを含有してもよい。
ここで、小細孔ゼオライトとしては、例えば、ANA型、CHA型、ERI型、GIS型、KFI型、LTA型、NAT型、PAU型、YUG型の結晶構造のゼオライトが挙げられる。
超大細孔ゼオライトとしては、例えば、CLO型、VPI型の結晶構造のゼオライトが挙げられる。
ここで、小細孔ゼオライトとしては、例えば、ANA型、CHA型、ERI型、GIS型、KFI型、LTA型、NAT型、PAU型、YUG型の結晶構造のゼオライトが挙げられる。
超大細孔ゼオライトとしては、例えば、CLO型、VPI型の結晶構造のゼオライトが挙げられる。
分解改質反応工程を固定床の反応とする場合、単環芳香族炭化水素製造用触媒における結晶性アルミノシリケートの含有量は、単環芳香族炭化水素製造用触媒全体を100質量%とした際の60~100質量%が好ましく、70~100質量%がより好ましく、90~100質量%が特に好ましい。結晶性アルミノシリケートの含有量が60質量%以上であれば、単環芳香族炭化水素の収率を十分に高くできる。
分解改質反応工程を流動床の反応とする場合、単環芳香族炭化水素製造用触媒における結晶性アルミノシリケートの含有量は、単環芳香族炭化水素製造用触媒全体を100質量%とした際の20~60質量%が好ましく、30~60質量%がより好ましく、35~60質量%が特に好ましい。結晶性アルミノシリケートの含有量が20質量%以上であれば、単環芳香族炭化水素の収率を十分に高くできる。結晶性アルミノシリケートの含有量が60質量%を超えると、触媒に配合できるバインダーの含有量が少なくなり、流動床用として適さないものになることがある。
[ガリウム、亜鉛]
単環芳香族炭化水素製造用触媒には、必要に応じて、ガリウムおよび/または亜鉛を含有させることができる。ガリウムおよび/または亜鉛を含有させれば、単環芳香族炭化水素の生成割合をより多くできる。
単環芳香族炭化水素製造用触媒におけるガリウム含有の形態としては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートにガリウムが担持されたもの(ガリウム担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
単環芳香族炭化水素製造用触媒には、必要に応じて、ガリウムおよび/または亜鉛を含有させることができる。ガリウムおよび/または亜鉛を含有させれば、単環芳香族炭化水素の生成割合をより多くできる。
単環芳香族炭化水素製造用触媒におけるガリウム含有の形態としては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートにガリウムが担持されたもの(ガリウム担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
単環芳香族炭化水素製造用触媒における亜鉛含有の形態としては、結晶性アルミノシリケートの格子骨格内に亜鉛が組み込まれたもの(結晶性アルミノジンコシリケート)、結晶性アルミノシリケートに亜鉛が担持されたもの(亜鉛担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、SiO4、AlO4およびGaO4/ZnO4構造が骨格中に存在する構造を有する。また、結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、例えば、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウムまたは亜鉛を挿入する方法、または結晶性ガロシリケートまたは結晶性ジンコシリケートの格子骨格中にアルミニウムを挿入する方法により得られる。
結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、SiO4、AlO4およびGaO4/ZnO4構造が骨格中に存在する構造を有する。また、結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、例えば、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウムまたは亜鉛を挿入する方法、または結晶性ガロシリケートまたは結晶性ジンコシリケートの格子骨格中にアルミニウムを挿入する方法により得られる。
ガリウム担持結晶性アルミノシリケートは、結晶性アルミノシリケートにガリウムをイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いるガリウム源としては、特に限定されないが、硝酸ガリウム、塩化ガリウム等のガリウム塩、酸化ガリウム等が挙げられる。
亜鉛担持結晶性アルミノシリケートは、結晶性アルミノシリケートに亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いる亜鉛源としては、特に限定されないものの、硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。
亜鉛担持結晶性アルミノシリケートは、結晶性アルミノシリケートに亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いる亜鉛源としては、特に限定されないものの、硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。
単環芳香族炭化水素製造用触媒がガリウムおよび/または亜鉛を含有する場合、単環芳香族炭化水素製造用触媒におけるガリウムおよび/または亜鉛の含有量は、触媒全体を100質量%とした際の0.01~5.0質量%であることが好ましく、0.05~2.0質量%であることがより好ましい。ガリウムおよび/または亜鉛の含有量が0.01質量%以上であれば、単環芳香族炭化水素の生成割合をより多くでき、5.0質量%以下であれば、単環芳香族炭化水素の収率をより高くできる。
[リン、ホウ素]
単環芳香族炭化水素製造用触媒においては、リンおよび/またはホウ素を含有することが好ましい。単環芳香族炭化水素製造用触媒がリンおよび/またはホウ素を含有すれば、単環芳香族炭化水素の収率の経時的な低下を防止でき、また、触媒表面のコーク生成を抑制できる。
単環芳香族炭化水素製造用触媒においては、リンおよび/またはホウ素を含有することが好ましい。単環芳香族炭化水素製造用触媒がリンおよび/またはホウ素を含有すれば、単環芳香族炭化水素の収率の経時的な低下を防止でき、また、触媒表面のコーク生成を抑制できる。
単環芳香族炭化水素製造用触媒にリンを含有させる方法としては、例えば、イオン交換法、含浸法等により、結晶性アルミノシリケートまたは結晶性アルミノガロシリケートまたは結晶性アルミノジンコシリケートにリンを担持する方法、ゼオライト合成時にリン化合物を含有させて結晶性アルミノシリケートの骨格内の一部をリンと置き換える方法、ゼオライト合成時にリンを含有した結晶促進剤を用いる方法、などが挙げられる。その際に用いるリン酸イオン含有水溶液としては、特に限定されないものの、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウム、およびその他の水溶性リン酸塩などを任意の濃度で水に溶解させて調製したものを好ましく使用できる。
単環芳香族炭化水素製造用触媒にホウ素を含有させる方法としては、例えば、イオン交換法、含浸法等により、結晶性アルミノシリケートまたは結晶性アルミノガロシリケートまたは結晶性アルミノジンコシリケートにホウ素を担持する方法、ゼオライト合成時にホウ素化合物を含有させて結晶性アルミノシリケートの骨格内の一部をホウ素と置き換える方法、ゼオライト合成時にホウ素を含有した結晶促進剤を用いる方法、などが挙げられる。
単環芳香族炭化水素製造用触媒におけるリンおよび/またはホウ素の含有量は、触媒全体を100質量%とした際の0.1~10質量%であることが好ましく、0.5~9質量%であることがより好ましく、0.5~8質量%であることがさらに好ましい。リンおよび/またはホウ素の含有量が0.1質量%以上であれば、経時的な収率低下をより防止でき、10質量%以下であれば、単環芳香族炭化水素の収率をより高くできる。
[形状]
単環芳香族炭化水素製造用触媒は、反応形式に応じて、例えば、粉末状、粒状、ペレット状等にされる。例えば、流動床の場合には粉末状にされ、固定床の場合には粒状またはペレット状にされる。流動床で用いる触媒の平均粒子径は30~180μmが好ましく、50~100μmがより好ましい。また、流動床で用いる触媒のかさ密度は0.4~1.8g/ccが好ましく、0.5~1.0g/ccがより好ましい。
単環芳香族炭化水素製造用触媒は、反応形式に応じて、例えば、粉末状、粒状、ペレット状等にされる。例えば、流動床の場合には粉末状にされ、固定床の場合には粒状またはペレット状にされる。流動床で用いる触媒の平均粒子径は30~180μmが好ましく、50~100μmがより好ましい。また、流動床で用いる触媒のかさ密度は0.4~1.8g/ccが好ましく、0.5~1.0g/ccがより好ましい。
なお、平均粒子径は、ふるいによる分級で得られた粒径分布において50質量%となる粒径を表し、かさ密度はJIS規格R9301-2-3の方法で測定された値である。
粒状またはペレット状の触媒を得る場合には、必要に応じて、バインダーとして触媒に不活性な酸化物を配合した後、各種成形機を用いて成形すればよい。
単環芳香族炭化水素製造用触媒がバインダー等の無機酸化物を含有する場合、バインダーとしてリンを含むものを用いても構わない。
粒状またはペレット状の触媒を得る場合には、必要に応じて、バインダーとして触媒に不活性な酸化物を配合した後、各種成形機を用いて成形すればよい。
単環芳香族炭化水素製造用触媒がバインダー等の無機酸化物を含有する場合、バインダーとしてリンを含むものを用いても構わない。
(反応温度)
原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応温度については、特に制限されないものの、400~650℃とすることが好ましい。反応温度の下限は400℃以上であれば原料油を容易に反応させることができ、より好ましくは450℃以上である。また、反応温度の上限は650℃以下であれば単環芳香族炭化水素の収率を十分に高くでき、より好ましくは600℃以下である。
原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応温度については、特に制限されないものの、400~650℃とすることが好ましい。反応温度の下限は400℃以上であれば原料油を容易に反応させることができ、より好ましくは450℃以上である。また、反応温度の上限は650℃以下であれば単環芳香族炭化水素の収率を十分に高くでき、より好ましくは600℃以下である。
(反応圧力)
原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応圧力については、1.5MPaG以下とすることが好ましく、1.0MPaG以下とすることがより好ましい。反応圧力が1.5MPaG以下であれば、軽質ガスの副生を抑制できる上に、反応装置の耐圧性を低くできる。
原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応圧力については、1.5MPaG以下とすることが好ましく、1.0MPaG以下とすることがより好ましい。反応圧力が1.5MPaG以下であれば、軽質ガスの副生を抑制できる上に、反応装置の耐圧性を低くできる。
(接触時間)
原料油と単環芳香族炭化水素製造用触媒との接触時間については、所望する反応が実質的に進行すれば特に制限はされないものの、例えば、単環芳香族炭化水素製造用触媒上のガス通過時間で1~300秒が好ましく、さらに下限を5秒、上限を150秒とすることがより好ましい。接触時間が1秒以上であれば、確実に反応させることができ、接触時間が300秒以下であれば、過度のコーキング等による触媒への炭素質の蓄積を抑制できる。または分解による軽質ガスの発生量を抑制できる。
原料油と単環芳香族炭化水素製造用触媒との接触時間については、所望する反応が実質的に進行すれば特に制限はされないものの、例えば、単環芳香族炭化水素製造用触媒上のガス通過時間で1~300秒が好ましく、さらに下限を5秒、上限を150秒とすることがより好ましい。接触時間が1秒以上であれば、確実に反応させることができ、接触時間が300秒以下であれば、過度のコーキング等による触媒への炭素質の蓄積を抑制できる。または分解による軽質ガスの発生量を抑制できる。
<分離工程>
分離工程では、分解改質反応工程で生成した生成物を複数の留分に分離する。
複数の留分に分離するには、公知の蒸留装置、気液分離装置を用いればよい。蒸留装置の一例としては、ストリッパーのような多段蒸留装置により複数の留分を蒸留分離できるものが挙げられる。気液分離装置の一例としては、気液分離槽と、該気液分離槽に前記生成物を導入する生成物導入管と、前記気液分離槽の上部に設けられたガス成分流出管と、前記気液分離槽の下部に設けられた液成分流出管とを具備するものが挙げられる。
分離工程では、分解改質反応工程で生成した生成物を複数の留分に分離する。
複数の留分に分離するには、公知の蒸留装置、気液分離装置を用いればよい。蒸留装置の一例としては、ストリッパーのような多段蒸留装置により複数の留分を蒸留分離できるものが挙げられる。気液分離装置の一例としては、気液分離槽と、該気液分離槽に前記生成物を導入する生成物導入管と、前記気液分離槽の上部に設けられたガス成分流出管と、前記気液分離槽の下部に設けられた液成分流出管とを具備するものが挙げられる。
分離工程では、少なくともガス成分と液体留分とを分離するとともに、該液体留分を、さらに複数の留分に分離する。このような分離工程の例としては、主として炭素数4以下の成分(例えば、水素、メタン、エタン、LPG等)を含むガス成分と液体留分とに分離する形態、炭素数2以下の成分(例えば、水素、メタン、エタン)を含むガス成分と液体留分とに分離する形態がある。また、前記液体留分をさらに単環芳香族炭化水素を含む留分と重質留分とに分けて分離する形態、前記液体留分をさらにLPG、単環芳香族炭化水素を含む留分、重質留分に分けて分離する形態、前記液体留分をさらにLPG、単環芳香族炭化水素を含む留分、複数の重質留分に分けて分離する形態等が挙げられる。
本実施形態では、炭素数4以下の成分(例えば、水素、メタン、エタン、LPG等)を含むガス成分と液体留分とに分離するとともに、該液体留分をさらに炭素数6~8の単環芳香族炭化水素を含む留分と、これより重質の留分(炭素数9以上の重質留分)とに分けて分離する形態が好適に採用される。ここで、分離工程にて分離される炭素数9以上の重質留分は、原料油の性状や分解改質反応工程、分離工程等の条件によっても異なるものの、多環芳香族炭化水素の濃度が50~95質量%と非常に高くなっている。
<精製回収工程>
精製回収工程では、分離工程で得られた炭素数6~8の単環芳香族炭化水素を精製し、回収する。
この精製回収工程としては、前記分離工程にて単環芳香族炭化水素よりも重質の留分を分離しているため、炭素数6~8の単環芳香族炭化水素を含む留分からベンゼン/トルエン/キシレンをそれぞれ別々に回収する工程が採用される。ここで、単環芳香族炭化水素よりも重質の留分は、炭素数9以上の重質留分であり、多環芳香族炭化水素を主成分とし、特にナフタレン類等の2環芳香族炭化水素を多く含んでいる。
精製回収工程では、分離工程で得られた炭素数6~8の単環芳香族炭化水素を精製し、回収する。
この精製回収工程としては、前記分離工程にて単環芳香族炭化水素よりも重質の留分を分離しているため、炭素数6~8の単環芳香族炭化水素を含む留分からベンゼン/トルエン/キシレンをそれぞれ別々に回収する工程が採用される。ここで、単環芳香族炭化水素よりも重質の留分は、炭素数9以上の重質留分であり、多環芳香族炭化水素を主成分とし、特にナフタレン類等の2環芳香族炭化水素を多く含んでいる。
なお、前記分離工程として液体留分を分留しない形態を採用した場合には、この精製回収工程では単環芳香族炭化水素よりも重質の留分を、液体留分から分離、除去して、単環芳香族炭化水素としてのベンゼン/トルエン/キシレン(炭素数6~8の単環芳香族炭化水素)をそれぞれ別々に回収する工程が採用される。
また、前記分離工程で液体留分が良好に分留されておらず、炭素数6~8の単環芳香族炭化水素を回収した際に該単環芳香族炭化水素以外の留分を多く含んでいる場合には、特にこの留分中の炭素数9以上の重質留分を分離し、後述する第2返送工程に供給するのが好ましい。前記単環芳香族炭化水素よりも重質の留分は、多環芳香族炭化水素を主成分としており、特にナフタレン類等の2環芳香族炭化水素を多く含んでいる。
また、前記分離工程で液体留分が良好に分留されておらず、炭素数6~8の単環芳香族炭化水素を回収した際に該単環芳香族炭化水素以外の留分を多く含んでいる場合には、特にこの留分中の炭素数9以上の重質留分を分離し、後述する第2返送工程に供給するのが好ましい。前記単環芳香族炭化水素よりも重質の留分は、多環芳香族炭化水素を主成分としており、特にナフタレン類等の2環芳香族炭化水素を多く含んでいる。
<第1返送工程>
第1返送工程では、精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す。
すなわち、この第1返送工程では、精製回収工程で蒸留・精製されることでそれぞれ別々に得られたベンゼン/トルエン/キシレンのうち、トルエンの少なくとも一部を、分解改質反応工程に戻す。トルエンを返送する(戻す)ことにより、返送されたトルエンは前述したように分解改質反応工程で不均化等の反応を起こし、ベンゼンとキシレンになる。
すなわち、不均化反応が進行すれば理論上、2モルのトルエンから1モルのベンゼンと1モルのキシレンとが生成する。生成したベンゼンとキシレンとは、前記分離工程、前記精製回収工程を経ることにより、製品としてのベンゼン、キシレンとして回収される。これにより、ベンゼン、キシレンの収率を高めることができる。
第1返送工程では、精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す。
すなわち、この第1返送工程では、精製回収工程で蒸留・精製されることでそれぞれ別々に得られたベンゼン/トルエン/キシレンのうち、トルエンの少なくとも一部を、分解改質反応工程に戻す。トルエンを返送する(戻す)ことにより、返送されたトルエンは前述したように分解改質反応工程で不均化等の反応を起こし、ベンゼンとキシレンになる。
すなわち、不均化反応が進行すれば理論上、2モルのトルエンから1モルのベンゼンと1モルのキシレンとが生成する。生成したベンゼンとキシレンとは、前記分離工程、前記精製回収工程を経ることにより、製品としてのベンゼン、キシレンとして回収される。これにより、ベンゼン、キシレンの収率を高めることができる。
なお、トルエンを分解改質反応工程に返送する(戻す)量については、分解改質反応工程において、前述したように原料油から炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る反応を損なうことなく、前記したトルエンの不均化等の反応が良好に起こる範囲の量とされる。このような量については、予め実験やシミュレーションによって求めておくことができる。
<第2返送工程>
第2返送工程では、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を、分解改質反応工程に戻す。すなわち、分離工程にて分離された炭素数9以上の重質留分を、分解改質反応工程に戻す。また、前記したように分離工程で液体留分が良好に分留されておらず、炭素数6~8の単環芳香族炭化水素(ベンゼン/トルエン/キシレン)を回収した際に該単環芳香族炭化水素以外に炭素数9以上の重質留分を含んでいる場合には、この留分を分離し、分解改質反応工程に戻す(第2返送工程に供給する)。
この第2返送工程は、前記第1返送工程とは別に独立して行ってもよいが、装置構成を簡略化するため、図1に示したように第1返送工程を構成する配管等の経路に、第2返送工程を構成する配管等の経路を合流させるように構成するのが好ましい。
第2返送工程では、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を、分解改質反応工程に戻す。すなわち、分離工程にて分離された炭素数9以上の重質留分を、分解改質反応工程に戻す。また、前記したように分離工程で液体留分が良好に分留されておらず、炭素数6~8の単環芳香族炭化水素(ベンゼン/トルエン/キシレン)を回収した際に該単環芳香族炭化水素以外に炭素数9以上の重質留分を含んでいる場合には、この留分を分離し、分解改質反応工程に戻す(第2返送工程に供給する)。
この第2返送工程は、前記第1返送工程とは別に独立して行ってもよいが、装置構成を簡略化するため、図1に示したように第1返送工程を構成する配管等の経路に、第2返送工程を構成する配管等の経路を合流させるように構成するのが好ましい。
このようにして炭素数9以上の重質留分を分解改質反応工程に戻すことにより、前述したようにこの炭素数9以上の単環芳香族炭化水素を分解することによって、炭素数6~8の単環芳香族炭化水素を得ることができる。また、炭素数9以上の単環芳香族炭化水素とトルエンとを共存させることによりトランスアルキル反応をより起こしやすくすることが可能となる。これらにより、炭素数6~8の単環芳香族炭化水素、特にベンゼン、キシレンの収率を高めることができる。
<水素回収工程>
水素回収工程では、分離工程にて得られたガス成分から水素を回収する。
水素を回収する方法としては、分離工程で得られたガス成分に含まれる水素とそれ以外のガスとを分離できれば、特に制限はなく、例えば圧力変動吸着法(PSA法)、深冷分離法、膜分離法などが挙げられる。
水素回収工程では、分離工程にて得られたガス成分から水素を回収する。
水素を回収する方法としては、分離工程で得られたガス成分に含まれる水素とそれ以外のガスとを分離できれば、特に制限はなく、例えば圧力変動吸着法(PSA法)、深冷分離法、膜分離法などが挙げられる。
本実施形態の単環芳香族炭化水素の製造方法にあっては、原料油を分解改質反応工程にて結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させるので、高い収率で炭素数6~8の単環芳香族炭化水素を製造することができる。
また、精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程を有するので、分解改質反応工程でトルエンに対して不均化等の反応をさせることにより、トルエンからベンゼンとキシレンとを得ることができる。したがって、特にベンゼンやキシレンの需要が相対的にトルエンよりも高い場合に、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンをより多く製造することができる。
さらに、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を、分解改質反応工程に戻す第2返送工程を有するので、この炭素数9以上の単環芳香族炭化水素を分解改質反応工程で分解することによって炭素数6~8の単環芳香族炭化水素を得ることができる。これにより、炭素数6~8の単環芳香族炭化水素、特にベンゼン、キシレンの収率を高めることができる。
また、精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程を有するので、分解改質反応工程でトルエンに対して不均化等の反応をさせることにより、トルエンからベンゼンとキシレンとを得ることができる。したがって、特にベンゼンやキシレンの需要が相対的にトルエンよりも高い場合に、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンをより多く製造することができる。
さらに、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を、分解改質反応工程に戻す第2返送工程を有するので、この炭素数9以上の単環芳香族炭化水素を分解改質反応工程で分解することによって炭素数6~8の単環芳香族炭化水素を得ることができる。これにより、炭素数6~8の単環芳香族炭化水素、特にベンゼン、キシレンの収率を高めることができる。
「第2の実施形態」
本発明の単環芳香族炭化水素の製造方法の第2の実施形態について説明する。
図2は、本発明の単環芳香族炭化水素の製造方法の第2の実施形態を説明するための図であり、本実施形態の単環芳香族炭化水素の製造方法も、原料油から炭素数6~8の単環芳香族炭化水素を製造する方法である。
本発明の単環芳香族炭化水素の製造方法の第2の実施形態について説明する。
図2は、本発明の単環芳香族炭化水素の製造方法の第2の実施形態を説明するための図であり、本実施形態の単環芳香族炭化水素の製造方法も、原料油から炭素数6~8の単環芳香族炭化水素を製造する方法である。
すなわち、本実施形態の単環芳香族炭化水素の製造方法は、図2に示す、各工程を有しているとよい。
(7)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程。
(8)分解改質反応工程にて生成した生成物を複数の留分に分離する分離工程。
(9)分離工程にて分離された単環芳香族炭化水素を精製し、回収する精製回収工程。
(10)精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程。
(11)前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す第2返送工程。
(12)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を水素化する水素化反応工程。
(13)水素化反応工程にて得られた水素化反応物を分解改質反応工程に戻すリサイクル工程。
(14)分離工程にて分離したガス成分から、分解改質反応工程にて副生した水素を回収する水素回収工程。
(15)水素回収工程にて回収した水素を水素化反応工程に供給する水素供給工程。
上記(7)~(15)の工程のうち、(7),(9),(10),(12),(13)の工程は本発明の第三の態様に含まれる工程であり、(8),(11),(14),(15)の工程は任意の工程である。
(7)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程。
(8)分解改質反応工程にて生成した生成物を複数の留分に分離する分離工程。
(9)分離工程にて分離された単環芳香族炭化水素を精製し、回収する精製回収工程。
(10)精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程。
(11)前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す第2返送工程。
(12)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を水素化する水素化反応工程。
(13)水素化反応工程にて得られた水素化反応物を分解改質反応工程に戻すリサイクル工程。
(14)分離工程にて分離したガス成分から、分解改質反応工程にて副生した水素を回収する水素回収工程。
(15)水素回収工程にて回収した水素を水素化反応工程に供給する水素供給工程。
上記(7)~(15)の工程のうち、(7),(9),(10),(12),(13)の工程は本発明の第三の態様に含まれる工程であり、(8),(11),(14),(15)の工程は任意の工程である。
(7)分解改質反応工程は、第1の実施形態における(1)分解改質反応工程と同様に行うことができる。
(8)分離工程は、第1の実施形態における(2)分離工程と同様に行うことができる。
(9)精製回収工程は、第1の実施形態における(3)精製回収工程と同様に行うことができる。
(10)第1返送工程は、後述する(12)水素化反応工程で用いられる水素化反応器の途中に、前記(9)精製回収工程で得られたトルエンの少なくとも一部を供給することで、トルエンを間接的に前記(7)分解改質反応工程に戻す。
(11)第2返送工程は、前記(7)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を、後述する(12)水素化反応工程に供することにより、前記炭素数9以上の重質留分を間接的に前記(7)分解改質反応工程に戻す。
(14)水素回収工程は、第1の実施形態における(6)水素回収工程と同様に行うことができる。
(8)分離工程は、第1の実施形態における(2)分離工程と同様に行うことができる。
(9)精製回収工程は、第1の実施形態における(3)精製回収工程と同様に行うことができる。
(10)第1返送工程は、後述する(12)水素化反応工程で用いられる水素化反応器の途中に、前記(9)精製回収工程で得られたトルエンの少なくとも一部を供給することで、トルエンを間接的に前記(7)分解改質反応工程に戻す。
(11)第2返送工程は、前記(7)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を、後述する(12)水素化反応工程に供することにより、前記炭素数9以上の重質留分を間接的に前記(7)分解改質反応工程に戻す。
(14)水素回収工程は、第1の実施形態における(6)水素回収工程と同様に行うことができる。
<水素化反応工程>
(12)水素化反応工程では、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を水素化する。具体的には、前記重質留分と水素とを水素化反応器に供給し、水素化触媒を用いて、混合物に含まれる多環芳香族炭化水素の少なくとも一部を水素化処理する。ここで、前記(11)第2返送工程は、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を水素化反応工程に供給する工程を含んで構成される。すなわち、第2返送工程は、この水素化反応工程とこれに続くリサイクル工程とを含むことにより、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す工程となっている。ただし、(11)第2返送工程としては、水素化反応工程、リサイクル工程とは別に、これら工程を経ることなく直接分解改質反応工程に戻すように独立して設けられていてもよい。その場合には、第2返送工程は実質的に2系統設けられたことになる。
(12)水素化反応工程では、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を水素化する。具体的には、前記重質留分と水素とを水素化反応器に供給し、水素化触媒を用いて、混合物に含まれる多環芳香族炭化水素の少なくとも一部を水素化処理する。ここで、前記(11)第2返送工程は、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を水素化反応工程に供給する工程を含んで構成される。すなわち、第2返送工程は、この水素化反応工程とこれに続くリサイクル工程とを含むことにより、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す工程となっている。ただし、(11)第2返送工程としては、水素化反応工程、リサイクル工程とは別に、これら工程を経ることなく直接分解改質反応工程に戻すように独立して設けられていてもよい。その場合には、第2返送工程は実質的に2系統設けられたことになる。
水素化反応工程には、分離工程やさらには精製回収工程で分離された炭素数9以上の重質留分が、供給されるようになっている。この水素化反応工程に供される重質留分、すなわち炭素数9以上の重質留分には、ナフタレン等の2環芳香族炭化水素(多環芳香族炭化水素)が多量に含まれている。
そこで、水素化反応工程では、この多環芳香族炭化水素を、芳香環が1つになるまで水素化することが好ましい。例えば、ナフタレンはテトラリン(ナフテノベンゼン)になるまで水素化することが好ましい。メチルナフタレンやジメチルナフタレン等のアルキルナフタレンについても、ナフテノベンゼン、すなわちテトラリン骨格を有する芳香環が一つの芳香族炭化水素とすることが好ましい。同様に、インデン類はインダン骨格を有する芳香族炭化水素に、アントラセン類はオクタヒドロアントラセン骨格を有する芳香族炭化水素に、フェナントレン類はオクタヒドロフェナントレン骨格を有する芳香族炭化水素に、とすることが好ましい。
芳香環が1つになるまで水素化すれば、後述するリサイクル工程にてこの水素化反応物を分解改質反応工程に戻した際に、該水素化反応物、特にテトラリン骨格を有する芳香族炭化水素が単環芳香族炭化水素に容易に変換される。このように分解改質反応工程での単環芳香族炭化水素の収率を高めるためには、この水素化反応工程で得られる水素化反応物における多環芳香族炭化水素の含有量を、40質量%以下にすることが好ましく、25質量%以下にすることがより好ましく、15質量%以下にすることがさらに好ましい。
また、得られる水素化反応物における多環芳香族炭化水素の含有量は、原料油の多環芳香族炭化水素含有量より少ないことが好ましい。水素化反応物における多環芳香族炭化水素の含有量、すなわち多環芳香族炭化水素の濃度については、水素化触媒量を増やすことや、反応圧力を高くすることによって該濃度を低くすることができる。ただし、多環芳香族炭化水素の全部を飽和炭化水素になるまで水素化処理する必要はない。過剰な水素化は、水素消費量の増加を招くとともに、発熱量の過度な増大を招いてしまう。
水素化反応工程における反応形式としては、固定床が好適に採用される。
水素化触媒としては、公知の水素化触媒(例えば、ニッケル触媒、パラジウム触媒、ニッケル-モリブデン系触媒、コバルト-モリブデン系触媒、ニッケル-コバルト-モリブデン系触媒、ニッケル-タングステン系触媒等)を用いることができる。
水素化反応温度は、使用する水素化触媒によっても異なるが、通常は100~450℃、より好ましくは200~400℃、さらに好ましくは250~380℃の範囲とされる。
水素化触媒としては、公知の水素化触媒(例えば、ニッケル触媒、パラジウム触媒、ニッケル-モリブデン系触媒、コバルト-モリブデン系触媒、ニッケル-コバルト-モリブデン系触媒、ニッケル-タングステン系触媒等)を用いることができる。
水素化反応温度は、使用する水素化触媒によっても異なるが、通常は100~450℃、より好ましくは200~400℃、さらに好ましくは250~380℃の範囲とされる。
水素化反応圧力としては、0.7MPa以上13MPa以下にすることが好ましい。特に、1MPa以上10MPa以下にすることがより好ましく、1MPa以上7MPa以下にすることがさらに好ましい。水素化圧力を13MPa以下にすれば、耐用圧力が比較的低い水素化反応器を使用でき、設備費を低減できる。また、水素回収工程にて回収される水素の圧力は通常13MPa以下であるから、回収された水素を昇圧せずに使用することができる。一方、0.7MPa以上にすれば、水素化反応の収率を充分に適正に維持することができる。
水素消費量は3000scfb(506Nm3/m3)以下であることが好ましく、2500scfb(422Nm3/m3)以下であることがより好ましく、1500scfb(253Nm3/m3)以下であることがさらに好ましい。
一方、水素消費量は、水素化反応の収率の点からは、300scfb(50Nm3/m3)以上であることが好ましい。
重質留分の液空間速度(LHSV)は0.1h-1以上20h-1以下にすることが好ましく、0.2h-1以上10h-1以下にすることがより好ましい。LHSVを20h-1以下とすれば、より低い水素化反応圧力にて多環芳香族炭化水素を十分に水素化することができる。一方、0.1-1以上とすることで、水素化反応器の大型化を避けることができる。
一方、水素消費量は、水素化反応の収率の点からは、300scfb(50Nm3/m3)以上であることが好ましい。
重質留分の液空間速度(LHSV)は0.1h-1以上20h-1以下にすることが好ましく、0.2h-1以上10h-1以下にすることがより好ましい。LHSVを20h-1以下とすれば、より低い水素化反応圧力にて多環芳香族炭化水素を十分に水素化することができる。一方、0.1-1以上とすることで、水素化反応器の大型化を避けることができる。
ここで、多環芳香族炭化水素、例えばその多くを占める2環芳香族炭化水素は、水素化反応時における発熱量が非常に大きい。したがって、多環芳香族炭化水素の含有比率が高い原料の場合、安定的に反応を行うためにも、反応温度の過度な上昇を抑える手法をとることが望ましい。本実施形態においても反応温度の抑制方法としては、一般的な手法を採用することが可能であり、通常の灯軽油脱硫装置に採用される循環水素ガスクエンチなどの手法を利用することができる。しかし、分離工程にて分離された重質留分は、多環芳香族炭化水素の濃度が例えば50~95質量%と非常に高くなっているため、水素クエンチのみで発熱を抑制しようとすると、二桁に近いクエンチ設備が必要となり、発熱抑制のための反応装置周りの構成が非常に煩雑になってしまう。また極めて大きな発熱量を伴う反応装置となることから、運転非常時におけるリスクが大きい装置と評価される。
そこで、本実施形態では、前記したように第1返送工程によって分解改質反応工程に戻すトルエンを、水素化反応工程で用いられる水素化反応器の途中(水素化反応器の入口と出口との間)に供給するようにしている。このようにトルエンを水素化反応器の途中に供給すると、トルエンはほぼ水素化されることなく、単に水素化反応器内の高温に晒されることで気化する。したがって、水素化反応器内から気化熱を奪うことにより、トルエンは冷却剤(クエンチ剤)として機能するようになる。すなわち、このようにトルエンを水素化反応器の途中に供給することにより、この水素化反応工程では多環芳香族炭化水素の水素化によって生じる発熱が抑えられ、従来の一般的な水素化反応器でも充分に適正な水素化反応を行わせることが可能になっている。これは、本発明の第四の態様に係わる方法である。
なお、トルエンの他に、精製回収工程で炭素数9以上の単環芳香族炭化水素を含む留分を分離した場合、分離工程にて炭素数9~10以上の単環芳香族炭化水素を含む留分を選択的に分離した場合などは、これらの留分もトルエンとあわせて冷却剤として用いることも可能である。さらに、トルエンに加えてトルエン以外の別の炭化水素を希釈剤として併用しても構わない。
なお、トルエンの他に、精製回収工程で炭素数9以上の単環芳香族炭化水素を含む留分を分離した場合、分離工程にて炭素数9~10以上の単環芳香族炭化水素を含む留分を選択的に分離した場合などは、これらの留分もトルエンとあわせて冷却剤として用いることも可能である。さらに、トルエンに加えてトルエン以外の別の炭化水素を希釈剤として併用しても構わない。
<リサイクル工程>
(13)リサイクル工程では、水素化反応工程にて得られた混合物の水素化反応物を、原料油に混合して、もしくは別々に分解改質反応工程に戻す。
混合物の水素化反応物を分解改質反応工程に戻すことにより、副生物であった重質留分も原料にして単環芳香族炭化水素を得ることができる。そのため、副生物量を削減できる上に、単環芳香族炭化水素の生成量を増やすことができる。また、水素化によって飽和炭化水素も生成するため、分解改質反応工程における水素移行反応を促進させることもできる。これらのことから、原料油の供給量に対する総括的な単環芳香族炭化水素の収率を向上させることができる。
ここで、水素化反応工程にて得られた重質留分の水素化反応物については、一旦ガス成分を分離除去した後、リサイクル工程を経て分解改質反応工程に戻す、あるいは一部を希釈剤として水素化反応工程に供することも可能である。
(13)リサイクル工程では、水素化反応工程にて得られた混合物の水素化反応物を、原料油に混合して、もしくは別々に分解改質反応工程に戻す。
混合物の水素化反応物を分解改質反応工程に戻すことにより、副生物であった重質留分も原料にして単環芳香族炭化水素を得ることができる。そのため、副生物量を削減できる上に、単環芳香族炭化水素の生成量を増やすことができる。また、水素化によって飽和炭化水素も生成するため、分解改質反応工程における水素移行反応を促進させることもできる。これらのことから、原料油の供給量に対する総括的な単環芳香族炭化水素の収率を向上させることができる。
ここで、水素化反応工程にて得られた重質留分の水素化反応物については、一旦ガス成分を分離除去した後、リサイクル工程を経て分解改質反応工程に戻す、あるいは一部を希釈剤として水素化反応工程に供することも可能である。
なお、リサイクル工程にて、水素化反応物は必ずしも全量、分解改質反応工程の原料油へリサイクルされなくても構わない。その場合、リサイクルされなかった水素化反応物を燃料基材として使用することもできる。
また、水素化処理せずに重質留分をそのまま分解改質反応工程に戻した場合には、多環芳香族炭化水素の反応性が低いため、単環芳香族炭化水素の収率はほとんど向上しない。
また、水素化処理せずに重質留分をそのまま分解改質反応工程に戻した場合には、多環芳香族炭化水素の反応性が低いため、単環芳香族炭化水素の収率はほとんど向上しない。
<水素供給工程>
水素供給工程では、水素回収工程にて得られた水素を水素化反応工程の水素化反応器に供給する。その際の水素供給量については、水素化反応工程に供する前記混合物の量に応じて調整される。また、必要であれば、水素圧力を調節する。
本実施形態のように水素供給工程を有することにより、前記分解改質反応工程にて副生した水素を用いて前記混合物を水素化することができる。副生水素にて一部もしくは全量の水素を賄うことにより、外部からの水素供給の一部もしくは全てを削減することが可能となる。
水素供給工程では、水素回収工程にて得られた水素を水素化反応工程の水素化反応器に供給する。その際の水素供給量については、水素化反応工程に供する前記混合物の量に応じて調整される。また、必要であれば、水素圧力を調節する。
本実施形態のように水素供給工程を有することにより、前記分解改質反応工程にて副生した水素を用いて前記混合物を水素化することができる。副生水素にて一部もしくは全量の水素を賄うことにより、外部からの水素供給の一部もしくは全てを削減することが可能となる。
本実施形態の単環芳香族炭化水素の製造方法にあっては、水素化反応工程とリサイクル工程とを有するので、副生物であった重質留分も原料にして単環芳香族炭化水素を得ることができる。そのため、副生物量を削減できる上に、単環芳香族炭化水素の生成量を増やすことができる。よって、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造することができる。
また、精製回収工程で得られたトルエンの少なくとも一部を水素化反応工程で用いられる水素化反応器の途中に供給するようにしているので、トルエンを冷却剤(クエンチ剤)として機能させることにより、水素化反応工程において多環芳香族炭化水素の水素化によって生じる発熱を抑えることができる。したがって、従来の一般的な水素化反応器でも充分に適正な水素化反応を行わせることができる。
また、トルエンは水素化反応工程で水素化されることなく、リサイクル工程を経て分解改質反応工程に戻される。したがって、分解改質反応工程でトルエンを不均化等の反応をさせることにより、第1の実施形態と同様に、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンをより多く製造することができる。
また、精製回収工程で得られたトルエンの少なくとも一部を水素化反応工程で用いられる水素化反応器の途中に供給するようにしているので、トルエンを冷却剤(クエンチ剤)として機能させることにより、水素化反応工程において多環芳香族炭化水素の水素化によって生じる発熱を抑えることができる。したがって、従来の一般的な水素化反応器でも充分に適正な水素化反応を行わせることができる。
また、トルエンは水素化反応工程で水素化されることなく、リサイクル工程を経て分解改質反応工程に戻される。したがって、分解改質反応工程でトルエンを不均化等の反応をさせることにより、第1の実施形態と同様に、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンをより多く製造することができる。
「第3の実施形態」
本発明の単環芳香族炭化水素の製造方法の第3の実施形態について説明する。
図3は、本発明の単環芳香族炭化水素の製造方法の第3の実施形態を説明するための図であり、本実施形態の単環芳香族炭化水素の製造方法も、原料油から炭素数6~8の単環芳香族炭化水素を製造する方法である。
本発明の単環芳香族炭化水素の製造方法の第3の実施形態について説明する。
図3は、本発明の単環芳香族炭化水素の製造方法の第3の実施形態を説明するための図であり、本実施形態の単環芳香族炭化水素の製造方法も、原料油から炭素数6~8の単環芳香族炭化水素を製造する方法である。
すなわち、本実施形態の単環芳香族炭化水素の製造方法は、図3に示す、各工程を有しているとよい。
(16)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程。
(17)分解改質反応工程にて生成した生成物を複数の留分に分離する分離工程。
(18)分離工程にて分離された単環芳香族炭化水素を精製し、回収する精製回収工程。
(19)精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程。
(20)前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す第2返送工程。
(21)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に希釈剤を加える希釈工程。
(22)希釈工程にて得られた混合物を水素化する水素化反応工程。
(23)水素化反応工程にて得られた混合物の水素化反応物を分解改質反応工程に戻すリサイクル工程。
(24)分離工程にて分離したガス成分から、分解改質反応工程にて副生した水素を回収する水素回収工程。
(25)水素回収工程にて回収した水素を水素化反応工程に供給する水素供給工程。
上記(16)~(25)の工程のうち、(16),(18),(19),(21),(22),(23)の工程は第五及び第六の態様に含まれる工程であり、(17),(20),(24),(25)の工程は任意の工程である。
(16)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程。
(17)分解改質反応工程にて生成した生成物を複数の留分に分離する分離工程。
(18)分離工程にて分離された単環芳香族炭化水素を精製し、回収する精製回収工程。
(19)精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程。
(20)前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す第2返送工程。
(21)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に希釈剤を加える希釈工程。
(22)希釈工程にて得られた混合物を水素化する水素化反応工程。
(23)水素化反応工程にて得られた混合物の水素化反応物を分解改質反応工程に戻すリサイクル工程。
(24)分離工程にて分離したガス成分から、分解改質反応工程にて副生した水素を回収する水素回収工程。
(25)水素回収工程にて回収した水素を水素化反応工程に供給する水素供給工程。
上記(16)~(25)の工程のうち、(16),(18),(19),(21),(22),(23)の工程は第五及び第六の態様に含まれる工程であり、(17),(20),(24),(25)の工程は任意の工程である。
(16)分解改質反応工程は、第1の実施形態における(1)分解改質反応工程と同様に行うことができる。
(17)分離工程は、第1の実施形態における(2)分離工程と同様に行うことができる。
(18)精製回収工程は、第1の実施形態における(3)精製回収工程と同様に行うことができる。
(19)第1返送工程は、トルエンの少なくとも一部を後述する(21)希釈工程に供給することで、トルエンを間接的に前記(16)分解改質反応工程に戻す。
(20)第2返送工程は、前記(16)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を、後述する(21)希釈工程を介して(22)水素化反応工程に供することにより、前記炭素数9以上の重質留分を間接的に前記(16)分解改質反応工程に戻す。
(22)水素化反応工程は、第2の実施形態における(12)水素化反応工程と同様に行うことができる。
(23)リサイクル工程は、第2の実施形態における(13)リサイクル工程と同様に行うことができる。
(24)水素回収工程は、第1の実施形態における(6)水素回収工程と同様に行うことができる。
(25)水素供給工程は、第2の実施形態における(15)水素供給工程と同様に行うことができる。
(17)分離工程は、第1の実施形態における(2)分離工程と同様に行うことができる。
(18)精製回収工程は、第1の実施形態における(3)精製回収工程と同様に行うことができる。
(19)第1返送工程は、トルエンの少なくとも一部を後述する(21)希釈工程に供給することで、トルエンを間接的に前記(16)分解改質反応工程に戻す。
(20)第2返送工程は、前記(16)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を、後述する(21)希釈工程を介して(22)水素化反応工程に供することにより、前記炭素数9以上の重質留分を間接的に前記(16)分解改質反応工程に戻す。
(22)水素化反応工程は、第2の実施形態における(12)水素化反応工程と同様に行うことができる。
(23)リサイクル工程は、第2の実施形態における(13)リサイクル工程と同様に行うことができる。
(24)水素回収工程は、第1の実施形態における(6)水素回収工程と同様に行うことができる。
(25)水素供給工程は、第2の実施形態における(15)水素供給工程と同様に行うことができる。
<希釈工程>
(21)希釈工程では、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に、炭化水素からなる希釈剤を加え、前記炭素数9以上の重質留分と該希釈剤とからなる混合物中の多環芳香族炭化水素濃度を、前記重質留分中の多環芳香族炭化水素濃度より低くする。これにより、後述する水素化反応工程に供する重質留分中の、多環芳香族炭化水素濃度を適正な濃度に下げる。
(21)希釈工程では、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に、炭化水素からなる希釈剤を加え、前記炭素数9以上の重質留分と該希釈剤とからなる混合物中の多環芳香族炭化水素濃度を、前記重質留分中の多環芳香族炭化水素濃度より低くする。これにより、後述する水素化反応工程に供する重質留分中の、多環芳香族炭化水素濃度を適正な濃度に下げる。
本実施形態では、希釈剤として、前記精製回収工程で得られたトルエンの少なくとも一部、すなわち第1返送工程によって分解改質反応工程に戻すトルエンを用いる。したがって、本実施形態において第1返送工程は、希釈工程、水素化反応工程、リサイクル工程を含んで構成される。なお、図3には示していないものの、前記精製回収工程で得られたトルエンの他の一部について、第2の実施形態と同様に、水素化反応器(水素化反応工程)の途中(水素化反応器の入口と出口との間)に供給し、冷却剤(クエンチ剤)として機能させるようにしてもよい。
前記分離工程にて分離され、水素化反応工程に直接供するための重質留分(混合物から希釈剤を除いた重質留分)は、その多環芳香族炭化水素の濃度が例えば50~95質量%と非常に高くなっている。この多環芳香族炭化水素、例えばその多くを占める2環芳香族炭化水素は、水素化反応時における発熱量が非常に大きい。
そこで、本実施形態では、トルエンを希釈剤として用い、希釈工程によって予め水素化反応工程に供する油(混合物)中の多環芳香族炭化水素の濃度を調整し、多環芳香族炭化水素の水素化によって生じる発熱を抑え、従来の一般的な水素化反応器でも充分に適正な水素化反応を行わせることができるようにしている。
そこで、本実施形態では、トルエンを希釈剤として用い、希釈工程によって予め水素化反応工程に供する油(混合物)中の多環芳香族炭化水素の濃度を調整し、多環芳香族炭化水素の水素化によって生じる発熱を抑え、従来の一般的な水素化反応器でも充分に適正な水素化反応を行わせることができるようにしている。
なお、前記トルエンに加えて、別の(トルエン以外の)炭化水素を希釈剤として併用することもできる。また、第1の実施形態のように精製回収工程で得られたトルエンの少なくとも一部を直接分解改質反応工程に戻す第1返送工程を有し、又は、該トルエンを第2の実施形態のように水素化反応工程に供することで間接的に分解改質反応工程に戻す第1返送工程を有している場合には、この希釈工程における希釈剤として、前記トルエン以外の炭化水素のみを用いることもできる。
トルエン以外の炭化水素希釈剤としては、水素化反応工程にて、多環芳香族炭化水素に比べ水素化されにくい炭化水素、例えばトリメチルベンゼン、テトラメチルベンゼン(各種異性体を含む)等の単環芳香族炭化水素、シクロヘキサン類、デカリン類等のナフテン、さらにはパラフィン等を含む炭化水素が好適に用いられる。その際、希釈剤と重質留分が相溶する原料を選定する必要があり、多環芳香族炭化水素の濃度が極めて高い場合においては、単環芳香族炭化水素等を選定することが望ましい。
一方、水素化反応条件を例えば7MPa以上の高圧とする場合は、希釈剤である単環芳香族炭化水素自身が水素化されてしまう場合もある。このように実際の水素化反応条件に合わせて適切な溶剤を選定する必要がある。なお、単環芳香族炭化水素を希釈剤として回収・再利用する場合においては、単環芳香族炭化水素もまた飽和炭化水素となり希釈剤として利用できるので問題なく、希釈剤をそのまま分解改質反応工程にて使用することもまた問題ない。しかしこの場合、水素化反応工程において充分な発熱抑制効果が得られなくなる可能性があるので留意が必要である。
また、希釈剤としては、前記重質留分より多環芳香族炭化水素の濃度(含有量)が低ければ、該多環芳香族炭化水素を含むものであってもよいが、その際は多環芳香族炭化水素を含まない希釈剤に比べて、発熱抑制の効果は小さくなる。具体的には、前記の単環芳香族炭化水素やナフテン、パラフィン等を含み、かつ多環芳香族炭化水素も含有してなる製油所系基材、例えば、前記原料油としても用いられるLCO等の各種分解系基材、直留系基材等も使用可能である。
また、このような希釈剤の多環芳香族炭化水素濃度については、形成する混合物中の多環芳香族炭化水素濃度を適正な濃度に下げることが可能な濃度であればよく、好ましく50質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下とされる。
このような希釈剤は、例えば別途用意した貯留槽に貯留され、ここから前記重質留分を移送するラインに供給され、該重質留分と混合される。これにより、得られる混合物中の多環芳香族炭化水素濃度を適正な濃度に下げる。
このような希釈剤は、例えば別途用意した貯留槽に貯留され、ここから前記重質留分を移送するラインに供給され、該重質留分と混合される。これにより、得られる混合物中の多環芳香族炭化水素濃度を適正な濃度に下げる。
また、トルエンや前記したトルエン以外の炭化水素を用いた希釈工程では、前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分と希釈剤とからなる混合物、すなわち実際に水素化反応工程に供する混合物中の多環芳香族炭化水素濃度が、5質量%以上50質量%以下となるように、前記希釈剤を前記重質留分に加えて混合物を形成するのが好ましい。また、混合物中の多環芳香族炭化水素濃度が、15質量%以上35質量%以下となるように希釈剤を加えることがより好ましい。
混合物中の多環芳香族炭化水素濃度を50質量%以下とすることで、後述する水素化反応工程での水素化反応による発熱を抑え、水素化反応器での極端な反応温度の上昇を防止し、適正な水素化反応(例えば2環芳香族炭化水素からナフテノベンゼン類への転化)をなさせることができる。また、一般的な水素化反応器の使用が可能になる。さらに、混合物中の多環芳香族炭化水素濃度を5質量%以上とすることで、水素化反応工程の主目的である多環芳香族炭化水素からのナフテノベンゼン類への転化を、所望の効率で行うことができる。
ただし、混合物中の多環芳香族炭化水素濃度が低すぎると、多環芳香族炭化水素からのナフテノベンゼン類への転化効率が、コスト上十分に採算がとれる効率とはならず、例えば水素化反応器を大型化するなどの必要がある。したがって、より転化効率を高くするためには、前記したように混合物中の多環芳香族炭化水素濃度を15質量%以上とすることがより好ましい。また、水素化反応による発熱をより十分に抑えるためには、混合物中の多環芳香族炭化水素濃度を35質量%以下とすることがより好ましい。
また、この希釈工程においては、混合物中の多環芳香族炭化水素濃度を前記したような濃度に調整するため、供給する希釈剤の量を適宜に決定する。その際、希釈剤の量は、前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分中の、多環芳香族炭化水素濃度に大きく影響される。すなわち、前記重質留分中の多環芳香族炭化水素濃度が高ければ、希釈剤の量を相対的に多くする必要があり、重質留分中の多環芳香族炭化水素濃度が低ければ、希釈剤の量を相対的に少なくすることができる。また、トルエン以外の炭化水素を希釈剤として用いた場合、該希釈剤中の多環芳香族炭化水素濃度にも大きく影響される。すなわち、希釈剤中の多環芳香族炭化水素濃度が高ければ、希釈剤の量を相対的に多くする必要があり、希釈剤中の多環芳香族炭化水素濃度が低ければ、希釈剤の量を相対的に少なくすることができる。
通常は、前記したように分離工程にて生成物より分離された重質留分中の多環芳香族炭化水素濃度は、50~95質量%である。
したがって、重質留分の希釈にあたっては、特にトルエン以外の炭化水素を希釈剤として用いた場合、重質留分(生成物)中の多環芳香族炭化水素濃度と、希釈剤中の多環芳香族炭化水素濃度を、例えばJPI-5S-49「石油製品-炭化水素タイプ試験方法-高速液体クロマトグラフ法」に準拠して測定、あるいは、FIDガスクロマトグラフ法や二次元ガスクロマトグラフ法などにより確認し、希釈剤で希釈した後の混合物中の多環芳香族炭化水素濃度を前記したように5~50質量%、好ましくは15~35質量%とするように重質留分と希釈剤の配合比を決定する。通常、希釈剤の多環芳香族炭化水素濃度が例えば20質量%以下である場合、分離工程にて分離された重質留分(分解改質反応工程にて生成した生成物より分離されて水素化反応工程に供される炭素数9以上の重質留分)と、前記希釈剤との質量比(混合比)(重質留分:希釈剤)は、10:90から80:20の範囲内となるように調整される。なお、トルエンを希釈剤として用いた場合には、多環芳香族炭化水素濃度を0質量%として計算することができる。
したがって、重質留分の希釈にあたっては、特にトルエン以外の炭化水素を希釈剤として用いた場合、重質留分(生成物)中の多環芳香族炭化水素濃度と、希釈剤中の多環芳香族炭化水素濃度を、例えばJPI-5S-49「石油製品-炭化水素タイプ試験方法-高速液体クロマトグラフ法」に準拠して測定、あるいは、FIDガスクロマトグラフ法や二次元ガスクロマトグラフ法などにより確認し、希釈剤で希釈した後の混合物中の多環芳香族炭化水素濃度を前記したように5~50質量%、好ましくは15~35質量%とするように重質留分と希釈剤の配合比を決定する。通常、希釈剤の多環芳香族炭化水素濃度が例えば20質量%以下である場合、分離工程にて分離された重質留分(分解改質反応工程にて生成した生成物より分離されて水素化反応工程に供される炭素数9以上の重質留分)と、前記希釈剤との質量比(混合比)(重質留分:希釈剤)は、10:90から80:20の範囲内となるように調整される。なお、トルエンを希釈剤として用いた場合には、多環芳香族炭化水素濃度を0質量%として計算することができる。
分離工程から水素化反応工程に向けて供される重質留分の単位時間当たりの流量が一定の場合には、前記質量比の範囲内となる条件のもとで、希釈剤も単位時間当たりの流量を一定にして前記重質留分に加える。また、前記重質留分の単位時間当たりの流量が変化する場合には、この変化に対応して、希釈剤もその流量を変化させる。
<水素化反応工程>
水素化反応工程は、前記したように第2の実施形態における(12)水素化反応工程と同様に行うことができる。すなわち、希釈工程にて前記炭素数9以上の重質留分に希釈剤が加えられて形成された混合物を、第2の実施形態における(12)水素化反応工程と同様にして水素化する。なお、この水素化反応工程でも、第2実施形態と同様に精製回収工程で得られたトルエンの一部が、冷却剤(クエンチ剤)として水素化反応器(水素化反応工程)の途中(水素化反応器の入口と出口との間)に供給されてもよい。希釈剤として供給されたトルエンは、この水素化反応で水素化されることなく、したがって多環芳香族炭化水素濃度を下げて水素化反応による発熱を抑える希釈剤としてのみ機能するようになっている。
水素化反応工程は、前記したように第2の実施形態における(12)水素化反応工程と同様に行うことができる。すなわち、希釈工程にて前記炭素数9以上の重質留分に希釈剤が加えられて形成された混合物を、第2の実施形態における(12)水素化反応工程と同様にして水素化する。なお、この水素化反応工程でも、第2実施形態と同様に精製回収工程で得られたトルエンの一部が、冷却剤(クエンチ剤)として水素化反応器(水素化反応工程)の途中(水素化反応器の入口と出口との間)に供給されてもよい。希釈剤として供給されたトルエンは、この水素化反応で水素化されることなく、したがって多環芳香族炭化水素濃度を下げて水素化反応による発熱を抑える希釈剤としてのみ機能するようになっている。
<リサイクル工程>
リサイクル工程は、前記したように第2の実施形態における(13)リサイクル工程と同様に行うことができる。すなわち、水素化反応工程にて得られた混合物の水素化反応物を、原料油に混合して、もしくは別々に分解改質反応工程に戻す。
このようにして混合物の水素化反応物を原料油に混合して、もしくは別々に分解改質反応工程に戻すと、希釈剤として用いられたトルエンは不均化等の反応を起こすことにより、ベンゼンとキシレンとを生成する。なお、希釈剤としてトルエン以外の炭化水素を用いた場合には、このトルエン以外の炭化水素、例えばナフテン類、パラフィン類が、分解改質反応工程において単環芳香族炭化水素の生成に寄与する。したがって、この希釈剤は、単環芳香族炭化水素の収率の向上に寄与するものとなる。
リサイクル工程は、前記したように第2の実施形態における(13)リサイクル工程と同様に行うことができる。すなわち、水素化反応工程にて得られた混合物の水素化反応物を、原料油に混合して、もしくは別々に分解改質反応工程に戻す。
このようにして混合物の水素化反応物を原料油に混合して、もしくは別々に分解改質反応工程に戻すと、希釈剤として用いられたトルエンは不均化等の反応を起こすことにより、ベンゼンとキシレンとを生成する。なお、希釈剤としてトルエン以外の炭化水素を用いた場合には、このトルエン以外の炭化水素、例えばナフテン類、パラフィン類が、分解改質反応工程において単環芳香族炭化水素の生成に寄与する。したがって、この希釈剤は、単環芳香族炭化水素の収率の向上に寄与するものとなる。
本実施形態の単環芳香族炭化水素の製造方法にあっても、水素化反応工程とリサイクル工程とを有するので、副生物であった重質留分も原料にして単環芳香族炭化水素を得ることができる。そのため、副生物量を削減できる上に、単環芳香族炭化水素の生成量を増やすことができる。よって、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造することができる。
また、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に希釈剤を加え、得られる混合物中の多環芳香族炭化水素濃度を前記重質留分の多環芳香族炭化水素濃度より低くする希釈工程を有するので、水素化反応工程での多環芳香族炭化水素の水素化に起因する極端な発熱を抑え、安定した水素化反応を可能とし、水素化反応器の設備コストの大幅な上昇を回避することができる。したがって、従来の一般的な水素化反応器でも充分に適正な水素化反応を行わせることができる。
また、分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に希釈剤を加え、得られる混合物中の多環芳香族炭化水素濃度を前記重質留分の多環芳香族炭化水素濃度より低くする希釈工程を有するので、水素化反応工程での多環芳香族炭化水素の水素化に起因する極端な発熱を抑え、安定した水素化反応を可能とし、水素化反応器の設備コストの大幅な上昇を回避することができる。したがって、従来の一般的な水素化反応器でも充分に適正な水素化反応を行わせることができる。
また、本実施形態では精製回収工程で得られたトルエンの少なくとも一部を希釈剤として炭素数9以上の重質留分に加えるようにしている。トルエンは水素化反応工程において水素化されにくいため、多環芳香族炭化水素の水素化によって生じる発熱をより効果的に抑えることができる。
また、トルエンは水素化反応工程でほぼ水素化されることなく、リサイクル工程を経て分解改質反応工程に戻される。即ち、分解改質反応工程でトルエンに対し不均化等の反応をさせることにより、第1の実施形態と同様に、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンをより多く製造することができる。
また、トルエンは水素化反応工程でほぼ水素化されることなく、リサイクル工程を経て分解改質反応工程に戻される。即ち、分解改質反応工程でトルエンに対し不均化等の反応をさせることにより、第1の実施形態と同様に、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンをより多く製造することができる。
「第4の実施形態」
本発明の単環芳香族炭化水素の製造方法の第4の実施形態について説明する。
図4は、本発明の単環芳香族炭化水素の製造方法の第4の実施形態を説明するための図であり、本実施形態の単環芳香族炭化水素の製造方法も、原料油から炭素数6~8の単環芳香族炭化水素を製造する方法である。
本発明の単環芳香族炭化水素の製造方法の第4の実施形態について説明する。
図4は、本発明の単環芳香族炭化水素の製造方法の第4の実施形態を説明するための図であり、本実施形態の単環芳香族炭化水素の製造方法も、原料油から炭素数6~8の単環芳香族炭化水素を製造する方法である。
すなわち、本実施形態の単環芳香族炭化水素の製造方法は、図4に示す、各工程を有しているとよい。
(26)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程。
(27)分解改質反応工程にて生成した生成物を複数の留分に分離する分離工程。
(28)分離工程にて分離された単環芳香族炭化水素を精製し、回収する精製回収工程。
(29)精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程。
(30)前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す第2返送工程。
(31)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に希釈剤を加える希釈工程。
(32)希釈工程にて得られた混合物を水素化する水素化反応工程。
(33)水素化反応工程にて得られた混合物の水素化反応物を分解改質反応工程に戻すリサイクル工程。
(34)水素化反応工程にて得られた混合物の水素化反応物から希釈剤を分離除去し、該希釈剤を回収して前記希釈工程の希釈剤として再利用する希釈剤回収工程。
(35)分離工程にて分離したガス成分から、分解改質反応工程にて副生した水素を回収する水素回収工程。
(36)水素回収工程にて回収した水素を水素化反応工程に供給する水素供給工程。
上記(26)~(36)の工程のうち、(26),(28),(29),(31),(32),(33),(34)の工程は第七の態様に含まれる工程であり、(27),(30),(35),(36)の工程は任意の工程である。
(26)原料油を、単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程。
(27)分解改質反応工程にて生成した生成物を複数の留分に分離する分離工程。
(28)分離工程にて分離された単環芳香族炭化水素を精製し、回収する精製回収工程。
(29)精製回収工程で得られたトルエンの少なくとも一部を分解改質反応工程に戻す第1返送工程。
(30)前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を分解改質反応工程に戻す第2返送工程。
(31)分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に希釈剤を加える希釈工程。
(32)希釈工程にて得られた混合物を水素化する水素化反応工程。
(33)水素化反応工程にて得られた混合物の水素化反応物を分解改質反応工程に戻すリサイクル工程。
(34)水素化反応工程にて得られた混合物の水素化反応物から希釈剤を分離除去し、該希釈剤を回収して前記希釈工程の希釈剤として再利用する希釈剤回収工程。
(35)分離工程にて分離したガス成分から、分解改質反応工程にて副生した水素を回収する水素回収工程。
(36)水素回収工程にて回収した水素を水素化反応工程に供給する水素供給工程。
上記(26)~(36)の工程のうち、(26),(28),(29),(31),(32),(33),(34)の工程は第七の態様に含まれる工程であり、(27),(30),(35),(36)の工程は任意の工程である。
(26)分解改質反応工程は、第1の実施形態における(1)分解改質反応工程と同様に行うことができる。
(27)分離工程は、第1の実施形態における(2)分離工程と同様に行うことができる。
(28)精製回収工程は、第1の実施形態における(3)精製回収工程と同様に行うことができる。
(29)第1返送工程は、第2の実施形態における(10)第1返送工程と同様に行うことができる。また、精製回収工程で得られたトルエンの一部を、希釈剤の一部として希釈工程に供してもよい。
(30)第2返送工程は、第3の実施形態における(20)第2返送工程と同様に行うことができる。
(32)水素化反応工程は、第2の実施形態における(12)水素化反応工程と同様に行うことができる。すなわち、第1返送工程によって分解改質反応工程に戻すトルエンを、水素化反応工程で用いられる水素化反応器の途中(水素化反応器の入口と出口との間)に供給するようにする。
(35)水素回収工程は、第3の実施形態における(24)水素回収工程と同様に行うことができる。
(36)水素供給工程は、第3の実施形態における(25)水素供給工程と同様に行うことができる。
(27)分離工程は、第1の実施形態における(2)分離工程と同様に行うことができる。
(28)精製回収工程は、第1の実施形態における(3)精製回収工程と同様に行うことができる。
(29)第1返送工程は、第2の実施形態における(10)第1返送工程と同様に行うことができる。また、精製回収工程で得られたトルエンの一部を、希釈剤の一部として希釈工程に供してもよい。
(30)第2返送工程は、第3の実施形態における(20)第2返送工程と同様に行うことができる。
(32)水素化反応工程は、第2の実施形態における(12)水素化反応工程と同様に行うことができる。すなわち、第1返送工程によって分解改質反応工程に戻すトルエンを、水素化反応工程で用いられる水素化反応器の途中(水素化反応器の入口と出口との間)に供給するようにする。
(35)水素回収工程は、第3の実施形態における(24)水素回収工程と同様に行うことができる。
(36)水素供給工程は、第3の実施形態における(25)水素供給工程と同様に行うことができる。
<希釈工程>
本実施形態における(31)希釈工程では、第3の実施形態における(21)希釈工程において記載した一例と同様にして、前記分離工程にて分離された炭素数9以上の重質留分中に、トルエン以外の炭化水素からなる希釈剤を加え、前記炭素数9以上の重質留分と該希釈剤とからなる混合物中の多環芳香族炭化水素濃度を、前記重質留分中の多環芳香族炭化水素濃度より低くする。また、前記したように、精製回収工程で得られたトルエンの一部を、希釈剤の一部として、トルエン以外の炭化水素からなる希釈剤とともに用いてもよい。
本実施形態における(31)希釈工程では、第3の実施形態における(21)希釈工程において記載した一例と同様にして、前記分離工程にて分離された炭素数9以上の重質留分中に、トルエン以外の炭化水素からなる希釈剤を加え、前記炭素数9以上の重質留分と該希釈剤とからなる混合物中の多環芳香族炭化水素濃度を、前記重質留分中の多環芳香族炭化水素濃度より低くする。また、前記したように、精製回収工程で得られたトルエンの一部を、希釈剤の一部として、トルエン以外の炭化水素からなる希釈剤とともに用いてもよい。
本実施形態に用いる、トルエン以外の炭化水素からなる希釈剤としては、後述する希釈剤回収工程にて回収した希釈剤を再利用して用いる。ただし、スタートアップ時もしくは希釈剤回収工程にて回収しきれず希釈剤が不足するケースにおいては、別途用意した貯留槽等から炭化水素を供給する。
したがって、希釈剤としては、第3の実施形態で示したものと異なり、希釈剤回収工程にて水素化反応物から容易に分離回収し易いもの、具体的には、蒸留操作によって多環芳香族炭化水素の水素化物(特にナフテノベンゼン)から容易に分離されるものが用いられる。また、この希釈剤としては、第3の実施形態と同様に水素化されにくい炭化水素が用いられる。そのため、ナフテノベンゼンよりも沸点が高く水素化反応を受けやすい多環芳香族炭化水素等は、主として含まれることはない。本実施形態の希釈剤は、図4に示すように水素化反応工程、希釈剤回収工程、希釈工程を何度も循環するため、希釈剤回収工程などから一部希釈剤が回収できず希釈剤が低減する場合や、重質留分が一部分解するなどして希釈剤回収工程にて希釈剤として回収され、希釈剤が増加する場合などがあり得る。
したがって、必要に応じて希釈剤循環量を制御する必要がある。しかし、いずれの場合においても、水素化反応工程にて必要以上に水素化、分解を受けにくい材料が好ましい。
したがって、必要に応じて希釈剤循環量を制御する必要がある。しかし、いずれの場合においても、水素化反応工程にて必要以上に水素化、分解を受けにくい材料が好ましい。
したがって、このような炭化水素としては、例えば水素化反応工程において生成してくる、沸点が185℃のt-デカリン(t-デカヒドロナフタレン)より低い沸点の炭化水素が好適に用いられる。すなわち、多環芳香族炭化水素やナフテノベンゼンから蒸留操作によって容易に分離し、しかも水素化されにくいナフテンやパラフィンもしくは単環芳香族化合物が、希釈剤として好適に用いられる。
なお、本実施形態の希釈工程は、このような希釈剤を主に用いる以外は、第3の実施形態の希釈工程と同様である。すなわち、希釈剤で希釈することで形成する混合物の多環芳香族炭化水素濃度については、第3の実施形態の希釈工程と同様である。また、希釈剤による希釈率、すなわち重質留分と希釈剤との質量比(混合比)については、本実施形態では基本的に多環芳香族炭化水素を含まない希釈剤を用いるため、第3実施形態での質量比に比べ、希釈剤を加える量を少なくすることが可能になる(例えば、重質留分:希釈剤=20:80~90:10)。
なお、本実施形態の希釈工程は、このような希釈剤を主に用いる以外は、第3の実施形態の希釈工程と同様である。すなわち、希釈剤で希釈することで形成する混合物の多環芳香族炭化水素濃度については、第3の実施形態の希釈工程と同様である。また、希釈剤による希釈率、すなわち重質留分と希釈剤との質量比(混合比)については、本実施形態では基本的に多環芳香族炭化水素を含まない希釈剤を用いるため、第3実施形態での質量比に比べ、希釈剤を加える量を少なくすることが可能になる(例えば、重質留分:希釈剤=20:80~90:10)。
<希釈剤回収工程>
希釈剤回収工程では、水素化反応工程にて得られた混合物の水素化反応物から希釈剤を分離除去し、該希釈剤を回収する。そして、回収した希釈剤を、前記希釈工程において炭素数9以上の重質留分に加える希釈剤として、再利用する。なお、ここで回収する希釈剤は、トルエン以外の炭化水素からなる希釈剤のみであり、精製回収工程で得られたトルエンの一部を希釈剤として併用した場合、このトルエンは回収せずに分解改質反応工程に返送する。
希釈剤回収工程では、水素化反応工程にて得られた混合物の水素化反応物から希釈剤を分離除去し、該希釈剤を回収する。そして、回収した希釈剤を、前記希釈工程において炭素数9以上の重質留分に加える希釈剤として、再利用する。なお、ここで回収する希釈剤は、トルエン以外の炭化水素からなる希釈剤のみであり、精製回収工程で得られたトルエンの一部を希釈剤として併用した場合、このトルエンは回収せずに分解改質反応工程に返送する。
混合物の水素化反応物から希釈剤を分離除去する方法としては、前記したように蒸留操作が好適に採用される。すなわち、この希釈剤回収工程では、蒸留塔によって例えば沸点が185℃より低い成分とこれより高い成分とに分離する。これにより、例えば沸点が185℃より高い成分から沸点が185℃より低い成分を分離することができる。したがって、分離した沸点が185℃より低い成分、すなわち希釈剤成分を冷却して凝縮することにより、希釈剤を再生することができる。ただし、このような沸点が185℃より低い成分にはトルエンも含まれるため、このトルエンについては分離回収することなく、リサイクル工程によって分解改質反応工程に返送するようにする。
例えば、蒸留塔によって各成分を分離する際、単に沸点が185℃より低い成分とこれより高い成分とに分離するだけでなく、185℃より低い成分からさらに、10容量%留出温度が85℃以上かつ90容量%留出温度が140℃以下の成分(トルエン)を分離する。そして、185℃より低い成分であり、かつ、10容量%留出温度が85℃以上かつ90容量%留出温度が140℃以下の成分(トルエン)を除いた成分を、冷却して凝縮し、希釈剤として希釈工程に返送する。または、一旦分離した沸点が185℃より低い成分からトルエンを分離し、トルエン以外の成分を回収し、希釈剤として希釈工程に返送する。このようにして分離回収した希釈剤を希釈工程に送り、重質留分に加えて混合物を形成し、以下、水素化反応工程、希釈剤回収工程、希釈工程を順次循環させる。
<リサイクル工程>
(33)リサイクル工程は、第3の実施形態における(23)リサイクル工程と異なり、水素化反応工程にて得られた混合物の水素化反応物の全量を直接分解改質反応工程に戻すのに代えて、希釈剤回収工程にて希釈剤を分離した留分(トルエンを含む留分)を、原料油に混合して、もしくは別々に分解改質反応工程に戻す。
(33)リサイクル工程は、第3の実施形態における(23)リサイクル工程と異なり、水素化反応工程にて得られた混合物の水素化反応物の全量を直接分解改質反応工程に戻すのに代えて、希釈剤回収工程にて希釈剤を分離した留分(トルエンを含む留分)を、原料油に混合して、もしくは別々に分解改質反応工程に戻す。
本実施形態の単環芳香族炭化水素の製造方法にあっても、水素化反応工程とリサイクル工程とを有するので、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造することができる。
また、希釈工程を有するので、水素化反応工程での多環芳香族炭化水素の極端な発熱を抑え、水素化反応器の設備コストの大幅な上昇を回避することができる。
さらに、混合物の水素化反応物から希釈剤を分離除去し、該希釈剤を回収して再利用する希釈剤回収工程を有しているので、希釈剤を循環させることにより、新たな希釈剤を供給し続ける工程が不要になり、運転条件を簡略化することができる。
また、希釈工程を有するので、水素化反応工程での多環芳香族炭化水素の極端な発熱を抑え、水素化反応器の設備コストの大幅な上昇を回避することができる。
さらに、混合物の水素化反応物から希釈剤を分離除去し、該希釈剤を回収して再利用する希釈剤回収工程を有しているので、希釈剤を循環させることにより、新たな希釈剤を供給し続ける工程が不要になり、運転条件を簡略化することができる。
また、第2の実施形態と同様に、精製回収工程で得られたトルエンの少なくとも一部を水素化反応工程で用いられる水素化反応器の途中に供給するようにしているので、トルエンを冷却剤(クエンチ剤)として機能させることにより、水素化反応工程において多環芳香族炭化水素の水素化によって生じる発熱を抑えることができる。したがって、従来の一般的な水素化反応器でも充分に適正な水素化反応を行わせることができる。
また、トルエンは水素化反応工程で水素化されることなく、リサイクル工程を経て分解改質反応工程に戻される。したがって、分解改質反応工程でトルエンを不均化等の反応をさせることにより、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンを選択的に多く製造することができる。
また、トルエンは水素化反応工程で水素化されることなく、リサイクル工程を経て分解改質反応工程に戻される。したがって、分解改質反応工程でトルエンを不均化等の反応をさせることにより、ベンゼンやキシレンがトルエンに比べて高い収率となるよう、ベンゼンやキシレンを選択的に多く製造することができる。
「他の実施形態」
なお、本発明は前記実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
例えば、水素化反応工程で使用する水素は、分解改質反応工程にて副生したものでなく、公知の水素製造方法で得た水素を利用してもよい。また、他の接触分解方法にて副生した水素を利用してもよい。
また、前記実施形態においては、分離工程にて分離された留分より得られた炭素数9以上の重質留分の一部を一定量抜き出して系外に排出する重質留分排出工程を設けてもよい。
なお、本発明は前記実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
例えば、水素化反応工程で使用する水素は、分解改質反応工程にて副生したものでなく、公知の水素製造方法で得た水素を利用してもよい。また、他の接触分解方法にて副生した水素を利用してもよい。
また、前記実施形態においては、分離工程にて分離された留分より得られた炭素数9以上の重質留分の一部を一定量抜き出して系外に排出する重質留分排出工程を設けてもよい。
以下、参考例、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(参考例1)
分解改質反応工程において、トルエンが不均化反応を起こしてベンゼンとキシレンとを生成することを、以下のようにして確認した。
トルエン(100質量%)を原料油として用い、前記第1の実施形態に示した分解改質反応工程に供した。すなわち、トルエンを、反応温度:538℃、反応圧力:0.3MPaG、トルエンと触媒に含まれるゼオライト成分との接触時間が7秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行い、炭素数6~8の単環芳香族炭化水素を回収した。すると、以下に示すようにベンゼンとキシレン(o-キシレン、m-キシレン、p-キシレンの合計量)とがほぼ同量ずつ得られた。したがって、短接触時間では、トルエンからベンゼンとキシレンとが生成する不均化反応が主に起こることが確認された。
・分解改質反応前 ;トルエン(100質量%)
・分解改質反応後(接触時間7秒)
ベンゼン (18質量%)
トルエン (59質量%)
m-,p-キシレン(13質量%)
o-キシレン ( 4質量%)
(キシレンの合計量は17質量%)
分解改質反応工程において、トルエンが不均化反応を起こしてベンゼンとキシレンとを生成することを、以下のようにして確認した。
トルエン(100質量%)を原料油として用い、前記第1の実施形態に示した分解改質反応工程に供した。すなわち、トルエンを、反応温度:538℃、反応圧力:0.3MPaG、トルエンと触媒に含まれるゼオライト成分との接触時間が7秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行い、炭素数6~8の単環芳香族炭化水素を回収した。すると、以下に示すようにベンゼンとキシレン(o-キシレン、m-キシレン、p-キシレンの合計量)とがほぼ同量ずつ得られた。したがって、短接触時間では、トルエンからベンゼンとキシレンとが生成する不均化反応が主に起こることが確認された。
・分解改質反応前 ;トルエン(100質量%)
・分解改質反応後(接触時間7秒)
ベンゼン (18質量%)
トルエン (59質量%)
m-,p-キシレン(13質量%)
o-キシレン ( 4質量%)
(キシレンの合計量は17質量%)
また、分解改質反応を接触時間12秒に変更して実施した例では、以下に示すようにベンゼンの生成量がキシレンの生成量に比べて多くなった。
・分解改質反応前 ;トルエン(100質量%)
・分解改質反応後(接触時間12秒)
ベンゼン (29質量%)
トルエン (45質量%)
m-,p-キシレン(14質量%)
o-キシレン ( 4質量%)
(キシレンの合計量は18質量%)
したがって、接触時間を長くした際には、不均化反応とあわせて脱アルキル反応も進行することが確認された。
以上の結果より、第1返送工程で戻したトルエンからベンゼンとキシレンとが生成すること、並びに分解改質反応工程での接触時間を制御することにより、第1返送工程で戻したトルエンからのベンゼンとキシレンとの生成比を一定程度制御できることが確認された。
・分解改質反応前 ;トルエン(100質量%)
・分解改質反応後(接触時間12秒)
ベンゼン (29質量%)
トルエン (45質量%)
m-,p-キシレン(14質量%)
o-キシレン ( 4質量%)
(キシレンの合計量は18質量%)
したがって、接触時間を長くした際には、不均化反応とあわせて脱アルキル反応も進行することが確認された。
以上の結果より、第1返送工程で戻したトルエンからベンゼンとキシレンとが生成すること、並びに分解改質反応工程での接触時間を制御することにより、第1返送工程で戻したトルエンからのベンゼンとキシレンとの生成比を一定程度制御できることが確認された。
以下の実施例1については、図1に示した第1の実施形態に基づき、分解改質反応工程にて得られた生成物より分離工程並びに精製回収工程を経て単環芳香族炭化水素を回収し、さらにそのうちトルエンを主とする留分を第1返送工程により、分解改質反応工程に戻した。
(実施例1)
原料油として表1に示すLCO(10容量%留出温度が215℃、90容量%留出温度が318℃)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒に含まれるゼオライト成分との接触時間が12秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。生成物から気液分離並びに蒸留により炭素数6~8の単環芳香族炭化水素を回収した。回収したベンゼン、トルエン、キシレンの生成量を2次元ガスクロマトグラフ装置(ZOEX社製 KT2006 GC×GCシステム)を用いて測定したところ、それぞれ11質量%、17質量%、7質量%であった。ついで、回収したトルエンを分解改質反応工程に返送し、原料油100重量部に対してトルエン17重量部となるよう混合し、再び上記反応条件で分解改質反応を行ったところ、ベンゼン、トルエン、キシレンの生成量はそれぞれ、14質量%、21質量%、9質量%であった。
原料油として表1に示すLCO(10容量%留出温度が215℃、90容量%留出温度が318℃)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒に含まれるゼオライト成分との接触時間が12秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。生成物から気液分離並びに蒸留により炭素数6~8の単環芳香族炭化水素を回収した。回収したベンゼン、トルエン、キシレンの生成量を2次元ガスクロマトグラフ装置(ZOEX社製 KT2006 GC×GCシステム)を用いて測定したところ、それぞれ11質量%、17質量%、7質量%であった。ついで、回収したトルエンを分解改質反応工程に返送し、原料油100重量部に対してトルエン17重量部となるよう混合し、再び上記反応条件で分解改質反応を行ったところ、ベンゼン、トルエン、キシレンの生成量はそれぞれ、14質量%、21質量%、9質量%であった。
(比較例1)
回収したトルエンを分解改質反応工程へ返送する工程以降を実施しなかったこと以外は、実施例1と同様に行った。得られたベンゼン、トルエン、キシレンの生成量はそれぞれ11質量%、17質量%、7質量%であった。
回収したトルエンを分解改質反応工程へ返送する工程以降を実施しなかったこと以外は、実施例1と同様に行った。得られたベンゼン、トルエン、キシレンの生成量はそれぞれ11質量%、17質量%、7質量%であった。
実施例1では、トルエンを返送しなかった比較例1と比べると、トルエンが減少し、ベンゼン、キシレンが増加していることがわかる。
なお、実施例1において、トルエンを返送し分解改質反応を行う工程を繰り返すことにより、最終的にトルエンはほぼ消失し、ベンゼン20質量%、キシレン12質量%となった。
なお、実施例1において、トルエンを返送し分解改質反応を行う工程を繰り返すことにより、最終的にトルエンはほぼ消失し、ベンゼン20質量%、キシレン12質量%となった。
以下の実施例2については、図2に示した第2の実施形態に基づき、分解改質反応工程にて得られた生成物より分離工程、精製回収工程を経て単環芳香族炭化水素を回収し、さらに分離工程から得られた炭素数9以上の重質留分を第2返送工程にて水素化反応工程に送った。回収したトルエン留分を第1返送工程により水素化反応工程に送り、重質留分を水素化反応工程にて水素化処理し、その後、リサイクル工程にて再び分解改質反応工程へと戻した。
(実施例2)
実施例1と同様に、原料油として表1に示すLCO(10容量%留出温度が215℃、90容量%留出温度が318℃)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒に含まれるゼオライト成分との接触時間が12秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。生成物から気液分離並びに蒸留により炭素数6~8の単環芳香族炭化水素並びに炭素数9以上の重質留分(重質留分)を回収した。回収したベンゼン、トルエン、キシレンの生成量を2次元ガスクロマトグラフ装置(ZOEX社製 KT2006 GC×GCシステム)を用いて測定したところ、それぞれ11質量%、17質量%、7質量%であった。また、重質留分中の多環芳香族炭化水素の含有量を調べたところ、81質量%であった。
実施例1と同様に、原料油として表1に示すLCO(10容量%留出温度が215℃、90容量%留出温度が318℃)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒に含まれるゼオライト成分との接触時間が12秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。生成物から気液分離並びに蒸留により炭素数6~8の単環芳香族炭化水素並びに炭素数9以上の重質留分(重質留分)を回収した。回収したベンゼン、トルエン、キシレンの生成量を2次元ガスクロマトグラフ装置(ZOEX社製 KT2006 GC×GCシステム)を用いて測定したところ、それぞれ11質量%、17質量%、7質量%であった。また、重質留分中の多環芳香族炭化水素の含有量を調べたところ、81質量%であった。
次いで、上記重質留分を市販のニッケル-モリブデン触媒を用い、水素化反応温度350℃、水素化反応圧力3MPa、LHSV=0.5h-1の条件で水素化処理した。なお、回収したトルエンをクエンチ剤として水素化反応器に供給(重質留分100重量部に対しトルエン40重量部)し、反応器の発熱を抑制した。得られた水素化反応物を分析した結果、トルエンの水素化率(水素化反応物中のメチルシクロヘキサン量を基に算出)は4%であった。一方、重質留分には、水素化処理した重質留分を100質量%とすると、芳香環を1つ有する炭化水素が65質量%、芳香環を2つ以上有する炭化水素(多環芳香族炭化水素)が29質量%含まれていた。
その後、上記水素化反応生成物を分解改質反応工程へリサイクルし、原料油100重量部に対して水素化反応生成物60重量部で混合し、上記反応条件で再び分解改質反応を行ったところ、収率43質量%で炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)が得られた。得られたベンゼン、トルエン、キシレンの生成量はそれぞれ14質量%、20質量%、9質量%であった。
その後、上記水素化反応生成物を分解改質反応工程へリサイクルし、原料油100重量部に対して水素化反応生成物60重量部で混合し、上記反応条件で再び分解改質反応を行ったところ、収率43質量%で炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)が得られた。得られたベンゼン、トルエン、キシレンの生成量はそれぞれ14質量%、20質量%、9質量%であった。
実施例2では、重質留分の水素化反応工程、トルエンによる液クエンチ、リサイクル工程を経ない比較例1と比べると、単環芳香族炭化水素の生成量が増加していることがわかる。また、単環芳香族炭化水素中のトルエン割合が減少し、ベンゼン、キシレン割合が増加していることがわかる。第2の実施形態の工程を繰り返すことにより、トルエンはベンゼンとキシレンになることで生成量が低減し、それに応じてベンゼン、トルエンの生成量が増加することがわかる。
以下の実施例3については、図3に示した第3の実施形態に基づき、分解改質反応工程にて得られた生成物より分離工程、精製回収工程を経て単環芳香族炭化水素を回収し、さらに分離工程から得られた炭素数9以上の重質留分を第2返送工程にて希釈工程に送った。次いで、回収したトルエン留分を第1返送工程により希釈剤として希釈工程に送り、炭素数9以上の重質留分と混合し、この混合留分を水素化反応工程にて水素化処理し、その後、リサイクル工程にて再び分解改質反応工程へと戻した。
(実施例3)
実施例1と同様に、原料油として表1に示すLCO(10容量%留出温度が215℃、90容量%留出温度が318℃)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒に含まれるゼオライト成分との接触時間が12秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。生成物から気液分離並びに蒸留により炭素数6~8の単環芳香族炭化水素並びに炭素数9以上の重質留分(重質留分)を回収した。回収したベンゼン、トルエン、キシレンの生成量を2次元ガスクロマトグラフ装置(ZOEX社製 KT2006 GC×GCシステム)を用いて測定したところ、それぞれ11質量%、17質量%、7質量%であった。また、重質留分中の多環芳香族炭化水素の含有量を調べたところ、81質量%であった。
実施例1と同様に、原料油として表1に示すLCO(10容量%留出温度が215℃、90容量%留出温度が318℃)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒に含まれるゼオライト成分との接触時間が12秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。生成物から気液分離並びに蒸留により炭素数6~8の単環芳香族炭化水素並びに炭素数9以上の重質留分(重質留分)を回収した。回収したベンゼン、トルエン、キシレンの生成量を2次元ガスクロマトグラフ装置(ZOEX社製 KT2006 GC×GCシステム)を用いて測定したところ、それぞれ11質量%、17質量%、7質量%であった。また、重質留分中の多環芳香族炭化水素の含有量を調べたところ、81質量%であった。
次いで、上記重質留分100重量部に対して回収したトルエン40重量部を混合し、混合留分を市販のニッケル-モリブデン触媒を用い、水素化反応温度350℃、水素化反応圧力3MPa、LHSV=0.5h-1の条件で水素化処理した。得られた水素化反応物を分析した結果、トルエンの水素化率(水素化反応物中のメチルシクロヘキサン量を基に算出)は5%であった。一方、重質留分には、水素化処理した重質留分を100質量%とすると、芳香環を1つ有する炭化水素が66質量%、芳香環を2つ以上有する炭化水素(多環芳香族炭化水素)が28質量%含まれていた。
このことより、トルエンはほとんど水素化されずに、重質な炭化水素が優先的に水素化されていることがわかる。また、トルエンの水素化がほとんど進んでいないことから、希釈剤が単位体積あたりの発熱を抑えていることは明らかである。一方で重質留分の多環芳香族炭化水素は大きく減少しており、分解改質反応工程に供する油として好ましい状態となっている。
その後、上記水素化反応生成物を分解改質反応工程へリサイクルし、原料油100重量部に対して水素化反応生成物60重量部で混合し、上記反応条件で再び分解改質反応を行ったところ、収率44質量%で炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)が得られた。得られたベンゼン、トルエン、キシレンの生成量はそれぞれ15質量%、20質量%、9質量%であった。
このことより、トルエンはほとんど水素化されずに、重質な炭化水素が優先的に水素化されていることがわかる。また、トルエンの水素化がほとんど進んでいないことから、希釈剤が単位体積あたりの発熱を抑えていることは明らかである。一方で重質留分の多環芳香族炭化水素は大きく減少しており、分解改質反応工程に供する油として好ましい状態となっている。
その後、上記水素化反応生成物を分解改質反応工程へリサイクルし、原料油100重量部に対して水素化反応生成物60重量部で混合し、上記反応条件で再び分解改質反応を行ったところ、収率44質量%で炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)が得られた。得られたベンゼン、トルエン、キシレンの生成量はそれぞれ15質量%、20質量%、9質量%であった。
実施例3では、トルエンによる希釈工程、重質留分の水素化反応工程、リサイクル工程を経ない比較例1と比べると、単環芳香族炭化水素の生成量が増加していることがわかる。また、単環芳香族炭化水素中のトルエン割合が減少し、ベンゼン、キシレン割合が増加していることがわかる。第3の実施形態の工程を繰り返すことにより、トルエンはベンゼンとキシレンになることで生成量が低減し、それに応じてベンゼン、トルエンの生成量が増加することがわかる。
以下の実施例4については、図4に示した第4の実施形態に基づき、分解改質反応工程にて得られた生成物より分離工程、精製回収工程を経て単環芳香族炭化水素を回収し、さらに分離工程から得られた炭素数9以上の重質留分を希釈工程を経て水素化反応工程へ送った。次いで、回収したトルエン留分を第1返送工程により水素化反応工程に送り、重質留分を水素化反応工程にて水素化処理し、水素化反応生成物を希釈剤を回収する工程、リサイクル工程を経て再び分解改質反応工程へと戻した。
(実施例4)
実施例3と同様に、原料油として表1に示すLCO(10容量%留出温度が215℃、90容量%留出温度が318℃)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒に含まれるゼオライト成分との接触時間が12秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。生成物から気液分離並びに蒸留により単環芳香族炭化水素並びに炭素数9以上の重質留分(重質留分)を回収した。回収したベンゼン、トルエン、キシレンの生成量を2次元ガスクロマトグラフ装置(ZOEX社製 KT2006 GC×GCシステム)を用いて測定したところ、それぞれ11質量%、17質量%、7質量%であった。また、重質留分中の多環芳香族炭化水素の含有量を調べたところ、81質量%であった。
実施例3と同様に、原料油として表1に示すLCO(10容量%留出温度が215℃、90容量%留出温度が318℃)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒に含まれるゼオライト成分との接触時間が12秒の条件で、流動床反応器にて単環芳香族炭化水素製造用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。生成物から気液分離並びに蒸留により単環芳香族炭化水素並びに炭素数9以上の重質留分(重質留分)を回収した。回収したベンゼン、トルエン、キシレンの生成量を2次元ガスクロマトグラフ装置(ZOEX社製 KT2006 GC×GCシステム)を用いて測定したところ、それぞれ11質量%、17質量%、7質量%であった。また、重質留分中の多環芳香族炭化水素の含有量を調べたところ、81質量%であった。
次いで、上記重質留分100重量部に希釈剤としてトリメチルベンゼン60重量部を混合し、それらの混合油を市販のニッケル-モリブデン触媒を用い、水素化反応温度350℃、水素化反応圧力3MPa、LHSV=0.5h-1の条件で水素化処理した。なお、回収したトルエンをクエンチ剤として水素化反応器に供給(重質留分100重量部に対しトルエン40重量部)し、反応器の発熱を抑制した。得られた水素化反応物を分析した結果、トルエンの水素化率(水素化反応物中のメチルシクロヘキサン量を基に算出)は5%であった。なお、希釈剤として混合したトリメチルベンゼンはほとんど水素化されなかった。一方、重質留分には、水素化処理した重質留分を100質量%とすると、芳香環を1つ有する炭化水素が79質量%、芳香環を2つ以上有する炭化水素(多環芳香族炭化水素)が14質量%含まれていた。
次いで、蒸留により、水素化反応物をトルエン並びにメチルシクロヘキサンを含有する留分とトリメチルベンゼンを主として含有する留分(トリメチルベンゼン留分)と重質分とに分離し、トリメチルベンゼン留分のみを除いた水素化反応物を調整した。
希釈剤として加えたトリメチルベンゼンはほとんど水素化されずに、回収することにより繰返し希釈剤として用いることができることが確認された。
水素化が進んでいないことから、希釈剤が単位体積あたりの発熱を抑えていることは明らかである。また、この例においてもトルエンはほとんど水素化されておらず、クエンチ剤としての効果を有していることがわかる。一方で重質留分の2環芳香族炭化水素は大きく減少しており、分解改質反応工程に供する油として好ましい状態となっていることが確認できた。これは実施例3と同様、多環芳香族炭化水素の方が単環芳香族炭化水素よりも水素化されやすいためである。
その後、上記トリメチルベンゼン留分を除いた水素化反応物を原料油100重量部に対して55重量部で混合し、再び上記反応条件で分解改質反応を行ったところ、収率43質量%で単環芳香族炭化水素(ベンゼン、トルエン、キシレン)が得られた。得られたベンゼン、トルエン、キシレンの生成量はそれぞれ15質量%、20質量%、8質量%であった。
希釈剤として加えたトリメチルベンゼンはほとんど水素化されずに、回収することにより繰返し希釈剤として用いることができることが確認された。
水素化が進んでいないことから、希釈剤が単位体積あたりの発熱を抑えていることは明らかである。また、この例においてもトルエンはほとんど水素化されておらず、クエンチ剤としての効果を有していることがわかる。一方で重質留分の2環芳香族炭化水素は大きく減少しており、分解改質反応工程に供する油として好ましい状態となっていることが確認できた。これは実施例3と同様、多環芳香族炭化水素の方が単環芳香族炭化水素よりも水素化されやすいためである。
その後、上記トリメチルベンゼン留分を除いた水素化反応物を原料油100重量部に対して55重量部で混合し、再び上記反応条件で分解改質反応を行ったところ、収率43質量%で単環芳香族炭化水素(ベンゼン、トルエン、キシレン)が得られた。得られたベンゼン、トルエン、キシレンの生成量はそれぞれ15質量%、20質量%、8質量%であった。
実施例4では、希釈剤工程、トルエンによる液クエンチ、水素化反応工程、希釈剤回収工程、リサイクル工程を経ない比較例1と比べると、単環芳香族炭化水素の生成量が増加していることがわかる。また、単環芳香族炭化水素中のトルエン割合が減少し、ベンゼン、キシレン割合が増加していることがわかる。これら反応を繰り返すことにより、トルエンはベンゼンとキシレンになることで生成量が低減し、それに応じてベンゼン、トルエンの生成量が増加することがわかる。
Claims (7)
- 10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から炭素数6~8の単環芳香族炭化水素を製造する単環芳香族炭化水素の製造方法であって、
前記原料油を、結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素、及び炭素数9以上の重質留分を含む生成物を得る分解改質反応工程と、
前記分解改質反応工程にて生成した生成物より分離された炭素数6~8の単環芳香族炭化水素を精製し、回収する精製回収工程と、
前記精製回収工程で得られたトルエンの少なくとも一部を前記分解改質反応工程に戻す第1返送工程と、を有することを特徴とする単環芳香族炭化水素の製造方法。 - 前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を前記分解改質反応工程に戻す第2返送工程、を有する請求項1に記載の単環芳香族炭化水素の製造方法。
- 前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分を水素化する水素化反応工程と、
前記水素化反応工程により得られた重質留分の水素化反応物を前記分解改質反応工程に戻すリサイクル工程と、を有する請求項1又は2に記載の単環芳香族炭化水素の製造方法。 - 前記第1返送工程は、前記水素化反応工程で用いられる水素化反応器の途中に、前記トルエンを供給する工程である請求項3に記載の単環芳香族炭化水素の製造方法。
- 前記分解改質反応工程と前記水素化反応工程との間に、前記分解改質反応工程にて生成した生成物より分離された炭素数9以上の重質留分に炭化水素からなる希釈剤を加える希釈工程、を有する請求項3又は4に記載の単環芳香族炭化水素の製造方法。
- 前記希釈剤として、前記精製回収工程で得られたトルエンの少なくとも一部を用いる請求項5に記載の単環芳香族炭化水素の製造方法。
- 前記水素化反応工程の後に、水素化反応工程にて得られた水素化反応物から希釈剤を分離除去し、回収して前記希釈工程の希釈剤として再利用する希釈剤回収工程、を有する請求項5に記載の単環芳香族炭化水素の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12790261.7A EP2716737A4 (en) | 2011-05-24 | 2012-05-24 | PROCESS FOR PREPARING MONOCYCLIC AROMATIC HYDROCARBONS |
US14/119,576 US9487457B2 (en) | 2011-05-24 | 2012-05-24 | Method for producing monocyclic aromatic hydrocarbons |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011115643A JP5759263B2 (ja) | 2011-05-24 | 2011-05-24 | 単環芳香族炭化水素の製造方法 |
JP2011-115643 | 2011-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012161264A1 true WO2012161264A1 (ja) | 2012-11-29 |
Family
ID=47217336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063351 WO2012161264A1 (ja) | 2011-05-24 | 2012-05-24 | 単環芳香族炭化水素の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9487457B2 (ja) |
EP (1) | EP2716737A4 (ja) |
JP (1) | JP5759263B2 (ja) |
WO (1) | WO2012161264A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9162955B2 (en) | 2013-11-19 | 2015-10-20 | Uop Llc | Process for pyrolysis of a coal feed |
US20220333515A1 (en) * | 2020-03-26 | 2022-10-20 | Hitachi, Ltd. | Fuel production device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3259336A1 (en) | 2015-02-19 | 2017-12-27 | SABIC Global Technologies B.V. | Systems and methods related to the production of polyethylene |
WO2016185334A1 (en) | 2015-05-15 | 2016-11-24 | Sabic Global Technologies B.V. | Systems and methods related to the syngas to olefin process |
EP3294837A1 (en) * | 2015-05-15 | 2018-03-21 | SABIC Global Technologies B.V. | Systems and methods related to the syngas to olefin process |
KR20210053894A (ko) * | 2018-09-03 | 2021-05-12 | 에네오스 가부시키가이샤 | 크실렌의 제조 방법 |
CN112745932B (zh) | 2019-10-30 | 2022-07-15 | 中国石油化工股份有限公司 | 一种生产轻质芳烃的方法 |
CN116333777A (zh) * | 2021-12-24 | 2023-06-27 | 中国石油天然气股份有限公司 | 一种催化柴油加氢裂解的方法及得到的催化裂解产物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032128A (ja) | 1989-05-30 | 1991-01-08 | Idemitsu Kosan Co Ltd | 単環芳香族含有炭化水素の製造方法 |
JPH0326791A (ja) | 1989-06-23 | 1991-02-05 | Idemitsu Kosan Co Ltd | 炭化水素の製造方法 |
JPH0352993A (ja) | 1989-07-21 | 1991-03-07 | Idemitsu Kosan Co Ltd | Btxに富む炭化水素の製造方法 |
JPH1157481A (ja) * | 1997-06-06 | 1999-03-02 | China Petro Chem Corp | 芳香族炭化水素の変換のための触媒および方法および芳香族炭化水素の製造におけるそれらの使用 |
JP2007154151A (ja) * | 2005-11-11 | 2007-06-21 | Toray Ind Inc | 炭素数6〜8の芳香族炭化水素の製造方法 |
JP2010532752A (ja) * | 2007-07-06 | 2010-10-14 | ユーオーピー エルエルシー | キシレンの製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242222A (en) | 1961-12-05 | 1966-03-22 | Sinclair Research Inc | Process for converting high molecular weight paraffins to lower molecular weight paraffins of high octane value |
US3772184A (en) | 1971-12-17 | 1973-11-13 | Standard Oil Co | Reforming petroleum hydrocarbons with catalysts promoted with gallium and rhenium |
US4053388A (en) * | 1976-12-06 | 1977-10-11 | Moore-Mccormack Energy, Inc. | Process for preparing aromatics from naphtha |
US4263133A (en) | 1980-02-28 | 1981-04-21 | Phillips Petroleum Company | Catalytic reforming and hydrocracking of organic compounds employing zinc titanate as the catalytic agent |
US5001296A (en) * | 1990-03-07 | 1991-03-19 | Mobil Oil Corp. | Catalytic hydrodealkylation of aromatics |
TW504501B (en) * | 1995-02-10 | 2002-10-01 | Mobil Oil Corp | Process for converting feedstock comprising C9+ aromatic hydrocarbons to lighter aromatic products |
DE10135490A1 (de) * | 2001-07-20 | 2003-01-30 | Basf Ag | Verfahren zur Hydrierung von aromatischen Verbindungen mit Restgas enthaltendem Wasserstoff |
JP2004137353A (ja) * | 2002-10-17 | 2004-05-13 | Idemitsu Kosan Co Ltd | 軽油の水素化脱硫方法及びその方法で得られた軽油組成物 |
US7381858B2 (en) * | 2004-01-30 | 2008-06-03 | Bp Corporation North America Inc. | Xylene process using perm-selective separations |
KR101503069B1 (ko) * | 2008-10-17 | 2015-03-17 | 에스케이이노베이션 주식회사 | 유동층 접촉 분해 공정의 경질 사이클 오일로부터 고부가 방향족 및 올레핀을 제조하는 방법 |
-
2011
- 2011-05-24 JP JP2011115643A patent/JP5759263B2/ja active Active
-
2012
- 2012-05-24 WO PCT/JP2012/063351 patent/WO2012161264A1/ja active Application Filing
- 2012-05-24 EP EP12790261.7A patent/EP2716737A4/en not_active Withdrawn
- 2012-05-24 US US14/119,576 patent/US9487457B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032128A (ja) | 1989-05-30 | 1991-01-08 | Idemitsu Kosan Co Ltd | 単環芳香族含有炭化水素の製造方法 |
JPH0326791A (ja) | 1989-06-23 | 1991-02-05 | Idemitsu Kosan Co Ltd | 炭化水素の製造方法 |
JPH0352993A (ja) | 1989-07-21 | 1991-03-07 | Idemitsu Kosan Co Ltd | Btxに富む炭化水素の製造方法 |
JPH1157481A (ja) * | 1997-06-06 | 1999-03-02 | China Petro Chem Corp | 芳香族炭化水素の変換のための触媒および方法および芳香族炭化水素の製造におけるそれらの使用 |
JP2007154151A (ja) * | 2005-11-11 | 2007-06-21 | Toray Ind Inc | 炭素数6〜8の芳香族炭化水素の製造方法 |
JP2010532752A (ja) * | 2007-07-06 | 2010-10-14 | ユーオーピー エルエルシー | キシレンの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2716737A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9162955B2 (en) | 2013-11-19 | 2015-10-20 | Uop Llc | Process for pyrolysis of a coal feed |
US20220333515A1 (en) * | 2020-03-26 | 2022-10-20 | Hitachi, Ltd. | Fuel production device |
Also Published As
Publication number | Publication date |
---|---|
EP2716737A4 (en) | 2014-11-05 |
US9487457B2 (en) | 2016-11-08 |
JP5759263B2 (ja) | 2015-08-05 |
EP2716737A1 (en) | 2014-04-09 |
JP2012240998A (ja) | 2012-12-10 |
US20140200377A1 (en) | 2014-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4961052B2 (ja) | 単環芳香族炭化水素の製造方法 | |
WO2012133138A1 (ja) | 単環芳香族炭化水素の製造方法 | |
JP5485088B2 (ja) | 芳香族炭化水素の製造方法 | |
JP5759263B2 (ja) | 単環芳香族炭化水素の製造方法 | |
JP5690624B2 (ja) | 単環芳香族炭化水素の製造方法 | |
JP5683342B2 (ja) | 単環芳香族炭化水素の製造方法 | |
JP5759262B2 (ja) | キシレンの製造方法 | |
JP5744622B2 (ja) | 単環芳香族炭化水素の製造方法 | |
US9828309B2 (en) | Method for producing monocyclic aromatic hydrocarbons | |
WO2018016397A1 (ja) | 低級オレフィン及び炭素数6~8の単環芳香族炭化水素の製造方法、低級オレフィン及び炭素数6~8の単環芳香族炭化水素の製造装置 | |
JP5690623B2 (ja) | 単環芳香族炭化水素の製造方法 | |
JP5646381B2 (ja) | 単環芳香族炭化水素の製造方法 | |
JP2012241173A (ja) | 単環芳香族炭化水素の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12790261 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012790261 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14119576 Country of ref document: US |