WO2012159581A1 - 钒液流电池电堆密封方法及电堆单元和钒液流电池电堆 - Google Patents

钒液流电池电堆密封方法及电堆单元和钒液流电池电堆 Download PDF

Info

Publication number
WO2012159581A1
WO2012159581A1 PCT/CN2012/076027 CN2012076027W WO2012159581A1 WO 2012159581 A1 WO2012159581 A1 WO 2012159581A1 CN 2012076027 W CN2012076027 W CN 2012076027W WO 2012159581 A1 WO2012159581 A1 WO 2012159581A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot melt
flow battery
frame plate
line
hot
Prior art date
Application number
PCT/CN2012/076027
Other languages
English (en)
French (fr)
Inventor
郑东冬
Original Assignee
深圳市金钒能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44962149&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012159581(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 深圳市金钒能源科技有限公司 filed Critical 深圳市金钒能源科技有限公司
Publication of WO2012159581A1 publication Critical patent/WO2012159581A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a sealing method, and in particular to a sealing method of a vanadium redox flow battery stack and a vanadium flow battery integrated electric stack produced by the method. Background technique
  • the sealing rubber ring is used for sealing.
  • the vanadium flow battery stack includes a conductive electrode plate, a frame plate and a baffle, wherein a 0-type rubber sealing ring is arranged at the flow guiding hole of the frame plate, and the sealing rubber ring is pasted by glue.
  • a 0-type rubber sealing ring is arranged at the flow guiding hole of the frame plate, and the sealing rubber ring is pasted by glue.
  • a sealing rubber ring is disposed around the outer ring, and the sealing rubber ring is adhered to the frame plate by glue, and the conductive electrode plate is made larger than the frame plate and placed directly under the frame plate, The portion of the conductive electrode plate that is in contact with the frame plate is sealed by a sealing rubber ring, so as to prevent liquid leakage of the flow path hole, and the sealing plate of the flow guiding plate and the inlet plate of the frame plate are sealed with respect to the deflector It is achieved by sticking a rubber ring with glue.
  • the technical defect existing in the prior art is that: after sealing by the sealing rubber ring, there is a gap between the liquid inlet hole and the deflector, and the liquid-phase of the positive and negative liquid is prone to occur, thereby causing the vanadium flow battery to be electrically charged. The power of the stack is reduced. After a long period of use, the glue used to bond the sealing rubber ring is also prone to aging, which causes the sealing rubber ring and the baffle to fall off, and the vanadium flow battery loses the sealing effect.
  • the area of the conductive electrode plate is larger than the frame plate, the force receiving area of the conductive electrode plate is too large, the conductive electrode plate is not easy to be flat, and is easily squeezed by an external force, thereby causing cracking of the conductive electrode plate. It is prone to cross-flow of positive and negative liquids, resulting in a decrease in the power of the vanadium flow battery stack.
  • This invention provides a vanadium flow battery stack unit fabricated by the vanadium flow battery stack sealing method.
  • the invention also provides a vanadium flow battery composed of a vanadium flow battery stack unit.
  • the technical solution adopted by the present invention to solve the problems of the prior art is to provide a sealing method for a vanadium flow battery stack, in which the sealing method of the vanadium flow battery stack is sealed with a hot melt.
  • the sealing method of the vanadium flow battery stack includes:
  • a first hot melt line is disposed on the conductive electrode plate of the vanadium flow battery stack;
  • a second hot melt line and a third hot melt line are disposed on the frame plate, and corresponding to the first hot melt line Positioning the fourth hot melt line;
  • the invention also provides a vanadium flow battery stack unit manufactured by the above vanadium flow battery stack sealing method, the vanadium flow battery stack unit comprises: a conductive electrode plate, a frame plate, a deflector and Ionic membrane
  • the side length of the conductive electrode plate is smaller than the side length of the frame plate, the conductive electrode plate and the frame plate are fixed by a heat fusion line, and the frame plate and the baffle plate pass through a heat fusion line.
  • the connection plate is fixed, and the frame plate disposed on the conductive electrode plate is fixed by a heat fusion wire connection, the ion film and the conductive electrode plate, the frame plate and the deflector shape A stack unit in a one-piece structure.
  • the conductive electrode plate is provided with a first hot-melt line, and the first hot-melt line is respectively disposed on a front surface and a reverse surface of the conductive electrode plate, and the frame plates are respectively disposed at the Above and below the conductive electrode plate,
  • the frame plate on the conductive electrode plate is a first frame plate, and a second hot melt line is disposed on a reverse side of the first frame plate and a position corresponding to the first hot melt line is disposed. a fourth hot-melt line, a third hot-melt line is disposed in the front flow guiding groove of the first frame plate;
  • the frame plate under the conductive electrode plate is a second frame plate, and a second hot-melt line and a fourth position corresponding to the first hot-melt line are disposed on a front surface of the second frame plate a third fuse line is disposed in the reverse flow guiding groove of the second frame plate; the baffle is disposed in the flow guiding groove of the frame plate, wherein the deflector Providing a fifth hot melt line opposite to the third hot melt line;
  • the first hot-melt line is connected to the fourth hot-melt line
  • the second hot-melt line disposed on the first frame plate is connected to the second hot-melt line disposed on the second frame plate.
  • the baffle is disposed in the flow guiding groove of the frame plate, and the fifth hot melt line is connected to the third hot melt line.
  • the first hot-melt line is disposed at a periphery of the positive and negative surfaces of the conductive electrode plate, and a tail-end phase is formed at a periphery of the positive and negative surfaces of the conductive electrode plate.
  • the second hot-melt line is respectively disposed on a periphery of a plate surface on a reverse side of the first frame plate and a periphery of a plate surface on a front surface of the second frame plate, and forms a tail end around the front and back surface of the frame plate Consolidated hot melt coils;
  • the third hot-melt line is disposed at a periphery of the flow guiding hole in the guiding groove to form a hot-melt coil that is connected to the tail and tail;
  • the fourth hot-melt line is respectively disposed at a position opposite to the first hot-melt line of the reverse surface of the first frame plate and a position opposite to the first hot-melt line of the front surface of the second frame plate.
  • the fourth hot melt line is a tail-phased hot melt coil surrounded by the second hot melt line;
  • the fifth hot-melt line is disposed on a periphery of the flow guiding hole of the deflector, and forms a hot-melt coil that is connected to the end of the third hot-melt line.
  • the first heat-melting line forms a square hot-melt coil
  • the second heat-melting line forms a square hot-melt coil
  • the third heat-melting line forms a circular shape.
  • the hot melt coil; the fourth hot melt line forms a square hot melt coil; and the fifth heat fuse line forms a circular hot melt coil.
  • the ion film is fixedly connected to the conductive electrode plate via a rubber ring.
  • the invention also provides a vanadium flow battery stack made by using the vanadium flow battery stack unit, the vanadium flow battery stack comprising a plurality of vanadium flow battery stack units, each of the vanadium liquids
  • the flow battery stack unit is superimposed on each other, wherein the vanadium flow battery stack unit comprises: a conductive electrode plate, a frame plate, a baffle plate and an ion film; wherein the side length of the conductive electrode plate is smaller than the frame plate
  • the side of the conductive electrode plate and the frame plate are fixed by a heat fusion line, and the frame plate and the baffle plate are fixed by a heat fusion line, and the plate is disposed on the conductive electrode plate.
  • the frame plate is fixed by a heat fuse line, and the ion film forms a unitary structure of the stack unit with the conductive electrode plate, the frame plate and the deflector, and the stack unit is adjacent to each other.
  • An ionic membrane is
  • the vanadium flow battery stack sealing method of the invention has simple process, and the stack reactor and the vanadium flow battery stack obtained by the sealing method have good sealing effect and high stability, and the positive and negative of the vanadium flow battery do not appear for a long time use.
  • the liquid stringing phenomenon greatly improves the normal working time of the vanadium flow battery.
  • Figure 1 Top view of a vanadium redox flow battery stack of the present invention.
  • Figure 2 Schematic diagram of the cross-sectional structure of the vanadium redox flow battery stack unit of the present invention.
  • FIG. 1 Schematic diagram of the cross-sectional structure of the vanadium flow battery stack of the present invention. detailed description
  • the present invention provides a vanadium. A method of sealing a flow battery stack.
  • the technical solution adopted by the present invention to solve the problems of the prior art is to provide a sealing method for a vanadium flow battery stack, in which the sealing method of the vanadium flow battery stack is sealed with a hot melt.
  • the sealing method of the vanadium flow battery stack specifically includes: providing a first hot melt line on the conductive electrode plate of the vanadium flow battery stack; and providing a second hot melt on the frame plate a line, a third hot melt line, and a fourth hot melt line is disposed at a position corresponding to the first hot melt line;
  • the hot melt line described in the above method is a linear joint material made of a heat-meltable polymer.
  • the material used to make the fuser may be polypropylene or polypropylene.
  • This invention provides a vanadium flow battery stack unit fabricated by the vanadium flow battery stack sealing method.
  • FIG. 2 a cross-sectional structural diagram of the vanadium redox flow battery stack unit of the present invention.
  • the present invention also provides a vanadium flow battery stack unit manufactured by the above vanadium flow battery stack sealing method, wherein the vanadium flow battery stack unit comprises: a conductive electrode plate and a frame Plate, deflector and ion membrane;
  • the side length of the conductive electrode plate is smaller than the side length of the frame plate, thus
  • the area of the conductive electrode plate is smaller than the area of the frame plate, and the force receiving area of the conductive electrode plate can be effectively reduced, and the first frame plate disposed on the plate and the conductive electrode can be
  • the second frame plate can be more effectively fixed by the connection of the hot-melt wire, and is fixed by the hot-melt wire connection of the first frame plate and the second frame plate, so that the conductive electrode can be better
  • the board acts as a seal.
  • the conductive electrode plate and the frame plate are fixed by a heat fuse line
  • the frame plate and the baffle plate are fixed by a heat fusion line, and are disposed on the conductive electrode plate and below.
  • the frame plate is fixed by a heat fuse line connection, and the ion film forms a stack unit structure with the conductive electrode plate, the frame plate and the baffle plate.
  • the conductive electrode plate is provided with a first hot-melt line, and the first hot-melt line is respectively disposed on a front surface and a reverse surface of the conductive electrode plate, and the frame plate Separately disposed on the upper surface and the lower surface of the conductive electrode plate, wherein the frame plate on the conductive electrode plate is a first frame plate, and a second hot melt line is disposed on a reverse side of the first frame plate a fourth hot-melt line disposed at a position corresponding to the first hot-melt line, a third hot-melt line is disposed in a front flow guiding groove of the first frame plate; and the under the conductive electrode plate
  • the frame plate is a second frame plate, and a second hot-melt line and a fourth hot-melt line disposed at a position corresponding to the first hot-melt line are disposed on a front surface of the second frame plate, in the second frame a third hot melt line is disposed in the reverse
  • the first hot-melt line is disposed at a periphery of the positive and negative surfaces of the conductive electrode plate, and a heat of the tail-end phase is formed at the periphery of the positive and negative surfaces of the conductive electrode plate.
  • the second hot-melt line is respectively disposed on a periphery of a plate surface on a reverse side of the first frame plate and a periphery of a plate surface on a front surface of the second frame plate, and forms a tail end around the front and back surface of the frame plate Consolidated hot melt coils;
  • the third hot-melt line is disposed at a periphery of the flow guiding hole in the guiding groove to form a hot-melt coil that is connected to the tail and tail;
  • the fourth hot-melt line is respectively disposed at a position opposite to the first hot-melt line of the reverse surface of the first frame plate and a position opposite to the first hot-melt line of the front surface of the second frame plate.
  • the fourth hot melt line is a tail-phased hot melt coil surrounded by the second hot melt line;
  • the fifth hot-melt line is disposed on a periphery of the flow guiding hole of the deflector, and forms a hot-melt coil that is connected to the end of the third hot-melt line.
  • the air guiding hole formed on the deflector is opposite to the hole of the air guiding hole formed on the frame plate.
  • the first hot-melt line forms a square hot-melt coil
  • the second hot-melt line forms a square hot-melt coil
  • the third hot-melt line forms a circle
  • the hot melt coil; the fourth hot melt line forms a square hot melt coil;
  • the fifth heat fuse line forms a circular hot melt coil, which can pass heat when the coils are thermally fixed and fixed
  • the flattening press presses the hot melt line to heat-bond the hot melt lines to each other to form a sealing effect.
  • the ion film and the conductive electrode plate are fixedly connected by a rubber ring.
  • FIG. 3 a schematic cross-sectional structural view of the vanadium flow battery stack of the present invention.
  • the invention also provides a vanadium flow battery stack made by using the vanadium flow battery stack unit, the vanadium flow battery stack comprising a plurality of vanadium flow battery stack units, each of the vanadium liquids
  • the flow battery stack unit is stacked on each other, wherein the vanadium flow battery stack unit comprises: a conductive electrode plate, a frame plate, a baffle plate and an ion film; wherein the side length of the conductive electrode plate is smaller than the frame plate
  • the side of the conductive electrode plate and the frame plate are fixed by a heat fusion line, and the frame plate and the baffle plate are fixed by a heat fusion line, and the plate is disposed on the conductive electrode plate.
  • the frame plate is fixed by a heat fuse line, and the ion film forms a unitary structure of the stack unit with the conductive electrode plate, the frame plate and the baffle plate, and the stack unit
  • FIG. 1 due to limited space, only two sets of vanadium flow battery stack units are drawn. In practice, multiple vanadium flow battery stack units can be superimposed on each other as needed.
  • the top view of the vanadium flow battery stack after superposition molding can be referred to FIG. 1. In order to facilitate the observation of the top view structure of the vanadium flow battery stack, the ion film has been removed in FIG. 1, as described in FIG.
  • a through hole is disposed on a frame plate, and the upper carbon felt disposed on the conductive electrode plate is visible from the through hole, and the second frame plate is also provided with a through hole, and the conductive electrode plate is disposed under the plate
  • the carbon felt can be visible from the through hole (the lower carbon felt provided on the second frame plate and the conductive electrode plate is not shown in FIG. 1 due to the top view of FIG. 1), and the frame plate in FIG.
  • the baffles are installed in the guide channels, and the baffles are respectively installed on the two sides of the frame plate.
  • the upper plane of the frame plate and the baffle plate are The upper plane and the plane of the upper carbon felt provided on the conductive electrode plate are in the same plane, and such an arrangement can ensure that the ion film disposed thereon can be flat and wrinkles are less likely to occur.
  • the vanadium flow battery stack sealing method of the invention has simple process, and the stack reactor and the vanadium flow battery stack obtained by the sealing method have good sealing effect and high stability, and the positive and negative of the vanadium flow battery do not appear for a long time use.
  • the liquid stringing phenomenon greatly improves the normal working time of the vanadium flow battery.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及钒液流电池电堆密封方法及电堆单元和钒液流电池电堆。所述钒液流电池电堆的密封方法中采用热熔线进行密封。所述钒液流电池电堆单元包括:导电电极板、框板、导流板和离子膜;其中,导电电极板的边长小于导电电极板的边长,导电电极板与框板通过热熔线连接固定,框板与导流板通过热熔线连接固定,在导电电极板上、下设置的框板通过热熔线连接固定,离子膜与导电电极板、框板和导流板形成一体式结构的电堆单元。

Description

钒液流电池电堆密封方法及电堆单元和钒液流电池电堆
技术领域 本发明涉及一种密封方法,具体涉及一种钒液流电池电堆的密封 方法及应用该方法制成的钒液流电池一体式电堆。 背景技术
钒液流电池的密封问题一直是困扰钒液流电池使用寿命的一个 技术问题。
现有技术中均釆用密封橡胶圈进行密封。现有技术中钒液流电池 电堆中包括导电电极板、 框板和导流板, 其中, 在所述框板的导流孔 处设有 0型橡胶密封圈, 该密封橡胶圈通过胶水粘贴在所述框板上, 在所述框板的
外圈周边设有密封橡胶圈, 该密封橡胶圈通过胶水粘贴在所述框板 上, 导电电极板做成和所述框板等大, 并放在所述框板的正下方, 在 所述导电电极板与所述框板相接触的部分通过密封橡胶圈进行密封, 这样可以防止流道孔产生渗液,所述导流板与所述框板的进液孔相对 导流板的密封都是釆用胶水粘贴橡胶圈的方式实现的。
现有技术存在的技术缺陷在于: 通过密封橡胶圈密封后, 所述进 液孔与所述导流板之间是有间隙的 , 容易发生正负液的串液, 从而造 成钒液流电池电堆的功率下降, 在长时间使用后, 用于粘结密封橡胶 圈的胶水也容易老化, 从而造成密封橡胶圈和导流板的脱落, 使钒液 流电池失去密封效果。 导电电极板的面积如与所述框板等大, 会使所 述导电电极板的受力面积过大, 所述导电电极板不易平整, 易受外力 挤压, 造成导电电极板的开裂, 也容易发生正负液的串液, 从而造成 钒液流电池电堆的功率下降。 发明内容 为了解决现有技术中钒液流电池所有的密封均釆用橡胶圈实现, 而橡胶圈的密封稳定性较差,长时间使用会出现钒液流电池内发生正 负液的串液,从而造成钒液流电池电堆的功率下降这一技术问题本发 明提供了一种钒液流电池电堆的密封方法。
为了解决现有技术中钒液流电池所有的密封均釆用橡胶圈实现, 而橡胶圈的密封稳定性较差,长时间使用会出现钒液流电池内发生正 负液的串液,从而造成钒液流电池电堆的功率下降这一技术问题本发 明提供了一种运用所述钒液流电池电堆密封方法制成的钒液流电池 电堆单元。
本发明还提供了钒液流电池电堆单元组成的钒液流电池。
本发明解决现有技术问题所釆用的技术方案为提供了一种钒液 流电池电堆的密封方法,所述钒液流电池电堆的密封方法中釆用热熔 线进行密封。
根据本发明的一优选技术方案:所述钒液流电池电堆的密封方法 具体包括:
在所述钒液流电池电堆的导电电极板上设置第一热熔线; 在框板上设置第二热熔线、 第三热熔线, 并在与所述第一热熔线 对应的位置设置第四热熔线;
在导流板上与所述第三热熔线的位置对应的设置第五热熔线; 将所述第一热熔线与所述第四热熔线进行热熔固定,将所述第二 热熔线进行彼此对应的热熔固定,将所述第三热熔线与所述第五热熔 线进行热熔固定。
本发明还提供了一种运用上述钒液流电池电堆密封方法制成的 钒液流电池电堆单元, 所述钒液流电池电堆单元包括: 导电电极板、 框板、 导流板和离子膜;
其中, 所述导电电极板的边长小于所述框板的边长, 所述导电电 极板与所述框板通过热熔线连接固定 ,所述框板与所述导流板通过热 熔线连接固定, 在所述导电电极板上、 下设置的所述框板通过热熔线 连接固定, 所述离子膜与所述导电电极板、 所述框板和所述导流板形 成一体式结构的电堆单元。
根据本发明的一优选技术方案: 所述导电电极板设有第一热熔 线, 所述第一热熔线分别设置在所述导电电极板的正面和反面, 所述 框板分别设置在所述导电电极板的上面和下面,
其中, 在所述导电电极板上面的所述框板为第一框板, 在所述第 一框板的反面设置有第二热熔线和与所述第一热熔线对应的位置设 置的第四热熔线, 在所述第一框板的正面导流槽内设置有第三热熔 线;
在所述导电电极板下面的所述框板为第二框板,在所述第二框板 的正面设置有第二热熔线和与所述第一热熔线对应的位置设置的第 四热熔线, 在所述第二框板的反面导流槽内设置有第三热熔线; 所述导流板设置在所述框板的导流槽内, 其中, 在所述导流板上 设置有与所述第三热熔线相对的第五热熔线;
其中, 所述第一热熔线与所述第四热熔线连接, 所述第一框板上 设置的第二热熔线与所述第二框板上设置的第二热熔线连接 ,所述导 流板设置在所述框板的导流槽内,所述第五热熔线与所述第三热熔线 连接。
根据本发明的一优选技术方案:所述第一热熔线设置在所述导电 电极板正、 反板面的周边, 在所述导电电极板正、 反板面的周边形成 一首尾相结的热熔线圈;
所述第二热熔线分别设置在所述第一框板反面的板面周边和所 述第二框板正面的板面周边, 并在所述框板正、反板面的周边形成一 首尾相结的热熔线圈;
所述第三热熔线设置在导流槽内导流孔的周边,形成一首尾相结 的热熔线圈;
所述第四热熔线分别设置在所述第一框板的反面与所述第一热 熔线相对的位置和所述第二框板正面与所述第一热熔线相对的位置, 所述第四热熔线为一首尾相结的热熔线圈, 并被所述第二热熔线环 绕; 所述第五热熔线设置在所述导流板上导流孔的周边,并与所述第 三热熔线位置相对形成一首尾相结的热熔线圈。
根据本发明的一优选技术方案:所述第一热熔线形成一方形的热 熔线圈; 所述第二热熔线形成一方形的热熔线圈; 所述第三热熔线形 成一圓形的热熔线圈; 所述第四热熔线形成一方形的热熔线圈; 所述 第五热熔线形成一圓形的热熔线圈。
根据本发明的一优选技术方案:所述离子膜与所述导电电极板通 过橡胶圈固定连接。
本发明还提供了一种运用上述钒液流电池电堆单元制成的钒液 流电池电堆, 所述钒液流电池电堆包括多个钒液流电池电堆单元, 各 所述钒液流电池电堆单元相互叠加, 其中, 所述钒液流电池电堆单元 包括: 导电电极板、 框板、 导流板和离子膜; 其中, 所述导电电极板 的边长小于所述框板的边长,所述导电电极板与所述框板通过热熔线 连接固定, 所述框板与所述导流板通过热熔线连接固定, 在所述导电 电极板上、 下设置的所述框板通过热熔线连接固定, 所述离子膜与所 述导电电极板、 所述框板和所述导流板形成一体式结构的电堆单元, 上下相邻的所述电堆单元共用一离子膜。
本发明钒液流电池电堆密封方法工艺简单,通过该密封方法获得 的电堆单元和钒液流电池电堆密封效果好,稳定性高, 长时间使用不 会出现钒液流电池内正负液的串液现象,大大提高了钒液流电池的正 常工作时间。 附图说明
图 1.本发明钒液流电池电堆俯视图。
图 2.本发明钒液流电池电堆单元剖面结构示意图。
图 3.本发明钒液流电池电堆剖面结构示意图。 具体实施方式
为了解决现有技术中钒液流电池所有的密封均釆用橡胶圈实现, 而橡胶圈的密封稳定性较差,长时间使用会出现钒液流电池内发生正 负液的串液,从而造成钒液流电池电堆的功率下降这一技术问题本发 明提供了一种钒液流电池电堆的密封方法。
本发明解决现有技术问题所釆用的技术方案为提供了一种钒液 流电池电堆的密封方法,所述钒液流电池电堆的密封方法中釆用热熔 线进行密封。
在发明技术方案中, 所述钒液流电池电堆的密封方法具体包括: 在所述钒液流电池电堆的导电电极板上设置第一热熔线; 在框板上设置第二热熔线、 第三热熔线, 并在与所述第一热熔线 对应的位置设置第四热熔线;
在导流板上与所述第三热熔线的位置对应的设置第五热熔线; 将所述第一热熔线与所述第四热熔线进行热熔固定,将所述第二 热熔线进行彼此对应的热熔固定,将所述第三热熔线与所述第五热熔 线进行热熔固定, 即可实现钒液流电池电堆的密封。
上述方法中所述的热熔线是一种经加热可熔融的聚合物制成的 线状连结材料。当密封加工时所述热熔线的温度上升到一定程度后就 熔融, 并与框板、 极板等黏结。 用于制作热熔线的材料可以选用丙纶 或聚丙烯等。
为了解决现有技术中钒液流电池所有的密封均釆用橡胶圈实现, 而橡胶圈的密封稳定性较差,长时间使用会出现钒液流电池内发生正 负液的串液,从而造成钒液流电池电堆的功率下降这一技术问题本发 明提供了一种运用所述钒液流电池电堆密封方法制成的钒液流电池 电堆单元。
以下结合附图对本发明技术方案进行详细说明:
请参阅图 2本发明钒液流电池电堆单元剖面结构示意图。 如图 2 所示,本发明还提供了一种运用上述钒液流电池电堆密封方法制成的 钒液流电池电堆单元, 所述钒液流电池电堆单元包括: 导电电极板、 框板、 导流板和离子膜;
其中, 所述导电电极板的边长小于所述框板的边长, 这样就使得 所述导电电极板的面积小于所述框板的面积 ,可以有效的减小所述导 电电极板的受力面积, 而且可以使所述导电电极板上、 下设置的所述 第一框板和所述第二框板可以更为有效的实现通过热熔线的连接固 定, 通过所述第一框板和所述第二框板的热熔线连接固定, 可以更好 的对所述导电电极板起到密封效果。 在图中可示, 所述导电电极板与 所述框板通过热熔线连接固定 ,所述框板与所述导流板通过热熔线连 接固定, 在所述导电电极板上、 下设置的所述框板通过热熔线连接固 定, 所述离子膜与所述导电电极板、 所述框板和所述导流板形成一体 式结构的电堆单元。
如图 2所示,在本发明的技术方案中所述导电电极板设有第一热 熔线, 所述第一热熔线分别设置在所述导电电极板的正面和反面, 所 述框板分别设置在所述导电电极板的上面和下面, 其中, 在所述导电 电极板上面的所述框板为第一框板,在所述第一框板的反面设置有第 二热熔线和与所述第一热熔线对应的位置设置的第四热熔线,在所述 第一框板的正面导流槽内设置有第三热熔线;在所述导电电极板下面 的所述框板为第二框板 ,在所述第二框板的正面设置有第二热熔线和 与所述第一热熔线对应的位置设置的第四热熔线,在所述第二框板的 反面导流槽内设置有第三热熔线;所述导流板设置在所述框板的导流 槽内, 其中, 在所述导流板上设置有与所述第三热熔线相对的第五热 熔线; 其中, 所述第一热熔线与所述第四热熔线连接, 所述第一框板 上设置的第二热熔线与所述第二框板上设置的第二热熔线连接 ,所述 导流板设置在所述框板的导流槽内,所述第五热熔线与所述第三热熔 线连接。
在本发明的技术方案中,所述第一热熔线设置在所述导电电极板 正、 反板面的周边, 在所述导电电极板正、 反板面的周边形成一首尾 相结的热熔线圈;
所述第二热熔线分别设置在所述第一框板反面的板面周边和所 述第二框板正面的板面周边, 并在所述框板正、反板面的周边形成一 首尾相结的热熔线圈; 所述第三热熔线设置在导流槽内导流孔的周边,形成一首尾相结 的热熔线圈;
所述第四热熔线分别设置在所述第一框板的反面与所述第一热 熔线相对的位置和所述第二框板正面与所述第一热熔线相对的位置, 所述第四热熔线为一首尾相结的热熔线圈, 并被所述第二热熔线环 绕;
所述第五热熔线设置在所述导流板上导流孔的周边,并与所述第 三热熔线位置相对形成一首尾相结的热熔线圈。所述导流板上开设的 导流孔与所述框板上开设的导流孔孔心相对。
在本发明的优选技术方案中,所述第一热熔线形成一方形的热熔 线圈; 所述第二热熔线形成一方形的热熔线圈; 所述第三热熔线形成 一圓形的热熔线圈; 所述第四热熔线形成一方形的热熔线圈; 所述第 五热熔线形成一圓形的热熔线圈, 在使所述各线圈热熔固定时, 可以 通过热熔平压机, 将热熔线进行热压使热熔线相互融固连接在一起, 起到密封的效果。
在本发明的技术方案中,所述离子膜与所述导电电极板通过橡胶 圈固定连接。
请参阅图 3本发明钒液流电池电堆剖面结构示意图。本发明还提 供了一种运用上述钒液流电池电堆单元制成的钒液流电池电堆,所述 钒液流电池电堆包括多个钒液流电池电堆单元,各所述钒液流电池电 堆单元相互叠加,其中,所述钒液流电池电堆单元包括:导电电极板、 框板、 导流板和离子膜; 其中, 所述导电电极板的边长小于所述框板 的边长, 所述导电电极板与所述框板通过热熔线连接固定, 所述框板 与所述导流板通过热熔线连接固定, 在所述导电电极板上、 下设置的 所述框板通过热熔线连接固定, 所述离子膜与所述导电电极板、 所述 框板和所述导流板形成一体式结构的电堆单元,上下相邻的所述电堆 单元共用一离子膜。
在图 3中由于空间有限, 只画了两组钒液流电池电堆单元, 实践 中可以根据需要将多块钒液流电池电堆单元相互叠加。 叠加成型后的所述钒液流电池电堆俯视图可以参阅图 1 , 为了方 便观察所述钒液流电池电堆俯视图结构,图 1中已经将所述离子膜去 除, 在图 1中所述第一框板上设置有一通孔, 所述导电电极板上设置 的上碳毡可以从该通孔可视, 所述第二框板上也设置有一通孔, 所述 导电电极板上设置的下碳毡可以从该通孔可视 (由于图 1为俯视图, 所以所述第二框板和导电电极板上设置的下碳毡在图 1 中不能体现 出来), 在图 1 中所述框板的导流槽内安装有导流板, 所述导流板分 别安装在所述框板的两侧边, 在本发明的技术方案中, 所述框板的上 平面、所述导流板的上平面和所述导电电极板上设置的上碳毡的平面 处于同一平面, 这样的设置可以使得其上设置的离子膜能保证平整, 不容易发生褶皱。
本发明钒液流电池电堆密封方法工艺简单,通过该密封方法获得 的电堆单元和钒液流电池电堆密封效果好,稳定性高, 长时间使用不 会出现钒液流电池内正负液的串液现象,大大提高了钒液流电池的正 常工作时间。
以上内容是结合具体的优选技术方案对本发明所作的进一步详 细说明, 不能认定本发明的具体实施只局限于这些说明。对于本发明 所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范 围。

Claims

权利要求
1.一种钒液流电池电堆密封方法, 其特征在于:
所述钒液流电池电堆的密封方法中釆用热熔线进行密封。
2.根据权利要求 1所述钒液流电池电堆的密封方法,其特征在于: 所述钒液流电池电堆的密封方法具体包括:
在所述钒液流电池电堆的导电电极板(106)上设置第一热熔线 (101 );
在框板上设置第二热熔线 ( 102 )、 第三热熔线 ( 103 ), 并在与所 述第一热熔线(101 )对应的位置设置第四热熔线 (104);
在导流板 ( 109 )上与所述第三热熔线( 103 )的位置对应的设置 第五热熔线 ( 105 );
将所述第一热熔线 ( 101 )与所述第四热熔线 ( 104)进行热熔固 定, 将所述第二热熔线(102)进行彼此对应的热熔固定, 将所述第 三热熔线 (103) 与所述第五热熔线(105)进行热熔固定。
3.—种运用如权利要求 1所述钒液流电池电堆密封方法制成的钒 液流电池电堆单元, 其特征在于:
所述钒液流电池电堆单元包括: 导电电极板(106)、 框板、 导流 板(109)和离子膜(110);
其中, 所述导电电极板(106) 的边长小于所述框板的边长, 所 述导电电极板(106) 与所述框板通过热熔线连接固定, 所述框板与 所述导流板(109)通过热熔线连接固定, 在所述导电电极板 ( 106) 上、 下设置的所述框板通过热熔线连接固定, 所述离子膜(110)与 所述导电电极板(106)、 所述框板和所述导流板(109)形成一体式 结构的电堆单元。
4.根据权利要求 3所述钒液流电池电堆密封方法制成的钒液流电 池电堆单元, 其特征在于:
所述导电电极板 ( 106 )设有第一热熔线 ( 101 ), 所述第一热熔 线( 101 )分别设置在所述导电电极板( 106)的正面和反面, 所述框 板分别设置在所述导电电极板 ( 106) 的上面和下面, 其中, 在所述导电电极板(106) 上面的所述框板为第一框板 ( 107 ), 在所述第一框板( 107 )的反面设置有第二热熔线( 102 )和 与所述第一热熔线 (101 )对应的位置设置的第四热熔线 (104), 在 所述第一框板(107) 的正面导流槽内设置有第三热熔线 (103); 在所述导电电极板(106) 下面的所述框板为第二框板(108), 在所述第二框板( 108 )的正面设置有第二热熔线( 102 )和与所述第 一热熔线(101 )对应的位置设置的第四热熔线(104), 在所述第二 框板(108) 的反面导流槽内设置有第三热熔线(103);
所述导流板(109)设置在所述框板的导流槽内, 其中, 在所述 导流板 ( 109 )上设置有与所述第三热熔线( 103 )相对的第五热熔线 (105 );
其中, 所述第一热熔线 (101 ) 与所述第四热熔线 (104)连接, 所述第一框板( 107 )上设置的第二热熔线( 102 )与所述第二框板( 108 ) 上设置的第二热熔线 ( 102 )连接, 所述导流板 ( 109 )设置在所述框 板的导流槽内, 所述第五热熔线 ( 105 )与所述第三热熔线( 103 )连 接。
5.根据权利要求 4所述钒液流电池电堆的密封方法制成的钒液流 电池电堆单元, 其特征在于:
所述第一热熔线( 101 )设置在所述导电电极板( 106)正、 反板 面的周边, 在所述导电电极板(106)正、 反板面的周边形成一首尾 相结的热熔线圈;
所述第二热熔线 ( 102 )分别设置在所述第一框板 ( 107 )反面的 板面周边和所述第二框板 ( 108 )正面的板面周边, 并在所述框板正、 反板面的周边形成一首尾相结的热熔线圈;
所述第三热熔线 (103)设置在导流槽内导流孔(111 ) 的周边, 形成一首尾相结的热熔线圈;
所述第四热熔线 ( 104 )分别设置在所述第一框板 ( 107 )的反面 与所述第一热熔线( 101 )相对的位置和所述第二框板( 108)正面与 所述第一热熔线( 101 )相对的位置, 所述第四热熔线( 104)为一首 尾相结的热熔线圈, 并被所述第二热熔线(102)环绕;
所述第五热熔线 ( 105 )设置在所述导流板( 109 )上导流孔( 111 ) 的周边, 并与所述第三热熔线(103)位置相对形成一首尾相结的热 熔线圈。
6.根据权利要求 5所述钒液流电池电堆的密封方法制成的钒液流 电池电堆单元, 其特征在于:
所述第一热熔线 (101 )形成一方形的热熔线圈;
所述第二热熔线 (102)形成一方形的热熔线圈;
所述第三热熔线 (103)形成一圓形的热熔线圈;
所述第四热熔线 (104)形成一方形的热熔线圈;
所述第五热熔线 (105)形成一圓形的热熔线圈。
7.根据权利要求 6所述钒液流电池电堆的密封方法制成的钒液流 电池电堆单元, 其特征在于:
所述离子膜(110)与所述导电电极板 ( 106)通过橡胶圈固定连 接。
8.—种运用如权利要求 3所述钒液流电池电堆单元制成的钒液流 电池电堆, 其特征在于: 所述钒液流电池电堆包括多个钒液流电池电 堆单元, 各所述钒液流电池电堆单元相互叠加, 其中, 所述钒液流电 池电堆单元包括: 导电电极板(106)、 框板、 导流板(109)和离子 膜(110); 其中, 所述导电电极板(106) 的边长小于所述框板的边 长, 所述导电电极板(106) 与所述框板通过热熔线连接固定, 所述 框板与所述导流板 ( 109)通过热熔线连接固定, 在所述导电电极板
( 106 )上、下设置的所述框板通过热熔线连接固定,所述离子膜( 110 ) 与所述导电电极板(106)、 所述框板和所述导流板 ( 109)形成一体 式结构的电堆单元, 上下相邻的所述电堆单元共用一离子膜(110)。
PCT/CN2012/076027 2011-05-25 2012-05-25 钒液流电池电堆密封方法及电堆单元和钒液流电池电堆 WO2012159581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101363691A CN102244212B (zh) 2011-05-25 2011-05-25 钒液流电池电堆密封方法及电堆单元和钒液流电池电堆
CN201110136369.1 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012159581A1 true WO2012159581A1 (zh) 2012-11-29

Family

ID=44962149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076027 WO2012159581A1 (zh) 2011-05-25 2012-05-25 钒液流电池电堆密封方法及电堆单元和钒液流电池电堆

Country Status (2)

Country Link
CN (1) CN102244212B (zh)
WO (1) WO2012159581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742665A (zh) * 2014-12-08 2016-07-06 中国科学院大连化学物理研究所 一种适用于液流电池圆形电堆的导液板结构

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244212B (zh) * 2011-05-25 2013-09-11 深圳市金钒能源科技有限公司 钒液流电池电堆密封方法及电堆单元和钒液流电池电堆
CN102324535A (zh) * 2011-09-09 2012-01-18 深圳市金钒能源科技有限公司 钒液流电池一体化框板及其制备方法和用该框板制成的电堆
CN102386346B (zh) * 2011-11-22 2014-01-08 深圳市金钒能源科技有限公司 一种密封圈离子膜一体化组件的生产方法
CN102394281B (zh) * 2011-11-22 2014-06-04 深圳市金钒能源科技有限公司 钒液流电池密封圈离子膜一体化组件和电堆
CN106611861B (zh) * 2015-10-16 2019-07-02 中国科学院大连化学物理研究所 一种液流电池结构
CN107871880A (zh) * 2016-09-22 2018-04-03 中国科学院大连化学物理研究所 一种一体化锌溴液流电池及其组装方法
CN113809351B (zh) * 2020-06-11 2023-08-22 上海轩玳科技有限公司 一种质子交换膜氢燃料电池结构及密封方法
CN112264709A (zh) * 2020-10-26 2021-01-26 乐山晟嘉电气股份有限公司 钒液流电池汇流嘴侧封板焊接工艺
CN112786911B (zh) * 2020-12-31 2022-02-11 大连融科储能技术发展有限公司 一种双极板与电极框一体化结构及其制备方法和应用
CN117117275A (zh) * 2023-10-24 2023-11-24 四川天府储能科技有限公司 一种液流电池电堆封装方法及其电堆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531761A (zh) * 2001-06-12 2004-09-22 ס�ѵ�����ҵ��ʽ���� 氧化还原流动式电池用电池框和氧化还原流动式电池
CN101651220A (zh) * 2009-07-15 2010-02-17 中南大学 一种高度密封的液流电池
CN102244212A (zh) * 2011-05-25 2011-11-16 深圳市金钒能源科技有限公司 钒液流电池电堆密封方法及电堆单元和钒液流电池电堆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118592A (ja) * 1999-10-18 2001-04-27 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池及び電池スタック
JP2002175829A (ja) * 2000-12-07 2002-06-21 Sumitomo Electric Ind Ltd 全バナジウムレドックスフロー電池および全バナジウムレドックスフロー電池の運転方法
CN101656323B (zh) * 2009-03-31 2011-11-09 中国科学院长春应用化学研究所 一种燃料电池的密封方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531761A (zh) * 2001-06-12 2004-09-22 ס�ѵ�����ҵ��ʽ���� 氧化还原流动式电池用电池框和氧化还原流动式电池
CN101651220A (zh) * 2009-07-15 2010-02-17 中南大学 一种高度密封的液流电池
CN102244212A (zh) * 2011-05-25 2011-11-16 深圳市金钒能源科技有限公司 钒液流电池电堆密封方法及电堆单元和钒液流电池电堆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742665A (zh) * 2014-12-08 2016-07-06 中国科学院大连化学物理研究所 一种适用于液流电池圆形电堆的导液板结构

Also Published As

Publication number Publication date
CN102244212B (zh) 2013-09-11
CN102244212A (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2012159581A1 (zh) 钒液流电池电堆密封方法及电堆单元和钒液流电池电堆
CN205609583U (zh) 电池模组
CN208256791U (zh) 一种软包电池模组
WO2013034079A1 (zh) 钒液流电池一体化框板及其制备方法和用该框板制成的电堆
WO2021114887A1 (zh) 双极板的整体错位组装方法及包含该双极板的燃料电池电堆和发电系统
CN209912980U (zh) 电芯热压装置
KR101337905B1 (ko) 초음파 진동 접합을 이용한 연료전지 막-전극 접합체 제조 방법
CN207542358U (zh) 液冷电池模组以及电动汽车
CN109659581B (zh) 燃料电池的单体电池的制造方法
JP2012129098A (ja) 二次電池の製造方法および製造装置
WO2018086482A1 (zh) 液流电池电极结构、液流电池电堆及液流电池电堆的密封结构
CN204204982U (zh) 一种扣式锂离子电池
CN106455149A (zh) 一种电制热器
JP2018508957A (ja) レドックスフロー電池用の構造要素及びレドックスフロー電池用の構造要素の製造方法
CN212062614U (zh) 卷绕式电芯及锂离子电池
CN218731322U (zh) 电池
US20220149492A1 (en) Layer-built tab, electrode plate, battery core, and battery using same
JP6144650B2 (ja) 燃料電池の製造方法
KR20170025760A (ko) 전극 합제층 형성 몰드를 포함하는 이차전지용 전극 제조 장치
CN209183651U (zh) 燃料电池分隔件、单体燃料电池、燃料电池电堆和极板
CN208189646U (zh) 一种轴向引出的锂离子电池
WO2019148963A1 (zh) 电池芯、电池以及电池模组
JP2016170961A (ja) 燃料電池単セルの製造方法
CN216354376U (zh) 热压合装置及电池流水线生产设备
JP2020145130A (ja) 燃料電池セルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789249

Country of ref document: EP

Kind code of ref document: A1