WO2012159387A1 - 遥控模型飞机线性伺服机构 - Google Patents

遥控模型飞机线性伺服机构 Download PDF

Info

Publication number
WO2012159387A1
WO2012159387A1 PCT/CN2011/079230 CN2011079230W WO2012159387A1 WO 2012159387 A1 WO2012159387 A1 WO 2012159387A1 CN 2011079230 W CN2011079230 W CN 2011079230W WO 2012159387 A1 WO2012159387 A1 WO 2012159387A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo
disposed
slider
gear
control model
Prior art date
Application number
PCT/CN2011/079230
Other languages
English (en)
French (fr)
Inventor
沈安平
Original Assignee
深圳市沈氏彤创航天模型有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市沈氏彤创航天模型有限公司 filed Critical 深圳市沈氏彤创航天模型有限公司
Publication of WO2012159387A1 publication Critical patent/WO2012159387A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H27/00Toy aircraft; Other flying toys
    • A63H27/02Model aircraft
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H30/00Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
    • A63H30/02Electrical arrangements
    • A63H30/04Electrical arrangements using wireless transmission

Definitions

  • the invention relates to a remote control model helicopter, in particular to a servo mechanism of a remote control model helicopter.
  • the server of the remote control model includes a casing of the server, a power unit, a speed reducer, a transmission device, an output device, and an electronic circuit board for the control device assembled in the casing.
  • the operator operates the transmitting device to send an action signal
  • the receiving device mounted on the remote control model transmits the received signal to the control device
  • the control device completes the control operation of the model aircraft by controlling the power mechanism and the server.
  • the servo mechanism output used in the remote control model of the prior art generally performs the manipulation of the model action by the rotation of the control arm. Because the space used by the rotating arm is large, the amount of motion of the rotating arm and the amount of movement of the control lever are increased by different amounts.
  • the body of the remote control model is heavier, the volume is increased, the motion control is not linear, the energy loss is increased, the effective power is reduced, and the power requirement is increased, which not only wastes energy, increases product cost, increases product volume, and controls
  • the amount of motion is not uniform, which reduces the entertainment of the remote control model helicopter.
  • the object of the present invention is to provide a linear servo mechanism for a remote control model aircraft, and the technical problem to be solved is to reduce the dynamic space of the servo mechanism and increase the linear manipulation action of the remote control model.
  • the present invention adopts the following technical solutions: a remote control model aircraft linear servo mechanism, a servo housing, a power device disposed in the server housing, a speed reduction device connected to the power device, and a transmission device connected to the speed reduction device And an output device connecting the transmission device and a circuit board disposed in the server casing, wherein the output device is a slider, and the slider is disposed on the servo housing and linearly moves along the servo housing, the sliding The block is threaded to the transmission.
  • the servo housing of the present invention is composed of a servo upper case, a servo middle case and a servo lower case, and the servo upper case is connected to the upper end of the servo middle case, and the lower end is connected to the servo lower case.
  • the circuit board in the servo middle casing of the present invention divides the inside of the servo middle casing into a first inner cavity and a second inner cavity, and a sliding groove is arranged on an outer casing wall of the second inner cavity, and the slider is disposed at a rear end of the slider is screwed into a transmission device disposed in the second inner cavity, the circuit board is disposed at a rear end of the slider, and the power device is disposed in the first inner cavity
  • the deceleration device is disposed at an upper end of the servo middle case and in the servo upper case, and the power unit is engaged with the deceleration device.
  • the slider of the present invention is a convex-shaped structure, the rear end of the slider is disposed in the second inner cavity, and the front end protrudes out of the servo middle shell through the sliding slot and linearly moves the rear end of the conductive elastic piece along the sliding slot Connected to the slot.
  • the slider of the present invention is provided with a conductive elastic piece, and the conductive elastic piece forms contact with the surface of the circuit board.
  • the conductive elastic piece of the present invention has a J-shaped structure, and the long piece of the rear end of the conductive elastic piece is inserted into the slot, and the front end convex portion is electrically connected to the circuit board.
  • the transmission device of the present invention is a sliding screw, the upper end of which is connected to a reduction gear, and the rod portion is screwed to the slider.
  • the speed reduction device of the present invention is composed of a first-stage reduction gear and a second-stage reduction gear.
  • the first-stage reduction gear is connected to the upper end of the servo middle shell through a metal pin, and the second-stage reduction gear shaft is connected to the upper end of the sliding screw.
  • the first-stage reduction gears mesh with the second-stage reduction gears and the power unit, respectively.
  • the first reduction gear of the present invention is a double gear, the lower end pinion of the double gear meshes with the second stage reduction gear, and the upper end large gear meshes with the power unit.
  • the power device of the present invention is composed of a motor disposed in the first inner cavity and a driving gear connected to the output shaft of the motor.
  • the driving gear is disposed in the upper end of the servo middle casing and the upper casing of the servo, and the driving gear is double-connected. The upper end of the gear meshes with the large gear.
  • the invention adopts a built-in slider to perform the action output, and simultaneously integrates the power-providing motor and the speed reducing device, the screw that drives the slider, and the circuit board that provides the resistance feedback into the outer casing, so that The servo mechanism is reduced in volume, the control action is linear, and the control dynamic space is reduced.
  • Figure 1 is a schematic exploded perspective view of the present invention.
  • Figure 2 is a front elevational view of the controller of the present invention.
  • Figure 3 is a left side view of Figure 2.
  • Figure 4 is a right side view of Figure 2.
  • Figure 5 is a plan view of Figure 2 .
  • Figure 6 is a bottom plan view of Figure 2 .
  • Figure 7 is a cross-sectional view of Figure 6 taken along the line A-A.
  • the linear servo mechanism of the remote control model aircraft of the present invention is provided by the servo housing 13, the power unit 14 disposed on the right side of the server housing 13, and the power unit 14 disposed in the server housing 13.
  • the circuit board 5 is composed of a slider 6 which is disposed on the servo housing 13 and linearly moves along the servo housing 13.
  • the slider 6 is screwed to the transmission 16 for the sliding
  • the block 6 is provided with a conductive elastic piece 7, and the conductive elastic piece 7 is in contact with the surface of the circuit board 5, wherein:
  • the servo housing 13 is composed of a servo upper case 12, a servo middle case 1 and a servo lower case 2, the servo upper case 12 is connected to the upper end of the servo middle case 1, and the lower end is connected to the servo lower case 2, and the servo upper case is disposed in the servo middle case.
  • the circuit board 5 in the middle position of the inner portion of the servo inner casing 1 is divided into a first inner cavity 18 and a second inner cavity 19, and a sliding groove 20 is provided on the outer casing wall of the second inner cavity 19, and the slider 6 Disposed in the chute 20, the rear end of the slider 6 is screwed with a transmission 16 disposed in the second inner chamber 19, the circuit board 5 is adjacent to the slider 6, and the power unit 14 is disposed in the first inner cavity 18, the deceleration device 15 is disposed at the upper end of the servo middle case 1 and the servo upper case 12, and the driving gear 3 of the power unit 14 meshes with the upper end large gear of the first-stage reduction gear 8 of the reduction gear unit 15;
  • the slider 6 is a convex-shaped structure, the rear end of the slider 6 is disposed in the second inner cavity 19, and the front end extends out of the servo middle casing 1 through the sliding slot 20 and linearly moves along the sliding slot 20, and the conductive elastic piece 7 The rear end is plugged into the slot 21;
  • the circuit board 5 is printed with a resistive carbon film circuit board
  • the conductive elastic piece 7 is a J-shaped structure, and the long piece 71 at the rear end of the conductive elastic piece 7 is inserted into the slot 21, and the front end convex portion 72 is electrically connected to the circuit board 5;
  • the transmission device 16 is a sliding screw 11 , and the upper end of the sliding screw 11 is coaxially disposed and coupled with the second-stage reduction gear 10 of the reduction gear 15 , and the rod portion is screwed with the slider 6;
  • the speed reducing device 15 is composed of a first-stage reduction gear 8 and a second-stage reduction gear 10, which is connected to the upper end of the servo middle casing 1 through a metal pin 9, and the second-stage reduction gear 10 is axially coupled to the sliding
  • the upper end of the screw 11, the first reduction gear 8 is a double gear, the lower end pinion of the double gear 8 meshes with the second reduction gear 10, and the upper end gear meshes with the drive gear 3 of the power unit 14;
  • the power unit 14 is composed of a motor 4 disposed in the first inner chamber 18 and a driving gear 3 connected to the output shaft of the motor 4.
  • the output shaft of the motor 4 passes through the upper end of the first inner chamber 18 and is connected to the servo housing 1
  • the upper end, the driving gear 3 in the servo upper casing 12, and the driving gear 3 mesh with the upper end large gear of the double gear 8.
  • the servo middle case of the present invention is a rectangle having a thickness smaller than the short side length of the rectangular surface, and the motor 4 is vertically mounted on the servo.
  • the servo upper case 12 and the servo lower case 2 are tightly connected to the upper and lower sides 4 of the servo middle case 1, and the slider 6 is linearized on one side of the servo middle case 1
  • the moving chute 20 is provided with a column connecting the other mechanisms of the remote control model aircraft at the upper ends of the servo upper casing 12 and the servo lower casing 2, respectively.
  • the internal drive is not used in this servo mechanism. All the controls have external control completion.
  • the external control signal drives the motor 4 in the servo mechanism
  • the motor 4 drives the drive gear 3 through the first-order reduction gear.
  • 8 and the second-stage reduction gear 10 drive the sliding screw 11, the sliding screw 11 rotates to slide the slider 6 and the conductive elastic piece 7, and the conductive elastic piece 7 is in contact with the circuit board 5 printed with the electric carbon film, when the conductive elastic piece 7 slides
  • the resistance value is changed, the resistance value is returned to the external control driver to complete the servo control.

Landscapes

  • Toys (AREA)

Abstract

一种遥控模型飞机线性伺服机构,由伺服器外壳(13)、设置在伺服器外壳(13)内的动力装置(14)、连接动力装置(14)的减速装置(15)、连接减速装置(15)的传动装置(16)、连接传动装置(16)的输出装置(17)及设置在伺服器外壳(13)内的线路板(5)组成。输出装置(17)是滑块(6),滑块(6)设置在伺服器外壳(13)上并沿伺服器外壳(13)作线性移动,滑块(6)与传动装置(16)螺纹连接。上述各个装置都被装入伺服器外壳(13)内,从而使伺服机构体积减少,操控动作为线性,控制动态空间减少。

Description

遥控模型飞机线性伺服机构 遥控模型飞机线性伺服机构
技术领域
本发明涉及一种遥控模型直升机,特别是一种遥控模型直升机的伺服机构。
背景技术
遥控模型的伺服器包括伺服器的外壳,组装在壳内的动力装置、减速装置、传动装置、输出装置、控制装置用的电子线路板。操作遥控模型时,由操作者操作发射装置发出动作信号,安装在遥控模型上的接收装置将接收到的信号传递给控制装置,控制装置通过控制动力机构和伺服器来完成对模型飞机的控制操作。现有技术的遥控模型使用的伺服机构输出一般由控制臂的旋转完成对模型动作的操控,因旋转臂所使用的空间较大,旋转臂的动作量与控制拉杆的动作量为非同量增加,从而导致遥控模型的机身加重、体积增大,动作控制不能线性,增加能量损耗,有效功率减小,动力要求增大,不仅浪费了能源、增加了产品成本,增大产品体积,且操控动作量不统一,降低了遥控模型直升机的娱乐性。
发明内容
本发明的目的是提供一种遥控模型飞机线性伺服机构,要解决的技术问题是减少伺服机构的动态空间与增加遥控模型的线性操控动作。
为解决上述技术问题,本发明采用以下技术方案:一种遥控模型飞机线性伺服机构,由伺服器外壳,设置在伺服器外壳内的动力装置、连接动力装置的减速装置、连接减速装置的传动装置、连接传动装置的输出装置及设置在伺服器外壳)内的线路板组成,所述输出装置是滑块,所述滑块设置在伺服器外壳上并沿伺服器外壳作线性移动,所述滑块与传动装置螺纹连接。
本发明的伺服器外壳由伺服上壳、伺服中壳及伺服下壳组成,所述伺服上壳连接在伺服中壳的上端,下端连接伺服下壳。
本发明的伺服中壳内的线路板将伺服中壳内部分隔为第一内腔、第二内腔,在所述第二内腔的外侧壳壁上设有滑槽,所述滑块设置在滑槽内,所述滑块的后端与设置在第二内腔内的传动装置螺纹连接,所述线路板设置在滑块的后端,所述动力装置设置在第一内腔内,所述减速装置设置在伺服中壳的上端、伺服上壳内,所述动力装置与减速装置啮合。
本发明的滑块是一个凸字形结构,所述滑块的后端设在第二内腔内,前端通过滑槽伸出伺服中壳外并沿滑槽线性移动所述导电弹片的后端插接在插槽内。
本发明的滑块上设有导电弹片,所述导电弹片与线路板的表面形成接触。
本发明的导电弹片为一个J字形结构,所述导电弹片后端的长片插入插槽内,前端凸起部分与线路板电接连。
本发明的传动装置是滑动螺杆,所述滑动螺杆的上端与减速装置连接,杆部与滑块螺纹连接。
本发明的减速装置由第一阶减速齿轮与第二阶减速齿轮组成,所述第一阶减速齿轮通过金属销连接在伺服中壳的上端,第二阶减速齿轮轴接在滑动螺杆的上端,所述第一阶减速齿轮分别与第二阶减速齿轮及动力装置啮合。
本发明的第一阶减速齿轮是双联齿轮,所述双联齿轮的下端小齿轮与第二阶减速齿轮啮合,上端大齿轮与动力装置啮合。
本发明的动力装置由设置在第一内腔内的马达及连接在马达输出轴上的主动齿轮组成,所述主动齿轮设置在伺服中壳上端、伺服上壳内,所述主动齿轮与双联齿轮的上端大齿轮啮合。
本发明与现有技术相比,采用一个内置的滑块进行动作输出,同时将提供动力的马达与减速装置、带动滑块动作的螺杆、提供电阻返馈的线路板统一装入外壳内,使伺服机构体积减少,操控动作为线性,控制动态空间减少。
附图说明
图1是本发明的立体分解结构示意图。
图2是本发明控制器的主视图。
图3是图2的左视图。
图4是图2的右视图。
图5是图2的俯视图。
图6是图2的仰视图。
图7是图6沿A-A方向的剖视图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。如图1和图7所示,本发明的遥控模型飞机线性伺服机构由伺服器外壳13,设置在伺服器外壳13内右侧的动力装置14、连接动力装置14的设置在伺服器外壳13内上侧的减速装置15、连接减速装置15的设置在伺服器外壳13内左侧的传动装置16、连接传动装置16的设置在传动装置16上的输出装置17及设置在伺服器外壳13内中部的线路板5组成,所述输出装置17是滑块6,滑块6设置在伺服器外壳13上并沿伺服器外壳13作线性移动,该滑块6与传动装置16螺纹连接,所述滑块6上设有导电弹片7,导电弹片7与线路板5的表面形成接触,其中:
伺服器外壳13由伺服上壳12、伺服中壳1及伺服下壳2组成,所述伺服上壳12连接在伺服中壳1的上端,下端连接伺服下壳2,所述设置在伺服中壳1内中间位置的线路板5将伺服中壳1内部分隔为第一内腔18、第二内腔19,在第二内腔19的外侧壳壁上设有滑槽20,所述滑块6设置在滑槽20内,滑块6的后端与设置在第二内腔19内的传动装置16螺纹连接,所述线路板5与滑块6相邻,动力装置14设置在第一内腔18内,所述减速装置15设置在伺服中壳1的上端、伺服上壳12内,动力装置14的主动齿轮3与减速装置15的第一阶减速齿轮8的上端大齿轮啮合;
滑块6是一个凸字形结构,所述滑块6的后端设在第二内腔19内,前端通过滑槽20伸出伺服中壳1外并沿滑槽20线性移动,导电弹片7的后端插接在插槽21内;
线路板5是印有电阻碳膜线路板;
导电弹片7为一个J字形结构,所述导电弹片7后端的长片71插入插槽21内,前端凸起部分72与线路板5电接连;
传动装置16是滑动螺杆11,所述滑动螺杆11的上端与减速装置15的第二阶减速齿轮10同轴设置并轴接,杆部与滑块6螺纹连接;
减速装置15由第一阶减速齿轮8与第二阶减速齿轮10组成,所述第一阶减速齿轮8通过金属销9连接在伺服中壳1的上端,第二阶减速齿轮10轴接在滑动螺杆11的上端,所述第一阶减速齿轮8是双联齿轮,双联齿轮8的下端小齿轮与第二阶减速齿轮10啮合,上端大齿轮与动力装置14的主动齿轮3啮合;
动力装置14由设置在第一内腔18内的马达4及连接在马达4输出轴上的主动齿轮3组成,马达4的输出轴穿过第一内腔18上端并连接设置在伺服中壳1上端、伺服上壳12内的主动齿轮3,所述主动齿轮3与双联齿轮8的上端大齿轮啮合。
本发明的如图2、3、4和5所示,为了减小伺服机构的体积,本发明的伺服中壳是一个长方形,厚度小于长方形面上的短边长度,马达4竖向安装在伺服中壳1内的第一内腔18内,伺服上壳12及伺服下壳2紧密连接在伺服中壳1的上下两4,在伺服中壳1的一个侧面上设有供滑块6作线性移动的滑槽20,在伺服上壳12及伺服下壳2上端分别设有连接遥控模型飞机其它机构的立柱。
减小本伺服机构体积,本伺服机构中不使用内部驱动,所有控制都有外接控制完成,当外控制信号驱动伺服机构中的马达4时,马达4带动主动齿轮3,通过第一阶减速齿8与第二阶减速齿10传动滑动螺杆11,滑动螺杆11转动使滑块6与导电弹片7滑动,导电弹片7与印有电阴碳膜的电路板5接触导通,当导电弹片7滑动时完成阻值变化,返回这一变化阻值给外部控制驱动器,从而完成伺服机构的控制。

Claims (10)

  1. 一种遥控模型飞机线性伺服机构,由伺服器外壳(13),设置在伺服器外壳(13)内的动力装置(14)、连接动力装置(14)的减速装置(15)、连接减速装置(15)的传动装置(16)、连接传动装置(16)的输出装置(17)及设置在伺服器外壳(13)内的线路板(5)组成,其特征在于:所述输出装置(17)是滑块(6),所述滑块(6)设置在伺服器外壳(13)上并沿伺服器外壳(13)作线性移动,所述滑块(6)与传动装置(16)螺纹连接。
  2. 根据权利要求1所述的遥控模型飞机线性伺服机构,其特征在于:所述伺服器外壳(13)由伺服上壳(12)、伺服中壳(1)及伺服下壳(2)组成,所述伺服上壳(12)连接在伺服中壳(1)的上端,下端连接伺服下壳(2)。
  3. 根据权利要求2所述的遥控模型飞机线性伺服机构,其特征在于:所述伺服中壳(1)内的线路板(5)将伺服中壳(1)内部分隔为第一内腔(18)、第二内腔(19),在所述第二内腔(19)的外侧壳壁上设有滑槽(20),所述滑块(6)设置在滑槽(20)内,所述滑块(6)的后端与设置在第二内腔(19)内的传动装置(16)螺纹连接,所述线路板(5)设置在滑块(6)的后端,所述动力装置(14)设置在第一内腔(18)内,所述减速装置(15)设置在伺服中壳(1)的上端、伺服上壳(12)内,所述动力装置(14)与减速装置(15)啮合。
  4. 根据权利要求3所述的遥控模型飞机线性伺服机构,其特征在于:所述滑块(6)是一个凸字形结构,所述滑块(6)的后端设在第二内腔(19)内,前端通过滑槽(20)伸出伺服中壳(1)外并沿滑槽(20)线性移动所述导电弹片(7)的后端插接在插槽(21)内。
  5. 根据权利要求4所述的遥控模型飞机线性伺服机构,其特征在于:所述滑块(6)上设有导电弹片(7),所述导电弹片(7)与线路板(5)的表面形成接触。
  6. 根据权利要求5所述的遥控模型飞机线性伺服机构,其特征在于:所述导电弹片(7)为一个J字形结构,所述导电弹片(7)后端的长片(71)插入插槽(21)内,前端凸起部分(72)与线路板(5)电接连。
  7. 根据权利要求6所述的遥控模型飞机线性伺服机构,其特征在于:所述传动装置(16)是滑动螺杆(11),所述滑动螺杆(11)的上端与减速装置(15)连接,杆部与滑块(6)螺纹连接。
  8. 根据权利要求7所述的遥控模型飞机线性伺服机构,其特征在于:所述减速装置(15)由第一阶减速齿轮(8)与第二阶减速齿轮(10)组成,所述第一阶减速齿轮(8)通过金属销(9)连接在伺服中壳(1)的上端,第二阶减速齿轮(10)轴接在滑动螺杆(11)的上端,所述第一阶减速齿轮(8)分别与第二阶减速齿轮(10)及动力装置(14)啮合。
  9. 根据权利要求8所述的遥控模型飞机线性伺服机构,其特征在于:所述第一阶减速齿轮(8)是双联齿轮,所述双联齿轮(8)的下端小齿轮与第二阶减速齿轮(10)啮合,上端大齿轮与动力装置(14)啮合。
  10. 根据权利要求9所述的遥控模型飞机线性伺服机构,其特征在于:所述动力装置(14)由设置在第一内腔(18)内的马达(4)及连接在马达(4)输出轴上的主动齿轮(3)组成,所述主动齿轮(3)设置在伺服中壳(1)上端、伺服上壳(12)内,所述主动齿轮(3)与双联齿轮(8)的上端大齿轮啮合。
PCT/CN2011/079230 2011-05-23 2011-09-01 遥控模型飞机线性伺服机构 WO2012159387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120165450.8 2011-05-23
CN 201120165450 CN202136809U (zh) 2011-05-23 2011-05-23 遥控模型飞机线性伺服机构

Publications (1)

Publication Number Publication Date
WO2012159387A1 true WO2012159387A1 (zh) 2012-11-29

Family

ID=45547890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079230 WO2012159387A1 (zh) 2011-05-23 2011-09-01 遥控模型飞机线性伺服机构

Country Status (2)

Country Link
CN (1) CN202136809U (zh)
WO (1) WO2012159387A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536326A (zh) * 2015-01-05 2015-04-22 谷逍驰 一种中心出轴式舵机单元结构及其控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099557A (ja) * 1996-09-30 1998-04-21 World Moderu Japan Kk ラジコン模型ヘリコプター用スライドブロック機構
CN201020282Y (zh) * 2007-04-17 2008-02-13 田瑜 一种舵机
CN201320406Y (zh) * 2008-11-26 2009-10-07 罗之洪 摆动式航模舵机
CN101612481A (zh) * 2008-11-26 2009-12-30 罗之洪 滑动式航模舵机
CN101658732A (zh) * 2009-10-16 2010-03-03 上海百宸塑业有限公司 直线执行机构
CN201445802U (zh) * 2009-07-24 2010-05-05 珠海海曼电子模型有限公司 模型飞机电动收放起落架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099557A (ja) * 1996-09-30 1998-04-21 World Moderu Japan Kk ラジコン模型ヘリコプター用スライドブロック機構
CN201020282Y (zh) * 2007-04-17 2008-02-13 田瑜 一种舵机
CN201320406Y (zh) * 2008-11-26 2009-10-07 罗之洪 摆动式航模舵机
CN101612481A (zh) * 2008-11-26 2009-12-30 罗之洪 滑动式航模舵机
CN201445802U (zh) * 2009-07-24 2010-05-05 珠海海曼电子模型有限公司 模型飞机电动收放起落架
CN101658732A (zh) * 2009-10-16 2010-03-03 上海百宸塑业有限公司 直线执行机构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536326A (zh) * 2015-01-05 2015-04-22 谷逍驰 一种中心出轴式舵机单元结构及其控制系统

Also Published As

Publication number Publication date
CN202136809U (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
CN100450732C (zh) 连杆欠驱动机械手指装置
WO2020248587A1 (zh) 一种驱控一体化的智能电动机械手
WO2017181502A1 (zh) 一种摄影车、遥控摄影车系统和摄影车摄影控制方法
WO2012159387A1 (zh) 遥控模型飞机线性伺服机构
CN110797777B (zh) 一种电开关控制柜专用安装箱
CN204511095U (zh) 一种电动儿童锁
CN201431791Y (zh) 一种玩具智能遥控器
CN206684603U (zh) 一种旋转按压复合航空仿真旋钮装置及航空器
CN2623812Y (zh) 电子锁离合器的驱动机构
CN210852089U (zh) 电子锁和电动汽车充电组件
US11976709B2 (en) Servo and robot
WO2023020308A1 (zh) 一种舵机及机器人
CN205645724U (zh) 断路器的电动操作机构
CN208507577U (zh) 小型马达式自保持继电器
CN202207466U (zh) 遥控直升机的控制装置
CN200991593Y (zh) 一种玩具遥控器
CN207233666U (zh) 一种带有检测开关传感器的操作机构
TWI787984B (zh) 控制器結構
CN208184507U (zh) 汽车侧门电动驱动机构
CN211844900U (zh) 一种仿生机械鸟的摆臂机构
DE102021208310A1 (de) Integriertes steuergerät für autonome fahrzeuge
TWI756740B (zh) 可調式滑鼠結構
CN112013725A (zh) 一种高过载小型化电动伺服机构
CN219515944U (zh) 一种餐后diy饼干制造装置
CN202161809U (zh) 可左右交换操控功能的航模遥控器的操纵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866065

Country of ref document: EP

Kind code of ref document: A1