WO2012157306A1 - タイヤ空気圧モニター装置 - Google Patents

タイヤ空気圧モニター装置 Download PDF

Info

Publication number
WO2012157306A1
WO2012157306A1 PCT/JP2012/053974 JP2012053974W WO2012157306A1 WO 2012157306 A1 WO2012157306 A1 WO 2012157306A1 JP 2012053974 W JP2012053974 W JP 2012053974W WO 2012157306 A1 WO2012157306 A1 WO 2012157306A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
sensor
rotation
rotation period
tpms
Prior art date
Application number
PCT/JP2012/053974
Other languages
English (en)
French (fr)
Inventor
崇 島
一夫 坂口
寺田 昌司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2013110521/11A priority Critical patent/RU2542854C1/ru
Priority to CN201280003178.0A priority patent/CN103140363B/zh
Priority to EP12785170.7A priority patent/EP2708383B1/en
Priority to MX2013003567A priority patent/MX2013003567A/es
Priority to JP2013515018A priority patent/JP5574044B2/ja
Priority to BR112013006551-6A priority patent/BR112013006551B1/pt
Priority to US13/822,117 priority patent/US9050863B2/en
Publication of WO2012157306A1 publication Critical patent/WO2012157306A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0489Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning

Definitions

  • the present invention relates to a tire pressure monitoring device.
  • the transmitter always outputs a radio signal at a fixed rotation position, detects the rotation position of each wheel when the vehicle receives the radio signal, and each wheel Among the rotational positions, the wheel position corresponding to the rotational position most synchronized with the output cycle of the radio signal is determined as the wheel position of the transmitter.
  • the transmitter determines its own rotational position from the detection value of the acceleration sensor, and outputs a radio signal at the timing when the detection value of the acceleration sensor becomes a predetermined value. For this reason, when noise caused by road surface input or the like is included in the detection value of the acceleration sensor, the transmitter may erroneously determine the rotation position and output a radio signal at a rotation position different from the predetermined rotation position. In this case, since the wheel position of the transmitter is determined using erroneous rotation position data, the determination accuracy of the wheel position is reduced.
  • An object of the present invention is to provide a tire pressure monitoring device that can accurately determine the wheel position of a transmitter.
  • the deviation between the first rotation period estimated based on the detection of the acceleration sensor and the second rotation period estimated based on the detection value of the wheel speed sensor is equal to or less than a predetermined value. Is determined that the wireless signal is transmitted at a predetermined rotational position, and the wheel position of the transmitter corresponding to the identification information is determined based on the rotational position of each wheel when the wireless signal is transmitted.
  • the rotation position of each wheel is used for wheel position determination only when the deviation is equal to or less than a predetermined value, and when the deviation exceeds the predetermined value, the rotation position of each wheel is not used for wheel position determination.
  • the wheel position of the machine can be accurately determined.
  • FIG. 1 is a configuration diagram of a tire air pressure monitoring device of Example 1.
  • FIG. 2 is a configuration diagram of a TPMS sensor 2.
  • FIG. It is a control block diagram of TPMSCU4 for implementing wheel position judgment control of Example 1.
  • 3 is a diagram showing a method for calculating the rotational position of each wheel 1.
  • FIG. It is a figure which shows the calculation method of a dispersion
  • 3 is a flowchart illustrating a flow of wheel position determination control processing according to the first embodiment.
  • FIG. 1 is a configuration diagram of a tire pressure monitoring apparatus according to the first embodiment.
  • FL at the end of each symbol indicates a left front wheel
  • FR indicates a right front wheel
  • RL indicates a left rear wheel
  • RR indicates a right rear wheel.
  • the description of FL, FR, RL, and RR is omitted when there is no need to explain them individually.
  • the tire pressure monitoring apparatus includes a TPMS (Tire Pressure Monitoring System) sensor 2, a receiver 3, a TPMS control unit (TPMSCU) 4, a display 5, and a wheel speed sensor 8.
  • TPMS Transire Pressure Monitoring System
  • the TPMS sensor 2 is attached to each wheel 1, and the receiver 3, the TPMSCU 4, the display 5, and the wheel speed sensor 8 are provided on the vehicle body side.
  • the TPMS sensor 2 is attached to an air valve (not shown) position of the tire.
  • FIG. 2 is a configuration diagram of the TPMS sensor 2.
  • the TPMS sensor 2 includes a pressure sensor (tire pressure detecting means) 2a, an acceleration sensor (G sensor) 2b, a sensor control unit (sensor CU) 2c, a transmitter 2d, and a button battery 2e.
  • the pressure sensor 2a detects tire air pressure [kPa].
  • the G sensor 2b detects centrifugal acceleration [G] acting on the tire.
  • the sensor CU2c operates by the electric power from the button battery 2e, and transmits TPMS data including the tire pressure information detected by the pressure sensor 2a and the sensor ID (identification information) from the transmitter 2d by a radio signal.
  • the sensor ID is 1 to 4.
  • the sensor CU2c compares the centrifugal acceleration detected by the G sensor 2b with a preset traveling determination threshold value, and determines that the vehicle is stopped if the centrifugal acceleration is less than the traveling determination threshold value, and determines TPMS data. Stop sending On the other hand, if the centrifugal acceleration is equal to or greater than the travel determination threshold, it is determined that the vehicle is traveling, and TPMS data is transmitted at a predetermined timing.
  • the receiver 3 receives and decodes the radio signal output from each TPMS sensor 2, and outputs it to the TPMSCU 4.
  • the TPMSCU4 reads each TPMS data, refers to the correspondence between each sensor ID stored in the nonvolatile memory 4d (see FIG. 3) and each wheel position from the sensor ID of the TPMS data, and which wheel the TPMS data has It is determined whether it corresponds to the position, and the tire air pressure included in the TPMS data is displayed on the display 5 as the air pressure at the corresponding wheel position. Further, when the tire air pressure falls below the lower limit value, the driver is notified of a decrease in air pressure by changing the display color, blinking display, warning sound, or the like.
  • ABSCU 6 detects the wheel speed of each wheel 1 based on the wheel speed pulse from each wheel speed sensor 8, and when a certain wheel tends to lock, it activates the ABS actuator (not shown) to turn the wheel cylinder of that wheel.
  • ABS actuator not shown
  • the ABSCU 6 outputs the count value of the wheel speed pulse to the CAN communication line 7 at a predetermined cycle (for example, 20 msec).
  • z 48
  • the uneven surface of the rotor crosses the magnetic field formed around the wheel speed sensor 8 to change its magnetic flux density, generating an electromotive force in the coil, and this voltage change is applied to the ABSCU 6 as a wheel speed pulse signal.
  • the vehicle is stopped.
  • tire rotation refers to changing the mounting position of the tire in order to make the tire tread wear uniform and extend the life (tread life). For example, in a passenger car, the left and right tire positions are generally crossed to replace the front and rear wheels.
  • each TPMS sensor in order to register the correspondence between each sensor ID and each wheel position after tire rotation by storing and updating in the memory 4d, if there is a possibility that tire rotation has been performed, each TPMS sensor The TPMS data transmission cycle is changed on the second side, and the TPMSCU4 side determines which wheel each TPMS sensor 2 is based on the TPMS data transmission cycle and each wheel speed pulse.
  • the sensor CU2c of the TPMS sensor 2 determines that there is a possibility that tire rotation has been performed when the vehicle stop determination time immediately before the start of traveling is a predetermined time (for example, 15 minutes) or more.
  • the sensor CU2c performs the “normal mode” in which TPMS data is transmitted at regular intervals (for example, 1 minute intervals).
  • the vehicle stop determination time is equal to or longer than the predetermined time, it is an interval shorter than the transmission interval in the normal mode (for example, about 16 seconds interval), and transmits TPMS data at a constant rotational position. Is implemented.
  • the fixed position transmission mode is performed until the number of transmissions of the TPMS data reaches a predetermined number (for example, 40 times), and when the number of transmissions reaches the predetermined number, the mode shifts to the normal mode. If it is determined that the vehicle has stopped before the number of transmissions of the TPMS data reaches the predetermined number, if the vehicle stop determination time is less than the predetermined time (15 minutes), the fixed position transmission before the vehicle stops until the number of transmissions reaches the predetermined number The mode is continued, and when the vehicle stop determination time is a predetermined time or longer, the continuation of the fixed position transmission mode before the vehicle is stopped is canceled and the fixed position transmission mode is newly started.
  • a predetermined number for example, 40 times
  • Sensor CU2c determines the transmission timing of the TPMS data in the fixed position transmission mode based on the gravity acceleration dependent component of the centrifugal acceleration detected by the G sensor 2b during the fixed position transmission mode.
  • the centrifugal acceleration acting on the TPMS sensor 2 changes with the acceleration / deceleration of the wheel 1, but its gravitational acceleration dependent component is always constant, +1 [G] at the highest point and -1 [G] at the lowest point
  • the waveform which is 0 [G] at a position of 90 degrees with respect to the uppermost point and the lowermost point is shown. That is, the rotational position of the TPMS sensor 2 can be grasped by monitoring the magnitude and direction of the gravitational acceleration component of the centrifugal acceleration. Therefore, for example, by outputting TPMS data at the peak of the gravity acceleration dependent component, TPMS data can always be output at the highest point.
  • the sensor CU2c includes a first rotation period estimation unit 11.
  • the first rotation period estimation unit 11 estimates the rotation period (first rotation period) of the own wheel (the wheel on which the TPMS sensor 2 is mounted) when TPMS data is transmitted during the fixed position transmission mode.
  • the first rotation period is an interval between the time when the TPMS data is transmitted and the peak time of the gravity acceleration dependent component of the centrifugal acceleration detected immediately before by the G sensor 2b.
  • the sensor CU2c transmits the first rotation period estimated by the first rotation period estimation unit 11 in addition to the TPMS data.
  • the TPMSCU 4 determines that the tire rotation may have been performed when the elapsed time from the ignition switch OFF to the ON is equal to or longer than a predetermined time (for example, 15 minutes). TPMSCU4 monitors the tire air pressure of each wheel 1 based on the air pressure information of TPMS data transmitted from each TPMS sensor 2 when the elapsed time from the ignition switch OFF to ON is less than the predetermined time. Is implemented. On the other hand, when the elapsed time from the ignition switch to the ON is equal to or longer than a predetermined time, the “auto-learning mode” for determining the wheel position of each TPMS sensor 2 is performed.
  • a predetermined time for example, 15 minutes.
  • the auto-learning mode is performed until the wheel positions of all the TPMS sensors 2 are determined, or until a predetermined cumulative traveling time (for example, 8 minutes) has elapsed from the start of the mode, and the wheels of all the TPMS sensors 2 are When the position is determined or when a predetermined accumulated traveling time has elapsed, the monitor mode is entered.
  • a predetermined cumulative traveling time for example, 8 minutes
  • each sensor ID and each wheel position currently stored in the memory 4d Air pressure display and warning of air pressure drop based on the corresponding relationship.
  • the TPMSCU 4 receives the wheel speed pulse count value from the ABS control unit (ABSCU) 6 via the CAN communication line 7 during the auto-learning mode, and performs wheel position determination control as described below.
  • FIG. 3 is a control block diagram of the TPMSCU 4 for performing the wheel position determination control according to the first embodiment.
  • the rotational position calculation unit 4a inputs the decoded TPMS data output from the receiver 3 and the count value of each wheel speed pulse output from the ABSCU 6 to the CAN communication line 7, and the rotational position of each TPMS sensor 2 is determined.
  • the rotational position (number of teeth of the rotor) of each wheel 1 when it becomes the highest point is calculated.
  • Example 1 when the count value of each first wheel speed pulse was input after the auto-learning mode was started, the value obtained by adding 1 to the remainder obtained by dividing the count value by the number of teeth for one rotation is the reference number of teeth. In the second and subsequent times, the number of teeth is determined based on the number of wheel speed pulses counted from the reference number of teeth (current count value minus the first count value).
  • FIG. 4 is a diagram showing a method for calculating the rotational position of each wheel 1.
  • the time when the count value of the wheel speed pulse is input is t1
  • the time when the rotational position of the TPMS sensor 2 is the highest point is t2
  • the time when the TPMS sensor 2 actually starts transmitting TPMS data is t3
  • the time when TPMSCU4 completes the reception of TPMS data is t4
  • the time when the wheel speed pulse count value is input is t5.
  • t1, t4, t5 can be actually measured
  • t3 can be calculated by subtracting the data length of TPMS data (specified value, for example, about 10 msec) from t4, and t2 is a time lag at transmission (from t3) It can be calculated in advance by experiments etc.).
  • the dispersion calculation unit 4b stores, for each sensor ID, the rotation position of each wheel 1 determined as valid data by the valid data determination unit 4f among the rotation positions of each wheel 1 calculated by the rotation position calculation unit 4a.
  • the rotation position data is calculated, and the degree of variation of each rotation position data for each sensor ID is calculated as a dispersion characteristic value.
  • the calculation of the dispersion characteristic value is performed every time the rotation position of the same sensor ID is calculated by the rotation position calculation unit 4a.
  • FIG. 5 is a diagram showing a method for calculating the dispersion characteristic value. In the first embodiment, a unit circle (circle having a radius of 1) centered on the origin (0,0) is considered on each two-dimensional plane, and each wheel is considered.
  • rotation position ⁇ [deg] 360 ⁇ number of teeth of rotor / 48) is converted into coordinates (cos ⁇ , sin ⁇ ) on the circumference of the unit circle. That is, the rotational position of each wheel 1 is regarded as a vector of length 1 with the origin (0,0) as the start point and the coordinates (cos ⁇ , sin ⁇ ) as the end point, and the average vector (ave_cos ⁇ , ave_sin ⁇ ) is calculated, and the scalar quantity of the average vector is calculated as the dispersion characteristic value X of the rotational position data.
  • the wheel position determination unit 4c compares the dispersion characteristic values X of the rotational position data of the same sensor ID calculated by the dispersion calculation unit 4b, and the maximum value of the dispersion characteristic value X is the first threshold value (for example, 0.57). And the remaining three dispersion characteristic values X are all less than the second threshold value (for example, 0.37), the wheel position of the rotational position data corresponding to the maximum dispersion characteristic value X, That is, the wheel position of the wheel speed sensor 8 that has detected the rotational position data is determined as the wheel position of the TPMS sensor 2 corresponding to the sensor ID of the rotational position data. By performing this determination for all sensor IDs, the correspondence between each sensor ID and each wheel position is obtained and registered by updating the memory 4d.
  • the second rotation period estimation unit 4e is the own wheel when the TPMS data is transmitted (the wheel on which the TPMS sensor 2 is mounted).
  • the rotation period (second rotation period) is estimated.
  • the second rotation period is an average value of the rotation periods of the wheels 1.
  • the valid data determination unit 4f compares the first rotation period and the second rotation period included in the TPMS data, and whether the rotation position of each wheel 1 detected when the TPMS data is transmitted is valid data. Determine whether the data is invalid.
  • the relationship between the first rotation period Tp and the second rotation period Ta satisfies the following expression (1), it is determined as valid data, and when it is not satisfied, it is determined as invalid data.
  • is a predetermined value (for example, 0.1), but ⁇ may be variable in consideration of the vehicle state, delay time of communication, computation, and the like.
  • Transmission position determination for determining whether or not the wireless signal is transmitted at a predetermined (predetermined) rotation position (top point) by the first rotation period estimation unit 11, the second rotation period estimation unit 4e, and the valid data determination unit 4f Means are configured.
  • step S2 the rotational position calculation unit 4a calculates the rotational position of each wheel 1.
  • step S3 the second rotation period estimation unit 4e estimates the second rotation period.
  • step S4 the valid data determination unit 4f determines whether or not the rotational position of each wheel 1 calculated in step S2 is valid data. If YES, the process proceeds to step S5, and if NO, Return to step S1.
  • step S5 the dispersion calculation unit 4b calculates the dispersion characteristic value X of the rotational position data of each wheel 1.
  • step S8 the wheel position determination unit 4c determines that the wheel position of the rotational position data corresponding to the highest dispersion characteristic value is the wheel position of the sensor ID, and ends the auto-learning mode.
  • step S9 the wheel position determination unit 4c determines whether or not a predetermined cumulative travel time (for example, 8 minutes) has elapsed since the start of the auto-learning mode. If YES, the auto-learning mode is terminated. If NO, the process returns to step S1. If the wheel positions can be determined for all the sensor IDs within a predetermined cumulative travel time, the wheel position determination unit 4c registers the correspondence between each sensor ID and each wheel position by storing and updating the memory 4d. On the other hand, if the wheel positions cannot be determined for all the sensor IDs within the predetermined cumulative travel time, the correspondence relationship between each sensor ID and each wheel position currently stored in the memory 4d is continuously used.
  • a predetermined cumulative travel time for example, 8 minutes
  • Each TPMS sensor 2 determines that there is a possibility that tire rotation has been performed when the vehicle stop determination time immediately before the start of travel is 15 minutes or more, and shifts from the normal mode to the fixed position transmission mode. In the fixed position transmission mode, each TPMS sensor 2 transmits TPMS data when 16 seconds have elapsed from the previous transmission time and its own rotational position is at the highest point.
  • TPMSCU4 shifts from the monitor mode to the auto-learning mode when the elapsed time from the ignition switch OFF to ON is 15 minutes or more.
  • auto-learning mode every time TPMSCU4 receives TPMS data from each TPMS sensor 2, the rotational position of the TPMS sensor 2 is the highest point from the input time of the count value of the wheel speed pulse, the reception completion time of the TPMS data, etc.
  • the rotational position (number of teeth of the rotor) of each wheel 1 is calculated, and this is repeated 10 times or more and accumulated as rotational position data.
  • the rotational position data with the smallest variation among the rotational position data is calculated.
  • the corresponding wheel position is determined as the wheel position of the TPMS sensor 2.
  • each wheel 1 When the vehicle is running, the rotational speed of each wheel 1 varies depending on the difference between the inner and outer wheels when turning, the lock and slip of wheel 1, and the tire pressure difference. It is known that even during straight running, there is a difference in rotational speed between the front and rear wheels 1FL and 1FR and between the left and right wheels 1RL and 1RR due to a slight correction rudder by the driver and a difference in the left and right road surface conditions.
  • each wheel 1 varies depending on traveling, whereas the TPMS sensor 2 and the wheel speed sensor 8 (the rotor teeth) rotate together, so that the output cycle of a certain TPMS sensor 2
  • the output cycle of the wheel speed sensor 8 of the same wheel is always synchronized (matched) regardless of the travel distance and the travel state.
  • Fig. 7 shows the relationship between the rotational position (number of rotor teeth) of each wheel 1FL, 1FR, 1RL, 1RR when the rotational position of the TPMS sensor 2FL of the left front wheel 1FL is at the highest point and the number of receptions of TPMS data.
  • (A) is the wheel speed sensor 8FL for the left front wheel 1FL
  • (b) is the wheel speed sensor 8FR for the right front wheel 1FR
  • (c) is the wheel speed sensor 8RL for the left rear wheel 1RL
  • (d) is the right Corresponds to the wheel speed sensor 8RR of the rear wheel 1RR.
  • the wheel positions (number of teeth) obtained from the wheel speed sensors 8FR, 8RL, 8RR of the other wheels have a large degree of variation.
  • the wheel position obtained from the wheel speed sensor 8FL of the own wheel has the smallest degree of variation, and the output cycle of the TPMS sensor 2FL and the output cycle of the wheel speed sensor 8FL are almost synchronized.
  • each TPMS sensor is provided with a tilt sensor, and the wheel position of each TPMS sensor is determined using the relationship between the wheel position and tilt angle of each TPMS sensor. Since the difference in the rotation speed of the wheels occurs, the correspondence between the wheel position of each TPMS sensor and the inclination angle changes, so that the wheel position of each TPMS sensor cannot be accurately determined.
  • the same number of receivers as the TPMS sensors are arranged in proximity to each receiver, and the wheel position of each TPMS sensor is determined based on the radio field intensity of the received radio signal.
  • a receiver layout that takes into account sensor output, receiver sensitivity variations, and harness antenna effects is required, and performance is affected by the reception environment and layout.
  • the cost becomes high.
  • the wheel position of each TPMS sensor 2 can be determined without using the radio wave intensity, so the wheel position of each TPMS sensor 2 can be determined regardless of the reception environment and layout. Further, since only one receiver 3 is required, the cost can be kept low.
  • the fact that the rotational position of the TPMS sensor 2 is at the highest point is calculated from the gravity acceleration dependent component of the centrifugal acceleration detected by the G sensor 2b. Since the G sensor 2b is used for stopping and running determination in the existing tire pressure monitoring device, the existing TPMS sensor can be used, and the cost of adding a new sensor on the TPMS sensor 2 side can be saved. Further, in the first embodiment, the rotational position of each wheel 1 is calculated from the wheel speed pulse of the wheel speed sensor 8 in the TPMSCU 4. Since the ABS unit is mounted on most of the vehicles, and the wheel speed sensor 8 is an essential configuration for the ABS unit, the cost of adding a new sensor on the vehicle side can be saved.
  • the rotational position ⁇ of each wheel 1 obtained from each wheel speed sensor 8 is set to the coordinates on the circumference of the unit circle around the origin (0, 0) ( cos ⁇ , sin ⁇ ), the coordinates (cos ⁇ , sin ⁇ ) are regarded as vectors, the average vector (ave_cos ⁇ , ave_sin ⁇ ) of each vector of the same rotational position data is obtained, and the scalar quantity of the average vector is calculated as the dispersion characteristic value X
  • the degree of variation in rotational position can be obtained while avoiding periodicity.
  • the sensor CU2c of the TPMS sensor 2 detects the rotational position of the TPMS sensor 2 based on the gravity acceleration dependent component of the centrifugal acceleration detected by the G sensor during the fixed position transmission mode, and the TPMS data at the peak of the gravity acceleration dependent component By sending, TPMS data is always sent at the default rotation position (top point).
  • the acceleration in the centrifugal direction acting on the TPMS sensor 2 changes due to the acceleration / deceleration of the wheel 1, but the gravitational acceleration dependent component always draws a waveform of a certain width (-1 to 1 [G]), and the vehicle Since it changes in a very short cycle with respect to the knitting acceleration of the centrifugal acceleration accompanying the acceleration / deceleration, it is easy to grasp the change in the gravity acceleration dependent component from the centrifugal acceleration.
  • the rotational position calculation unit 4a of the TPMSCU 4 is configured so that each wheel when the rotational position of each TPMS sensor 2 becomes the highest point based on the reception timing of the TPMS data and the count value of each wheel speed pulse at that time. The rotation position of 1 is calculated.
  • the rotational position calculation unit 4a calculates the rotational position of each wheel 1 using the TPMS data transmitted at a rotational position other than the highest point as the TPMS data transmitted at the highest point, and the dispersion calculation unit 4b
  • the dispersion characteristic value X of each wheel 1 is calculated by including the position in the rotational position data. Therefore, the erroneous rotational position data is included in each rotational position data, so that the difference between the maximum value of each dispersion characteristic value X and other values is delayed, and the wheel position determination is delayed.
  • the TPMS data is transmitted.
  • the TPMS data is transmitted It is determined that the rotational position of each wheel 1 detected in the step is invalid data.
  • the dispersion calculation unit 4b calculates the dispersion characteristic value X of each wheel 1 based on the rotational position data in which only the rotational position of each wheel 1 determined to be valid data is accumulated.
  • the timing at which the TPMS data is actually transmitted can be found by obtaining the first rotation period Tp, and the timing at which the TPMS data should be transmitted can be obtained by obtaining the second rotation period Ta. Therefore, when both rotation periods Tp and Ta are compared and the difference is small (the absolute value of the difference is equal to or less than the predetermined value ⁇ ), it can be determined that the TPMS data has been transmitted at the predetermined rotation position, and the difference is large ( If the absolute value of the difference is greater than the predetermined value ⁇ ), it can be determined that the TPMS data is not transmitted at the predetermined rotational position.
  • FIG. 8 is a diagram showing the temporal change of the rotational position RP of the wheel obtained from the gravitational acceleration dependent component Gg of the acceleration in the centrifugal direction detected by the G sensor 2b of a certain wheel and the count value of each wheel speed pulse. Since the first rotation period Tp is an interval between the time when the TPMS data is transmitted and the peak time of the gravity acceleration dependent component of the centrifugal acceleration detected immediately before by the G sensor 2b, FIG. As shown, when the TPMS data is transmitted when the TPMS sensor 2 is at the highest point, the first rotation period Tp substantially coincides with the rotation period of the own wheel.
  • the second rotation period Ta is an estimation of the rotation period of the own wheel based on the wheel speed pulse, and can be regarded as the rotation period of the own wheel. That is, when the absolute value of the difference between the first rotation period Tp and the second rotation period Ta is less than or equal to the predetermined value ⁇ as shown in FIG. 8A, the TPMS data is at the predetermined rotation position (top point). It can be judged that it is transmitted.
  • the gravitational acceleration dependent component Gg reaches a peak (1 [G]) at a position before the TPMS sensor 2 reaches the predetermined rotational position due to noise, and the TPMS data is at that position.
  • the first rotation period Tp is shorter than the second rotation period Ta ( ⁇ the rotation period of the own wheel), and the difference between the two becomes large. That is, when the absolute value of the difference between the first rotation period Tp and the second rotation period Ta exceeds the predetermined value ⁇ as shown in FIG. 8B, the TPMS data is not transmitted at the predetermined rotation position. I can judge.
  • the tire pressure monitoring device of the first embodiment has the following effects.
  • a tire air pressure monitoring device that monitors the air pressure of each tire, which is attached to the tire of each wheel 1, and is attached to the tire of each wheel 1 and the pressure sensor 2a that detects the tire air pressure, and acts on the tire.
  • G sensor 2b that detects centrifugal acceleration and each wheel 1 detects the rotational position of the wheel based on the detected value of G sensor 2b, and the air pressure is converted to TPMS data together with the sensor ID at the predetermined rotational position.
  • a transmitter 2d that transmits on the vehicle body side, a receiver 3 that receives TPMS data, a wheel speed sensor 8 that is provided on the vehicle body side corresponding to each wheel 1 and detects the speed of the corresponding wheel, Based on the detection value of the G sensor 2b, the rotational position calculation unit 4a that is provided on the vehicle body side and detects the rotational position of each wheel 1 when TPMS data including a certain sensor ID is transmitted. Vehicle corresponding to the sensor ID at the time of transmission Based on the detected value of the wheel speed sensor 8 and the rotation speed of the wheel corresponding to the sensor ID when the TPMS data is transmitted based on the detected value of the wheel speed sensor 8.
  • the TPMS data is predetermined as the second rotation period estimation unit 4e that estimates the period as the second rotation period Ta
  • An effective data determination unit 4f that determines that the data is transmitted at the rotational position of the transmission position determining means (the first rotation period estimation unit 11, the second rotation period estimation unit 4e, and the effective data determination unit 4f), and a predetermined rotation
  • a wheel position determination unit 4c that determines the wheel position of the transmitter corresponding to the sensor ID based on the rotational position of each wheel when the TPMS data determined to be transmitted at the position is transmitted. This makes it possible to determine the correspondence between each sensor ID and each wheel position with high accuracy and early.
  • the first rotation period estimation unit 11 is provided on the wheel 1 side, and the transmitter 2d transmits the TPMS data by adding the first rotation period Tp.
  • the 1st rotation period Tp can be estimated using the existing G sensor 2b provided in the wheel 1 side, the cost of adding a new sensor on the wheel side can be omitted.
  • the second embodiment is different from the first embodiment in that the first rotation period estimation unit is provided on the vehicle body side. Only the parts different from the first embodiment will be described below.
  • the sensor CU2c of the TPMS sensor 2 transmits TPMS data at regular intervals (for example, 16 seconds), but every time the rotational position of the TPMS sensor 2 becomes the highest point, that is, the centrifugal acceleration detected by the G sensor 2b
  • the same TPMS data is transmitted three times each time the gravity acceleration dependent component of becomes the peak (1 [G]).
  • the three TPMS data are referred to as TPMS data of the first frame, TPMS data of the second frame, and TPMS data of the third frame in the order of transmission.
  • FIG. 9 is a control block diagram of the TPMSCU 4 for performing the wheel position determination control according to the second embodiment.
  • the first rotation period estimation unit 4g transmission position determination means
  • the configuration of the TPMS sensor 2 of the second embodiment is a configuration in which the first rotation period estimation unit 11 is omitted from the first embodiment shown in FIG.
  • the first rotation period estimator 4g determines the time from the transmission of the first frame of TPMS data to the transmission of the second frame of TPMS data as the first rotation period Tp1, and the transmission of the second frame of TPMS data. The time from when the third frame TPMS data is transmitted is calculated as the first rotation period Tp2.
  • FIG. 10 is a diagram showing the temporal change of the rotational position RP of the wheel obtained from the gravitational acceleration dependent component Gg of the acceleration in the centrifugal direction detected by the G sensor 2b of a certain wheel and the count value of each wheel speed pulse. Since the first rotation period Tp1, Tp2 is the transmission interval of each frame of TPMS data, as shown in FIG. 10 (a), TPMS data was transmitted when TPMS sensor 2 was the highest point in all frames. In this case, both the first rotation periods Tp1 and Tp2 substantially coincide with the second rotation periods Ta1 and Ta2. That is, as shown in FIG.
  • the absolute value of the difference between the first rotation period Tp1 and the second rotation period Ta1, and the absolute value of the difference between the first rotation period Tp2 and the second rotation period Ta2 are both the predetermined value ⁇ .
  • the gravitational acceleration dependent component Gg peaks (1 [G]) at the position before the TPMS sensor 2 becomes the predetermined rotation position due to noise after the transmission of the TPMS data of the second frame.
  • the first rotation period Tp2 is shorter than the second rotation period Ta2, and the difference between the two becomes large. That is, as shown in FIG.
  • the absolute value of the difference between the first rotation period Tp1 and the second rotation period Ta1 is not more than the predetermined value ⁇ , and the difference between the first rotation period Tp2 and the second rotation period Ta2
  • the absolute value exceeds the predetermined value ⁇ it can be determined that the TPMS data of the third frame is not transmitted at the predetermined rotation position. Therefore, the rotational position of each wheel 1 detected when the TPMS data of the first frame and the second frame is transmitted is determined as valid data, and each detected when the TPMS data of the third frame is transmitted. The rotational position of wheel 1 is determined as invalid data.
  • the gravitational acceleration dependent component Gg peaks (1 [G]) at a position before the TPMS sensor 2 becomes the predetermined rotation position due to noise after transmission of the TPMS data of the first frame.
  • the first rotation cycle Tp1 is shorter than the second rotation cycle Ta1
  • the first rotation cycle Tp2 is longer than the second rotation cycle Ta2.
  • the TPMS data of the third frame is transmitted at a predetermined rotational position, but this cannot be determined on the TPMSCU4 side, so the first rotational period as shown in FIG. 10 (c).
  • the tire pressure monitoring device of the second embodiment has the following effects.
  • (3) The first rotation period estimation unit 4g is provided on the vehicle body side. Thereby, since the calculation load on the TPMS sensor 2 side can be reduced, power consumption can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

 Gセンサ2bの検出に基づいて推定した第1回転周期Tpと車輪速センサ8の検出値に基づいて推定した第2回転周期Taとの偏差が所定値α以下の場合には、所定の回転位置で送信された無線信号に対応する各車輪の回転位置を車輪位置判定に用い、偏差が所定値αを超える場合には、所定の回転位置から外れた回転位置で送信された無線信号に対応する各車輪の回転位置を車輪位置判定に用いない。

Description

タイヤ空気圧モニター装置
 本発明は、タイヤ空気圧モニター装置に関する。
 特許文献1に記載されたタイヤ空気圧モニター装置では、送信機が常に一定の回転位置で無線信号を出力し、車両側で当該無線信号を受信したときの各車輪の回転位置を検出し、各車輪の回転位置のうち、当該無線信号の出力周期と最も同期する回転位置に対応した車輪位置を当該送信機の車輪位置と判定している。
特開2010-122023号公報
 上記従来技術において、送信機は自身の回転位置を加速度センサの検出値から判断し、加速度センサの検出値が所定値となったタイミングで無線信号を出力している。このため、加速度センサの検出値に路面入力等に起因するノイズが含まれる場合、送信機が回転位置を誤判断し、所定の回転位置と異なる回転位置で無線信号を出力するおそれがある。この場合、誤った回転位置のデータを用いて送信機の車輪位置が判定されるため、車輪位置の判定精度低下を招く。
 本発明の目的は、送信機の車輪位置を精度良く判定できるタイヤ空気圧モニター装置を提供することにある。
 上述の目的を達成するため、本発明では、加速度センサの検出に基づいて推定した第1回転周期と車輪速センサの検出値に基づいて推定した第2回転周期との偏差が所定値以下の場合には、当該無線信号が所定の回転位置で送信されたと判定し、無線信号が送信されたときの各車輪の回転位置に基づいて、当該識別情報に対応する送信機の車輪位置を判定する。
 第1回転周期と第2回転周期との偏差が所定値以下である場合には、当該無線信号が所定の回転位置で送信された可能性が高く、前記偏差が所定値を超える場合には、当該無線信号が所定の回転位置から外れた回転位置で送信された可能性が高い。よって、前記偏差が所定値以下の場合にのみ各車輪の回転位置を車輪位置判定に用い、前記偏差が所定値を超える場合には各車輪の回転位置を車輪位置判定に用いないことにより、送信機の車輪位置を精度良く判定できる。
実施例1のタイヤ空気圧モニター装置の構成図である。 TPMSセンサ2の構成図である。 実施例1の車輪位置判定制御を実施するためのTPMSCU4の制御ブロック図である。 各車輪1の回転位置算出方法を示す図である。 分散特性値の算出方法を示す図である。 実施例1の車輪位置判定制御処理の流れを示すフローチャートである。 左前輪1FLのTPMSセンサ2FLの回転位置が最上点となったときの各車輪1FL,1FR,1RL,1RRの回転位置(ロータの歯数)とTPMSデータの受信回数との関係を示す図である。 ある車輪のGセンサ2bにより検出された遠心方向加速度の重力加速度依存成分Ggと、各車輪速パルスのカウント値から求めた当該車輪の回転位置RPの時間変化を示す図である。 実施例2の車輪位置判定制御を実施するためのTPMSCU4の制御ブロック図である。 ある車輪のGセンサ2bにより検出された遠心方向加速度の重力加速度依存成分Ggと、各車輪速パルスのカウント値から求めた当該車輪の回転位置RPの時間変化を示す図である。
1 車輪
2a 圧力センサ(タイヤ空気圧検出手段)
2b Gセンサ(加速度センサ)
2d 送信機
3 受信機
4a 回転位置演算部(回転位置検出手段)
4c 車輪位置判定部(車輪位置判定手段)
4e 第2回転周期推定部(送信位置判定手段)
4f 有効データ判定部(送信位置判定手段)
4g 第1回転周期推定部(送信位置判定手段)
8 車輪速センサ
11 第1回転周期推定部(送信位置判定手段)
 以下、本発明を実施するため形態を、図面に基づく実施例を用いて説明する。
  〔実施例1〕
  図1は、実施例1のタイヤ空気圧モニター装置の構成図である。図において、各符号の末尾のFLは左前輪、FRは右前輪、RLは左後輪、RRは右後輪に対応することを示す。以下の説明では、個別に説明する必要がない場合にはFL,FR,RL,RRの記載を省略する。
  実施例1のタイヤ空気圧モニター装置は、TPMS(Tire Pressure Monitoring System)センサ2と、受信機3と、TPMSコントロールユニット(TPMSCU)4と、ディスプレイ5と、車輪速センサ8とを備える。TPMSセンサ2は各車輪1に装着され、受信機3、TPMSCU4、ディスプレイ5および車輪速センサ8は車体側に設けられている。
 TPMSセンサ2は、タイヤの空気バルブ(不図示)位置に取り付けられている。図2は、TPMSセンサ2の構成図である。TPMSセンサ2は、圧力センサ(タイヤ空気圧検出手段)2aと、加速度センサ(Gセンサ)2bと、センサコントロールユニット(センサCU)2cと、送信機2dと、ボタン電池2eとを備える。
  圧力センサ2aは、タイヤの空気圧[kPa]を検出する。
  Gセンサ2bは、タイヤに作用する遠心方向加速度[G]を検出する。
  センサCU2cは、ボタン電池2eからの電力により動作し、圧力センサ2aにより検出されたタイヤの空気圧情報とセンサID(識別情報)を含むTPMSデータを無線信号により送信機2dから送信する。実施例1では、センサIDを1~4とする。
 センサCU2cは、Gセンサ2bにより検出された遠心方向加速度とあらかじめ設定された走行判定しきい値とを比較し、遠心方向加速度が走行判定しきい値未満の場合は車両停止と判定してTPMSデータの送信を停止する。一方、遠心方向加速度が走行判定しきい値以上の場合は車両が走行していると判定し、所定のタイミングでTPMSデータの送信を行う。
  受信機3は、各TPMSセンサ2から出力された無線信号を受信してデコードし、TPMSCU4へ出力する。
 TPMSCU4は、各TPMSデータを読み込み、TPMSデータのセンサIDから、不揮発性のメモリ4d(図3参照)に記憶した各センサIDと各車輪位置との対応関係を参照して当該TPMSデータがどの車輪位置に対応するものであるのかを判定し、当該TPMSデータに含まれるタイヤの空気圧を対応する車輪位置の空気圧としてディスプレイ5に表示する。また、タイヤの空気圧が下限値を下回った場合には、表示色変更、点滅表示や警告音などによりドライバに空気圧の低下を知らせる。
 ABSCU6は、各車輪速センサ8からの車輪速パルスに基づいて、各車輪1の車輪速を検出し、ある車輪がロック傾向にある場合、図外のABSアクチュエータを作動させて当該車輪のホイルシリンダ圧を増減または保持してロック傾向を抑制するアンチスキッドブレーキ制御を実施する。ABSCU6は、所定周期(例えば、20msec)で車輪速パルスのカウント値をCAN通信線7に出力している。
  各車輪速センサ8は、車輪1の1回転について所定数z(例えば、z=48)の車輪速パルスを発生するパルス発生器であり、車輪1と同期して回転する歯車状のロータと、車体側であってロータの外周に対向配置された永久磁石およびコイルとから構成される。ロータが回転すると、ロータの凹凸面が車輪速センサ8の周りに形成された磁界を横切ることによりその磁束密度が変化してコイルに起電力が生じ、この電圧変化を車輪速パルス信号としてABSCU6に出力する。
 上記のように、TPMSCU4は、メモリ4dに記憶した各センサIDと各車輪位置との対応関係に基づいて、受信したTPMSデータがどの車輪のデータであるのかを判定しているため、車両停止中にタイヤローテーションが行われた場合、メモリ4dに記憶された各センサIDと各車輪位置との対応関係が実際の対応関係と合致せず、TPMSデータがどの車輪のデータであるのかがわからなくなる。ここで、「タイヤローテーション」とは、タイヤのトレッド摩耗を均一にし、寿命(トレッドライフ)を延ばすため、タイヤの装着位置を変えることをいう。例えば、乗用車では、一般的に、左右のタイヤ位置をクロスして前後輪を入れ替える。
  そこで、実施例1では、タイヤローテーション後の各センサIDと各車輪位置との対応関係をメモリ4dへの記憶更新により登録するために、タイヤローテーションが行われた可能性がある場合、各TPMSセンサ2側ではTPMSデータの送信周期を変更し、TPMSCU4側ではTPMSデータの送信周期と各車輪速パルスに基づいて各TPMSセンサ2がどの車輪のものであるのかを判定する。
 [定位置送信モード]
  TPMSセンサ2のセンサCU2cは、走行開始直前の車両停止判定時間が所定時間(例えば、15分)以上である場合、タイヤローテーションが行われた可能性があると判断する。
  センサCU2cは、走行開始直前の車両停止判定時間が所定時間未満である場合、一定間隔(例えば、1分間隔)でTPMSデータを送信する「通常モード」を実施する。一方、車両停止判定時間が所定時間以上である場合、通常モードの送信間隔よりも短い間隔(例えば、約16秒間隔)であって、一定の回転位置でTPMSデータを送信する「定位置送信モード」を実施する。
 定位置送信モードは、TPMSデータの送信回数が所定回数(例えば、40回)に達するまで実施し、送信回数が所定回数に達した場合、通常モードへ移行する。TPMSデータの送信回数が所定回数に達する前に車両停止と判定した場合、車両停止判定時間が所定時間(15分)未満であるときは送信回数が所定回数に達するまで車両停止前の定位置送信モードを継続し、車両停止判定時間が所定時間以上であるときは車両停止前の定位置送信モードの継続をキャンセルして新たに定位置送信モードを開始する。
 センサCU2cは、定位置送信モード中、Gセンサ2bにより検出された遠心方向加速度の重力加速度依存成分に基づいて、定位置送信モードにおけるTPMSデータの送信タイミングを決定する。TPMSセンサ2に作用する遠心方向加速度は、車輪1の加減速によって変化するが、その重力加速度依存成分は常に一定であり、最上点で+1[G]、最下点で-1[G]、最上点および最下点に対し90度の位置で0[G]となる波形を示す。すなわち、遠心方向加速度の重力加速度成分の大きさ、方向をモニターすることで、TPMSセンサ2の回転位置を把握できる。よって、例えば、重力加速度依存成分のピークでTPMSデータを出力することで、常に最上点でTPMSデータを出力できる。
 センサCU2cは、第1回転周期推定部11を備える。第1回転周期推定部11は、定位置送信モード中、TPMSデータを送信したときの自輪(当該TPMSセンサ2が装着された車輪)の回転周期(第1回転周期)を推定する。第1回転周期は、TPMSデータを送信した時刻と、その直前にGセンサ2bにより検出された遠心方向加速度の重力加速度依存成分のピークの時刻との間隔とする。
  センサCU2cは、第1回転周期推定部11により推定された第1回転周期をTPMSデータに加えて送信する。
 [オートラーニングモード]
  TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が所定時間(例えば、15分)以上である場合、タイヤローテーションが行われた可能性があると判断する。
  TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が所定時間未満である場合、各TPMSセンサ2から送信されたTPMSデータの空気圧情報に基づいて各車輪1のタイヤの空気圧を監視する「モニターモード」を実施する。一方、イグニッションスイッチのOFFからONまでの経過時間が所定時間以上である場合、各TPMSセンサ2の車輪位置を判定する「オートラーニングモード」を実施する。オートラーニングモードは、すべてのTPMSセンサ2の車輪位置を判定するまで、または、当該モードの開始から所定の累積走行時間(例えば、8分)が経過するまで実施し、すべてのTPMSセンサ2の車輪位置を判定した場合、または所定の累積走行時間が経過した場合、モニターモードへ移行する。
 なお、オートラーニングモード中であっても、TPMSデータに含まれる空気圧情報からタイヤの空気圧の監視は可能であるため、オートラーニングモード中は現在メモリ4dに記憶されている各センサIDと各車輪位置との対応関係に基づいて空気圧の表示、空気圧低下の警告を行う。
  TPMSCU4は、オートラーニングモード中、ABSコントロールユニット(ABSCU)6からCAN通信線7を介して車輪速パルスのカウント値を入力し、以下に示すような車輪位置判定制御を実施する。
 [車輪位置判定制御]
  図3は、実施例1の車輪位置判定制御を実施するためのTPMSCU4の制御ブロック図であり、TPMSCU4は、回転位置演算部(回転位置検出手段)4aと、分散演算部4bと、車輪位置判定部(車輪位置判定手段)4cと、メモリ4dと、第2回転周期推定部4eと、有効データ判定部(判定部)4fと、を備える。
  回転位置演算部4aは、受信機3から出力されたデコード後のTPMSデータと、ABSCU6からCAN通信線7に出力された各車輪速パルスのカウント値を入力し、各TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置(ロータの歯数)を演算する。ここで、「ロータの歯数」とは、車輪速センサ8がロータのどの歯をカウントしているかを示すもので、車輪速パルスのカウント値をタイヤ1回転分のカウント値(=1回転分の歯数z=48)で除算して求めることができる。実施例1では、オートラーニングモードを開始してから1回目の各車輪速パルスのカウント値を入力したとき、カウント値を1回転分の歯数で除算した余りに1を加算した値を基準歯数とし、2回目以降は基準歯数からの車輪速パルスのカウント数(現在のカウント値-1回目のカウント値)に基づいて歯数を決定する。
 図4は、各車輪1の回転位置算出方法を示す図である。
  図4において、車輪速パルスのカウント値を入力した時刻をt1、TPMSセンサ2の回転位置が最上点となったときの時刻をt2、TPMSセンサ2が実際にTPMSデータの送信を開始した時刻をt3、TPMSCU4がTPMSデータの受信を完了した時刻をt4、車輪速パルスのカウント値を入力した時刻をt5とする。このとき、t1,t4,t5は実際に測定でき、t3はt4からTPMSデータのデータ長(規定値であり、例えば、約10msec)を減算して算出でき、t2はt3から送信時のタイムラグ(あらかじめ実験等により求めることができる。)を減算して算出できる。
  よって、t1の歯数をzt1、t2の歯数をzt2、t5の歯数をzt5とすると、
  (t2 - t1) / (t5 - t1) = (zt2 - zt1) / (zt5 - zt1)
が成立し、
  zt2 - zt1 = (zt5 - zt1) * (t2 - t1) / (t5 - t1)
であるから、TPMSセンサ2の回転位置が最上点となった時刻t2の歯数zt2は、
  zt2 = zt1 + (zt5 - zt1) * (t2 - t1) / (t5 - t1)
となる。
 分散演算部4bは、回転位置演算部4aで演算された各車輪1の回転位置のうち、有効データ判定部4fにより有効データと判定された各車輪1の回転位置をセンサID毎にそれぞれ蓄積して回転位置データとし、センサID毎の各回転位置データのばらつき度合いを分散特性値として演算する。分散特性値の演算は、回転位置演算部4aにより同一センサIDの回転位置が算出される都度実施する。
  図5は、分散特性値の算出方法を示す図であり、実施例1では、2次元平面上に原点(0,0)を中心とした単位円(半径が1の円)を考え、各車輪1の回転位置θ[deg](= 360 × ロータの歯数 / 48)を、単位円の円周上の座標(cosθ,sinθ)に変換する。つまり、各車輪1の回転位置を、原点(0,0)を始点、座標(cosθ,sinθ)を終点とする長さ1のベクトルとみて、同じ回転位置データの各ベクトルの平均ベクトル(ave_cosθ,ave_sinθ)を求め、平均ベクトルのスカラー量を回転位置データの分散特性値Xとして算出する。
  (cosθ,sinθ) = (cos((zt2+1)*2π/48),sin((zt2+1)*2π/48))
  よって、同一センサIDのTPMSデータの受信回数をn(nは正の整数)とすると、平均ベクトル(ave_cosθ,ave_sinθ)は、
  (ave_cosθ,ave_sinθ) = ((Σ(cosθ))/n,(Σ(sinθ))/n)
となり、分散特性値Xは、
  X = ave_cosθ2 + ave_sinθ2
で表すことができる。
 車輪位置判定部4cは、分散演算部4bで演算された同一センサIDの各回転位置データの分散特性値Xを比較し、分散特性値Xの最高値が第1しきい値(例えば、0.57)よりも大きく、かつ、残り3つの分散特性値Xの値がすべて第2しきい値(例えば、0.37)未満となった場合、最高値の分散特性値Xと対応する回転位置データの車輪位置、すなわち、当該回転位置データを検出した車輪速センサ8の車輪位置を、当該回転位置データのセンサIDと対応するTPMSセンサ2の車輪位置と判定する。この判定をすべてのセンサIDで実施することで、各センサIDと各車輪位置との対応関係を求め、メモリ4dへの記憶更新により登録する。
 第2回転周期推定部4eは、デコード後のTPMSデータと、各車輪速パルスのカウント値とに基づいて、当該TPMSデータが送信されたときの自輪(当該TPMSセンサ2が装着された車輪)の回転周期(第2回転周期)を推定する。第2回転周期は、各車輪1の回転周期の平均値とする。
  有効データ判定部4fは、TPMSデータに含まれる第1回転周期と第2回転周期とを比較し、当該TPMSデータが送信されたときに検出された各車輪1の回転位置が有効データであるか無効データであるかを判定する。実施例1では、第1回転周期Tpと第2回転周期Taとの関係が下記の式(1)を満たす場合には有効データと判定し、満たさない場合には無効データと判定する。
  | Tp - Ta| ≦ α …(1)
  ここで、αは所定値(例えば、0.1)とするが、αは、車両の状態、通信や演算等の遅れ時間を考慮して可変としてもよい。
  第1回転周期推定部11、第2回転周期推定部4eおよび有効データ判定部4fにより、当該無線信号が既定(所定)の回転位置(最上点)で送信されたか否かを判定する送信位置判定手段が構成される。
 [車輪位置判定制御処理]
  図6は、実施例1の車輪位置判定制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、以下の説明では、センサID=1の場合について説明するが、他のID(ID=2,3,4)についても並列して車輪位置判定制御処理を行う。
  ステップS1では、回転位置演算部4aにおいて、センサID=1のTPMSデータを受信する。
  ステップS2では、回転位置演算部4aにおいて、各車輪1の回転位置を演算する。
 ステップS3では、第2回転周期推定部4eにおいて、第2回転周期を推定する。
  ステップS4では、有効データ判定部4fにおいて、ステップS2で演算された各車輪1の回転位置が有効データであるか否かを判定し、YESの場合にはステップS5へ進み、NOの場合にはステップS1へ戻る。
 ステップS5では、分散演算部4bにおいて、各車輪1の回転位置データの分散特性値Xを演算する。
  ステップS6では、センサID=1のTPMSデータを所定回数(例えば、10回)以上受信したか否かを判定し、YESの場合にはステップS7へ進み、NOの場合にはステップS1へ戻る。
  ステップS7では、車輪位置判定部4cにおいて、分散特性値の最高値が第1しきい値0.57よりも大きく、かつ、残りの分散特性値の値が第2しきい値0.37未満であるか否かを判定し、YESの場合にはステップS8へ進み、NOの場合にはステップS9へ進む。
 ステップS8では、車輪位置判定部4cにおいて、最高値の分散特性値と対応する回転位置データの車輪位置を、当該センサIDの車輪位置と判定し、オートラーニングモードを終了する。
  ステップS9では、車輪位置判定部4cにおいて、オートラーニングモードを開始してから所定の累積走行時間(例えば、8分)が経過したか否かを判定し、YESの場合にはオートラーニングモードを終了し、NOの場合にはステップS1へ戻る。
  車輪位置判定部4cは、所定の累積走行時間内にすべてのセンサIDについて車輪位置が判定できた場合は、各センサIDと各車輪位置との対応関係をメモリ4dへの記憶更新により登録する。一方、所定の累積走行時間内にすべてのセンサIDについて車輪位置が判定できなかった場合は、現在メモリ4dに記憶された各センサIDと各車輪位置との対応関係を継続して使用する。
 次に、作用を説明する。
  [回転位置データのばらつき度合いによる車輪位置判定作用]
  各TPMSセンサ2は、走行開始直前の車両停止判定時間が15分以上である場合、タイヤローテーションが行われた可能性があると判定し、通常モードから定位置送信モードへ移行する。定位置送信モードにおいて、各TPMSセンサ2は、前回の送信時刻から16秒経過し、かつ、自身の回転位置が最上点となったときにTPMSデータを送信する。
 一方、TPMSCU4は、イグニッションスイッチのOFFからONまでの経過時間が15分以上である場合、モニターモードからオートラーニングモードへ移行する。オートラーニングモードにおいて、TPMSCU4は、各TPMSセンサ2からTPMSデータを受信する都度、車輪速パルスのカウント値の入力時刻、当該TPMSデータの受信完了時刻等から、当該TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置(ロータの歯数)を演算し、これを10回以上繰り返して回転位置データとして蓄積し、各回転位置データのうち最もばらつき度合いが小さな回転位置データに対応する車輪位置を当該TPMSセンサ2の車輪位置と判定する。
 車両の走行時、各車輪1の回転数は、旋回時の内外輪差、車輪1のロックおよびスリップ、タイヤの空気圧差によって差が生じる。なお、直進走行中であっても、ドライバによる微少な修正舵や左右路面状態の違い等により、前後輪1FL,1FR間および左右輪1RL,1RR間に回転数差が生じることがわかっている。つまり、各車輪1の回転数は、走行に応じて差が生じるのに対し、TPMSセンサ2と車輪速センサ8(のロータの歯)は一体に回転するため、あるTPMSセンサ2の出力周期に対し、同一輪の車輪速センサ8の出力周期は、走行距離や走行状態にかかわらず常に同期(一致)する。
 よって、TPMSデータの送信周期に対する各車輪1の回転位置データのばらつき度合いを見ることで、各TPMSセンサ2の車輪位置を精度良く判定できる。
  図7は、左前輪1FLのTPMSセンサ2FLの回転位置が最上点となったときの各車輪1FL,1FR,1RL,1RRの回転位置(ロータの歯数)とTPMSデータの受信回数との関係を示す図であり、(a)は左前輪1FLの車輪速センサ8FL、(b)は右前輪1FRの車輪速センサ8FR、(c)は左後輪1RLの車輪速センサ8RL、(d)は右後輪1RRの車輪速センサ8RRに対応する。
  図7から明らかなように、他輪(右前輪1FR,左後輪1RL,右後輪1RR)の車輪速センサ8FR,8RL,8RRから得られた車輪位置(歯数)はばらつき度合いが大きいのに対し、自輪(左前輪1FL)の車輪速センサ8FLから得られた車輪位置はばらつき度合いが最小となり、TPMSセンサ2FLの出力周期と車輪速センサ8FLの出力周期とがほぼ同期している。
 従来のタイヤ空気圧モニター装置のうち、各TPMSセンサに傾斜センサを設け、各TPMSセンサの車輪位置と傾斜角との関係を用いて各TPMSセンサの車輪位置を判定するものは、走行に応じて4輪の回転数差が生じることで、各TPMSセンサの車輪位置と傾斜角との対応関係が変化するため、各TPMSセンサの車輪位置を精度良く判定できない。
  また、従来のタイヤ空気圧モニター装置のうち、受信機をTPMSセンサと同数設けて各受信機と近接配置し、受信した無線信号の電波強度に基づいて各TPMSセンサの車輪位置を判定するものは、センサ出力、受信機感度ばらつき、ハーネスアンテナ効果を考慮した受信機のレイアウトが必要となり、受信環境やレイアウトによって性能が左右されてしまう。また、4つの受信機が必要であるため、コストが高くなる。
  これに対し、実施例1のタイヤ空気圧モニター装置では、電波強度を用いることなく各TPMSセンサ2の車輪位置を判別できるため、受信環境やレイアウトに依らず各TPMSセンサ2の車輪位置を判定できる。また、受信機3が1つで済むため、コストを低く抑えることができる。
 また、実施例1では、TPMSセンサ2において、TPMSセンサ2の回転位置が最上点にあることを、Gセンサ2bにより検出される遠心方向加速度の重力加速度依存成分から算出している。Gセンサ2bは、既存のタイヤ空気圧モニター装置において、停車および走行判定に用いられているため、既存のTPMSセンサを流用でき、TPMSセンサ2側に新たなセンサを追加するコストを省くことができる。
  さらに、実施例1では、TPMSCU4において、各車輪1の回転位置を、車輪速センサ8の車輪速パルスから算出している。ABSユニットは、車両のほとんどに搭載されており、車輪速センサ8は、ABSユニットに必須の構成であるから、車両側に新たなセンサを追加するコストを省くことができる。
 [分散特性値によるばらつき度合い判定作用]
  車輪1の回転位置は周期性のある角度データであるため、回転位置のばらつき度合いを、「平均との差の2乗」の平均で定義される、一般的な分散の式から求めることはできない。
  そこで、実施例1では、分散演算部4bにおいて、各車輪速センサ8から得られた各車輪1の回転位置θを、原点(0,0)を中心とした単位円の円周上の座標(cosθ,sinθ)に変換し、座標(cosθ,sinθ)をベクトルとみて、同じ回転位置データの各ベクトルの平均ベクトル(ave_cosθ,ave_sinθ)を求め、平均ベクトルのスカラー量を分散特性値Xとして算出することで、周期性を回避して回転位置のばらつき度合いを求めることができる。
 [有効データ判定作用]
  TPMSセンサ2のセンサCU2cは、定位置送信モード中、Gセンサにより検出された遠心方向加速度の重力加速度依存成分に基づいてTPMSセンサ2の回転位置を検出し、重力加速度依存成分のピークでTPMSデータを送信することで、常に既定の回転位置(最上点)でTPMSデータを送信している。ここで、TPMSセンサ2に作用する遠心方向加速度は、車輪1の加減速により変化するが、その重力加速度依存成分は常に一定幅(-1~1[G])の波形を描き、かつ、車両の加減速に伴う遠心方向加速度の編加速度に対して非常に短い周期で変化するため、遠心方向加速度から重力加速度依存成分の変化を把握するのは容易である。
 ところが、Gセンサ2bの検出値に路面入力等に起因するノイズが含まれる場合、遠心方向加速度の重力加速度依存成分の値が乱れ、TPMSセンサ2が最上点となる前の回転位置、または最上点を超えた回転位置でピーク(1[G])に達した場合、送信機2dが回転位置を誤判断し、最上点と異なる回転位置でTPMSデータが送信される。
  ここで、TPMSCU4の回転位置演算部4aは、TPMSデータの受信タイミングと、そのときの各車輪速パルスのカウント値に基づいて、各TPMSセンサ2の回転位置が最上点となったときの各車輪1の回転位置を演算している。このため、回転位置演算部4aは、最上点以外の回転位置で送信されたTPMSデータを最上点で送信されたTPMSデータとして各車輪1の回転位置を演算し、分散演算部4bは、当該回転位置を回転位置データに含めて各車輪1の分散特性値Xを算出することになる。よって、各回転位置データの中に誤った回転位置のデータが含まれることで、各分散特性値Xの最高値と他の値とに差が生じるのが遅れ、車輪位置判定が遅延する。
 これに対し、実施例1では、有効データ判定部4fにおいて、第1回転周期Tpと第2回転周期Taとの差の絶対値が所定値α以下である場合、TPMSデータが送信されたときに検出された各車輪1の回転位置が有効データであると判定し、第1回転周期Tpと第2回転周期Taとの差の絶対値が所定値αを超える場合、TPMSデータが送信されたときに検出された各車輪1の回転位置が無効データであると判定する。
  分散演算部4bは、有効データと判定された各車輪1の回転位置のみを蓄積した回転位置データに基づいて各車輪1の分散特性値Xを算出する。
  すなわち、第1回転周期Tpを求めることでTPMSデータが実際に送信されたタイミングが分かり、第2回転周期Taを求めることでTPMSデータを送信すべきタイミングが分かる。よって、両回転周期Tp,Taを比較し、その差が小さい(差の絶対値が所定値α以下)場合には当該TPMSデータが既定の回転位置で送信されたと判断でき、その差が大きい(差の絶対値が所定値αよりも大きい)場合には当該TPMSデータが既定の回転位置で送信されていないと判断できる。
 図8は、ある車輪のGセンサ2bにより検出された遠心方向加速度の重力加速度依存成分Ggと、各車輪速パルスのカウント値から求めた当該車輪の回転位置RPの時間変化を示す図である。
  第1回転周期Tpは、TPMSデータを送信したときの時刻とその直前にGセンサ2bにより検出された遠心方向加速度の重力加速度依存成分のピークの時刻との間隔であるから、図8(a)に示すように、TPMSセンサ2が最上点のときにTPMSデータが送信された場合、第1回転周期Tpは自輪の回転周期とほぼ一致する。ここで、第2回転周期Taは、車輪速パルスに基づいて自輪の回転周期を推定したものであり、自輪の回転周期とみなすことができる。つまり、図8(a)のように第1回転周期Tpと第2回転周期Taとの差の絶対値が所定値α以下である場合には、TPMSデータが既定の回転位置(最上点)で送信されていると判断できる。
 一方、図8(b)に示すように、ノイズによってTPMSセンサ2が既定の回転位置となる前の位置で重力加速度依存成分Ggがピーク(1[G])に達し、当該位置でTPMSデータが送信された場合、第1回転周期Tpは第2回転周期Ta(≒自輪の回転周期)よりも短くなり、両者の差は大きくなる。つまり、図8(b)のように第1回転周期Tpと第2回転周期Taとの差の絶対値が所定値αを超える場合には、TPMSデータが既定の回転位置で送信されていないと判断できる。
 以上のように、第1回転周期Tpと第2回転周期Taとの差の絶対値が所定値α以下である場合に限り、TPMSデータが送信されたときに検出された各車輪1の回転位置が有効データであると判定し、有効データと判定された各車輪1の回転位置を用いて各車輪1の分散特性値Xを算出することで、誤ったデータを用いて分散特性値Xが算出されるのを抑制でき、精度良く、かつ、早期に各センサIDと各車輪位置との対応関係を判定できる。
 次に、効果を説明する。
  実施例1のタイヤ空気圧モニター装置にあっては、以下に列挙する効果を奏する。
  (1) 各タイヤの空気圧を監視するタイヤ空気圧モニター装置であって、各車輪1のタイヤに装着され、タイヤの空気圧を検出する圧力センサ2aと、各車輪1のタイヤに装着され、タイヤに作用する遠心方向加速度を検出するGセンサ2bと、各車輪1に設けられ、Gセンサ2bの検出値に基づいて車輪の回転位置を検出し、既定の回転位置のとき空気圧をセンサIDと共にTPMSデータにて送信する送信機2dと、車体側に設けられ、TPMSデータを受信する受信機3と、各車輪1に対応して車体側に設けられ、対応する車輪の速度を検出する車輪速センサ8と、車体側に設けられ、あるセンサIDを含むTPMSデータが送信されたときの各車輪1の回転位置を検出する回転位置演算部4aと、Gセンサ2bの検出値に基づいて、当該TPMSデータが送信されたときの当該センサIDと対応する車輪の回転周期を第1回転周期Tpとして推定する第1回転周期推定部11と、車輪速センサ8の検出値に基づいて、当該TPMSデータが送信されたときの当該センサIDと対応する車輪の回転周期を第2回転周期Taとして推定する第2回転周期推定部4eと、第1回転周期Tpと第2回転周期Taとの差の絶対値が所定値α以下である場合、当該TPMSデータが既定の回転位置で送信されたと判定する有効データ判定部4fと、を有する送信位置判定手段(第1回転周期推定部11、第2回転周期推定部4eおよび有効データ判定部4f)と、既定の回転位置で送信されたと判定されたTPMSデータが送信されたときの各車輪の回転位置に基づいて、当該センサIDに対応する送信機の車輪位置を判定する車輪位置判定部4cと、を備えた。
  これにより、精度良く、かつ、早期に各センサIDと各車輪位置との対応関係を判定できる。
 (2) 第1回転周期推定部11を車輪1側に設け、送信機2dは、TPMSデータに第1回転周期Tpを加えて送信する。
  これにより、車輪1側に設けられた既存のGセンサ2bを用いて第1回転周期Tpを推定できるため、車輪側に新たなセンサを追加するコストを省くことができる。
 〔実施例2〕
  実施例2は、第1回転周期推定部を車体側に設けた点で実施例1と相違する。以下、実施例1と異なる部分のみ説明する。
  [定位置送信モード]
  TPMSセンサ2のセンサCU2cは、一定間隔(例えば、16秒)毎にTPMSデータを送信するが、TPMSセンサ2の回転位置が最上点となる都度、すなわち、Gセンサ2bにより検出された遠心方向加速度の重力加速度依存成分がピーク(1[G])となる都度、同一のTPMSデータを3回送信する。以下、3つのTPMSデータを送信順に1フレーム目のTPMSデータ、2フレーム目のTPMSデータ、3フレーム目のTPMSデータと称す。
 [車輪位置判定制御]
  図9は、実施例2の車輪位置判定制御を実施するためのTPMSCU4の制御ブロック図であり、実施例2では、第1回転周期推定部4g(送信位置判定手段)をTPMSCU4内に設けた点で実施例1と異なる。よって、実施例2のTPMSセンサ2の構成は、図2に示した実施例1に対して、第1回転周期推定部11を省いた構成となる。
  第1回転周期推定部4gは、1フレーム目のTPMSデータが送信されてから2フレーム目のTPMSデータが送信されるまでの時間を第1回転周期Tp1、2フレーム目のTPMSデータが送信されてから3フレーム目のTPMSデータが送信されるまでの時間を第1回転周期Tp2として算出する。
 次に、作用を説明する。
  [有効データ判定作用]
  図10は、ある車輪のGセンサ2bにより検出された遠心方向加速度の重力加速度依存成分Ggと、各車輪速パルスのカウント値から求めた当該車輪の回転位置RPの時間変化を示す図である。
  第1回転周期Tp1,Tp2は、TPMSデータの各フレームの送信間隔であるから、図10(a)に示すように、すべてのフレームでTPMSセンサ2が最上点のときにTPMSデータが送信された場合、第1回転周期Tp1,Tp2はいずれも第2回転周期Ta1,Ta2とほぼ一致する。つまり、図10(a)のように第1回転周期Tp1と第2回転周期Ta1との差の絶対値、第1回転周期Tp2と第2回転周期Ta2との差の絶対値が共に所定値α以下である場合には、すべてのフレームのTPMSデータが既定の回転位置(最上点)で送信されていると判断できる。よって、すべてのフレームのTPMSデータが送信されたときに検出された各車輪1の回転位置を有効データと判定する。
 一方、図10(b)に示すように、2フレーム目のTPMSデータの送信後にノイズによってTPMSセンサ2が既定の回転位置となる前の位置で重力加速度依存成分Ggがピーク(1[G])に達し、当該位置で3フレーム目のTPMSデータが送信された場合、第1回転周期Tp2は第2回転周期Ta2よりも短くなり、両者の差は大きくなる。つまり、図10(b)のように第1回転周期Tp1と第2回転周期Ta1との差の絶対値が所定値α以下であり、第1回転周期Tp2と第2回転周期Ta2との差の絶対値が所定値αを超える場合には、3フレーム目のTPMSデータが既定の回転位置で送信されていないと判断できる。よって、1フレーム目と2フレーム目のTPMSデータが送信されたときに検出された各車輪1の回転位置を有効データと判定し、3フレーム目のTPMSデータが送信されたときに検出された各車輪1の回転位置が無効データと判定する。
 また、図10(c)に示すように、1フレーム目のTPMSデータの送信後にノイズによってTPMSセンサ2が既定の回転位置となる前の位置で重力加速度依存成分Ggがピーク(1[G])に達し、当該位置で2フレーム目のTPMSデータが送信された場合、第1回転周期Tp1は第2回転周期Ta1よりも短くなり、第1回転周期Tp2は第2回転周期Ta2よりも長くなる。ここで、実際は、3フレーム目のTPMSデータは既定の回転位置で送信されているが、これをTPMSCU4側で判定することは不可能であるため、図10(c)のように第1回転周期Tp1と第2回転周期Ta1との差の絶対値、第1回転周期Tp2と第2回転周期Ta2との差の絶対値が共に所定値αを超える場合には、すべてのフレームのTPMSデータが送信されたときに検出された各車輪1の回転位置を無効データと判定する。
 次に、効果を説明する。
  実施例2のタイヤ空気圧モニター装置にあっては、実施例1の効果(1)に加え、以下の効果を奏する。
  (3) 第1回転周期推定部4gを車体側に設けた。
  これにより、TPMSセンサ2側の演算負荷を低くできるため、消費電力を抑制できる。
 〔他の実施例〕
  以上、本発明を実施するための最良の形態を、図面に基づく実施例により説明したが、本発明の具体的な構成は、実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。

Claims (3)

  1.  各タイヤの空気圧を監視するタイヤ空気圧モニター装置であって、
     各車輪のタイヤに装着され、タイヤの空気圧を検出するタイヤ空気圧検出手段と、
     各車輪のタイヤに装着され、タイヤに作用する所定方向の加速度を検出する加速度センサと、
     各車輪に設けられ、前記加速度センサの検出値に基づいて車輪の回転位置を検出し、所定の回転位置のとき前記空気圧を各送信機固有の識別情報と共に無線信号にて送信する送信機と、
     車体側に設けられ、前記無線信号を受信する受信機と、
     各車輪に対応して車体側に設けられ、対応する車輪の速度を検出する車輪速センサと、
     車体側に設けられ、ある識別情報を含む無線信号が送信されたときの各車輪の回転位置を検出する回転位置検出手段と、
     前記加速度センサの検出値に基づいて、当該無線信号が送信されたときの当該識別情報と対応する車輪の回転周期を第1回転周期として推定する第1回転周期推定部と、前記車輪速センサの検出値に基づいて、当該無線信号が送信されたときの当該識別情報と対応する車輪の回転周期を第2回転周期として推定する第2回転周期推定部と、前記第1回転周期と前記第2回転周期との差が所定値以下である場合、当該無線信号が前記所定の回転位置で送信されたと判定する判定部と、を有する送信位置判定手段と、
     前記所定の回転位置で送信されたと判定された無線信号が送信されたときの各車輪の回転位置に基づいて、当該識別情報に対応する送信機の車輪位置を判定する車輪位置判定手段と、
     を備えたことを特徴とするタイヤ空気圧モニター装置。
  2.  請求項1に記載のタイヤ空気圧モニター装置において、
     前記第1回転周期推定部を車輪側に設け、
     前記送信機は、前記無線信号に前記第1回転周期を加えて送信することを特徴とするタイヤ空気圧モニター装置。
  3.  請求項1に記載のタイヤ空気圧モニター装置において、
     前記第1回転周期推定部を車体側に設けたことを特徴とするタイヤ空気圧モニター装置。
PCT/JP2012/053974 2011-05-13 2012-02-20 タイヤ空気圧モニター装置 WO2012157306A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2013110521/11A RU2542854C1 (ru) 2011-05-13 2012-02-20 Устройство контроля давления воздуха в шинах
CN201280003178.0A CN103140363B (zh) 2011-05-13 2012-02-20 轮胎气压监测设备
EP12785170.7A EP2708383B1 (en) 2011-05-13 2012-02-20 Tire air pressure monitor device
MX2013003567A MX2013003567A (es) 2011-05-13 2012-02-20 Aparato de monitoreo de la presion neumatica de las llantas.
JP2013515018A JP5574044B2 (ja) 2011-05-13 2012-02-20 タイヤ空気圧モニター装置
BR112013006551-6A BR112013006551B1 (pt) 2011-05-13 2012-02-20 aparelho de monitoramento de pressão pneumática de pneu
US13/822,117 US9050863B2 (en) 2011-05-13 2012-02-20 Tire air pressure monitor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107744 2011-05-13
JP2011-107744 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012157306A1 true WO2012157306A1 (ja) 2012-11-22

Family

ID=47176648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053974 WO2012157306A1 (ja) 2011-05-13 2012-02-20 タイヤ空気圧モニター装置

Country Status (9)

Country Link
US (1) US9050863B2 (ja)
EP (1) EP2708383B1 (ja)
JP (1) JP5574044B2 (ja)
CN (1) CN103140363B (ja)
BR (1) BR112013006551B1 (ja)
MX (1) MX2013003567A (ja)
MY (1) MY159549A (ja)
RU (1) RU2542854C1 (ja)
WO (1) WO2012157306A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749437A1 (en) * 2012-12-27 2014-07-02 Kabushiki Kaisha Tokai Rika Denki Seisakusho Tire position determination system
EP2749436A1 (en) * 2012-12-27 2014-07-02 Kabushiki Kaisha Tokai Rika Denki Seisakusho Tire position determination system
US20220314714A1 (en) * 2019-12-27 2022-10-06 Autel Intelligent Technology Corp., Ltd. Wheel positioning method, system, electronic control unit and tire pressure sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910402B2 (ja) 2012-08-06 2016-04-27 株式会社デンソー 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
KR20150022448A (ko) * 2013-08-23 2015-03-04 현대모비스 주식회사 Tpms 센서의 위치 판별 방법 및 이를 이용한 tpms 센서의 위치 판별 장치
DE102014204862A1 (de) * 2014-03-17 2015-09-17 Continental Automotive Gmbh Verfahren und Anordnung zum Lokalisieren der Verbauposition von Rädern in einem Fahrzeug
TWI558579B (zh) * 2014-10-01 2016-11-21 財團法人工業技術研究院 輪胎位置自動辨識方法與輪胎位置自動辨識系統
FR3042274B1 (fr) * 2015-10-07 2017-10-27 Continental Automotive France Unite electronique de roue et son procede de montage
DE102016120457B4 (de) * 2016-10-26 2020-12-03 Huf Baolong Electronics Bretten Gmbh Verfahren zum Betreiben einer Reifendrucküberwachungseinheit sowie Reifendrucküberwachungssystem
CN108407555B (zh) * 2017-02-09 2020-05-19 比亚迪股份有限公司 汽车轮胎定位方法和装置
CN107471928A (zh) * 2017-08-16 2017-12-15 深圳市航盛电子股份有限公司 一种轮胎的定位识别方法
CN109986916B (zh) * 2017-12-29 2023-12-12 惠州比亚迪电子有限公司 基于胎压监测系统的轮胎定位方法、装置、设备及存储介质
CN113085451A (zh) * 2021-04-30 2021-07-09 深圳市昊岳科技有限公司 胎压监测传感器自匹配方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112587A (en) * 1997-08-08 2000-09-05 Continental Aktiengesellschaft Method for assigning the wheel position to tire pressure control devices in a tire pressure control system of a motor vehicle
JP2005190116A (ja) * 2003-12-25 2005-07-14 Toyota Motor Corp 車輪情報処理装置および車輪情報処理方法
JP2006138803A (ja) * 2004-11-15 2006-06-01 Toyota Motor Corp 車輪状態取得装置および車輪状態通信方法
JP2010122023A (ja) 2008-11-19 2010-06-03 Nissan Motor Co Ltd タイヤ空気圧モニター装置およびタイヤ空気圧モニター方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618658A1 (de) * 1996-05-09 1997-11-13 Continental Ag Luftdruckkontrollsystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112587A (en) * 1997-08-08 2000-09-05 Continental Aktiengesellschaft Method for assigning the wheel position to tire pressure control devices in a tire pressure control system of a motor vehicle
JP2005190116A (ja) * 2003-12-25 2005-07-14 Toyota Motor Corp 車輪情報処理装置および車輪情報処理方法
JP2006138803A (ja) * 2004-11-15 2006-06-01 Toyota Motor Corp 車輪状態取得装置および車輪状態通信方法
JP2010122023A (ja) 2008-11-19 2010-06-03 Nissan Motor Co Ltd タイヤ空気圧モニター装置およびタイヤ空気圧モニター方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2708383A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749437A1 (en) * 2012-12-27 2014-07-02 Kabushiki Kaisha Tokai Rika Denki Seisakusho Tire position determination system
EP2749436A1 (en) * 2012-12-27 2014-07-02 Kabushiki Kaisha Tokai Rika Denki Seisakusho Tire position determination system
US9139053B2 (en) 2012-12-27 2015-09-22 Kabushiki Kaisha Tokai Rika Denki Seisakusho Tire position determination system and tire pressure monitoring system
US9227471B2 (en) 2012-12-27 2016-01-05 Kabushiki Kaisha Tokai Rika Denki Seisakusho Tire position determination system
US20220314714A1 (en) * 2019-12-27 2022-10-06 Autel Intelligent Technology Corp., Ltd. Wheel positioning method, system, electronic control unit and tire pressure sensor

Also Published As

Publication number Publication date
CN103140363B (zh) 2016-04-20
MX2013003567A (es) 2013-05-28
RU2542854C1 (ru) 2015-02-27
BR112013006551B1 (pt) 2021-02-02
JP5574044B2 (ja) 2014-08-20
EP2708383B1 (en) 2017-05-10
BR112013006551A2 (pt) 2016-06-07
US20130169428A1 (en) 2013-07-04
US9050863B2 (en) 2015-06-09
EP2708383A1 (en) 2014-03-19
JPWO2012157306A1 (ja) 2014-07-31
CN103140363A (zh) 2013-06-05
EP2708383A4 (en) 2015-05-20
MY159549A (en) 2017-01-13

Similar Documents

Publication Publication Date Title
JP5574044B2 (ja) タイヤ空気圧モニター装置
JP5853402B2 (ja) タイヤ空気圧モニター装置
KR101560960B1 (ko) 타이어 공기압 송신 장치 및 타이어 공기압 모니터 시스템
JP5590227B2 (ja) タイヤ空気圧モニター装置
WO2012157308A1 (ja) タイヤ空気圧モニター装置
WO2012157307A1 (ja) タイヤ空気圧送信装置およびタイヤ空気圧モニタシステム
JP5736959B2 (ja) タイヤ空気圧モニター装置
JP5741767B2 (ja) タイヤ空気圧モニター装置
JP5736951B2 (ja) タイヤ空気圧モニター装置
JP5741765B2 (ja) タイヤ空気圧モニター装置
JP5741764B2 (ja) タイヤ空気圧モニター装置
JP5741768B2 (ja) タイヤ空気圧モニター装置
JP5741766B2 (ja) タイヤ空気圧モニター装置
JP5896014B2 (ja) タイヤ空気圧モニター装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003178.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785170

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012785170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012785170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13822117

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/003567

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013515018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013110521

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006551

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006551

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130322