WO2012156436A1 - Verfahren zur herstellung von partikeln enthaltend metall-organische gerüstverbindungen - Google Patents

Verfahren zur herstellung von partikeln enthaltend metall-organische gerüstverbindungen Download PDF

Info

Publication number
WO2012156436A1
WO2012156436A1 PCT/EP2012/059094 EP2012059094W WO2012156436A1 WO 2012156436 A1 WO2012156436 A1 WO 2012156436A1 EP 2012059094 W EP2012059094 W EP 2012059094W WO 2012156436 A1 WO2012156436 A1 WO 2012156436A1
Authority
WO
WIPO (PCT)
Prior art keywords
mof
particles
precursor solution
gel
matrix
Prior art date
Application number
PCT/EP2012/059094
Other languages
English (en)
French (fr)
Inventor
Martin R. LOHE
Markus Rose
Stefan Kaskel
Irena SENKOVSKA
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Priority to EP12722339.4A priority Critical patent/EP2709744B1/de
Publication of WO2012156436A1 publication Critical patent/WO2012156436A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • B01J2/08Gelation of a colloidal solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/93Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708

Definitions

  • the invention relates to a process for the preparation of particles containing metal-organic framework compounds.
  • MOFs Metal-organic frameworks
  • Organometallic frameworks are defined as highly porous materials which have a crystalline structure consisting of metallic clusters (“knots”) and ligands in the form of organic molecules (“linkers”) as basic components (see also organometallic compounds). , exhibit. By varying the organic linker, the pore size can be adjusted in the nanometer range.
  • MOFs are most commonly obtained as a crystalline powder in the art.
  • this usually has to be provided with binders and pelletized (see, for example, US Pat. No. 6,893,564 B2).
  • binders can disadvantageously reduce the specific surface area and the pore volume by pore-blocking effects.
  • Binders are substances by which solids with a fine degree of dispersion (eg powder) are glued to one another or to a substrate. Binders are usually added in liquid form to the solids to be bound.
  • the object of the invention is to provide particles, in particular spheroidal particles, containing metal-organic framework compounds (MOF) without the aid of binders, which can reduce the specific surface area and the pore volume by pore-blocking effects.
  • MOF metal-organic framework compounds
  • the object is achieved by a process for the preparation of particles containing metal-organic framework compounds (MOF) by gelling a MOF gel Precusorlets, characterized in that the gelation a. in a fluid immiscible with the MOF gel precursor solution or b. takes place in pores of a macroporous matrix and then drying takes place.
  • MOF metal-organic framework compounds
  • the particles produced are in the form of a dried gel, in particular a xerogel or an airgel.
  • the gelation takes place without additives of binder.
  • no silanes, silicates, graphite, alumnium-containing components, kaolin (or other ceramic binders), polysiloxanes, polymethyl methacrylate, polyvinyl alcohol, polyacrylic acid, starch (or other synthetic or natural polymers) are added.
  • the MOF gel Precusoraims contains at least one metal salt, at least one linker, preferably an organic linker, and at least one, preferably polar, solvent.
  • Suitable metal salts, linkers and solvents are known to those skilled in the art.
  • the MOF gel precursor solution for gelling is preferably added dropwise to the immiscible fluid.
  • the drops preferably have a diameter of 0.1 to 10 mm, preferably 0.5 to 5 mm.
  • Immiscible fluid means that it does not form a homogeneous mixture with the MOF gel precursor solution, especially no solution.
  • the immiscible fluid is a gas or preferably a liquid.
  • Preferred immiscible gases are selected from air, nitrogen, argon, and carbon dioxide, as well as other gases that do not react with the MOF gel precursor solution.
  • Preferred immiscible liquids are selected from silicones, alkanes (preferably C6-C20), alkenes (preferably C6-C20), fats and oils (preferably C12-C24), perfluorocarbons or mixtures of these liquids or other immiscible liquids.
  • Precusorches are preferably 0.5 to 5 g of metal salt (preferably iron nitrate nonahydrate) and 0.2 to 2 g of linker (preferably trimesic) in 20 ml of solvent (preferably a C 1 -C 5 alcohol / water mixture
  • solvent preferably a C 1 -C 5 alcohol / water mixture
  • an ethanol / water mixture more preferably 99: 1 to 1: 1 ethanol (vol): water (vol), more preferably 25: 1 to 2: 1 ethanol
  • the cold solutions are mixed.
  • the cooled MOF gel precursor solution thus obtained is then dripped dropwise into the immiscible fluid (preferably silicone oil) at a temperature of -20 ° C (very slow gelation) to 78 ° C (rapid gelation).
  • the temperature is generally chosen below the boiling point of the solvent used.
  • the gelled MOF gel beads thus formed are then separated from the immiscible fluid, washed and dried.
  • the precursor solution all substances that are required for the preparation are already present in the precursor solution.
  • the reaction to the MOF and the solidification of the gel set in due to a temperature increase and in a short time.
  • the immiscible fluid is used exclusively for shaping (droplet formation).
  • this offers the advantages of a definable particle size adjustment, the possibility of using gases as immiscible fluid (for example in a spray tower or the like) and the possibility of circulating the immiscible fluid without having to purify it (ecological and economical advantage ).
  • the process of the invention can be carried out at atmospheric pressure.
  • Variant a of the process produces a particle in which the MOFs are present in the form of an airgel or xerogel.
  • An airgel is preferably produced by drying with supercritical carbon dioxide or other supercritical medium.
  • the xerogel is obtained by conventional drying (preferably at 40 ° C. to 100 ° C., for example, drying oven or vacuum drying).
  • the gelation takes place in pores of a macroporous matrix.
  • the MOF gel Precusoraims is poured into the macroporous matrix, gels there and fills the pores (almost) out.
  • the macroporous matrix is preferably completely filled with the MOF gel precursor solution.
  • the gelation is preferably carried out by incubation at temperatures between -40 and 150 ° C, preferably 20 to 120 ° C, particularly preferably 20 to 80 ° C. The higher the temperature, the faster the gelation.
  • the incubation time is preferably at least 1 second and more preferably at least 2 hours, and preferably not more than 72 hours.
  • the incubation time there are no limits to the incubation time, but for economic reasons it is preferably up to 70 hours, more preferably up to 40 hours.
  • the formed gel is preferably washed and dried, thereby reducing the size of the particles.
  • the gels or particles are washed to remove unreacted starting materials which might otherwise clog the pores.
  • the drying takes place (depending on the solvent used) preferably at temperatures between 10 and 160 ° C, preferably 30 to 80 ° C under atmospheric pressure or vacuum
  • the particles are separated from the matrix.
  • the inventors have found that the separation of the particles can be carried out by simply shaking out the particles from the matrix.
  • the templated foam and MOF gel precursor solution-containing vessel is sealed and annealed for 12 h at 80-100 ° C to allow the gelation of the MOF gel precursor solution.
  • the resulting MOF gel-metal foam composite is washed with ethanol and then dried at 80 ° C in air.
  • the resulting shrunken xerogel particles can then be shaken out of the foam template and the template reused for further particle production.
  • Variant b of the process produces a particle in which the MOFs are in the form of a xerogel.
  • the macroporous matrix is preferably a macroporous foam, preferably of metal, ceramic or plastic, or another macroporous three-dimensional structure (preferably of metal, ceramic, plastic, glass or textiles) having a preferred pore size, in the range of 0.1-15 mm , preferably in the range 1-8 mm (pore diameter).
  • the pore sizes should be as uniform as possible.
  • the particles produced can also be separated by a subsequent sieving process according to their size.
  • the solvents (for the preparation of the MOF gel Precusorments and washing the gel formed) in this variant are preferably selected from water, alcohols, DMF (dimethylformamide), DEF (diethylformamide), ethers, esters, amines, pyrrolidones and mixtures thereof Solvents, particularly preferred, are water, alcohols, DMF and / or DEF.
  • the metal salt in the MOF gel precursor solution is preferably selected from salts of the metals of groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 of the Periodic table of elements (former CAS groups IA, IIA, IIIA, IVB to VIIIB, and IB to VIB), in particular Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, T1, Si, Ge, Sn, Pb, As, Sb, Bi and lanthanides, preferably Fe, Al, Zn, Cu, Ni, Pd, Pt, Ru, Rh, Co, Ce and La.
  • former CAS groups IA, IIA, IIIA, IVB to VIIIB, and IB to VIB in particular Mg, Ca, Sr, Ba,
  • Preferred metal ions are selected from Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ 'Y 3+ , Ti 4+ , Zr 4+ , Hf 4 ", V 4+ , V 3+ , V 2+ 'Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au + , Zn 2+ , Cd 2+ , Hg 2+ , Al 3+ , Ga 3
  • Metal salts of the metals are particularly preferably selected from Fe (as Fe 3+ or Fe 2+ ), Al (as Al 3+ ) and Cu (as Cu 2+ or Cu + ), preferably as nitrate, acetate, sulfate or halide
  • the linker in the MOF gel precursor solution is preferably selected from cyclic radicals, preferably aryl radicals or heteroaryl radicals, having 5 to 20 C atoms and 2 to 5, preferably 2 or 3, polar groups or nitrogen atoms.
  • the polar groups are preferably carboxyl groups, carbonyl or nitrogen atoms, nitrile groups.
  • linkers are selected from aromatic polycarboxylic acids, preferably aromatic dicarboxylic acids or aromatic tricarboxylic acids, in particular terephthalic acid (1,4-benzenedicarboxylic acid, 2,5-dihydroxyterephthalic acid, trimesic acid (1,3,5-benzenetricarboxylic acid), R6-bdc (2) Dihydrocyclobutabene-3,6-dicarboxylic acid), naphthalene-2,6-dicarboxylic acid, naphthalene-1,4-dicarboxylic acid, benzene-1,3,5-tribenzoate, 4,4'-biphenyldicarboxylic acid and the salts of these acids.
  • aromatic polycarboxylic acids preferably aromatic dicarboxylic acids or aromatic tricarboxylic acids, in particular terephthalic acid (1,4-benzenedicarboxylic acid, 2,5-dihydroxyterephthalic acid, trimesic acid (1,3,5-benz
  • mixtures of the abovementioned linkers and / or mixtures of the abovementioned linkers with co-linkers are used.
  • Preferred co-linkers are selected from polar substituted aromatic dicarboxylic acids, in particular 5-substituted isophthalic acid.
  • Preferred polar substituents are selected from amino, hydroxy, nitro groups and halides, in particular bromide.
  • the solvent in the MOF gel precursor solution is preferably selected from water, alcohols, DMF (dimethylformamide), DEF (diethylformamide), ethers, esters, pyrrilidones and mixtures of these solvents, more preferably, water, alcohols, DMF and / or DEF ,
  • the concentration of metal salt in the MOF gel precursor solution is preferably in the range 0.01 mol / L to 10 mol / L, preferably 0.05 to 5 mol / L, particularly preferably 0.1 to 2 mol / L.
  • the concentration of linker in the MOF gel precursor solution is preferably in the range 0.01 mol / L to 10 mol / L, preferably 0.05 to 5 mol / L, particularly preferably 0.1 to 2 mol / L.
  • the concentration of mixtures of linkers and co-linkers in the MOF gel precursor solution is preferably in the range 0.01 mol / L to 10 mol / L, preferably 0.05 to 5 mol / L, particularly preferably 0.1 to 2 Minor.
  • the relatively high concentrations of metal salt and linker offer, in addition to the shorter reaction time, the advantage of a significantly higher space / time yield.
  • the invention also relates to the particles produced by the process according to the invention.
  • the particles produced are preferably approximately spherical or spheroidal.
  • the particles produced are not crystalline, but are present in a gel monolith in amorphous form.
  • the dimensions of the particles are determined by the drop size (for example, by variation of the dropping speed) of the MOF gel precursor solution into the immiscible fluid and by the concentration of the MOF gel precursor solution.
  • the pore size of the matrix and the shrinkage factor determine the size of the particles.
  • the shrinkage factor is preferably set by the solid-solvent ratio in the MOF gel precursor solution.
  • the particles contain MOF primary particles which are crosslinked in the gel.
  • the diameter the primary particle is preferably below 50 nm in the nanometer range.
  • the diameter of the approximately spherical or spheroidal particles is preferably less than 10 mm and preferably greater than 0.1 mm, preferably in the range from 0.1 to 5 mm.
  • the particles are preferably binder-free. They preferably contain less than 1% by weight, preferably less than 0.1% by weight, of binder. In particular, they contain no silanes, silicates, graphite, alumnium-containing components, kaolin (or other ceramic binders), polysiloxanes, polymethyl methacrylate, polyvinyl alcohol, polyacrylic acid, starch (or other synthetic or natural polymers) or only traces of these components, preferably less than 1 wt. %> preferably less than 0.1% by weight (based on the sum of these components).
  • the particles are preferably microporous and / or mesoporous, ie the pores preferably have a diameter of ⁇ 2 nm or ⁇ 50 nm.
  • the micropore volume of the particles is preferably 0.1-6 cm 3 / g, particularly preferably 0.3-2 , 3 cm 3 / g.
  • the total pore volume of the particles is preferably 0.1-20 cm 3 / g, particularly preferably 0.5-10 cm 3 / g.
  • the BET surface area is preferably in the range 50- 3000 m 2 / g, more preferably 700-2400 m 2 / g. The determination of these parameters is preferably carried out by means of nitrogen adsorption (in particular according to the BET method according to DIN 66131).
  • the particles according to the invention are used in the production of dry and adsorbents, ion exchangers and in catalysis, gas storage, gas separation processes, medical technology, biomaterials, sensors, the adsorption of toxic substances (eg NH 3 ) and electronics.
  • the particles according to the invention are particularly suitable for the purification or separation of gases or for the removal of toxic gases from air. Reference to the following figures and embodiments, the invention will be explained in more detail, without limiting the invention to these.
  • Fig. 1 schematically outlines the process for preparing the MOF particles by dropping them into a non-miscible liquid.
  • Fig. 2 schematically outlines the process for the preparation of the MOF particles with the aid of a macroporous template.
  • FIG. 3 shows the isotherm of nitrogen physisorption at 77K for airgel and xerogel particles produced in variant a) of the process according to the invention and xerogel particles produced in variant b) of the process according to the invention, each of iron-BTC gel.
  • the formed airgel spheres have a surface area of 1300 ⁇ 200 m 2 g _1 (multi-point BET determination, p / p 0 of 0.05 to 0.2), a micropore volume of 0.5 ⁇ 0.1 cm 3 g _1 and a total pore volume of 3.0-10.0 cm 3 / g- 1 (determined at p / po> 0.99).
  • the conventionally dried xerogel spheres have a specific surface area of 800 ⁇ 400 m 2 g _1 , a microporous volume of 0.4 ⁇ 0.2 cm 3 g _1 and a total pore volume of 0.5 ⁇ 0.3 cm 3 g _1 (calculation see above ) ).
  • MOF gel precursor solution 0.5 g of trimesic acid dissolved (H 3 BTC) and 1.12 g of aluminum nitrate nonahydrate (A1 (N0 3) 3 * 9H 2 0) are dissolved in 30 ml of dimethylformamide (DMF).
  • the solutions are combined and the MOF gel precursor solution thus obtained is poured into a macroporous, open-celled aluminum foam (as a template foam) having a pore size distribution between 3 and 5 mm (for example, cylindrical foam monolith in a closable glass vessel having an inner diameter corresponding to the foam outer diameter).
  • the vessel containing template foam and MOF gel precursor solution is sealed and annealed at 80-100 ° C for 12 hours to allow gelation of the MOF gel precursor solution.
  • the resulting MOF gel-metal foam composite is washed with ethanol and then dried at 80 ° C in air.
  • the resulting shrunken xerogel particles can then be shaken out of the foam template and the template reuse
  • the resulting spheroidal xerogel particles have a surface area of 1900 ⁇ 500 m 2 g -1 (multi-point BET determination, p / p 0 of 0.05 to 0.2), a microporous volume of 0.8 ⁇ 0.3 cm 3 g _1 and a total pore volume of 1.0 ⁇ 0.3 cm 3 / g _1 (determined at p / po> 0.99).
  • Xerogel particles from Eisentrimesatgel obtained according to variant b) of the method according to the invention were then - in analogy to Example 1 - baked in vacuo and determined in a suitable measuring cell whose nitrogen physisorption at 77K. The results of this measurement are shown in FIG. 3 and also show a porosity in the region of larger pores for the particles produced according to variant b) of the method according to the invention.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Partikelnenthaltend Metall-organische Gerüstverbindungen(metal organic frameworks MOF). Die mit dem Verfahren hergestellten Partikel eigen sich inbesondere zur Reinigung oder Abtrennung von Gasen oder zur Entfernung von toxischen Gasen aus Luft. Das Herstellungsverfahren zeichnet sich dadurch aus, dass die Gelierung einer MOF-Gel-Precusorlösungin einem mit der MOF-Gel-Precusorlösung nicht mischbaren Fluid oder in Poren einer makroporösen Matrix erfolgt. Vorteilhaft können dadurch bindemittelfreie Pratikel erhalten werden.

Description

Verfahren zur Herstellung von Partikeln enthaltend Metall-organische Gerüstverbindungen
Die Erfindung betrifft ein Verfahren zur Herstellung von Partikeln enthaltend Metall-organische Gerüstverbindungen.
Metall- organische Gerüstverbindungen (engl.: metal-organic framework (MOF)) gehen zurück auf die Synthese von MOF-5 von Yaghi et al. aus den 1990'ern (s. auch US 5,648,508) und stellen somit eine recht junge Materialklasse dar, die aufgrund ihrer ausgezeichneten Eigenschaften derzeit intensiv untersucht wird. MOFs, die zu den Koordinationspolymeren gezählt werden können, bestechen durch ihren modularen Aufbau bestehend aus sogenannten Konnektoren, die meist von Übergangsmetallionen oder -Clustern gebildet werden und über multifunktionelle Linker, meist organische Moleküle, miteinander verbunden sind.
Als metallorganische Gerüstverbindungen (Metal-Organic Frameworks, MOFs) werden hochporöse Materialien bezeichnet, die eine kristalline Struktur, bestehend aus metallischen Clustern („Knoten") und Liganden in Form organischer Moleküle („Linker") als Grundbauelemente (vgl. auch metallorganische Verbindungen), aufweisen. Durch Variation der organischen Linker kann die Porengröße im Nanometerbereich eingestellt werden.
Als Applikationen von MOFs werden heute Gasspeicherung, Gastrennprozesse, Medizintechnik bis hin zu Biomaterialien und Sensorik, aber auch Katalysatoren und Optoelektronik diskutiert. Ihre Stärke liegt in der extrem großen Porosität in Kombination mit molekularen Baugruppen, die spezifische Interaktionen mit zu adsorbierenden Molekülen eingehen können (s. auch Kaskel S. 2010 Chemie Ingenieur Technik 82(7): 1019-1023).
Für die industrielle Anwendung ist es wichtig, die MOFs in einer Form bereitzustellen, die sie für viele Anwendungen brauchbar macht. MOFs werden nach dem Stand der Technik jedoch meistens als kristallines Pulver erhalten. Für die jeweilige Anwendung muss dieses meist mit Bindemitteln versehen und pelletiert werden (s. z. B. US 6,893,564 B2). Nachteilig können Bindemittel jedoch die spezifische Oberfläche und das Porenvolumen durch Pore-Blocking-Effekte reduzieren. Bindemittel sind Stoffe, durch die Feststoffe mit einem feinen Zerteilungsgrad (z. B. Pulver) miteinander bzw. auf einer Unterlage verklebt werden. Bindemittel werden meist in flüssiger Form den zu bindenden Feststoffen zugesetzt.
Schoedel A. et al. 2010 (Angew. Chem. Int Ed. 49:7225-7728) beschreiben einen Ansatz zur Herstellung von Einschicht-MOF-Filmen durch Grenzphasenreaktion. Dazu wird ein metalhonenhaltiges Polyethylenglykolgel mit einer Lösung des Linkers überschichtet. Dabei entsteht ein MOF-Nanofilm, mit wenigen oder nur einer einzigen kristallografischen Orientierung und einer Dicke von 500 bis 550 nm. Für die Herstellung von MOFs in industriellem Maßstab ist das beschriebene Verfahren ungeeignet. Da die Bildung der MOFs zudem nur an der Grenzschicht erfolgt, können keine MOFs mit dreidimensionaler Form erzeugt werden.
Lohe R et al. 2009 (Chem. Commun. 2009. 6056-6058) beschreiben die Herstellung monolithischer MOF-Aerogele und Xerogele.
Küsgens P et al. (J. Am. Ceram. Soc. 93 (9): 2476 - 2479) beschreiben die Herstellung von monolithischen Strukturen die MOFs enthalten durch Coextrusion oder durch Abscheidung von Cu3(Benzoltricarboxylat)2 auf Wabenstrukturen aus Cordierit.
Imaz et al. 2009 (Angew. Chem. Int Ed. 48:2325-2329) beschreiben die Synthese von Metallorganischen Kugeln durch Zugabe einer wässrigen Zn(II)-Salzlösung zur ethanolischen Lösung eines zweizähnigen Brückenliganden unter heftigem Rühren. Die Kugeln weisen dabei eine Größe von 100 bis 1500nm auf und sind somit für industrielle Anwendungen nur bedingt geeignet.
Schwab M G et al. 2008 (Adv. Engineer. Mat 10(12), 1151 - 1155) beschreiben ein Verfahren zur Einbindung von metall- organischen Gerüstverbindungen in ein makroporöses monolithisches PolyHIPE. Durch die Imprägnierung der inneren Oberfläche des PolyHIPE mit MOFs wird die ohnehin große spezifische Oberfläche der PolyHIPEs durch Aufbringen der MOF -Beschichtung weiter erhöht und so ein Kompositmaterial mit neuen Adsorptionseigenschaften erhalten. Die Herstellung einzeln vorliegender MOFs wird nicht beschrieben.
Aufgabe der Erfindung ist die Bereitstellung von Partikeln, insbesondere sphäroidalen Partikeln, enthaltend Metall-Organischen Gerüstverbindungen (MOF) ohne Zuhilfenahme von Bindemitteln, welche die spezifische Oberfläche und das Porenvolumen durch Pore-Blocking-Effekte reduzieren können.
Erfindungsgemäß wird die Aufgabe gelöst durch ein Verfahren zur Herstellung von Partikeln enthaltend Metall-Organischen Gerüstverbindungen (MOF) durch Gelierung einer MOF-Gel- Precusorlösung, dadurch gekennzeichnet, dass die Gelierung a. in einem mit der MOF-Gel-Precusorlösung nicht mischbaren Fluid oder b. in Poren einer makroporösen Matrix erfolgt und anschließend eine Trocknung erfolgt.
Die hergestellten Partikel liegen in Form eines getrockneten Gels, insbesondere eines Xerogels oder eines Aerogels vor. Vorteilhaft erfolgt die Gelierung ohne Zusätze von Bindemittel. Insbesondere werden keine Silane, Silicate, Graphit, alumniumhaltigen Komponenten, Kaolin (oder andere keramische Binder), Polysiloxane, Polymethylmethacrylat, Polyvinylalkohol, Polyacrylsäure, Stärke (oder andere synthetische oder natürliche Polymere) zugesetzt.
Die MOF-Gel-Precusorlösung enthält mindestens ein Metallsalz, mindestens einen Linker, bevorzugt ein organischer Linker, sowie mindestens ein, bevorzugt polares, Lösungsmittel.
Geeignete Metallsalze, Linker und Lösungsmittel sind dem Fachmann bekannt.
Bezüglich geeigneter Linker und Metallsalze wird insbesondere auf US 6,893,564, insbesondere Spalte 3, Zeilen 8ff für die Linker („bidentate organic Compounds") und insbesondere Spalte 2 Z. 40ff Metallsalze („metal component"), und US 5,648,508, insbesondere Spalte 11, Zeilen 10-51, Abschnitt "The Metal Ions" für die Metallsalze und Spalte 5 Zeile 61 bis Spalte 11 Z. 7, Abschnitt„The Ligands" für die Linker, verwiesen, die hiermit durch Bezugnahme ausdrücklich mit einbezogen werden.
In Variante a wird die MOF-Gel-Precusorlösung zur Gelierung bevorzugt in das nicht mischbare Fluid eingetropft. Die Tropfen haben bevorzugt einen Durchmesser von 0,1 bis 10mm, bevorzugt, 0,5 bis 5 mm.
Nicht mischbares Fluid bedeutet, dass dieses mit der MOF-Gel-Precusorlösung kein homogenes Gemisch bildet, insbesondere keine Lösung. Das nicht mischbare Fluid ist ein Gas oder bevorzugt eine Flüssigkeit. Bevorzugte nicht mischbare Gase sind ausgewählt aus Luft, Stickstoff, Argon und Kohlendioxid sowie anderen Gasen die keine Reaktion mit der MOF-Gel-Precursorlösung eingehen. Bevorzugte nicht mischbare Flüssigkeiten sind ausgewählt aus Silikonen, Alkanen (bevorzugt C6- C20), Alkenen (bevorzugt C6-C20), Fetten und Ölen (bevorzugt C12-C24), Perfluorkohlenwasserstoffen oder Mischungen dieser Flüssigkeiten oder anderen nicht mischbaren Flüssigkeiten.
Zur Herstellung der MOF-Gel-Precusorlösung werden bevorzugt 0,5 bis 5 g Metallsalz (bevorzugt Eisennitrat-nonahydrat) und 0,2 bis 2 g Linker (bevorzugt Trimesinsäure) in 20 ml Lösungsmittel (vorzugsweise ein Cl-C5-Alkohol-/Wassergemisch, bevorzugt ein EthanoL/Wassergemisch, besonders bevorzugt 99: 1 bis 1 :1 Ethanol (vol): Wasser (vol), weiter bevorzugt 25: 1 bis 2: 1 Ethanol) gelöst.
Bevorzugt erfolgt eine Kühlung auf -20°C (insbesondere bei niedrigen Konzentrationen) bis -80 °C, bevorzugt auf -30°C bis -80°C. Die kalten Lösungen werden gemischt. Die so erhaltene gekühlte MOF-Gel-Precursorlösung wird daraufhin tropfenweise in das nicht mischbare Fluid (bevorzugt Silikonöl) mit einer Temperatur von -20°C (sehr langsame Gelierung) bis 78°C (schnelle Gelierung) eingetropft. Die Temperatur wird dabei generell unterhalb des Siedepunktes des verwendeten Lösungsmittels gewählt. Die so gebildeten, gelierten MOF-Gelkugeln werden anschließend vom nichtmischbaren Fluid getrennt, gewaschen und getrocknet.
Vorteilhaft liegen alle Stoffe, die für die Herstellung benötigt werden schon in der Precursorlösung vor. Die Reaktion zum MOF und die Erstarrung des Gels setzen aufgrund einer Temperaturerhöhung und in kurzer Zeit ein. Das nicht mischbare Fluid wird ausschließlich zur Formgebung (Tropfenbildung) genutzt. Dies bietet neben einer schnelleren Reaktionsgeschwindigkeit die Vorteile einer definierbaren Partikelgrößeneinstellung, die Möglichkeit Gase als nicht mischbares Fluid einzusetzen (bspw. in einem Sprühturm o.ä.) und die Möglichkeit das nicht mischbare Fluid zu zirkulieren ohne es aufreinigen zu müssen (ökologischer und ökonomischer Vorteil).
Vorteilhaft kann das erfindungsgemäße Verfahren bei Normaldruck durchgeführt werden.
Durch Variante a des Verfahrens wird ein Partikel erzeugt, in dem die MOFs in Form eines Aerogel oder Xerogel vorliegen. Ein Aerogel wird bevorzugt durch Trocknung mit überkritischem Kohlendioxid oder anderem überkritischen Medium erzeugt. Das Xerogel wird durch eine gängige Trocknung (bevorzugt bei 40 °C bis 100 °C z. B. Trockenschrank oder Vakuumtrocknung) erhalten.
In Variante b erfolgt die Gelierung in Poren einer makroporösen Matrix. Dazu wird die MOF-Gel- Precusorlösung in die makroporöse Matrix eingegossen, geliert dort und füllt die Poren (nahezu) aus. Die makroporöse Matrix wird bevorzugt komplett mit der MOF-Gel-Precursorlösung ausgefüllt. Die Gelierung erfolgt bevorzugt durch Inkubation bei Temperaturen zwischen -40 und 150 °C, vorzugsweise 20 bis 120°C, besonders bevorzugt 20 bis 80 °C. Je höher die Temperatur, desto schneller erfolgt die Gelierung. Die Inkubationszeit beträgt bevorzugt mindestens 1 Sekunde und weiter bevorzugt mindestens 2 Stunden, und bevorzugt nicht mehr als 72 Stunden. Nach oben sind der Inkubationszeit im Prinzip keine Grenzen gesetzt, aus wirtschaftlichen Gründen beträgt diese jedoch bevorzugt bis zu 70 Stunden, weiter bevorzugt bis 40 Stunden. Anschließend wird das gebildete Gel bevorzugt gewaschen und getrocknet, wodurch sich die Größe der Partikel verringert. Wahlweise vor oder nach der Trocknung erfolgt noch ein Waschen der Gele oder Partikel um nicht umgesetzte Ausgangsstoffe zu entfernen, welche sonst die Poren verstopfen könnten. Die Trocknung erfolgt (in Abhängigkeit des verwendeten Lösemittels) bevorzugt bei Temperaturen zwischen 10 und 160 °C, vorzugsweise 30 bis 80 °C unter Normaldruck oder Vakuum Nach dem Trocknen werden die Partikel von der Matrix abgetrennt. Vorteilhaft und überraschend haben die Erfinder festgestellt, dass das Abtrennen der Partikel durch einfaches Herausschütteln der Partikel aus der Matrix erfolgen kann. Das Templat-Schaum und MOF-Gel-Precursorlösung enthaltende Gefäß wird verschlossen und 12h bei 80-100°C getempert um die Gelierung der MOF-Gel-Precursorlösung zu ermöglichen. Das erhaltene MOF-Gel-Metallschaum-Komposit wird mit Ethanol gewaschen und anschließend bei 80°C an Luft getrocknet. Die erhaltenen geschrumpften Xerogel-Partikel können danach aus dem Schaumtemplat herausgeschüttelt und das Templat für weitere Partikelherstellung wiederverwendet werden.
Durch Variante b des Verfahrens wird ein Partikel erzeugt, in dem die MOFs in Form eines Xerogel vorliegen.
Die makroporöse Matrix ist bevorzugt ein makroporöser Schaum, bevorzugt aus Metall, Keramik oder Kunststoff, oder eine andere makroporöse dreidimensionale Struktur (bevorzugt aus Metall, Keramik, Kunstoff, Glas oder Textilien) mit einer bevorzugten Porengröße, im Bereich von 0,1-15 mm, bevorzugt im Bereich 1-8 mm (Porendurchmesser). Um einheitliche Partikelgrößen zu erhalten, sollten die Porengrößen möglichst gleichmäßig sein. Alternativ oder zusätzlich können die hergestellten Partikel auch durch ein anschließendes Siebverfahren nach ihrer Größe getrennt werden.
Die Lösungsmittel (für die Herstellung der MOF-Gel-Precusorlösung und das Waschen des gebildeten Gels) in dieser Variante sind bevorzugt ausgewählt aus Wasser, Alkoholen, DMF (Dimethylformamid), DEF (Diethylformamid), Ethern, Estern, Aminen, Pyrrolidonen und Mischungen dieser Lösungsmittel, besonders bevorzugt sind, Wasser, Alkohole, DMF und/oder DEF.
Nachfolgend werden für beide zuvor beschriebenen Varianten bevorzugte Komponenten der MOF- Gel-Precusorlösung beschrieben:
Das Metallsalz in der MOF-Gel-Precusorlösung ist bevorzugt ausgewählt aus Salzen der Metalle der Gruppen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 und 16 des Periodensystems der Elemente (frühere CAS-Gruppen I A, II A , III A, IV B bis VIII B, und I B to VI B), insbesondere Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, AI, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi und Lanthanoide, vorzugsweise Fe, AI, Zn, Cu, Ni, Pd, Pt, Ru, Rh, Co, Ce und La. Bevozugte Metallionen sind ausgewählt aus Mg2+, Ca2+, Sr2+, Ba2+, Sc3+' Y3+, Ti4+, Zr4+, Hf4", V4+, V3+, V2+' Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+' Bi+, Ce3+, Ce4+ und La3+.
Besonders bevorzugt sind Metallsalze der Metalle ausgewählt aus Fe (als Fe3+ oder Fe2+), AI (als Al3+) und Cu (als Cu2+ oder Cu+), vorzugsweise als Nitrat, Acetat, Sulfat oder Halogenid Der Linker in der MOF-Gel-Precusorlösung ist bevorzugt ausgewählt aus cyclischen Resten vorzugsweise Arylresten oder Heteroarylresten, mit 5 bis 20 C-Atomen und 2 bis 5, bevorzugt 2 oder 3, polaren Gruppen oder Stickstoffatomen. Die polaren Gruppen sind bevorzugt Carboxylgruppen, Carbonyl oder Stickstoffatome, Nitrilgruppen. Besonders bevorzugte Linker sind ausgewählt aus aromatischen Polycarbonsäuren, bevorzugt aromatischen Dicarbonsäuren oder aromatischen Tricarbonsäuren, insbesondere Terephthalsäure (1,4-Benzoldicarbonsäurej, 2,5- Dihydroxyterephtalsäure, Trimesinsäure (1 ,3,5-Benzoltricarbonsäure), R6-bdc (\ ,2-Dihydrocyclobuta- benzol-3,6-dicarbonsäure), Naphthalin-2,6-dicarbonsäure, Naphtalin-l,4-dicarbonsäure, Benzol-1,3,5- tribenzoat, 4,4'-Biphenyldicarbonsäure und den Salzen dieser Säuren.
Weitere Beispiele für bevorzugte Linker sind nachfolgend aufgeführt:
Figure imgf000008_0001
Figure imgf000009_0001
In einer bevorzugten Variante des erfindungsgemäßen Verfahrens werden Mischungen der oben genannten Linker und/oder Mischungen der oben genannten Linker mit Co-Linkern eingesetzt.
Bevorzugte Co-Linker sind ausgewählt aus polar substituierten aromatischen Dicarbonsäuren, insbesondere 5-substituierte Isophthalsäure. Bevorzugte polare Substituenten sind ausgewählt aus Amino-, Hydroxy-, Nitrogruppen und Halogeniden, insbesondere Bromid. Besonders bevorzugte Co- aus:
5-Aminoisophthalsäure (CAS: 99-31-0),
5-Hydroxyisophthalsäure (CAS: 618-83-7)
Figure imgf000009_0002
5-Nitroisophthalsäure (CAS: 618-88-2),
Figure imgf000010_0001
5-Cyanoisophthalsäure (CAS: 23341-13-1),
Figure imgf000010_0002
5-Bromoisophthalsäure (CAS: 23351-91-9).
Das Lösungsmittel in der MOF-Gel-Precusorlösung ist bevorzugt ausgewählt aus Wasser, Alkoholen, DMF (Dimethylformamid), DEF (Diethylformamid), Ethern, Estern, Pyrrilidonen und Mischungen dieser Lösungsmittel, besonders bevorzugt sind, Wasser, Alkohole, DMF und/oder DEF.
Die Konzentration von Metallsalz in der MOF-Gel-Precusorlösung liegt bevorzugt im Bereich 0,01 Mol/L bis 10 Mol/L, bevorzugt 0,05 bis 5 Mol/L, besonders bevorzugt 0,1 bis 2 Mol/L.
Die Konzentration von Linker in der MOF-Gel-Precusorlösung liegt bevorzugt im Bereich 0,01 Mol/L bis 10 Mol/L, bevorzugt 0,05 bis 5 Mol/L, besonders bevorzugt 0,1 bis 2 Mol/L.
Die Konzentration von Mischungen von Linkern und Co-Linkern in der MOF-Gel-Precusorlösung liegt bevorzugt im Bereich 0,01 Mol/L bis 10 Mol/L, bevorzugt 0,05 bis 5 Mol/L, besonders bevorzugt 0,1 bis 2 Mol/L.
Die relativ hohen Konzentrationen an Metallsalz und Linker bieten neben der kürzeren Reaktionszeit den Vorteil einer deutlich höheren Raum/Zeit- Ausbeute.
Gegenstand der Erfindung sind auch die mit dem erfindungsgemäßen Verfahren hergestellten Partikel.
Die hergestellten Partikel sind bevorzugt annähernd kugelförmig oder sphäroidal. Die hergestellten Partikel sind nicht kristallin, sondern liegen in einem Gel-Monolith in amorpher Form vor. Die Abmessungen der Partikel wird bei Variante a durch die Tropfengröße (z. B. durch Variation der Geschwindigkeit des Eintropfens) der MOF-Gel-Precusorlösung in das nicht mischbare Fluid und durch die Konzentration der MOF-Gel-Precusorlösung bestimmt. Bei Variante b bestimmen die Porengröße der Matrix und der Schrumpfungsfaktor die Größe der Partikel. Der Schrumpfungsfaktor wird bevorzugt durch das Feststoff-Lösungsmittel- Verhältnis in der MOF-Gel-Precusorlösung eingestellt. Die Partikel enthalten MOF-Primärpartikel, welche im Gel vernetzt sind. Der Durchmesser der Primärpartikel liegt im Nanometerbereich bevorzugt unter 50 nm. Bevorzugt liegt der Durchmesser der annähernd kugelförmigen oder sphäroidalen Partikel unter 10 mm und bevorzugt über 0,1 mm, bevorzugt im Bereich 0,1 bis 5 mm.
Die Partikel sind bevorzugt bindemittelfrei. Bevorzugt enthalten sie unter 1 Gew-%, bevorzugt unter 0,1 Gew. % Bindemittel. Sie enthalten insbesondere keine Silane, Silicate, Graphit, alumniumhaltige Komponenten, Kaolin (oder andere keramische Binder), Polysiloxane, Polymethylmethacrylat, Polyvinylalkohol, Polyacrylsäure, Stärke (oder andere synthetische oder natürliche Polymere) bzw. nur Spuren dieser Komponenten, bevorzugt unter 1 Gew-%> bevorzugt unter 0, 1 Gew. % (bezogen auf die Summe dieser Komponenten).
Die Partikel sind bevorzugt mikroporös und/oder mesoporös, d. h. die Poren haben bevorzugt einen Durchmesser von < 2 nm bzw. < 50 nm. Das Mikroporenvolumen der Partikel beträgt bevorzugt 0,1-6 cm3/g, besonders bevorzugt 0,3-2,3 cm3/g. Das totale Porenvolumen der Partikel beträgt bevorzugt 0,1-20 cm3/g, besonders bevorzugt 0,5-10 cm3/g. Die BET-Oberfläche liegt bevorzugt im Bereich 50- 3000 m2/g, besonders bevorzugt 700-2400 m2/g. Die Bestimmung dieser Parameter erfolgt bevorzugt mittels Stickstoffadsorption (insbesondere nach dem BET -Verfahren nach DIN 66131).
Während aus dem Stand der Technik bekannte kristalline MOF-Partikel in der Regel eine Adsorptionsisotherme vom Typ-I (nach IUPAC-Klassifizierung, vgl. [K.S.W. Sing, Pure Appl. Chem., 1985, 57(4), 603-619]) aufweisen, was auf reine Mikroporosität hindeutet, zeigen die erfindungsgemäßen Partikel, insbesondere die Aerogele - aber auch die Xerogele - eine zusätzliche, deutliche Porosität im Bereich größerer Poren (Mesoporen für Xerogele, Mesoporen und Makroporen für Aerogele). Vorteilhaft können durch diese zusätzlichen Poren deutlich bessere Adsorptionskinetiken, besonders für größere, monolithische Partikel erzielt werden (siehe auch Fig. 3).
Die erfindungsgemäßen Partikel finden Anwendung bei der Herstellung von Trocken- und Adsorptionsmitteln, Ionentauschern und in der Katalyse, Gasspeicherung, Gastrennprozesse, Medizintechnik, in Biomaterialien, der Sensorik, der Adsorption von toxischen Stoffen (z.B. NH3) und der Elektronik. Die erfindungsgemäßen Partikel eignen sich insbesondere zur Reinigung oder Abtrennung von Gasen oder zur Entfernung von toxischen Gasen aus Luft. Anhand folgender Figuren und Ausführungsbeispiele soll die Erfindung näher erläutert werden, ohne die Erfindung auf diese zu beschränken.
Fig. 1 skizziert schematisch das Verfahren zur Herstellung der MOF-Partikel durch Eintropfen in eine nicht-mischbare Flüssigkeit.
Fig. 2 skizziert schematisch das Verfahren zur Herstellung der MOF-Partikel mit Hilfe eines makroporösen Templates.
Fig. 3 zeigt die Isothermen der Stickstoff-Physisorption bei 77K für in der Variante a) des erfindungsgemäßen Verfahrens erzeugte Aerogel- sowie Xerogelpartikel und in der Variante b) des erfindungsgemäßen Verfahrens erzeugte Xerogel-Partikel, jeweils aus Eisen-BTC-Gel.
@STP bedeutet bei 0 °C und 100 kPa (Normbedingungen - „Standard Temperature and
Pressure").
Ausführungsbeispiel 1- Variante a - Herstellung durch Eintropfen in nicht mischbare Flüssigkeit:
1,212 g Eisennitrat-nonahydrat (Fe(N03)3*9H20) und 0,42 g Trimesinsäure (H3BTC) werden separat in 20 ml eines Ethanol-/Wassergemisches (4: 1, vokvol) gelöst und auf -60°C gekühlt. Die kalten Lösungen werden gemischt. Die so erhaltene gekühlte MOF-Gel-Precursorlösung wird daraufhin tropfenweise in Silikonöl mit einer Temperatur von 40°C gegeben. Die so gebildeten, gelierten MOF- Gelkugeln werden anschließend vom Silikonöl getrennt, mit Ethanol gewaschen und wahlweise überkritisch mit CO2 (Aerogel-Kugeln) oder an Luft bei 70°C (Xerogel-Kugeln) getrocknet.
Die gebildeten Aerogelkugeln weisen eine Oberfläche von 1300±200 m2g_1 (multi-point BET- Bestimmung, p/p0 von 0,05 bis 0,2), ein Mikroporenvolumen von 0,5±0,1 cm3g_1 und ein totales Porenvolumen von 3,0-10,0 cm3/g_1 (bestimmt bei p/po > 0,99) auf. Die konventionell getrockneten Xerogelkugeln besitzen eine spezifische Oberfläche von 800±400 m2g_1, ein Mikroporenvolumen von 0,4±0,2 cm3g_1 und ein totales Porenvolumen von 0,5±0,3 cm3g_1 (Berechnung s.o.).
Die Aero- und Xerogel-Kugeln wurden anschließend bei Temperaturen bis zu 150°C im Vakuum ausgeheizt, um deren Porenvolumen von Lösungsmittelresten und anderen flüchtigen Stoffen zu befreien. Anschließend wurden jeweils ca. 100 mg der Gelpartikel in eine evakuierte Sorptionsmesszelle gegeben und bei 77K mit definierten Mengen von Stickstoffgas beaufschlagt. Aus der Messung des Drucks in der Messzelle kann das von den Partikeln durch physikalische Kräfte adsorbierte Stickstoffvolumen bestimmt werden. Die Ergebnisse dieser Messungen - das adsorbierte, auf Normbedingungen gemäße DIN 1343 umgerechnete Volumen in Abhängigkeit des Relativdrucks - sind in Fig. 3 dargestellt und zeigen eine deutliche Porosität der Aerogele und Xerogele im Bereich größerer Poren (Mesoporen für Xerogele, Mesoporen und Makroporen für Aerogele). Ausführungsbeispiel 2 - Variante b - Herstellung durch Eingiessen in makroporösen Schaum:
0,5 g Trimesinsäure (H3BTC) und 1,12 g Aluminiumnitrat-nonahydrat (A1(N03)3*9H20) werden in jeweils 30 ml Dimethylformamid (DMF) gelöst. Die Lösungen werden vereinigt und die so erhaltene MOF-Gel-Precursorlösung in einen makroporösen, offenporigen Alumiumschaum (als Templat- Schaum) mit einer Porengrößenverteilung zwischen 3 und 5 mm gegossen (bspw. zylindrischer Schaummonolith in einem verschließbaren Glasgefäß mit Innendurchmesser entsprechend des Schaumaußendurchmessers). Das Templat-Schaum und MOF-Gel-Precursorlösung enthaltende Gefäß wird verschlossen und 12h bei 80-100°C getempert, um die Gelierung der MOF-Gel-Precursorlösung zu ermöglichen. Das erhaltene MOF-Gel-Metallschaum-Komposit wird mit Ethanol gewaschen und anschließend bei 80°C an Luft getrocknet. Die erhaltenen geschrumpften Xerogel-Partikel können danach aus dem Schaumtemplat herausgeschüttelt und das Templat für weitere Partikelherstellung wiederverwendet werden.
Die erhaltenen sphäroidalen Xerogelpartikel weisen eine Oberfläche von 1900±500 m2g-1 (multi-point BET-Bestimmung, p/p0 von 0,05 bis 0,2), ein Mikroporenvolumen von 0,8±0,3 cm3g_1 und ein totales Porenvolumen von 1,0±0,3 cm3/g_1 (bestimmt bei p/po > 0,99) auf.
Gemäß Variante b) des erfindungsgemäßen Verfahrens gewonnene Xerogelpartikel aus Eisentrimesatgel wurden anschließend - analog zu Ausführungsbeispiel 1 - im Vakuum ausgeheizt und in einer geeigneten Messzelle deren Stickstoff-Physisorption bei 77K bestimmt. Die Ergebnisse dieser Messung sind in Figur 3 dargestellt und zeigen auch für die gemäß Variante b) des erfindungsgemäßen Verfahrens hergestellte Partikel eine Porosität im Bereich größerer Poren.

Claims

Patentansprüche
1. Verfahren zur Herstellung von sphäroidalen Partikeln, die bevorzugt in Form eines getrockneten Gels, insbesondere eines Xerogels oder eines Aerogels vorliegen, enthaltend Metall-Organische Gerüstverbindungen (MOF) durch Gelierung einer MOF-Gel-Precusorlösung, dadurch gekennzeichnet, dass die Gelierung
a. ) in einem mit der MOF-Gel-Precusorlösung nicht mischbaren Fluid oder
b. ) in Poren einer makroporösen Matrix
erfolgt und anschließend eine Trocknung erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die MOF-Gel-Precursorlösung zur Gelierung in das nicht mischbare Fluid eingetropft wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das nicht mischbare Fluid ausgewählt ist aus Silikonen, Alkanen, Alkenen, Fetten, Ölen, Perfluorkohlenwasserstoffen oder Mischungen dieser Flüssigkeiten.
4. Verfahren nach Anspruch 1, wobei die Gelierung in Poren einer makroporösen Matrix erfolgt, dadurch gekennzeichnet, dass sich die Größe der Partikel bei der Trocknung verringert, und diese anschließend von der Matrix abgetrennt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Abtrennen aus der formgebenden Matrix durch Herausschütteln erfolgt.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die formgebende Matrix eine makroporöse dreidimensionale Struktur, bevorzugt aus Metall, Keramik, Kunstoff, Glas oder Textilien, mit einem bevorzugten Porendurchmesser im Bereich von 0,1-15 mm ist.
7. Sphäroidale Partikel hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie im Gel vernetzte MOF-Primärpartikel aufweisen sowie unter 1 Gew.-%, bevorzugt unter 0,1 Gew.-% Bindemittel enthalten oder bindemittelfrei sind.
8. Partikel nach Anspruch 7, dadurch gekennzeichnet, dass sie eine Größe von 0,05 bis 10 mm und/oder ein Mikrop orenvolumen von 0,1 bis 6 cmVg und/oder eine BET-Oberfläche im Bereich 50 bis 3000 m2/g, aufweisen.
9. Verwendung der Partikel nach Anspruch 7 oder 8 zur Reinigung oder Abtrennung von Gasen oder zur Entfernung von toxischen Gasen aus Luft.
PCT/EP2012/059094 2011-05-18 2012-05-16 Verfahren zur herstellung von partikeln enthaltend metall-organische gerüstverbindungen WO2012156436A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12722339.4A EP2709744B1 (de) 2011-05-18 2012-05-16 Verfahren zur herstellung von partikeln enthaltend metall-organische gerüstverbindungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076080.6 2011-05-18
DE102011076080A DE102011076080A1 (de) 2011-05-18 2011-05-18 Verfahren zur Herstellung von Partikeln enthaltend Metall-organische Gerüstverbindungen

Publications (1)

Publication Number Publication Date
WO2012156436A1 true WO2012156436A1 (de) 2012-11-22

Family

ID=46146852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/059094 WO2012156436A1 (de) 2011-05-18 2012-05-16 Verfahren zur herstellung von partikeln enthaltend metall-organische gerüstverbindungen

Country Status (3)

Country Link
EP (1) EP2709744B1 (de)
DE (1) DE102011076080A1 (de)
WO (1) WO2012156436A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118054A1 (en) 2013-01-31 2014-08-07 Basf Se Stable spherical, porous metal-organic framework shaped bodies for gas storage and gas separation
US9370771B2 (en) 2013-01-31 2016-06-21 Basf Se Metal-organic framework extrudates with high packing density and tunable pore volume
WO2018065555A1 (en) * 2016-10-06 2018-04-12 Immaterial Labs Ltd Metal-organic frameworks, methods for their manufacture and uses thereof
CN110394156A (zh) * 2019-07-05 2019-11-01 重庆科技学院 一种吸附分离钯的铬基金属有机骨架复合材料及其制备方法
CN110465251A (zh) * 2019-09-11 2019-11-19 成都工业学院 一种长效修复型双层微胶囊
WO2020127368A1 (de) * 2018-12-18 2020-06-25 Henkel Ag & Co. Kgaa Verfahren zur herstellung von metal organic frameworks
US10737239B2 (en) 2015-11-27 2020-08-11 Basf Se Ultrafast high space-time-yield synthesis of metal-organic frameworks
CN114146687A (zh) * 2020-09-08 2022-03-08 日立化成株式会社 锆基金属有机骨架材料成型材料、其制造方法及其应用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497377A (zh) * 2017-10-19 2017-12-22 山东大学 一种形貌均一金属有机骨架化合物/氧化石墨烯复合微球的制备方法
CN110433737B (zh) * 2019-09-10 2021-09-17 陕西科技大学 一种多功能生物质基复合水凝胶的制备方法及其应用
CN114247479B (zh) * 2021-12-31 2023-06-06 广东工业大学 一种双金属Pt-Co/UiO-66催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648508A (en) 1995-11-22 1997-07-15 Nalco Chemical Company Crystalline metal-organic microporous materials
US6893564B2 (en) 2002-05-30 2005-05-17 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437063A (en) * 2006-04-10 2007-10-17 Uni I Oslo A process for oxide gas capture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648508A (en) 1995-11-22 1997-07-15 Nalco Chemical Company Crystalline metal-organic microporous materials
US6893564B2 (en) 2002-05-30 2005-05-17 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BUSO D ET AL: "Fast synthesis of MOF-5 microcrystals using sol-gel SiO2 nanoparticles", CHEMISTRY OF MATERIALS 20110222 AMERICAN CHEMICAL SOCIETY USA, vol. 23, no. 4, 22 February 2011 (2011-02-22), pages 929 - 934, XP002680299, DOI: DOI:10.1021/CM101519S *
FALCARO P ET AL: "Amino functionalized SiO2 nanoparticles for seeding MOF-5", IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING - NOVEL CHEMICAL PROCESSING; CHEMICAL TECTONICS FOR MATERIALS DESIGN 2011 INSTITUTE OF PHYSICS PUBLISHING GBR, vol. 18, no. SYMPOSIUM 2C, 14 November 2010 (2010-11-14), XP002680301, DOI: DOI:10.1088/1757-899X/18/5/052006 *
HORCAJADA P ET AL: "Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks", ADVANCED MATERIALS 20090518 WILEY-VCH VERLAG DEU, vol. 21, no. 19, 18 May 2009 (2009-05-18), pages 1931 - 1935, XP002680300, DOI: DOI:10.1002/ADMA.200801851 *
IMAZ ET AL., ANGEW. CHEM. INT ED., vol. 48, 2009, pages 2325 - 2329
K.S.W. SING, PURE APPL. CHEM., vol. 57, no. 4, 1985, pages 603 - 619
KASKEL S., CHEMIE INGENIEUR TECHNIK, vol. 82, no. 7, 2010, pages 1019 - 1023
KÜSGENS P ET AL., J. AM. CERAM. SOC., vol. 93, no. 9, pages 2476 - 2479
LOHE R ET AL., CHEM. COMMUN. 2009, 2009, pages 6056 - 6058
SCHOEDEL A. ET AL., ANGEW. CHEM. INT ED., vol. 49, 2010, pages 7225 - 7728
SCHWAB M G ET AL., ADV. ENGINEER. MAT, vol. 10, no. 12, 2008, pages 1151 - 1155

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118054A1 (en) 2013-01-31 2014-08-07 Basf Se Stable spherical, porous metal-organic framework shaped bodies for gas storage and gas separation
US9370771B2 (en) 2013-01-31 2016-06-21 Basf Se Metal-organic framework extrudates with high packing density and tunable pore volume
US10737239B2 (en) 2015-11-27 2020-08-11 Basf Se Ultrafast high space-time-yield synthesis of metal-organic frameworks
WO2018065555A1 (en) * 2016-10-06 2018-04-12 Immaterial Labs Ltd Metal-organic frameworks, methods for their manufacture and uses thereof
WO2020127368A1 (de) * 2018-12-18 2020-06-25 Henkel Ag & Co. Kgaa Verfahren zur herstellung von metal organic frameworks
CN110394156A (zh) * 2019-07-05 2019-11-01 重庆科技学院 一种吸附分离钯的铬基金属有机骨架复合材料及其制备方法
CN110394156B (zh) * 2019-07-05 2022-02-01 重庆科技学院 一种吸附分离钯的铬基金属有机骨架复合材料及其制备方法
CN110465251A (zh) * 2019-09-11 2019-11-19 成都工业学院 一种长效修复型双层微胶囊
CN110465251B (zh) * 2019-09-11 2022-03-01 成都工业学院 一种长效修复型双层微胶囊
CN114146687A (zh) * 2020-09-08 2022-03-08 日立化成株式会社 锆基金属有机骨架材料成型材料、其制造方法及其应用方法

Also Published As

Publication number Publication date
DE102011076080A1 (de) 2012-11-22
EP2709744A1 (de) 2014-03-26
EP2709744B1 (de) 2017-08-02

Similar Documents

Publication Publication Date Title
EP2709744B1 (de) Verfahren zur herstellung von partikeln enthaltend metall-organische gerüstverbindungen
EP2981354B1 (de) Aktivkohle mit spezieller ausrüstung sowie deren herstellung und verwendung
JP4980918B2 (ja) 金属−有機骨格を含む成形体
US10266634B2 (en) Chemically stable hollow spherical COF and synthesis thereof
CN106457127B (zh) 使用itq-55分离和储存流体
Dong et al. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors
US9302258B2 (en) Complex comprising crystalline hybrid nanoporous material powder
Wan et al. Ionic liquid groups modified 3D porous cellulose microspheres for selective adsorption of AO7 dye
EP2780422B1 (de) Verfahren zur herstellung von partikeln mit hochporöser oberflächenbeschichtung
CN110872381B (zh) 一种腙键连接的共价有机框架材料及制备和应用
CN106215869B (zh) 多孔二氧化硅陶瓷负载Cu-MOF吸附剂及其制备方法
JP2005528204A (ja) 金属有機フレームワークを含む成形体
DE102009045272A1 (de) Metalloxidpartikel mit poröser Oberfläche, Verfahren für ihre Herstellung und ihre Verwendung in Trenneinrichtungen
Chattopadhyay et al. MOF and derived materials as aerogels: Structure, property, and performance relations
US11951453B2 (en) Superficially porous particles and methods for forming superficially porous particles
KR101876318B1 (ko) 혼성화 나노복합체, 이의 제조 방법, 및 이를 포함하는 수분 흡착제
CN1884047A (zh) 一种制备球形多孔金属氧化物的通用方法
Fallah et al. Study of synthesis of mordenite zeolite/MIL-101 (Cr) metal–organic framework compounds with various methods as bi-functional adsorbent
Fang et al. Ability evaluation of thiophenic sulfurs capture with a novel (MOF-818)-on-(Cu-BTC) composite in the presence of moisture
Sydorchuk et al. Synthesis and structure of AMP/oxide support
DE112013005573T5 (de) Oberflächennah poröse Hybrid Monolithe mit angeordneten Poren und Verfahren zum Herstellen und zur Verwendung derselben
EP2998272B1 (de) Anorganische, silica-basierte feststoff-schaumpartikel mit geschlossenen innenporen, ihre herstellung und ihre verwendung als füll- oder speicherstoff
CN110961082B (zh) 基于反相微乳体系的纳米级沸石咪唑酯骨架材料及方法
JP2022523714A (ja) 押出された有機金属構造体材料及びその製造方法
KR20200045966A (ko) 제올라이트 이미다졸레이트계 구조를 포함하는 나노입자를 혼합한 하이브리드 막 및 이를 이용한 기체 분리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12722339

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012722339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012722339

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE