WO2012156378A1 - Kupfer(i)komplexe, insbesondere für optoelektronische bauelemente - Google Patents

Kupfer(i)komplexe, insbesondere für optoelektronische bauelemente Download PDF

Info

Publication number
WO2012156378A1
WO2012156378A1 PCT/EP2012/058957 EP2012058957W WO2012156378A1 WO 2012156378 A1 WO2012156378 A1 WO 2012156378A1 EP 2012058957 W EP2012058957 W EP 2012058957W WO 2012156378 A1 WO2012156378 A1 WO 2012156378A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
group
branched
organic
complex
Prior art date
Application number
PCT/EP2012/058957
Other languages
English (en)
French (fr)
Inventor
Thomas Baumann
Tobias Grab
Daniel Zink
Original Assignee
Cynora Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP11179110A external-priority patent/EP2543672A1/de
Application filed by Cynora Gmbh filed Critical Cynora Gmbh
Priority to JP2014509771A priority Critical patent/JP2014522391A/ja
Priority to EP12721517.6A priority patent/EP2707374B1/de
Priority to US14/117,190 priority patent/US9490431B2/en
Priority to KR1020137031490A priority patent/KR20140026540A/ko
Priority to CN201280023097.7A priority patent/CN103534260A/zh
Publication of WO2012156378A1 publication Critical patent/WO2012156378A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6503Five-membered rings
    • C07F9/6506Five-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6503Five-membered rings
    • C07F9/6506Five-membered rings having the nitrogen atoms in positions 1 and 3
    • C07F9/65068Five-membered rings having the nitrogen atoms in positions 1 and 3 condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/6512Six-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having three nitrogen atoms as the only ring hetero atoms
    • C07F9/6518Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6527Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07F9/653Five-membered rings
    • C07F9/65306Five-membered rings containing two nitrogen atoms
    • C07F9/65318Five-membered rings containing two nitrogen atoms having the two nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6527Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07F9/653Five-membered rings
    • C07F9/65324Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6536Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and sulfur atoms with or without oxygen atoms, as the only ring hetero atoms
    • C07F9/6539Five-membered rings
    • C07F9/65392Five-membered rings containing two nitrogen atoms
    • C07F9/65397Five-membered rings containing two nitrogen atoms having the two nitrogen atoms in positions 1 and 3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to copper (I) complexes of the general formula A, in particular for use in optoelectronic components.
  • Such components consist mainly of organic layers.
  • a voltage of z. B. 5 V to 10 V occur from a conductive metal layer, for. B. from an aluminum cathode, electrons in a thin electron conduction layer and migrate toward the anode.
  • This consists z. B. from a transparent, but electrically conductive, thin indium tin oxide layer, from the positive charge carriers, so-called. Holes, immigrate into an organic hole conductor layer. These holes move in the opposite direction to the cathode compared to the electrons.
  • the emitter layer which also consists of an organic material, are in addition special emitter molecules on which or in the vicinity of the two charge carriers recombine and thereby lead to neutral, but energetically excited states of the emitter molecules.
  • the excited states then give off their energy as a bright light emission, e.g. B. in blue, green or red color. Also white-light emission is feasible.
  • the emitter layer may also be dispensed with if the emitter molecules are located in the hole or electron conduction layer.
  • the present invention was based on the object to provide new compounds that are suitable for optoelectronic devices.
  • X * Cl, Br, I, CN and / or SCN (ie independently of each other, so that the complex can have four identical or four different atoms X *);
  • the imine function is part of an N-heteroaromatic 5- or 6-ring such as oxazole, imidazole, thiazole, isoxazole, isothiazole, pyrazole, 1, 2,3-triazole, 1,2,3-oxadiazole, 1,2,5-oxadiazole, 1,2,3-thiadiazole, 1,2,5-thiadiazole, pyridine, pyrimidine, triazine, pyrazine or pyridazine.
  • " ⁇ " is also part of this aromatic group, and the carbon atom is both directly adjacent to the imine nitrogen atom and to the E atom.
  • ⁇ * ⁇ may be optionally substituted, especially with groups that provide the solubility of the Copper (I) complex in the common organic solvents for OLED device production increase.
  • Common organic solvents include, in addition to alcohols, emers, alkanes and halogenated aliphatic and aromatic hydrocarbons and alkylated aromatic hydrocarbons, especially toluene, chlorobenzene, dichlorobenzene, mesitylene, xylene, tetrahydrofuran, phenetole, propiophenone.
  • a copper (I) complex according to the invention preferably consists of two identical ligands ⁇ * ⁇ , which reduces the complexity of the synthesis and thus the costs of production.
  • the big advantage of using copper as a central metal is its low price, v. a. Compared to the usual metals of OLED emitters like Re, Os, Ir and Pt. In addition, the low toxicity of copper also supports its use.
  • the copper (I) complexes according to the invention are distinguished by a wide range of achievable emission colors.
  • the emission quantum yield is high, in particular greater than 50%.
  • the emission decay times are surprisingly short.
  • inventive copper (I) complexes can be used in relatively high emitter concentrations without significant quenching effects. This means emitter concentrations of 5% to 100% can be used in the emitter layer.
  • the ligands ⁇ * ⁇ are preferably oxazole, imidazole, thiazole, isoxazole, isothiazole, pyrazole, 1,2,3-triazole, 1,2,3-oxadiazole, 1,2,5-oxadiazole, 1,2 , 3-thiadiazole, 1,2,5-thiadiazole, pyridine, pyrimidine, triazine, pyrazine and / or pyridazine, each of which may be substituted as described herein.
  • the ligands ⁇ * ⁇ are preferably the following ligands:
  • Y 0 or NR 2 or S
  • R1-R5 may each independently represent hydrogen, halogen or be substituents on oxygen (-OR), nitrogen (-NR 2) or silicon atoms (-SiR 3) are attached, and alkyl (branched or cyclic), aryl , Heteroaryl, alkenyl, alkynyl or substituted alkyl (also branched or cyclic), aryl, heteroaryl and alkenyl Groups having substituents such as halogens or deuterium, alkyl groups (also branched or cyclic), and other well-known donor and acceptor groups, such as amines, carboxylates and their esters, and CF 3 groups.
  • R2-R5 can optionally also lead to fused ring systems.
  • the ligand ⁇ * ⁇ is particularly preferably the following ligands:
  • the invention also relates to a process for the preparation of a copper (I) complex according to the invention.
  • This process according to the invention comprises the step of carrying out a reaction of ⁇ * ⁇ with Cu (I) X *,
  • N * imine function, which is part of an N-heteroaromatic 5- or 6-ring such as oxazole, imidazole, thiazole, isoxazole, isothiazole, pyrazole, 1,2,3-triazole, 1,2,3-oxadiazole, 1, 2,5-oxadiazole, 1,2,3-thiadiazole, 1,2,5-thiadiazole, pyridine, pyrimidine, triazine, pyrazine and / or pyridazine.
  • an N-heteroaromatic 5- or 6-ring such as oxazole, imidazole, thiazole, isoxazole, isothiazole, pyrazole, 1,2,3-triazole, 1,2,3-oxadiazole, 1, 2,5-oxadiazole, 1,2,3-thiadiazole, 1,2,5-thiadiazole, pyridine, pyrimidine, triazine, pyrazine and / or
  • at least one carbon atom, which is also part of the aromatic group, wherein the carbon atom is both directly adjacent to the imine nitrogen atom and to the phosphorus or arsenic atom.
  • the optionally present at the ligand ⁇ * ⁇ at least one substituent for increasing the solubility of the complex in organic solvents is described below.
  • the reaction is preferably carried out in dichloromethane (DCM).
  • DCM dichloromethane
  • ⁇ * phosphine ligand, definition see below
  • X * Cl, Br, I, CN, SCN
  • tetranuclear 4 2 complex ⁇ 4 ⁇ * 4 ( ⁇ *) 2 , in which the four Cu atoms form the base of an octahedron and two halogen ions whose tip (Eq.
  • the other two halogens span two opposite sides of the octahedron surface, while the two ⁇ * ligands span the other two opposite faces of the octahedral face in chelating form with both the N and P atoms, leaving the Cu Atoms saturate coordinatively.
  • the complex is accessible in only one step by the reaction of Cu (I) X * with the bidentate ⁇ * ligand.
  • the complex can be isolated by precipitating with Et 2 O as a white microcrystalline powder. Single crystals can be obtained by slowly diffusing Et 2 O into the reaction solution. The identities of the complexes were clearly evidenced by elemental and X-ray structural analyzes.
  • the bidentate ⁇ * ligands can independently of one another comprise at least one substituent:
  • the substituents can each independently be hydrogen, halogen or substituents which are bonded via oxygen (-OR), nitrogen (-NR 2 ) or silicon atoms (-S1R3) are bonded and alkyl (also branched or cyclic), aryl, heteroaryl, alkenyl, alkynyl groups or substituted alkyl (also branched or cyclic), aryl, Heteroaryl and alkenyl groups having substituents such as halogens or deuterium, alkyl groups (also branched or cyclic), and other well-known donor and acceptor groups, such as for example, amines, carboxylates and their esters, and CF 3 groups.
  • the substituents can optionally also lead to fused ring systems.
  • Nonpolar substituents R2-R5 increase the solubility in nonpolar solvents and lower the solubility in polar solvents.
  • Nonpolar groups are z.
  • B. alkyl groups [CH 3 - (CH 2 ) n -] (n 1 - 30), also branched or cyclic, substituted alkyl groups, eg. B. with halogens.
  • partially or perfluorinated alkyl groups and perfluorinated oligo- and polyether, z. For example, [- (CF 2 ) 2 -O] n - and (-CF 2 -O) n - (n 2 - 500).
  • Polar substituents R2-R5 increase the solubility in polar solvents. These can be:
  • Amines -NH 2 , -NR * 2 , -N (CH 2 CH 2 OH) 2 ,
  • Negatively charged substituents eg. Borates - (BR * 3 ) - , aluminates - (A1R * 3 ) - (anion may be an alkali metal or ammonium ion).
  • At least one of the structures ⁇ * ⁇ is preferably substituted by at least one substituent.
  • the substituent may be selected from the group consisting of:
  • long-chain, branched or unbranched or cyclic alkyl chains having a length of from Cl to C30, preferably having a length of C3 to C20, particularly preferably having a length of C5 to C15,
  • long-chain, branched or unbranched or cyclic, alkoxy chains having a length of Cl to C30, preferably having a length of C3 to C20, particularly preferably having a length of C5 to C15,
  • Short-chain polyethers such as. B. polymers of the form (-OCH 2 CH 2 0-) n, where n ⁇ 500. Examples include polyethylene glycols (PEG), which are used as chemically inert, water-soluble and non-toxic polymers with a chain length of 3-50 repeat units can.
  • PEG polyethylene glycols
  • alkyl chains or alkoxyl chains or perfluoroalkyl chains are modified in a preferred embodiment of the invention with polar groups, for.
  • polar groups for.
  • Thiosulfonic acid esters sulfonamides, thiosulfonamides, sulfamides, sulfenamides, sulfates, thiosulfates, sultones, sultams, trialkylsilyl and triarylsilyl groups as well as trialkoxysilyl groups which result in a further increase in solubility.
  • the method of presentation may include the step of having at least one ligand is substituted with at least one substituent for increasing the solubility in the desired organic solvent, wherein the substituent may be selected in one embodiment of the invention from the above groups.
  • copper (I) are also complex, which can be prepared by such a synthesis process.
  • the copper (I) complexes of the formula A can be used according to the invention as emitter materials in an emitter layer of a light-emitting optoelectronic component.
  • the optoelectronic components are preferably the following: organic light-emitting components (OLEDs), light-emitting electrochemical cells, OLED sensors (in particular in non-hermetically shielded gas and vapor sensors), organic solar cells, organic field effect transistors, organic lasers and down-conversion elements.
  • the proportion of the copper (I) complex in the emitter or absorber layer in such an optoelectronic component is 100% in one embodiment of the invention. In an alternative embodiment, the proportion of the copper (I) complex in the emitter or absorber layer is 1% to 99%.
  • a further aspect of the invention relates to a method for changing the emission and / or absorption properties of an electronic component.
  • an inventive copper (I) complex is introduced into a matrix material for conducting electrons or holes in an optoelectronic device.
  • a further aspect of the invention relates to a use of a copper (I) complex according to the invention, in particular in an optoelectronic component, for converting UV radiation or blue light into visible light, in particular into green, yellow or red light (down conversion).
  • a copper (I) complex according to the invention in particular in an optoelectronic component, for converting UV radiation or blue light into visible light, in particular into green, yellow or red light (down conversion).
  • the invention relates to a bidentate ligand of the formula B, in particular for the preparation of a copper complex of the formula A, and to the process for preparing such a ligand.
  • the ligand ⁇ * of the general formula A is a ligand
  • the ligands were prepared in the case of imidazoles, thiazoles and lH-l, 2,3-triazoles and pyridine, pyrimidine, triazine, pyrazine, pyridazine according to literature specifications, while all other phosphine ligands are not yet known and thus were presented after a new synthesis.
  • the compounds 2a-e are white, fine crystalline solids. Characterization:
  • FIGS. 2b, 2c, 2e The crystal structures of FIGS. 2b, 2c, 2e are shown in FIGS. 1-3.
  • the emission spectra of 2a-c, 2e are shown in Figs. 4-7.
  • the compounds 4a-g are white, fine crystalline solids.
  • Compounds 6a-d are white, fine crystalline solids.
  • FIG. 6a The crystal structure of FIG. 6a is shown in FIG.
  • Compounds 8a-c are white, fine crystalline solids.
  • Compound 10a is a white, fine crystalline solid.
  • the emission spectrum of 10a is shown in FIG.
  • Compound 12a is a white, fine crystalline solid. Characterization:
  • FIG. 12a The crystal structure of FIG. 12a is shown in FIG.
  • Compounds 14a-e are white, fine crystalline solids.
  • Compound 16a is a white, fine crystalline solid.
  • Compound 18a is a white, fine crystalline solid.
  • the compounds 20a-h are yellowish, finely crystalline solids.
  • Fig. 20e The crystal structure of Fig. 20e is shown in Fig. 32.
  • Compound 22a is a yellowish, finely crystalline solid.

Abstract

Die Erfindung betrifft Kupfer(I)komplexe der Formel A, Formel (A), X* = Cl, Br, I, CN und/oder SCN (also unabhängig voneinander) Ν*∩Ε = ein zweibindiger Ligand mit E = Phosphanyl/Arsenyl-Rest der Form R2E (mit R = Alkyl, Aryl, Alkoxyl, Phenoxyl, oder Amid); N* = Imin-Funktion, die Bestandteil eines N-heteroaromatischen 5- oder 6-Rings ist, die ausgewählt ist aus der Gruppe bestehend aus Oxazol, Imidazol, Thiazol, Isoxazol, Isothiazol, Pyrazol, 1,2,3-Triazol, 1,2,3-Oxadiazol, 1,2,5- Oxadiazol, 1,2,3-Thiadiazol, 1,2,5-Thiadiazol, Pyridin, Pyrimidin, Triazin, Pyrazin, Pyridazin;,,∩" = mindestens ein Kohlenstoffatom, das ebenfalls Bestandteil der aromatischen Gruppe ist, wobei sich das Kohlenstoffatom sowohl direkt benachbart zum Imin-Stickstoffatom als auch zum Phosphor- oder Arsenatom befindet.

Description

Kupfer(I)komplexe, insbesondere für optoelektronische Bauelemente
Die Erfindung betrifft Kupfer(I)komplexe der allgemeinen Formel A, insbesondere zur Verwendung in optoelektronischen Bauelementen.
Einleitung
Zur Zeit zeichnet sich ein drastischer Wandel im Bereich der Bildschirm- und Beleuchtungstechnik ab. Es wird möglich sein, flache Displays oder Leuchtflächen mit einer Dicke von unter 0,5 mm zu fertigen. Diese neue Technik basiert auf dem Prinzip der OLEDs, den Organic Light Emitting Diodes.
Derartige Bauteile bestehen vorwiegend aus organischen Schichten. Bei einer Spannung von z. B. 5 V bis 10 V treten aus einer leitenden Metallschicht, z. B. aus einer Aluminium- Kathode, Elektronen in eine dünne Elektronen-Leitungsschicht und wandern in Richtung der Anode. Diese besteht z. B. aus einer durchsichtigen, aber elektrisch leitenden, dünnen Indium- Zinn-Oxid-Schicht, von der positive Ladungsträger, sog. Löcher, in eine organische Löcher- Leitungsschicht einwandern. Diese Löcher bewegen sich im Vergleich zu den Elektronen in entgegengesetzter Richtung, und zwar auf die Kathode zu. In einer mittleren Schicht, der Emitterschicht, die ebenfalls aus einem organischen Material besteht, befinden sich zusätzlich besondere Emitter-Moleküle, an denen oder in deren Nähe die beiden Ladungsträger rekombinieren und dabei zu neutralen, aber energetisch angeregten Zuständen der Emitter- Moleküle führen. Die angeregten Zustände geben dann ihre Energie als helle Lichtemission ab, z. B. in blauer, grüner oder roter Farbe. Auch Weiß-Licht-Emission ist realisierbar. Auf die Emitterschicht kann gegebenenfalls auch verzichtet werden, wenn die Emittermoleküle sich in der Loch- oder Elektronen-Leitungsschicht befinden.
Entscheidend für den Bau effektiver OLEDs sind die verwendeten Leuchtmaterialien (Emitter-Moleküle). Diese können in verschiedener Weise realisiert werden, und zwar unter Verwendung rein organischer oder metall-organischer Moleküle sowie von Komplexverbindungen. Es lässt sich zeigen, dass die Lichtausbeute der OLEDs mit metallorganischen Substanzen, den sog. Triplett-Emittern, wesentlich größer sein kann als für rein organische Materialien. Aufgrund dieser Eigenschaft kommt der Weiterentwicklung der metall-organischen Materialien ein wesentlicher Stellenwert zu. Unter Einsatz von metallorganischen Komplexen mit hoher Emissionsquantenausbeute (Übergänge unter Einbeziehung der untersten Triplett-Zustände zu den Singulett-Grundzuständen) lässt sich eine besonders hohe Effizienz des Devices erzielen. Diese Materialien werden häufig als Triplett-Emitter oder phosphoreszierende Emitter bezeichnet.
Vor diesem Hintergrund lag der vorliegenden Erfindung die Aufgabe zu Grunde, neue Verbindungen bereitzustellen, die für optoelektronische Bauelemente geeignet sind.
Beschreibung der Erfindung
Das der Erfindung zu Grunde liegende Problem wird durch die Bereitstellung von Kupfer(I)komplexen der Form gelöst, die eine Struktur gemäß Formel A
Figure imgf000004_0002
aufweisen:
Figure imgf000004_0001
mit:
X* = Cl, Br, I, CN und/oder SCN (also unabhängig voneinander, so dass der Komplex vier gleiche oder vier unterschiedliche Atome X* aufweisen kann);
E = R2As und/oder R2P,
Figure imgf000004_0003
= zweibindige Liganden mit E = Phosphanyl/Arsenyl-Rest der Form R2E (R = Alkyl, Aryl, Alkoxyl, Phenoxyl, Amid); N* = Imin-Funktion. Bei
Figure imgf000004_0004
handelt es sich um ein Kohlenstoffatom. Insbesondere handelt es sich bei E um eine Ph2P-Gruppe (Ph = Phenyl), die Imin-Funktion ist Bestandteil eines N-heteroaromatischen 5- oder 6-Rings wie Oxazol, Imidazol, Thiazol, Isoxazol, Isothiazol, Pyrazol, 1,2,3-Triazol, 1,2,3-Oxadiazol, 1,2,5- Oxadiazol, 1,2,3-Thiadiazol, 1,2,5-Thiadiazol, Pyridin, Pyrimidin, Triazin, Pyrazin oder Pyridazin. ,,Π" ist ebenfalls Bestandteil dieser aromatischen Gruppe. Das Kohlenstoffatom befindet sich sowohl direkt benachbart zum Imin-Stickstoff-Atom als auch zum E-Atom. Ν*ΠΕ kann optional substituiert sein, insbesondere mit Gruppen, die die Löslichkeit des Kupfer(I)komplexes in den gängigen organischen Lösungsmitteln zur OLED- Bauteilherstellung erhöhen. Gängige organische Lösungsmittel umfassen, neben Alkoholen, Emern, Alkanen sowie halogenierten aliphatischen und aromatischen Kohlenwasserstoffen und alkylierten aromatischen Kohlenwasserstoffen, insbesondere Toluol, Chlorbenzol, Dichlorbenzol, Mesitylen, Xylol, Tetrahydrofuran, Phenetol, Propiophenon.
Ein erfindungsgemäßer Kupfer(I)komplex besteht bevorzugt aus zwei identischen Liganden Ν*ΠΕ, was den Syntheseaufwand und damit die Kosten der Herstellung vermindert. Der große Vorteil bei der Verwendung von Kupfer als Zentralmetall ist dessen niedriger Preis, v. a. im Vergleich zu den sonst bei OLED-Emittern üblichen Metallen wie Re, Os, Ir und Pt. Zusätzlich spricht auch die geringe Toxizität des Kupfers für dessen Verwendung.
Hinsichtlich ihrer Verwendung in optoelektronischen Bauelementen zeichnen sich die erfindungsgemäßen Kupfer(I)komplexe durch einen weiten Bereich von erzielbaren Emissionsfarben aus. Zudem ist die Emissionsquantenausbeute hoch, insbesondere größer als 50 %. Für Emitterkomplexe mit Cu-Zentralion, sind die Emissionsabklingzeiten erstaunlich kurz.
Außerdem sind die erfindungsgemäßen Kupfer(I)komplexe in relativ hohen Emitterkonzentrationen ohne deutliche Quencheffekte verwendbar. Das heißt, im Emitter- Layer können Emitterkonzentrationen von 5 % bis 100 % verwendet werden.
Bevorzugt handelt es sich bei dem Liganden Ν*ΠΕ um Oxazol, Imidazol, Thiazol, Isoxazol, Isothiazol, Pyrazol, 1,2,3-Triazol, 1,2,3-Oxadiazol, 1,2,5-Oxadiazol, 1,2,3-Thiadiazol, 1,2,5- Thiadiazol, Pyridin, Pyrimidin, Triazin, Pyrazin und/oder Pyridazin, die jeweils substituiert sein können, wie hierin beschrieben.
Bevorzugt handelt es sich bei dem Liganden Ν*ΠΕ um folgende Liganden:
Figure imgf000005_0001
Figure imgf000006_0001
Figure imgf000007_0001
mit
X = O oder NR2
Y = 0 oder NR2 oder S
E* = As oder P
R1-R5 können jeweils unabhängig voneinander Wasserstoff, Halogen sein oder Substituenten, die über Sauerstoff- (-OR), Stickstoff- (-NR2) oder Siliziumatome (-SiR3) gebunden sind sowie Alkyl- (auch verzweigt oder zyklisch), Aryl-, Heteroaryl-, Alkenyl-, Alkinyl-Gruppen bzw. substituierte Alkyl- (auch verzweigt oder zyklisch), Aryl-, Heteroaryl- und Alkenyl- Gruppen mit Substituenten wie Halogene oder Deuterium, Alkylgruppen (auch verzweigt oder zyklisch), und weitere allgemein bekannte Donor- und Akzeptor-Gruppen, wie beispielsweise Amine, Carboxylate und deren Ester, und CF3-Gruppen. R2-R5 können optional auch zu annelierten Ringsystemen führen.
Besonders bevorzugt handelt es sich bei dem Liganden Ν*ΠΕ um folgende Liganden:
Figure imgf000008_0001
wobei die verwendeten Symbole oben beschrieben sind.
Die Erfindung betrifft auch ein Verfahren zur Herstellung eines erfindungsgemäßen Kupfer(I)komplexes. Dieses erfindungsgemäße Verfahren weist den Schritt des Durchführens einer Reaktion von Ν*ΠΕ mit Cu(I)X* auf,
wobei
X* = Cl, Br, I, CN, und/oder SCN (unabhängig voneinander)
= ein zweibindiger Ligand mit
Figure imgf000008_0002
E = Phosphanyl/Arsenyl-Rest der Form R2E (mit R = Alkyl, Aryl, Alkoxyl, Phenoxyl, oder Amid);
N* = Imin-Funktion, die Bestandteil eines N-heteroaromatischen 5- oder 6-Rings wie Oxazol, Imidazol, Thiazol, Isoxazol, Isothiazol, Pyrazol, 1,2,3-Triazol, 1,2,3-Oxadiazol, 1,2,5- Oxadiazol, 1,2,3-Thiadiazol, 1,2,5-Thiadiazol, Pyridin, Pyrimidin, Triazin, Pyrazin und/oder Pyridazin.
,,Π" = mindestens ein Kohlenstoffatom, das ebenfalls Bestandteil der aromatischen Gruppe ist, wobei sich das Kohlenstoffatom sowohl direkt benachbart zum Imin-Stickstoffatom als auch zum Phosphor- oder Arsenatom befindet.
Der optional am Liganden Ν*ΠΕ vorhandene mindestens eine Substituent zur Erhöhung der Löslichkeit des Komplexes in organischen Lösungsmitteln ist weiter unten beschrieben.
Die Reaktion wird bevorzugter Weise in Dichlormethan (DCM) durchgeführt. Durch die Zugabe von Diethylether zum gelösten Produkt kann ein Feststoff gewonnen werden. Letzteres kann durch Fällung oder Eindiffusion oder in einem Ultraschall-Bad durchgeführt werden. Bei der Reaktion von 2 Einheiten zweizähnigen ΡΠΝ* -Liganden (ΡΠΝ* = Phosphan-Ligand, Definition s. u.) mit 4 Einheiten Cu(I)X* (X* = Cl, Br, I, CN, SCN), bevorzugt in Dichlormethan (DCM), bevorzugt bei Raumtemperatur, entsteht der vierkernige 4:2-Komplex Οι4Χ*4(ΡΠΝ*)2, in dem die vier Cu-Atome die Grundfläche eines Oktaeders und zwei Halogen-Ionen deren Spitze ausbilden (Gl. 1). Die anderen beiden Halogen-Ionen überbrücken zwei gegenüberliegende Seiten der Oktaeder-Grundfläche, während die zwei ΡΠΝ* -Liganden die zwei anderen gegenüberliegenden Seiten der Oktaeder-Grundfläche in chelatisierender Form sowohl mit dem N- als auch dem P-Atom überbrücken und die Cu- Atome somit koordinativ absättigen.
Figure imgf000009_0001
Somit ist der Komplex in nur einem Schritt durch Umsetzung von Cu(I)X* mit dem zweizähnigen ΡΠΝ* -Liganden zugänglich. Der Komplex kann durch Fällen mit Et20 als weißes mikrokristallines Pulver isoliert werden. Einkristalle können durch langsames Eindiffundieren von Et20 in die Reaktionslösung erhalten werden. Die Identitäten der Komplexe wurden eindeutig durch Elementar- und Röntgenstrukturanalysen belegt.
Hierbei handelt es sich um die oben aufgeführte allgemeine Formel A. Die zweizähnigen ΕΠΝ* -Liganden können unabhängig voneinander mindestens einen Substituenten umfassen: Die Substituenten können jeweils unabhängig voneinander Wasserstoff, Halogen sein oder Substituenten, die über Sauerstoff- (-OR), Stickstoff- (-NR2) oder Siliziumatome (-S1R3) gebunden sind sowie Alkyl- (auch verzweigt oder zyklisch), Aryl-, Heteroaryl-, Alkenyl-, Alkinyl-Gruppen bzw. substituierte Alkyl- (auch verzweigt oder zyklisch), Aryl-, Heteroaryl- und Alkenyl-Gruppen mit Substituenten wie Halogene oder Deuterium, Alkylgruppen (auch verzweigt oder zyklisch), und weitere allgemein bekannte Donor- und Akzeptor-Gruppen, wie beispielsweise Amine, Carboxylate und deren Ester, und CF3-Gruppen. Die Substituenten können optional auch zu annelierten Ringsystemen führen.
Löslichkeit
Bei der Herstellung von opto-elektronischen Bauteilen mittels nass-chemischer Prozesse ist es vorteilhaft, die Löslichkeit gezielt einzustellen. Hierdurch kann das Auf- bzw. Anlösen einer bereits aufgebrachten Schicht vermieden werden. Durch das Einbringen spezieller Substituenten können die Löslichkeitseigenschaften stark beeinflusst werden. Dadurch ist es möglich, orthogonale Lösungsmittel zu verwenden, die jeweils nur die Substanzen des aktuellen Verarbeitungsschrittes lösen, aber nicht die Substanzen der darunter liegenden Schicht(en). Zu diesem Zweck können die Substitutenten R2-R5 so gewählt werden, dass sie eine Abstimmung der Löslichkeiten erlauben. Folgende Möglichkeiten zur Auswahl entsprechender Substituenten sind gegeben:
Löslichkeit in unpolaren Medien
Unpolare Substitutenten R2-R5 erhöhen die Löslichkeit in unpolaren Lösungsmitteln und erniedrigen die Löslichkeit in polaren Lösungsmitteln. Unpolare Gruppen sind z. B. Alkylgruppen [CH3-(CH2)n-] (n = 1 - 30), auch verzweigte oder zyklische, substituierte Alkylgruppen, z. B. mit Halogenen. Hierbei sind besonders hervorzuheben: teil- oder perfluorierte Alkylgruppen sowie perfluorierte Oligo- und Polyether, z. B. [-(CF2)2-0]n - und (-CF2-0)n- (n = 2 - 500). Weitere unpolare Gruppen sind: Ether -OR*, Thioether -SR*, unterschiedlich substituierte Silane R*3Si- (R* = Alkyl oder Aryl), Siloxane R*3Si-0-, Oligosiloxane R**(-R2Si-0)n- (R** = R*, n = 2 - 20), Polysiloxane R**(-R*2Si-0)n- (n > 20); Oligo/polyphosphazene R**(-R*2P=N-)„- (n = 1 - 200).
Löslichkeit in polaren Medien
Polare Substitutenten R2-R5 erhöhen die Löslichkeit in polaren Lösungsmitteln. Diese können sein:
• Alkohol-Gruppen: -OH
• Carbonsäure-, Phosphonsäure-, Sulfonsäure -Reste sowie deren Salze und Ester (R* = H, Alkyl, Aryl, Halogen; Kationen: Alkalimetalle, Ammonium- Salze):
-COOH, -P(0)(OH)2 , -P(S)(OH)2 , -S(0)(OH)2 , -COOR*, -P(0)(OR*)2 , -P(S)(OR*)2 ,- S(0)(OR*)2 , -CONHR*, -P(0)(NR*2)2 , -P(S)(NR*2)2 , -S(0)(NR*2)2 • Sulfoxide: -S(0)R *, -S(0)2R*
• Carbonylgruppen: -C(0)R*
• Amine: -NH2 , -NR*2 , -N(CH2CH2OH)2 ,
• Hydroxylamine =NOR*
• Oligoester, -0(CH20-)n , -0(CH2CH20-)n (n = 2 - 200)
• Positiv geladene Substituenten: z. B. Ammonium- Salze -N+R*32 , Phosphonium-Salze - P+R*3X
• Negativ geladene Substituenten, z. B. Borate -(BR*3)~, Aluminate -(A1R*3)~ (als Anion kann ein Alkalimetal oder Ammoniumion fungieren).
Um die Löslichkeit der erfindungsgemäßen Kupfer(I)komplexe in organischen Lösungsmitteln zu verbessern, ist mindestens eine der Strukturen Ν*ΠΕ in bevorzugter Weise mit mindestens einem Substituenten substituiert. Der Substituent kann ausgewählt sein aus der Gruppe bestehend aus:
- langkettigen, verzweigten oder unverzweigten oder zyklischen Alkylketten mit einer Länge von Cl bis C30, bevorzugt mit einer Länge von C3 bis C20, besonders bevorzugt mit einer Länge von C5 bis C15,
- langkettigen, verzweigten oder unverzweigten oder zyklischen, Alkoxyketten einer Länge von Cl bis C30, bevorzugt mit einer Länge von C3 bis C20, besonders bevorzugt mit einer Länge von C5 bis C15,
- verzweigten oder unverzweigten oder zyklischen Perfluoralkylketten einer Länge von Cl bis C30, bevorzugt mit einer Länge von C3 bis C20, besonders bevorzugt mit einer Länge von C5 bis C15 und
- kurzkettigen Polyethern, wie z. B. Polymere der Form (-OCH2CH20-)n , mit n < 500. Beispiele hierfür sind Polyethylenglykole (PEG), die als chemisch inerte, wasserlösliche und nicht-toxische Polymere mit einer Kettenlänge von 3-50 Wiederholungseinheiten eingesetzt werden können.
Die Alkylketten oder Alkoxylketten oder Perfluoralkylketten sind in einer bevorzugten Ausführungsform der Erfindung mit polaren Gruppen modifiziert, z. B. mit Alkoholen, Aldehyden, Acetale, Aminen, Amidine, Carbonsäuren, Carbonsäureestern, Carbonsäureamide, Imide, Carbonsäurehalogenide, Carbonsäureanhydride, Emern, Halogenen, Hydroxamsäuren, Hydrazine, Hydrazone, Hydroxylamine, Laktone, Laktame, Nitrilen, Isocyanide, Isocyanate, Isothiocyanate, Oxime, Nitrosoaryle, Nitroalkyle, Nitroaryle, Phenole, Phosphorsäureestern und/oder Phosphonsäuren, Thiolen, Thioethern, Thioaldehyde, Thioketone, Thioacetale, Thiocarbonsäuren, Thioester, Dithiosäure, Dithiosäureester, Sulfoxide, Sulfone, Sulfonsäure, Sulfonsäureester, Sulfmsäure, Sulfmsäureester, Sulfensäure, Sulfensäureester, Thiosulfmsäure, Thiosulfinsäureester, Thiosulfonsäure,
Thiosulfonsäureester, Sulfonamide, Thiosulfonamide, Sulfmamide, Sulfenamide, Sulfate, Thiosulfate, Sultone, Sultame, Trialkylsilyl- und Triarylsilyl-Gruppen sowie Trialkoxysilyl- Gruppen, die eine weitere Erhöhung der Löslichkeit zur Folge haben.
Eine sehr ausgeprägte Erhöhung der Löslichkeit wird ab mindestens einer C6-Einheit, verzweigt oder unverzweigt oder zyklisch, erreicht. Die Substitution zum Beispiel mit einer linearen C6-Kette (siehe unten) führt zu einer sehr guten Löslichkeit in z. B. Dichlormethan und zur guten Löslichkeit in Dichlorbenzol oder Chlorbenzol.
Optional kann das Darstellungsverfahren den Schritt umfassen, dass mindestens ein Ligand
Figure imgf000012_0001
mit mindestens einem Substituenten zur Erhöhung der Löslichkeit in dem gewünschten organischen Lösungsmittel substituiert wird, wobei der Substituent in einer Ausführungsform der Erfindung ausgewählt sein kann aus o.g. Gruppen.
Erfindungsgemäß sind auch Kupfer(I)komplexe, die durch ein derartiges Syntheseverfahren herstellbar sind.
Die Kupfer(I)komplexe der Formel A können erfindungsgemäß als Emitter-Materialien in einer Emitterschicht eines Licht-emittierenden optoelektronischen Bauelements eingesetzt werden. Die optoelektronischen Bauelemente sind bevorzugt die folgenden: Organischen Licht-emittierenden Bauteilen (OLEDs), Licht-emittierenden elektrochemischen Zellen, OLED-Sensoren (insbesondere in nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren), organischen Solarzellen, Organische Feldeffekttransistoren, organische Laser und Down-Konversions-Elemente.
Der Anteil des Kupfer(I)komplexes in der Emitter- oder Absorber-Schicht in einem derartigen optoelektronischen Bauelement beträgt in einer Ausführungsform der Erfindung 100 %. In einer alternativen Ausführungsform beträgt der Anteil des Kupfer(I)komplexes in der Emitteroder Absorber-Schicht 1 % bis 99 %.
Bei einem Verfahren zur Herstellung eines optoelektronischen Bauelements, bei dem ein erfindungsgemäßer Kupfer(I)komplex verwendet wird, kann das Aufbringen eines derartigen Kupfer(I)komplexes auf ein Trägermaterial erfolgen. Dieses Aufbringen kann nass-chemisch, mittels kolloidaler Suspension oder mittels Sublimation erfolgen.
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Veränderung der Emissionsund/oder Absorptionseigenschaften eines elektronischen Bauelements. Dabei wird ein erfindungsgemäßer Kupfer(I)komplexe in ein Matrixmaterial zur Leitung von Elektronen oder Löchern in ein optoelektronisches Bauelement eingebracht.
Ein weiterer Aspekt der Erfindung betrifft eine Verwendung eines erfindungsgemäßen Kupfer(I)komplexes, insbesondere in einem optoelektronischen Bauelement, zur Umwandlung von UV-Strahlung oder von blauem Licht in sichtbares Licht, insbesondere in grünes, gelbes oder rotes Licht (Down-Konversion).
Die Erfindung betrifft in einem weiteren Aspekt einen zweizähnigen Liganden der Formel B, insbesondere zur Herstellung eines Kupferkomplexes der Formel A, sowie das Verfahren zur Herstellung eines derartigen Liganden.
Figure imgf000013_0001
Die in Formel B verwendeten Symbole entsprechen den für Formel A verwendeten Symbolen, die hierin beschrieben sind.
Das Verfahren zur Herstellung eines zweizähnigen Liganden der Formel B wird gemäß dem nachfolgend dargestellten Schema durchgeführt:
Figure imgf000014_0001
Bevorzugt wird das Verfahren zur Herstellung eines zweizähnigen Liganden der Formel B gemäß einem der nachfolgend dargestellten Schemata durchgeführt:
Figure imgf000015_0001
Die oben verwendeten Symbole entsprechen den für Formel A verwendeten Symbolen, die hierin beschrieben sind. Beispiele:
In den hier gezeigten Beispielen ist der Ligand ΕΠΝ* der allgemeinen Formel A ein Ligand
Figure imgf000016_0002
Für die Herstellung der Kupferkomplexe wurden die zweizähnigen Phosphanliganden Oxazol, Imidazol, Thiazol, Isoxazol, Isothiazol, Pyrazol, 1,2,3-Triazol, 1,2,3-Oxadiazol, 1,2,5- Oxadiazol, 1,2,3-Thiadiazol, 1,2,5-Thiadiazol, Pyridin, Pyrimidin, Triazin, Pyrazin, Pyridazin entsprechend der obigen Beschreibung verwendet:
Figure imgf000016_0001
Die Liganden wurden im Falle der Imidazole, Thiazole und lH-l,2,3-Triazole und Pyridin, Pyrimidin, Triazin, Pyrazin, Pyridazin gemäß Literaturvorschriften hergestellt, während alle anderen Phosphanliganden bisher nicht bekannt sind und somit nach einer neuen Synthese dargestellt wurden.
Allgemeine Synthese der Phosphanliganden
Figure imgf000017_0001
Die Identitäten der Liganden wurden eindeutig durch NMR-Spektroskopie und Massenspektrometrie belegt. Beispiele für Komplexe der Form
Figure imgf000018_0002
Figure imgf000018_0001
Bei den Verbindungen 2a-e handelt es sich um weiße, feinkristalline Feststoffe. Charakterisierung :
Elementaranalyse :
Figure imgf000018_0003
Die Kristallstrukturen von 2b, 2c, 2e sind in Fig. 1-3 dargestellt. Die Emissionsspektren von 2a-c, 2e sind in Fig. 4-7 gezeigt.
Figure imgf000019_0001
Bei den Verbindungen 4a-g handelt es sich um weiße, feinkristalline Feststoffe.
Charakterisierung :
Elementaranalyse :
Figure imgf000019_0002
Die Kristallstrukturen von 4c, 4d, 4e sind in Fig. 8-10 dargestellt.
Die Emissionsspektren von 4a, 4c, 4d, 4f, 4g sind in Fig. 11-15 gezeigt.
Figure imgf000020_0001
Bei den Verbindungen 6a-d handelt es sich um weiße, feinkristalline Feststoffe.
Charakterisierung :
Elementaranalyse :
Figure imgf000020_0002
Die Kristallstruktur von 6a ist in Fig. 16 dargestellt.
Die Emissionsspektren von 6a-d sind in Fig. 17-20 gezeigt.
Figure imgf000021_0001
Bei den Verbindungen 8a-c handelt es sich um weiße, feinkristalline Feststoffe.
Charakterisierung :
Elementaranalyse :
Figure imgf000021_0003
Die Emissionsspektren von 8a-c sind in Fig. 21-23 gezeigt.
Figure imgf000021_0002
Bei der Verbindung 10a handelt es sich um einen weißen, feinkristallinen Feststoff.
Charakterisierung :
Elementaranalyse :
Figure imgf000022_0002
Das Emissionsspektrum von 10a ist in Fig. 24 gezeigt.
Figure imgf000022_0001
Bei der Verbindung 12a handelt es sich um einen weißen, feinkristallinen Feststoff. Charakterisierung :
Die Kristallstruktur von 12a ist in Fig. 25 dargestellt.
Figure imgf000023_0001
Bei den Verbindungen 14a-e handelt es sich um weiße, feinkristalline Feststoffe.
Charakterisierung :
Elementaranalyse :
Figure imgf000023_0002
Die Emissionsspektren von 14a-e sind in Fig. 26-30 gezeigt.
Figure imgf000024_0001
Bei der Verbindung 16a handelt es sich um einen weißen, feinkristallinen Feststoff.
Charakterisierung :
Elementaranalyse :
Figure imgf000024_0003
Figure imgf000024_0002
Bei der Verbindung 18a handelt es sich um einen weißen, feinkristallinen Feststoff.
Charakterisierung :
Elementaranalyse :
Figure imgf000024_0004
Das Emissionsspektrum von 18a ist in Fig. 31 dargestellt
Figure imgf000025_0001
Bei den Verbindungen 20a-h handelt es sich um gelbliche, feinkristalline Feststoffe.
Charakterisierung :
Elementaranalyse :
Figure imgf000025_0002
Die Kristallstruktur von 20e ist in Fig. 32 dargestellt.
Die Emissionsspektren von 20a-g sind in Fig. 33-39 gezeigt
Figure imgf000026_0001
Bei der Verbindung 22a handelt es sich um einen gelblichen, feinkristallinen Feststoff.
Charakterisierung :
Elementaranalyse :
Figure imgf000026_0002
Die Emissionsspektren von 22a sind in Fig. 40 gezeigt

Claims

Ansprüche
1. Kupfer(I)komplex der Formel A
Figure imgf000027_0001
mit
X* = Cl, Br, I, CN und/oder SCN (also unabhängig voneinander)
Ν*ΠΕ = ein zweibindiger Ligand mit
E = Phosphanyl/Arsenyl-Rest der Form R2E (mit R = Alkyl, Aryl, Alkoxyl, Phenoxyl, oder Amid);
N* = Imin-Funktion, die Bestandteil eines N-heteroaromatischen 5-Rings ist, die ausgewählt ist aus der Gruppe bestehend aus Oxazol, Imidazol, Thiazol, Isoxazol, Isothiazol, Pyrazol, 1,2,3-Triazol, 1,2,3-Oxadiazol, 1,2,5-Oxadiazol, 1,2,3-Thiadiazol und 1,2,5- Thiadiazol, oder Imin-Funktion, die Bestandteil eines N-heteroaromatischen 6-Rings ist, die ausgewählt ist aus der Gruppe bestehend aus Pyridin, Pyrimidin, Triazin, Pyrazin und Pyridazin;
,,Π" = mindestens ein Kohlenstoffatom, das ebenfalls Bestandteil der aromatischen Gruppe ist, wobei sich das Kohlenstoffatom sowohl direkt benachbart zum Imin- Stickstoffatom als auch zum Phosphor- oder Arsenatom befindet;
wobei Ν*ΠΕ optional mindestens einen Substituenten zur Erhöhung der Löslichkeit des Kupfer(I)komplexes in einem organischen Lösungsmittel aufweist.
2. Kupfer(I)komplex nach Anspruch 1, wobei Ν*ΠΕ ausgewählt ist aus der Gruppe bestehend aus
Figure imgf000028_0001
Figure imgf000029_0001
mit
X = O oder NR2
Y = 0 oder NR2 oder S
E* = As oder P
R1-R5 können jeweils unabhängig voneinander Wasserstoff, Halogen sein oder Substituenten, die über Sauerstoff- (-OR), Stickstoff- (-NR2) oder Siliziumatome (-SiR3) gebunden sind sowie Alkyl- (auch verzweigt oder zyklisch), Aryl-, Heteroaryl-, Alkenyl-, Alkinyl-Gruppen bzw. substituierte Alkyl- (auch verzweigt oder zyklisch), Aryl-, Heteroaryl- und Alkenyl- Gruppen mit Substituenten wie Halogene oder Deuterium, Alkylgruppen (auch verzweigt oder zyklisch), und weitere allgemein bekannte Donor- und Akzeptor-Gruppen, wie beispielsweise Amine, Carboxylate und deren Ester, und CF3-Gruppen. R2-R5 können optional auch zu annelierten Ringsystemen führen.
3. Kupfer(I)komplex nach Anspruch 1 oder 2, wobei der Substituent zur Erhöhung der
Löslichkeit ausgewählt ist aus der Gruppe bestehend aus:
- verzweigten oder unverzweigten oder zyklischen langkettigen Alkylketten einer Länge von Cl bis C30,
- verzweigten oder unverzweigten oder zyklischen langkettigen Alkoxyketten einer Länge von Cl bis C30,
verzweigten oder unverzweigten oder zyklischen langkettigen Perfluoralkylketten einer Länge von Cl bis C30, und
kurzkettigen Polyethern mit einer Kettenlänge von 3-50 Wiederholungseinheiten.
4. Verfahren zur Herstellung eines Kupfer(I)komplexes nach Anspruch 1 bis 3,
aufweisend den folgenden Schritt:
Durchführen einer Reaktion von Ν*ΠΕ mit Cu(I)X*,
wobei
X* = Cl, Br, I, CN oder SCN (unabhängig voneinander)
Ν*ΠΕ = ein zweibindiger Ligand mit
E = Phosphanyl/Arsenyl-Rest der Form R2E (mit R = Alkyl, Aryl, Alkoxyl, Phenoxyl, oder Amid);
N* = Imin-Funktion, die Bestandteil eines N-heteroaromatischen 5-Rings ist die ausgewählt ist aus der Gruppe bestehend aus Oxazol, Imidazol, Isoxazol, Pyrazol, Triazol und Oxadiazol, oder
Imin-Funktion, die Bestandteil eines N-heteroaromatischen 6-Rings ist die ausgewählt ist aus der Gruppe bestehend aus Pyridin, Pyrimidin, Triazin, Pyrazin und Pyridazin; ,,Π" = mindestens ein Kohlenstoffatom, das ebenfalls Bestandteil der aromatischen Gruppe ist, wobei sich das Kohlenstoffatom sowohl direkt benachbart zum Imin- Stickstoffatom als auch zum Phosphor- oder Arsenatom befindet.
5. Verfahren nach Anspruch 4, wobei die Reaktion in Dichlormethan durchgeführt wird.
6. Verfahren nach Anspruch 4 oder 5, weiterhin aufweisend den Schritt der Zugabe von
Diethylether oder Pentan zur Gewinnung des Kupfer(I)komplexes in Form eines Feststoffs.
7. Verfahren nach Anspruch 4 bis 6, weiterhin aufweisend den Schritt der Substitution mindestens eines Liganden Ν*ΠΕ mit mindestens einem Substituenten, der ausgewählt sein kann aus der Gruppe bestehend aus:
- langkettigen, verzweigten oder unverzweigten oder zyklischen Alkylketten einer Länge von Cl bis C30,
- langkettigen, verzweigten oder unverzweigten oder zyklischen Alkoxyketten einer Länge von Cl bis C30,
- verzweigten oder unverzweigten oder zyklischen Perfluoralkylketten einer Länge von Cl bis C30, und
- kurzkettigen Polyethern.
8. Verwendung eines Kupfer(I)komplexes nach Anspruch 1 bis 3 als Emitter oder Absorber in einem optoelektronischen Bauelement.
9. Verwendung nach Anspruch 8, wobei das optoelektronische Bauelement ausgewählt ist aus der Gruppe bestehend aus:
Organischen Licht-emittierenden Bauteilen (OLEDs),
Licht-emittierenden elektrochemischen Zellen,
OLED-Sensoren, insbesondere in nicht hermetisch nach außen abgeschirmten
Gas- und Dampf-Sensoren,
organischen Solarzellen,
Organischen Feldeffekttransistoren,
Organischen Lasern und
Down-Konversions-Elementen.
10. Optoelektronisches Bauelement, aufweisend einen Kupfer(I)komplex nach Anspruch 1 bis 3.
11. Optoelektronisches Bauelement nach Anspruch 10, ausgeformt als ein Bauelement ausgewählt aus der Gruppe bestehend aus organischem lichtemittierendem Bauelement, organischer Diode, organischer Solarzelle, organischem Transistor, organischer lichtemittierender Diode, Licht-emittierender elektrochemischer Zelle, organischem Feldeffekttransistor und organischem Laser.
12. Verfahren zur Herstellung eines optoelektronischen Bauelements, wobei ein Kupfer(I)komplex nach Anspruch 1 bis 3 verwendet wird.
13. Verfahren nach Anspruch 12, gekennzeichnet durch
Aufbringen eines Kupfer(I)komplexes nach Anspruch 1 bis 3 auf einen Träger.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Aufbringen nass-che- misch, mittels kolloidaler Suspension oder mittels Sublimation erfolgt.
15. Zweizähniger Ligand der Formel B, insbesondere zur Herstellung eines Kupferkomplexes der Formel A,
Figure imgf000032_0001
wobei die verwendeten Symbole in den Ansprüchen 1 und 2 definiert sind.
16. Verfahren zur Herstellung eines Liganden nach Anspruch 15, gemäß einem der folgenden Reaktionen a) oder b)
Figure imgf000033_0001
wobei die verwendeten Symbole in den Ansprüchen 1 und 2 definiert sind.
PCT/EP2012/058957 2011-05-13 2012-05-14 Kupfer(i)komplexe, insbesondere für optoelektronische bauelemente WO2012156378A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014509771A JP2014522391A (ja) 2011-05-13 2012-05-14 特に、光電子デバイスのための銅(i)錯体
EP12721517.6A EP2707374B1 (de) 2011-05-13 2012-05-14 Kupfer(i)komplexe, insbesondere für optoelektronische bauelemente
US14/117,190 US9490431B2 (en) 2011-05-13 2012-05-14 Copper(I) complexes, in particular for optoelectronic components
KR1020137031490A KR20140026540A (ko) 2011-05-13 2012-05-14 구리(i) 착물, 특히 광전자 구성요소용 구리(i) 착물
CN201280023097.7A CN103534260A (zh) 2011-05-13 2012-05-14 铜(i)络合物,尤其用于光电组件

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP11166075.9 2011-05-13
EP11166075 2011-05-13
EP11173369.7 2011-07-08
EP11173369 2011-07-08
EP11179110.9 2011-08-26
EP11179110A EP2543672A1 (de) 2011-07-08 2011-08-26 Kupfer(I)komplexe, insbesondere für optoelektronische Bauelemente

Publications (1)

Publication Number Publication Date
WO2012156378A1 true WO2012156378A1 (de) 2012-11-22

Family

ID=49935387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/058957 WO2012156378A1 (de) 2011-05-13 2012-05-14 Kupfer(i)komplexe, insbesondere für optoelektronische bauelemente

Country Status (6)

Country Link
US (1) US9490431B2 (de)
EP (1) EP2707374B1 (de)
JP (1) JP2014522391A (de)
KR (1) KR20140026540A (de)
CN (1) CN103534260A (de)
WO (1) WO2012156378A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118038A1 (de) * 2013-02-01 2014-08-07 Evonik Industries Ag Phosphor-liganden und verfahren zur selektiven ruthenium-katalysierten hydroaminomethylierung von olefinen
CN104861961A (zh) * 2015-05-21 2015-08-26 中国计量学院 一种CuIN2P型四面体配位亚铜配合物发光材料
CN105408447A (zh) * 2013-06-14 2016-03-16 新泽西鲁特格斯州立大学 基于ib-vii二元化合物的发光杂化半导体
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
WO2020053150A1 (en) 2018-09-12 2020-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020053315A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
WO2020053314A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021151922A1 (de) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazol-derivate
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540730A1 (de) 2011-06-29 2013-01-02 cynora GmbH Kupfer(I)komplexe, insbesondere für optoelektronische Bauelemente
EP2543685A1 (de) 2011-07-08 2013-01-09 cynora GmbH Verfahren zur kovalenten Bindung eines Metallkomplexes an ein Polymer
DE102011080240A1 (de) * 2011-08-02 2013-02-07 Cynora Gmbh Singulett-Harvesting mit zweikernigen Kupfer(I)-Komplexen für opto-elektronische Vorrichtungen
WO2016041802A1 (en) 2014-09-16 2016-03-24 Cynora Gmbh Light-emitting layer suitable for bright luminescence
CN111848676B (zh) * 2020-08-21 2021-06-29 郑州大学 一种基于苯并咪唑双膦配体的发光铜化合物及其制备方法
CN111892628B (zh) * 2020-08-21 2021-05-11 郑州大学 一种基于吡啶并咪唑双膦衍生物的发光铜(i)配合物及其制备方法
CN113563380B (zh) * 2021-07-29 2022-10-14 郑州大学 一种基于三氮唑膦衍生物的高效发光亚铜配合物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149748A1 (de) * 2009-06-24 2010-12-29 Hartmut Yersin Kupfer-komplexe für optoelektronische anwendungen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198730B2 (en) * 2003-08-28 2007-04-03 E. I. Du Pont De Nemours And Company Phosphorescent material
JP2005089367A (ja) 2003-09-17 2005-04-07 Idemitsu Kosan Co Ltd 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009000673A2 (en) * 2007-06-22 2008-12-31 Basf Se Light emitting cu(i) complexes
DE102009007038A1 (de) * 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
EP2540730A1 (de) 2011-06-29 2013-01-02 cynora GmbH Kupfer(I)komplexe, insbesondere für optoelektronische Bauelemente
DE102011080240A1 (de) 2011-08-02 2013-02-07 Cynora Gmbh Singulett-Harvesting mit zweikernigen Kupfer(I)-Komplexen für opto-elektronische Vorrichtungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149748A1 (de) * 2009-06-24 2010-12-29 Hartmut Yersin Kupfer-komplexe für optoelektronische anwendungen

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118038A1 (de) * 2013-02-01 2014-08-07 Evonik Industries Ag Phosphor-liganden und verfahren zur selektiven ruthenium-katalysierten hydroaminomethylierung von olefinen
US10177325B2 (en) 2013-06-14 2019-01-08 Rutgers, The State University Of New Jersey Light emitting hybrid semiconductors based on IB-VII binary compounds
CN105408447A (zh) * 2013-06-14 2016-03-16 新泽西鲁特格斯州立大学 基于ib-vii二元化合物的发光杂化半导体
JP2016527203A (ja) * 2013-06-14 2016-09-08 ラトガース,ザ ステート ユニバーシティ オブ ニュー ジャージー Ib−vii二元化合物に基づく発光ハイブリッド半導体
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3916822A1 (de) 2013-12-20 2021-12-01 UDC Ireland Limited Hocheffiziente oled-vorrichtungen mit sehr kurzer abklingzeit
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
CN104861961A (zh) * 2015-05-21 2015-08-26 中国计量学院 一种CuIN2P型四面体配位亚铜配合物发光材料
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP4060757A1 (de) 2015-06-03 2022-09-21 UDC Ireland Limited Hocheffiziente oled-vorrichtungen mit sehr kurzer abklingzeit
WO2020053315A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
WO2020053314A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
DE202019005923U1 (de) 2018-09-12 2023-06-27 MERCK Patent Gesellschaft mit beschränkter Haftung Elektrolumineszierende Vorrichtungen
DE202019005924U1 (de) 2018-09-12 2023-05-10 MERCK Patent Gesellschaft mit beschränkter Haftung Elektrolumineszierende Vorrichtungen
WO2020053150A1 (en) 2018-09-12 2020-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021151922A1 (de) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazol-derivate
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
US20140166944A1 (en) 2014-06-19
US9490431B2 (en) 2016-11-08
KR20140026540A (ko) 2014-03-05
EP2707374A1 (de) 2014-03-19
EP2707374B1 (de) 2016-03-02
CN103534260A (zh) 2014-01-22
JP2014522391A (ja) 2014-09-04

Similar Documents

Publication Publication Date Title
EP2707374B1 (de) Kupfer(i)komplexe, insbesondere für optoelektronische bauelemente
EP2726488B1 (de) Kupfer(i)komplexe, insbesondere für optoelektronische bauelemente
EP2780345B1 (de) Heteroleptische kupfer-komplexe für optoelektronische anwendungen
EP2543672A1 (de) Kupfer(I)komplexe, insbesondere für optoelektronische Bauelemente
EP2408787B1 (de) Kupfer-komplexe für optoelektronische anwendungen
EP2938618B1 (de) Zweikernige metall(i)-komplexe für optoelektronische anwendungen
EP2543673A1 (de) Kupfer(I)komplexe für opto-elektronische Vorrichtungen
EP1749014A1 (de) Metallkomplexe
EP2712000A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
EP3132479A1 (de) Hostmaterialien für oleds
WO2007006380A1 (de) Metallkomplexe
EP3131909B1 (de) Heteroleptische kupfer-komplexe für optoelektronische anwendungen
EP3160974B1 (de) Zweikernige metall(i)-komplexe mit tetradentaten liganden für optoelektronische anwendungen
WO2011157546A1 (de) Neue verbindungen als liganden für übergangsmetallkomplexe und daraus hergestellte materialien, sowie verwendung dazu
EP3221422B1 (de) Kupfer(i)komplexe für optoelektronische anwendungen
DE102016101221A1 (de) Zusammensetzungen für die Prozessierung organischer Bauelemente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12721517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137031490

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012721517

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14117190

Country of ref document: US