WO2012155807A1 - 一种led灯具及其制备方法 - Google Patents

一种led灯具及其制备方法 Download PDF

Info

Publication number
WO2012155807A1
WO2012155807A1 PCT/CN2012/075322 CN2012075322W WO2012155807A1 WO 2012155807 A1 WO2012155807 A1 WO 2012155807A1 CN 2012075322 W CN2012075322 W CN 2012075322W WO 2012155807 A1 WO2012155807 A1 WO 2012155807A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
heat sink
shaped heat
led lamp
electrode
Prior art date
Application number
PCT/CN2012/075322
Other languages
English (en)
French (fr)
Inventor
于朝蓬
肖方一
Original Assignee
Yu Zhaopeng
Xiao Fangyi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Zhaopeng, Xiao Fangyi filed Critical Yu Zhaopeng
Priority to US14/114,149 priority Critical patent/US20140048842A1/en
Publication of WO2012155807A1 publication Critical patent/WO2012155807A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/505Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an LED lamp overall structure, a heat dissipation/thermal conductivity design, and a method of fabricating the same, and particularly to an LED lamp used in an MR16 lamp and a method of fabricating the same.
  • a halogen reflector lamp MR16 LED
  • the current MR16 LED light source has relatively low power and relatively low heat generation, so there is generally no need to consider heat dissipation.
  • the power of the MR16 LED spotlight continues to increase, the amount of heat generated by it continues to increase.
  • the temperature of the LED spotlight also rises continuously when its size is constant.
  • the bottom of the MR16 LED light source is generally a PCB board or an aluminum substrate 13, as shown in FIG. 1, fixed to the lamp body 14 by screws 12 or a colloid having adhesive properties, and the LED electrodes pass through the solder paste and the PCB or the aluminum substrate.
  • the 13 phase is soldered and connected via a wire 11 to the power supply at the bottom.
  • the thermal conductivity of the PCB board or the aluminum substrate in the LED light source structure is relatively poor, generally between 0. 5-1. 5W/m. k, which seriously affects the heat output of the LED light source.
  • the utility model mainly solves the defects that the overall thermal conductive adhesive structure of the LED lamp in the prior art is poor, the heat dissipation performance is poor, the safety is poor, and the solder paste welding and manual operation are required.
  • the LED lamp of the invention has high heat dissipation performance, and can be made into a higher power LED lamp under the same specification, and can greatly improve the automation production degree in the manufacturing process.
  • the present invention is achieved by the following methods and techniques.
  • the invention provides an LED lamp, comprising: an LED light source, an electrode and a heat raft on the back of the LED light source; a cup-shaped heat sink, the LED light source is disposed on the inner side of the bottom of the cup-shaped heat sink, and the electrode is disposed at the bottom of the cup-shaped heat sink; The power supply outside the bottom of the cup-shaped heat sink; the electrode of the LED light source and the power source are directly connected to the two ends of the electrode of the cup-shaped heat sink.
  • the invention provides an LED lamp, wherein the cup wall of the cup-shaped heat sink has a wave shape.
  • the invention provides an LED lamp.
  • the cup wall of the cup-shaped heat sink further comprises: a reflective layer disposed on the innermost layer, a heat dissipating plastic disposed on the outermost layer, and a metal insert disposed between the reflective layer and the heat dissipating plastic .
  • the invention provides an LED lamp, the metal insert has a flat bottom, a through hole is arranged at the bottom, an insulating material is embedded in the through hole, and an electrode of the cup-shaped heat sink (2) is embedded in the insulating material; the insulating material comprises rubber and plastic , insulating glue.
  • the invention provides an LED lamp, the top of the power source is a needle-like or columnar structure.
  • the invention provides an LED lamp, and the material of the reflective layer is a reflective film, a reflective coating and a reflective ink.
  • the invention provides a method for preparing an LED lamp, comprising the following steps: Step 1: Dispense the glue on the end of the electrode of the cup-shaped radiator, and dispense the glue on the outside of the bottom of the cup-shaped radiator Step 2: Mount the power supply to the outside of the bottom of the cup-shaped heat sink by surface mount technology; Step 3: Curing the mounted cup-shaped heat sink and power supply; Step 4: At the other end of the electrode of the cup-shaped heat sink Dispense with a dispenser, dispense the dispenser with a dispenser at the hot side of the bottom of the cup-shaped heat sink; Step 5: Mount the LED light source to the inside of the bottom of the cup-shaped heat sink using surface mount technology; Step 6: Install After the LED lamps are aging.
  • the invention provides a method for preparing a lamp.
  • the electrode is coated with a conductive glue, and the heat is glued with a thermal adhesive.
  • the invention provides a preparation method of an LED lamp, which comprises an epoxy thermal grease, a thermal grease, a thermal silica gel, a thermal pad, and a phase change material. According to the above technical solution, the technical effects of the present invention are:
  • the outermost surface of the cup-shaped heat sink body is made of radiation heat-dissipating plastic, which makes the heat dissipation of the lamp in the indoor environment more stable, and the wave-shaped structure of the cup wall has a larger heat dissipation area, and the middle layer is utilized at the same time.
  • the lateral diffusion of the heat of the metal insert allows the heat to be quickly transferred to the heat-dissipating plastic, and the innermost reflective layer of the cup wall can better improve the luminous efficiency; the cup body adopts the heat-dissipating plastic and the metal insert structure to make the lamp The body is lighter and safer.
  • the bottom of the LED light source used in the present invention does not use a PCB board.
  • the electrodes of the LED light source and the power supply top are bonded by a conductive adhesive such as silver glue and a conductive electrode, instead of using a solder paste through the wire in the prior art.
  • a conductive adhesive such as silver glue and a conductive electrode, instead of using a solder paste through the wire in the prior art.
  • the source does not use screws to fix the LED light source, which simplifies the product structure and reduces the multilayer heat-resistant medium, which not only facilitates heat conduction, but also reduces product cost.
  • the method of the invention simplifies the product structure, and the use of the conductive adhesive and the thermal conductive adhesive can be dispensed through the dispensing machine, and the LED light source can be automatically mounted by using the SMT surface mount technology to automate the assembly of the whole LED product. It is possible to greatly improve the production efficiency of the LED industry and reduce the rate of product defects. The existing whole lamp assembly by manual operation has low efficiency and high quality defect rate.
  • FIG. 1 is a schematic view of a conventional LED lamp
  • FIG. 2 is a structural exploded view of the LED lamp of the present invention
  • FIG. 3 is a structural view of an LED light source in the LED lamp of the present invention
  • 3(a) is an overall schematic view of the cup-shaped heat sink
  • FIG. 4(b) is an exploded view of the three-layer structure of the cup-shaped heat sink
  • FIG. 5 is an LED lamp of the present invention.
  • Figure 6 is a cross-sectional view taken along line AA of Figure 5;
  • Figure 7 is a schematic view showing the installation of the LED light source, the insulating heat sink and the power source in the LED lamp of the present invention,
  • Figure 7 (a) It is a schematic diagram of mounting the power supply to the outside of the bottom of the cup-shaped heat sink, and
  • Figure 7 (b) is a schematic view of mounting the LED light source to the inside of the bottom of the cup-shaped heat sink.
  • Fig. 2 is a schematic view showing the structure of an LED lamp of the present invention.
  • Figure 3 is a structural view of an LED light source in the LED lamp of the present invention.
  • FIG. 4 is a perspective view of a cup-shaped heat sink in the LED lamp of the present invention, wherein FIG. 4(a) is an overall schematic view of the cup-shaped heat sink; and FIG. 4(b) is an exploded view of the three-layer structure of the cup-shaped heat sink.
  • LED lamps include: LED light source 1, cup-shaped heat sink 2, power supply 3.
  • the LED light source 1 is mounted inside the bottom of the cup-shaped heat sink 2.
  • the power source 3 is disposed outside the bottom of the cup-shaped heat sink 2.
  • the cup wall 4 of the cup-shaped heat sink 2 has a wave shape.
  • the cup wall 4 includes a reflective layer 4a disposed on the innermost layer, which is disposed at the outermost The layer of heat-dissipating plastic 4c, and a metal insert 4b disposed between the light-reflecting layer 4a and the heat-dissipating plastic 4c, the metal insert 4b is provided with a flat bottom.
  • the reflective layer 4a may be a reflective film, a reflective coating, or a reflective ink. As shown in Fig.
  • FIG. 2 the top of the power source 3 has a needle-like or columnar structure.
  • Figure 5 is a bottom bottom view of the cup-shaped heat sink in the LED lamp of the present invention;
  • Figure 6 is a cross-sectional view taken along line AA of Figure 5.
  • the bottom of the metal insert 4b is provided with a through hole, the insulating material 6 is embedded in the through hole, and the electrode 7 of the cup-shaped heat sink 2 is disposed in the insulating material 6.
  • the insulating material 6 may be rubber, plastic or insulating glue. Wait.
  • the cup-shaped heat sink 2 mainly radiates heat in the form of radiation heat dissipation, which changes the form of convection heat dissipation of the existing product, and the radiation heat dissipation is more stable in the application of the indoor lamp.
  • the insulating heat dissipation layer of the insulating heat sink 2 is composed of a three-layer structure, and the outermost surface of the cup wall 4 of the cup-shaped heat sink is made of a radiation heat-dissipating plastic 4c, so that the heat dissipation of the lamp in the indoor environment is more stable.
  • the metal insert 4b of the intermediate layer has the high conductivity of lateral diffusion of heat, and cooperates with the innermost reflective layer 4a to make the heat flow and radiate only one direction outward, thereby improving the heat conduction efficiency of the whole lamp and the reflective layer.
  • the utilization rate of light energy has also been improved.
  • the cup body is made of heat-dissipating plastic and metal insert structure, which makes the lamp body lighter and safer.
  • the wall 4 of the insulating heat dissipating body 2 adopts a wave structure, so that the radiating heat dissipating area is greatly increased, and the thickness is substantially uniform, and the lateral diffusion efficiency of the metal insert 4b is not affected, and the conduction distance is not extended. Make full use of the characteristics of various materials.
  • a substrate such as a fiberglass plate, an aluminum substrate, or a ceramic is not provided at the bottom of the LED light source 1.
  • the heat conductivity of the bottom substrate is not high, which will seriously affect the heat conduction of the LED chip.
  • the bottom of the cup-shaped heat sink 2 is provided with a through hole, and an electrode 7 corresponding to the position of the LED light source 1 is embedded, so that the electrode 1a of the LED light source 1 is directly connected to the power source 3 through the electrode 7 of the cup-shaped heat sink 2.
  • the heat lb of the LED light source 1 is directly connected by an insulating heat conductive material.
  • the electrode 1a and the electrode 7 of the LED light source 1 are connected by a conductive paste such as silver paste.
  • the top of the power source 3 is a pin structure.
  • the top of the power supply and the bottom of the cup-shaped heat sink 2 are bonded by a thermal conductive adhesive; and the end of the electrode 7 of the cup-shaped heat sink 2 is adhered by silver glue or the like to form an electrical path with the LED light source.
  • the method of preparing the LED lamp of the present invention is as follows: It is a prior art to embed the electrode 7 in the cup-shaped heat sink 2 by injection molding, and to form the wave wall 4 of the cup-shaped heat sink 2 from the light-reflecting layer 4a, the metal insert 4b, and the heat-dissipating plastic 4c to a wave shape having the same thickness. Manufacturers can easily do this, so I won't go into details here. Step 1: Place the conductive adhesive on the end of the electrode 7 of the cup-shaped heat sink 2 with a dispenser, and place the thermal paste on the outside of the cup-shaped heat sink 2 with a dispenser.
  • Step 2 Mount the power source 3 to the corresponding position on the outer side of the bottom of the cup-shaped heat sink 2 by surface mount technology.
  • Step 3 After the installed cup-shaped heat sink 2 and the power source 3 are left for 30 minutes, the curing is performed.
  • Step 4 At the other end of the electrode 7 of the cup-shaped heat sink 2, the conductive adhesive is spotted by a dispenser, and the thermal conductive adhesive is placed on the inside of the cup-shaped heat sink 2 by a dispenser.
  • Step 5 Mount the LED light source 1 to the inside of the bottom of the cup-shaped heat sink 2 by surface mount technology.
  • Step 6 The installed LED luminaire is aged at 100°.
  • the LED lamp produced by the above method has higher thermal conductivity than the conventional manual production method, and the general thermal conductivity is 20w/m.k, which can greatly improve the anti-leakage level, and the lamp used for the same can pass 4000V.
  • the high-voltage test ensures the safety of the LED lamps.
  • the production quality and production efficiency of the LED lamps are greatly improved and the cost is greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

一种 LED灯具及其制备方法 技术领域 本发明涉及一种 LED灯具整体结构、 散热 /导热设计及其制备方法, 特别是使用在 MR16 灯具中的 LED灯具及其制备方法。 背景技术 卤素反射灯(MR16 LED)是一种小尺寸、 以室内照明为主的射灯, 目前的 MR16 LED光源 的功率都比较低, 发热量比较小, 所以一般无需考虑散热问题。 但随着 MR16 LED射灯的功率 不断的增加, 其发热量也不断的增加, 在其尺寸大小不变的情况下, LED射灯的温度也在不 断的升高, 当温度高于其工作温度时, 则会严重影响 LED射灯的工作稳定性和使用寿命, 此 时 LED射灯的散热问题就非常重要了。 当前, MR16 LED光源的底部一般都为 PCB板或者铝基板 13, 如图 1所示, 通过螺丝 12 或者具有粘结性能的胶体固定在灯体 14上, LED电极通过锡膏和 PCB或铝基板 13相焊接, 并通过电线 11和底部的电源连接。该 LED光源结构中的 PCB板或铝基板的导热性能都比较差, 一般在 0. 5-1. 5W/m. k之间,严重影响了 LED光源热量的导出。同时, LED电极在用锡膏和 PCB 板或铝基板焊接时, 需要 18CTC以上的高温, LED芯片受高温影响会降低使用寿命, 造成成品 不良品率提高, 而且锡膏中的铅为有毒物质, 危害人类的健康和污染环境。 而 LED照明产品的生产大都是手工生产, 各部件之间的装配的不良率很高。 发明内容 本发明的目的是提供一种新的 LED灯具设计理念,尤其是在 MR16射灯等室内照明灯具中 的应用。 主要解决了现有技术中 LED灯具整体导热胶结构差、 散热性能差、 安全性差, 需要 用锡膏焊接、 手工操作生产等弊端。 本发明的 LED灯具具有散热性能高, 在相同规格下可制 成更高功率的 LED灯具, 在制造过程中, 可大大提高自动化生产程度等优点。 为解决上述技术问题及优化生产工艺及提高 LED灯具的性能, 本发明通过如下的方法和 技术来实现的。 本发明提供一种 LED灯具, 包括: LED光源, LED光源背面设置有电极及热忱; 杯状散热 体, LED光源设置在杯状散热体的底部内侧, 杯状散热体的底部设置电极; 设置在杯状散热 体的底部外侧的电源; LED光源的电极以及电源分别与杯状散热体的电极两端直接连接。 本发明提供一种 LED灯具, 杯状散热体的杯壁呈波浪形状。 本发明提供一种 LED灯具, 杯状散热体的杯壁进一步包括: 设置在最内层的反光层, 设 置在最外层的散热塑料, 以及设置在反光层和散热塑料之间的金属嵌件。 本发明提供一种 LED灯具, 金属嵌件具有一平面底部, 底部设置有通孔, 通孔中嵌入绝 缘材料, 在绝缘材料中嵌入杯状散热体(2 ) 的电极; 绝缘材料包括橡胶、 塑料、 绝缘胶。 本发明提供一种 LED灯具, 电源的顶部为针状或柱状结构。 本发明提供一种 LED灯具, 反光层的材料为反光膜、 反光涂料、 反光油墨。 本发明提供一种 LED灯具的制备方法, 包括如下步骤: 步骤一: 在杯状散热体的电极的 一端用点胶机点胶, 在杯状散热体底部外侧的热忱位置用点胶机点胶; 步骤二: 用表面贴装 技术将电源安装到杯状散热体的底部外侧;步骤三:对安装后的杯状散热体及电源进行固化; 步骤四: 在杯状散热体的电极的另一端用点胶机点胶, 在杯状散热体底部内侧的热忱位置用 点胶机点胶; 步骤五: 用表面贴装技术将 LED光源安装到杯状散热体的底部内侧; 步骤六: 将安装后的 LED灯具进行老化。 本发明提供一种灯具的制备方法, 在步骤一及步骤四中, 电极处用导电胶点胶, 热忱处 用导热胶点胶。 本发明提供一种 LED灯具的制备方法, 导热胶包括环氧导热胶、 导热硅脂、 导热硅胶、 导热垫片、 相变材料。 籍由上述技术方案, 本发明具有的技术效果是:
1、 与现有技术相比,杯状散热体的杯壁最外层采用辐射散热塑料,使灯具在室内环境中 的散热更加稳定, 杯壁波浪形结构是散热面积变大, 同时利用中间层金属嵌件的热量横向扩 散性, 使热量迅速传导到散热塑料上, 同时杯壁最内层反光层的设置, 能够更好的提高发光 效率; 杯体采用散热塑料和金属嵌件结构, 使灯体更轻便, 安全性更高。
2、 本发明中采用的 LED光源底部不使用 PCB板, LED光源的电极和电源顶端都是通过银 胶等导电胶和导电的电极相粘接接, 而不是现有工艺中通过导线用锡膏来连接 LED电极和电 源, 也不使用螺丝固定 LED光源, 简化了产品结构, 减少了多层阻热的介质, 不仅有利于热 量传导, 而且降低了产品成本。
3、 本发明方法简化了产品结构, 导电胶与导热胶的使用, 都可以通过点胶机点胶操作, LED光源可使用 SMT表面贴装技术进行自动贴装, 使整灯 LED产品的自动化装配成为可能, 极大的提高 LED行业生产效率和降低产品不良率。 现有通过手工操作的方法进行的整灯装配 效率很低且品质不良率很高。
为更好的说明本发明, 下面结合具体实施例, 对本发明进一步说明。 说明书附图 图 1是现有的 LED灯具的示意图; 图 2是本发明的 LED灯具的结构爆炸图; 图 3是本发明的 LED灯具中 LED光源的结构图; 图 4是本发明的 LED灯具中, 杯状散热体的立体图, 图 4 (a)是杯状散热体的整体示意 图; 图 4 (b)是杯状散热体的三层结构的爆炸图; 图 5是本发明的 LED灯具中, 杯状散热体的底部仰视图; 图 6是沿图 5所示 A-A线的剖面图; 图 7是本发明的 LED灯具中, LED光源、 绝缘散热体及电源的安装示意图, 图 7 (a)是 将电源安装到杯状散热体底部外侧的示意图, 图 7 (b)是将 LED光源安装到杯状散热体底部 内侧的示意图。 具体实施方法 图 2是本发明的 LED灯具的结构示意图。图 3是本发明的 LED灯具中 LED光源的结构图。 图 4是本发明的 LED灯具中, 杯状散热体的立体图, 图 4 (a)是杯状散热体的整体示意图; 图 4 (b)是杯状散热体的三层结构的爆炸图。
LED灯具包括: LED光源 1, 杯状散热体 2, 电源 3。 LED光源 1安装在杯状散热体 2的底 部内侧。 电源 3设置在杯状散热体 2的底部外侧。
LED光源 1背面设置电极 la及热忱 lb, 如图 3所示。 如图 4 (a)所示, 杯状散热体 2 的杯壁 4呈波浪形状。 如图 4 (b)所示, 杯壁 4包括设置在最内层的反光层 4a, 设置在最外 层的散热塑料 4c, 以及设置在反光层 4a和散热塑料 4c之间的金属嵌件 4b, 金属嵌件 4b设 置有一平面底部。 反光层 4a可以是反光膜、 反光涂料、 反光油墨。 如图 2所示, 电源 3的顶 部为针状或柱状结构。 图 5是本发明的 LED灯具中, 杯状散热体的底部仰视图; 图 6是沿图 5所示 A-A线的剖 面图。 图 5中, 金属嵌件 4b的底部设置有通孔, 通孔中嵌入绝缘材料 6, 在绝缘材料 6中设入 杯状散热体 2的电极 7, 绝缘材料 6可以是橡胶、 塑料、 绝缘胶等。 杯状散热体 2主要以辐射散热的形式散热, 改变了现有产品对流散热的形态, 辐射散热 在室内灯具的应用中, 性能表现更稳定。 绝缘散热体 2中绝缘散热层由三层结构组成, 杯状 散热体的杯壁 4的最外层采用辐射散热塑料 4c, 使灯具在室内环境中的散热更加稳定。 利用 中间层的金属嵌件 4b的热量横向扩散的传导效率高的特点, 配合最内层的反光层 4a, 使热 量只向外单向流动和辐射, 提高了整灯的热传导效率, 同时反光层使光能的利用率也有一定 的提高。 杯体采用散热塑料和金属嵌件结构, 使灯体更轻便, 安全性更高。 同时绝缘散热体 2的杯壁 4采用波浪结构, 使辐射散热面积增加很多, 而且厚度基本一 致, 同时并不影响金属嵌件 4b的横向扩散效率, 并未延长其传导距离。充分利用了各种材料 的特性。 本发明的 LED灯具中, LED光源 1底部没有设置玻纤板、 铝基板、 陶瓷等基板。 通常底 部的基板导热性能都不高, 会严重影响 LED芯片的热量传导, 通过去除该层介质, 减少了热 阻, 并且减少了生产工序, 降低了成本。 杯状散热体 2的底部设有通孔, 嵌有与 LED光源 1位置对应的电极 7, 使得 LED光源 1 的电极 la通过杯状散热体 2的电极 7直接与电源 3连接。 而 LED光源 1的热忱 lb直接通过 绝缘导热材料相连接。 LED光源 1的电极 la和电极 7通过银胶等导电胶相连通。 电源 3的顶部为针式结构。 电源热忱的顶部和杯状散热体 2的底部通过导热胶所粘结; 通过银胶等和杯状散热体 2的电极 7的一端相粘接, 从而和 LED光源成为一个电通路。 下面对本发明的 LED灯具的制备方法进行说明。 制备本发明的 LED灯具的方法如下: 用注塑技术在杯状散热体 2中嵌入电极 7, 以及将杯状散热体 2的杯壁 4由反光层 4a、 金属嵌件 4b、 散热塑料 4c做成同等厚度的波浪形状是现有技术, 生产厂商很容易就能做到, 在此不再赘述。 步骤一: 在杯状散热体 2的电极 7的一端用点胶机点上导电胶, 在杯状散热体 2外侧的 热忱位置用点胶机点上导热胶。 步骤二: 用表面贴装技术将电源 3安装到杯状散热体 2的底部外侧的相应位置。 步骤三: 对安装后的杯状散热体 2及电源 3放置 30分钟后, 进行固化。 步骤四: 在杯状散热体 2的电极 7的另一端用点胶机点上导电胶, 在杯状散热体 2内侧 的热忱位置用点胶机点上导热胶。 步骤五: 用表面贴装技术将 LED光源 1安装到杯状散热体 2的底部内侧。 步骤六: 将安装后的 LED灯具用 100° 的温度进行老化。 用上述方法生产的 LED灯具, 其整灯导热率会比传统的手工生产方法高, 一般导热率 20w/m. k, 也能大大提高其抗漏电水平, 用其所做的灯具能通过 4000V的高压测试, 很好的保 证了 LED灯具使用的安全性, 由于全程使用自动化设备生产组装, 产品品质和生产效率都有 很大提高, 成本也将大大降低。 综上所述仅为本发明的较佳实施例而已, 并非用来限定本发明的实施范围。 即凡依本发明申 请专利范围的内容所作的等效变化与修饰, 都应为本发明的技术范畴。

Claims

1.一种 LED灯具, 其特征在于, 包括:
LED光源 (1 ) , LED光源背面设置有电极 (la)及热忱 (lb) ; 杯状散热体 (2) , 所述 LED光源 (1 ) 设置在杯状散热体 (2) 的底部内侧, 所述杯状散热 体 (2) 的底部设置电极 (7) ; 设置在杯状散热体 (2) 的底部外侧的电源 (3) ; 所述 LED光源(1 ) 的电极(la) 以及电源(3)分别与杯状散热体(2) 的电极(7)两端直 接连接。
2. 如权利要求 1所述的 LED灯具, 其特征在于, 所述杯状散热体(2) 的杯壁(4)呈波浪形状。
3. 如权利要求 2所述的 LED灯具, 其特征在于, 所述杯状散热体(2) 的杯壁(4)进一步包括: 设置在最内层的反光层 (4a) , 设置在最外层的散热塑料 (4c) , 以及设置在所述反光层 (4a) 和所述散热塑料 (4c)之间的金属嵌件 (4b) 。
4. 如权利要求 3所述的 LED灯具, 其特征在于, 所述金属嵌件 (4b) 具有一平面底部, 所述底 部设置有通孔,所述通孔中嵌入绝缘材料(6),在所述绝缘材料(6)中嵌入所述杯状散热体(2) 的电极 (7) ; 所述绝缘材料 (6)包括橡胶、 塑料、 绝缘胶。
5. 如权利要求 1所述的 LED灯具, 其特征在于, 所述电源 (3) 的顶部为针状或柱状结构。
6. 如权利要求 3所述的 LED灯具, 其特征在于, 所述反光层 (4a)的材料为反光膜、 反光涂料、 反光油墨。
7. 一种如权利要求 1所述的 LED灯具的制备方法, 其特征在于, 包括如下步骤: 步骤一: 在杯状散热体 (2) 的电极 (7) 的一端用点胶机点胶, 在杯状散热体 (2) 底部外 侧的热忱位置用点胶机点胶; 步骤二: 用表面贴装技术将电源 (3) 安装到杯状散热体 (2) 的底部外侧; 步骤三: 对安装后的杯状散热体 (2)及电源 (3) 进行固化; 步骤四: 在所述杯状散热体 (2) 的电极 (7) 的另一端用点胶机点胶, 在杯状散热体 (2 ) 底部内侧的热忱位置用点胶机点胶; 步骤五: 用表面贴装技术将 LED光源 (1 ) 安装到杯状散热体 (2) 的底部内侧; 步骤六: 将安装后的 LED灯具进行老化。
8. 如权利要求 7所述的 LED灯具的制备方法, 其特征在于, 在步骤一及步骤四中, 所述电极处 用导电胶点胶, 热忱处用导热胶点胶。
9. 如权利要求 7所述的 LED灯具的制备方法, 其特征在于, 所述导热胶包括环氧导热胶、 导热 硅脂、 导热硅胶、 导热垫片、 相变材料。
PCT/CN2012/075322 2011-05-13 2012-05-11 一种led灯具及其制备方法 WO2012155807A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/114,149 US20140048842A1 (en) 2011-05-13 2012-05-11 Led lamp and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101230308A CN102226508A (zh) 2011-05-13 2011-05-13 一种led灯具及其制备方法
CN201110123030.8 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012155807A1 true WO2012155807A1 (zh) 2012-11-22

Family

ID=44807497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075322 WO2012155807A1 (zh) 2011-05-13 2012-05-11 一种led灯具及其制备方法

Country Status (3)

Country Link
US (1) US20140048842A1 (zh)
CN (1) CN102226508A (zh)
WO (1) WO2012155807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654515A (zh) * 2017-03-02 2017-05-10 广东小天才科技有限公司 智能穿戴电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226508A (zh) * 2011-05-13 2011-10-26 肖方一 一种led灯具及其制备方法
CN102720960A (zh) * 2012-05-30 2012-10-10 广州菁彩光电科技有限公司 可自动化生产的高效导热散热的一体化led灯具
RU2511564C1 (ru) * 2012-09-17 2014-04-10 Юрий Николаевич Рубан Светильник светодиодный (варианты)
CN103511926A (zh) * 2013-09-25 2014-01-15 苏州东亚欣业节能照明有限公司 Led射灯
DE202015103683U1 (de) * 2015-07-14 2015-07-24 Civilight Gmbh LED-Richtungsstrahler
CN107435914A (zh) * 2017-09-06 2017-12-05 北京宏强富瑞技术有限公司 能散热的灯杯
CN110591588A (zh) * 2019-09-30 2019-12-20 安徽创研新材料有限公司 一种耐腐蚀反光材料及其制作工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440941A (zh) * 2007-11-20 2009-05-27 南京汉德森科技股份有限公司 多合一led显示屏模块表贴及显示屏模块
CN101592327A (zh) * 2009-07-07 2009-12-02 天津大学 一种功率型led灯及其封装工艺和回流焊工艺设备
CN201428948Y (zh) * 2009-04-08 2010-03-24 东莞市光宇实业有限公司 一种led照明灯
CN201526933U (zh) * 2009-10-22 2010-07-14 沈李豪 一种led照明灯具的多层散热结构
CN201526914U (zh) * 2009-10-26 2010-07-14 沈李豪 一种led灯具外壳
US20110096548A1 (en) * 2009-10-27 2011-04-28 Paul Kenneth Pickard Hybrid reflector system for lighting device
CN102226508A (zh) * 2011-05-13 2011-10-26 肖方一 一种led灯具及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177396A (en) * 1990-12-19 1993-01-05 Gte Products Corporation Mirror with dichroic coating lamp housing
US6441943B1 (en) * 1997-04-02 2002-08-27 Gentex Corporation Indicators and illuminators using a semiconductor radiation emitter package
US6682211B2 (en) * 2001-09-28 2004-01-27 Osram Sylvania Inc. Replaceable LED lamp capsule
US20030076034A1 (en) * 2001-10-22 2003-04-24 Marshall Thomas M. Led chip package with four led chips and intergrated optics for collimating and mixing the light
IES20050086A2 (en) * 2004-02-17 2005-09-21 William M Kelly A utility lamp
US9412926B2 (en) * 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
CN1737418A (zh) * 2005-08-11 2006-02-22 周应东 提高散热效果的led灯
GB2453718A (en) * 2007-10-10 2009-04-22 Unity Opto Technology Co Ltd LED lighting device
CN201289020Y (zh) * 2008-10-16 2009-08-12 苏州久腾光电科技有限公司 高功率led光源模块封装结构
US8684563B2 (en) * 2008-12-30 2014-04-01 Kitagawa Holdings, Llc Heat dissipating structure of LED lamp cup made of porous material
CN201487842U (zh) * 2009-09-01 2010-05-26 福建科维光电科技有限公司 具有温度补偿功能的led灯灯杯
CN201513764U (zh) * 2009-09-21 2010-06-23 深圳市贝晶光电科技有限公司 一种新型多晶片贴片式大功率led的封装结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440941A (zh) * 2007-11-20 2009-05-27 南京汉德森科技股份有限公司 多合一led显示屏模块表贴及显示屏模块
CN201428948Y (zh) * 2009-04-08 2010-03-24 东莞市光宇实业有限公司 一种led照明灯
CN101592327A (zh) * 2009-07-07 2009-12-02 天津大学 一种功率型led灯及其封装工艺和回流焊工艺设备
CN201526933U (zh) * 2009-10-22 2010-07-14 沈李豪 一种led照明灯具的多层散热结构
CN201526914U (zh) * 2009-10-26 2010-07-14 沈李豪 一种led灯具外壳
US20110096548A1 (en) * 2009-10-27 2011-04-28 Paul Kenneth Pickard Hybrid reflector system for lighting device
CN102226508A (zh) * 2011-05-13 2011-10-26 肖方一 一种led灯具及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654515A (zh) * 2017-03-02 2017-05-10 广东小天才科技有限公司 智能穿戴电子设备
CN106654515B (zh) * 2017-03-02 2023-11-24 广东小天才科技有限公司 智能穿戴电子设备

Also Published As

Publication number Publication date
CN102226508A (zh) 2011-10-26
US20140048842A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2012155807A1 (zh) 一种led灯具及其制备方法
WO2009076797A1 (zh) 一种功率led强光装置
CN203686635U (zh) Led直管灯
WO2006108339A1 (fr) Source de lumiere blanche a diode electroluminescente basee sur un tableau de connexions metalliques
WO2013086795A1 (zh) 一种新型普通照明led灯
CN201377710Y (zh) 一种led灯具
CN204986521U (zh) 一种发光二极管装置
CN202708751U (zh) 匀光型led筒灯
CN202419266U (zh) 一种led日光灯
CN202327688U (zh) 一种用于导热管的led照明结构
CN206708919U (zh) Led车灯
CN202140877U (zh) 一种贴片式led灯泡
CN201983240U (zh) 一种散热装置及使用该散热装置的led灯
CN203605146U (zh) 球灯led的聚光装置
CN203703814U (zh) 球灯led的cob工艺灯板降温装置
CN203605151U (zh) 一种白光led球灯
CN202216026U (zh) 一种led球泡灯散热结构体
CN215001136U (zh) 一种led投光灯
CN201496789U (zh) 照明灯
CN210153581U (zh) 一种高流明低发热的led灯
CN202419590U (zh) 一种灯具散热器组件
CN102679184A (zh) 一种新型led反射灯
CN206207049U (zh) 一种快速散热的高亮度led灯珠
CN202442217U (zh) Mr16 led射灯
CN102141238A (zh) 一种散热装置及使用该散热装置的led灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14114149

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/03/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12786752

Country of ref document: EP

Kind code of ref document: A1