WO2012155361A1 - 发光二极管散热构造及背光模块 - Google Patents

发光二极管散热构造及背光模块 Download PDF

Info

Publication number
WO2012155361A1
WO2012155361A1 PCT/CN2011/074485 CN2011074485W WO2012155361A1 WO 2012155361 A1 WO2012155361 A1 WO 2012155361A1 CN 2011074485 W CN2011074485 W CN 2011074485W WO 2012155361 A1 WO2012155361 A1 WO 2012155361A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
led
circuit board
dissipation structure
emitting diode
Prior art date
Application number
PCT/CN2011/074485
Other languages
English (en)
French (fr)
Inventor
张彦学
郭仪正
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/203,278 priority Critical patent/US20120294040A1/en
Publication of WO2012155361A1 publication Critical patent/WO2012155361A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the invention relates to a light-emitting diode heat dissipation structure and a backlight module, in particular to a light-emitting diode heat dissipation structure and a backlight module capable of increasing heat dissipation efficiency.
  • Liquid crystal display Display LCD
  • LCD Liquid crystal display Display
  • FPD Fluorescence Deformation
  • the liquid crystal material of the liquid crystal display cannot be self-illuminated, and it is necessary to provide a light source externally. Therefore, a backlight module is required in the liquid crystal display to provide a desired light source.
  • the backlight module can be divided into a side-in type backlight module and a direct-lit backlight module.
  • the existing backlight module mainly uses a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL) and a semiconductor light emitting component as a light source, and the semiconductor light emitting component mainly uses a light emitting diode (LED) to emit light, which is compared with the cathode.
  • the fluorescent tube is more energy-saving, longer in service life, and lighter in volume, so it has gradually replaced the cathode fluorescent tube.
  • the LED will be the main light source for the backlight module of the liquid crystal display.
  • the light-emitting diodes are mostly disposed on the heat sink in the form of chips and are packaged in a semiconductor to serve as a heat-dissipating structure of the light-emitting diodes. Then, it is sequentially fixed on a long strip of circuit substrate and an elongated aluminum profile to form a light-bar (LB). Finally, the back side of the light bar is joined to the aluminum heat sink of the backlight module to form an LED heat dissipation structure.
  • LB light-bar
  • the heat dissipation structure of the above-mentioned light-emitting diode has the disadvantage that the temperature of the light-emitting diode chip in the heat-dissipating structure of the light-emitting diode is extremely high, and the heat-dissipating structure of the light-emitting diode can only transfer heat energy through the heat sink, the circuit substrate and the aluminum profile. Aluminum heat sink.
  • the light-emitting diode itself is also very susceptible to its luminous efficiency and working stability due to the temperature rise of the working process. In severe cases, it may also be degraded due to long-term high temperature.
  • the light bar is simply adhered to the aluminum heat sink by an adhesive or only by a screw lock on the aluminum heat sink, there is insulation between the aluminum profile of the light bar and the aluminum heat sink. Adhesives, causing the surface between the two to be neither directly in thermal contact nor in close contact, will also affect the heat dissipation efficiency to a certain extent, and will increase the thickness of the overall structure, which is not conducive to thin and light design momentum. .
  • the adhesive may deteriorate and lose its viscosity, causing the light bar to be separated from the aluminum heat sink. If the thermal energy of the heat dissipation structure of the LED cannot be taken away by the aluminum heat sink, the heat dissipation structure of the LED will have the potential risk of overheating.
  • the existing mass-produced LEDs mostly use heat sink heat dissipation, but after soldering the LEDs to the PCB surface, the heat of the LED heat sink cannot be effectively conducted out because the heat transfer coefficient of the PCB is very low.
  • the existing LED heat dissipation structure requires an additional heat dissipation structure such as aluminum extrusion, which also increases the cost and complexity of assembly.
  • the invention provides a light-emitting diode heat dissipation structure and a backlight module to solve the heat dissipation problem of the light-emitting diodes existing in the prior art.
  • a main object of the present invention is to provide a light emitting diode heat dissipation structure and a backlight module.
  • the light emitting diode heat dissipation structure includes a heat dissipation substrate, a plurality of heat dissipation lamp holders, a plurality of light emitting diode chips, and at least one circuit board.
  • the heat dissipating bottom plate is in the shape of a strip; the plurality of heat dissipating lamp holders are columnar and arranged in a row on the upper surface of the heat dissipating bottom plate, and a top surface of each of the heat dissipating lamp holders is provided with a recess; The plurality of LED chips in the recess of the heat dissipation socket are electrically connected to the circuit board disposed on the upper surface of the heat dissipation substrate by wires.
  • the present invention provides a light emitting diode heat dissipation structure comprising:
  • a heat dissipating bottom plate having a long strip shape and having an upper surface
  • a plurality of heat dissipation lamp holders are arranged in a column shape and arranged in a row on the upper surface of the heat dissipation substrate, and a top surface of each of the heat dissipation lamp holders is provided with a concave portion;
  • a circuit board is disposed on an upper surface of the heat dissipation substrate.
  • each of the LED chips is electrically connected to the circuit board by two wires.
  • the bottom of the heat sink base has a groove, and the circuit board portion is snapped into the groove.
  • the heat dissipation substrate and the heat dissipation lamp holder are integrally formed.
  • the present invention further provides an LED heat dissipation structure, comprising:
  • a heat dissipating bottom plate having a long strip shape and having an upper surface
  • a plurality of heat dissipation lamp holders are arranged in a column shape and arranged in a row on the upper surface of the heat dissipation substrate, and a top surface of each of the heat dissipation lamp holders is provided with a concave portion;
  • Two circuit boards are respectively disposed on upper surfaces of the heat dissipation base plates on both sides of the plurality of heat dissipation lamp holders.
  • each of the LED chips is electrically connected to the two circuit boards by two wires.
  • the bottom of the heat sink base has a groove, and the circuit board portion is snapped into the groove.
  • the heat dissipation substrate and the heat dissipation lamp holder are integrally formed.
  • the present invention further provides a backlight module including a back plate, a light guide plate, an optical film set and a plastic frame, and at least one side edge of the back plate is provided with a side wall portion.
  • the light guide plate is disposed at the center of the back plate
  • the optical film set is disposed on the light guide plate
  • the plastic frame is wrapped on an outer edge of the back plate
  • at least one side of the back plate of the backlight module is
  • the inner side of the side wall portion of the edge is provided with at least one light emitting diode heat dissipation structure, and the light emitting diode heat dissipation structure comprises:
  • a heat dissipating bottom plate having a long strip shape and having an upper surface
  • a plurality of heat dissipation lamp holders are arranged in a column shape and arranged in a row on the upper surface of the heat dissipation substrate, and a top surface of each of the heat dissipation lamp holders is provided with a concave portion;
  • At least one circuit board is disposed on an upper surface of the heat dissipation substrate.
  • the at least one circuit board is a circuit board, and each of the light emitting diode chips is electrically connected to the two circuit boards by two wires.
  • the at least one circuit board is two circuit boards, and each of the light emitting diode chips is electrically connected to the circuit board by two wires.
  • the bottom of the heat sink base has a groove, and the circuit board portion is snapped into the groove.
  • the heat dissipation substrate and the heat dissipation lamp holder are integrally formed.
  • the light-emitting diode heat dissipation structure and the backlight module of the present invention diffuse the heat generated by the light-emitting diode chip through the heat-dissipating lamp holder and the heat-dissipating substrate, and are not isolated by the circuit board. Relatively improving the heat dissipation efficiency and the service life of the LED heat dissipation structure.
  • the heat dissipation structure of the light emitting diode of the present invention can eliminate the need for a heat dissipation structure such as aluminum extrusion, thereby simplifying the design of the heat dissipation structure of the light emitting diode while saving assembly cost.
  • the light-emitting diode heat dissipation structure and the backlight module of the present invention diffuse the heat generated by the light-emitting diode chip through the heat-dissipating lamp holder and the heat-dissipating substrate, and are not isolated by the circuit board. Relatively improving the heat dissipation efficiency and the service life of the LED heat dissipation structure.
  • the heat dissipation structure of the light emitting diode of the present invention can eliminate the need for a heat dissipation structure such as aluminum extrusion, thereby simplifying the design of the heat dissipation structure of the light emitting diode while saving assembly cost.
  • FIG. 1 is a partial perspective view of a first embodiment of a heat dissipating structure of an LED of the present invention.
  • Figure 2 is a partial perspective cross-sectional view showing a first embodiment of the heat dissipation structure of the light emitting diode of the present invention.
  • FIG. 3 is a partial side view of a backlight module according to a first embodiment of the heat dissipation structure of the light emitting diode of the present invention.
  • Figure 4 is a perspective cross-sectional view showing a second embodiment of the heat dissipation structure of the light emitting diode of the present invention.
  • FIG. 1 is a partial perspective view showing a first embodiment of a heat dissipation structure of an LED of the present invention
  • FIG. 2 is a partial perspective cross-sectional view showing a first embodiment of the heat dissipation structure of the LED of the present invention.
  • the light-emitting diode heat dissipation structure 100 of the first embodiment of the present invention is mainly applied to the field of illumination or the field of liquid crystal displays, particularly the field of backlight modules of liquid crystal displays, and the above components will be described in detail below.
  • the LED heat dissipation structure 100 of the present invention mainly includes a heat dissipation substrate 110, a plurality of heat dissipation sockets 120, a plurality of LED chips 130, and two circuit boards 140.
  • the heat dissipation substrate 110 is approximately elongated and has an upper surface 111.
  • the plurality of heat dissipation sockets 120 are approximately columnar and arranged in a row on the upper surface 111 of the heat dissipation substrate 110.
  • each of the heat dissipation sockets 120 is provided with a recess 121, and at least one LED chip 130 is disposed in the recess 121 of each of the heat dissipation sockets 120;
  • the upper surface 111 of the heat dissipation substrate 110 disposed on both sides of the plurality of heat dissipation sockets 120.
  • each of the LED chips 130 is electrically connected to the two circuit boards 140 through two wires 150 .
  • one end of the wire 150 is connected to a surface contact or an extended electrode piece (not shown) of the LED chip 130, and the other end of the wire 150 is connected to the circuit board 140.
  • the LED chip 130 is illuminated by parallel or series connection of the two circuit boards 140 on the circuit.
  • the bottom of the heat dissipation lamp holder 120 has a groove 122, and the groove 122 may be in the form of an annular groove as shown, or the groove 122 may also be in the form of a groove. And the portion of the circuit board 140 can be snapped into the trench 122 for space efficient use.
  • the heat dissipation substrate 110 and the heat dissipation lamp holder 120 are integrally formed to improve heat conduction efficiency and simplify the manufacturing process.
  • the heat dissipation substrate 110 and the heat dissipation socket 120 may be made of a metal material that is easy to dissipate heat and process, such as aluminum.
  • FIG. 3 discloses a partial side view of a backlight module according to a first embodiment of the heat dissipation structure of the LED of the present invention.
  • a backlight module 200 includes a back plate 210, a light guide plate 220, an optical film set 230, and a plastic frame 240.
  • the back plate 210 is provided with a vertical side wall portion 211 on at least one side edge thereof.
  • the light guide plate 220 is disposed at the center of the back plate 210, and the optical film set 230 is disposed on the light guide plate 220.
  • the plastic frame 240 is wrapped around the outer edge of the back plate 210.
  • the optical film set 230 and the light guide plate 220 are fixed from top to bottom to form the side-entry backlight module 200.
  • a liquid crystal panel 300 is further disposed on the side-lit backlight module 200, and the liquid crystal panel 300 and the edge-lit backlight module 200 are covered and fixed by a casing 400, that is, a liquid crystal display is formed.
  • the at least one side of the side wall portion 211 of the back plate 210 is provided with at least one of the light emitting diode heat dissipation structures 100.
  • the LED heat dissipation structure 100 can be fastened to the side wall portion 211 of the back plate 210 by locking, snapping or pasting.
  • the heat generated by the LED chip 130 can be diffused outward through the heat dissipation socket 120 and the heat dissipation substrate 110, and is not isolated by the circuit board 140. Therefore, the heat transferred to the heat dissipation substrate 110 can be further transmitted to the back plate 210 through the side wall portion 211 of the back plate 210, and the heat is dissipated through the outer side of the back plate 210. Since the heat of the LED chip 130 can be effectively conducted, the heat dissipation efficiency and the service life of the LED heat dissipation structure 100 can be relatively improved. Moreover, the LED heat dissipation structure 100 of the present invention can eliminate the need for a heat dissipation structure such as aluminum extrusion, thereby simplifying the design of the LED heat dissipation structure 100 and saving assembly costs.
  • FIG. 4 a perspective cross-sectional view of a second embodiment of the heat dissipation structure of the light emitting diode of the present invention is disclosed.
  • the LED heat dissipation structure 100 ′ in this embodiment is similar to the LED heat dissipation structure 100 of the first embodiment, and thus the same component symbol and name are used.
  • the LED heat dissipation structure 100 ′ mainly includes: a heat dissipation substrate 110 . ', a plurality of heat sink sockets 120', a plurality of light emitting diode chips 130' and a circuit board 140'.
  • the LED heat dissipation structure 100 ′ of the second embodiment of the present invention is different from the LED heat dissipation structure 100 of the first embodiment in that the heat dissipation socket 120 of the LED heat dissipation structure 100 ′ of the embodiment is different.
  • ' is biased on one side of the upper surface 111' of the heat dissipation substrate 110', and the upper surface 111' of the heat dissipation substrate 110' is provided with only one of the circuit boards 140'.
  • each of the LED chips 130' is electrically connected to the same circuit board 140' through two wires 150', and the circuit of the circuit board 140' is used to illuminate the LEDs. Chip 130'.
  • the design of the trench 121 of the first embodiment is omitted at the bottom of the heat dissipation lamp holder 120', so that the LED heat dissipation structure 100' can be made easier in fabrication and assembly. .
  • the LED heat dissipation structure 100 of the present invention includes a heat dissipation substrate 110, a plurality of heat dissipation sockets 120, a plurality of LED chips 130, and at least one circuit board 140.
  • the heat dissipation lamp socket 120 is directly connected to the heat dissipation substrate 110, and the heat generated by the LED chip 130 can be diffused through the heat dissipation socket 120 and the heat dissipation substrate 110 without being subjected to the The isolation of the circuit board 140.
  • the heat transferred to the heat dissipation substrate 110 can be further transmitted to the back plate 210 through the side wall portion 211 of the back plate 210, and the heat is dissipated through the air outside the back plate 210. Therefore, the heat of the LED chip 130 can be effectively conducted, so that the heat dissipation efficiency and the service life of the LED heat dissipation structure 100 can be relatively improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

发光二极管散热构造及背光模块 技术领域
本发明涉及一种发光二极管散热构造及背光模块,特别是涉及一种可增加散热效率的发光二极管散热构造及背光模块。
背景技术
液晶显示器(liquid crystal display,LCD)是利用液晶材料的特性来显示图像的一种平板显示装置(flat panel display,FPD),其相较于其他显示装置而言更具轻薄、低驱动电压及低功耗等优点,已经成为整个消费市场上的主流产品。然而,液晶显示器的液晶材料无法自主发光,必需借助外在提供光源,因此液晶显示器中需设有背光模块以提供所需的光源。
一般而言,背光模块可分为侧入式背光模块和直下式背光模块两种形式。现有背光模块主要是以冷阴极荧光灯管(CCFL)、热阴极荧光灯管(HCFL)及半导体发光组件作为光源,而半导体发光组件主要又是利用发光二极管(LED)进行发光,其相较于阴极荧光灯管更为省电节能、使用寿命更长,且体积更为轻薄,因而有逐渐取代阴极荧光灯管的势头,发光二极管将是液晶显示器的背光模块未来的主要光源。
现今,发光二极管又多以芯片的形式设置于热沉上并进行半导体封装,以作为发光二极管散热构造。接着依序固定在一长条状的电路基板及一长条状的铝型材上以构成一灯条(light-bar,LB)。最后灯条的背面再与背光模块的铝材散热板接合,而形成一发光二极管散热构造。然而,上述发光二极管散热构造的缺点在于:发光二极管散热构造中的发光二极管芯片工作过程中的温度极高,而发光二极管散热构造却仅能间接通过热沉、电路基板及铝型材将热能传递至铝材散热板。由于设置在发光二极管散热构造与铝型材之间的印刷电路板(print circuit board,PCB)是使用热阻高的材料所制成,无法协助发光二极管散热构造及时将热能传递至铝型材及铝材散热板,将导致发光二极管散热构造附近的温度明显升高,造成液晶显示器各显示区块温度不均而出现泛红现象,进而影响液晶显示器的成像质量。
再者,发光二极管本身也极易因为工作过程的温升而影响其发光效率及工作稳定度,严重时也可能因长期处于高温的状态而降低其使用寿命。另外,若灯条仅是简单利用黏着剂黏固在铝材散热板上或仅是利用螺丝锁付在铝材散热板上,则由于灯条的铝型材与铝材散热板之间存在了绝缘的黏着剂,造成两者之间的表面既非直接热性接触又未紧密贴合,也将会在某程度上影响其散热效率,更会增加整体构造的厚度而不利于轻薄化的设计势头。此外,长期处于高温的状态下,黏着剂也可能变质劣化而失去黏性,造成灯条脱离铝材散热板。若发光二极管散热构造的热能无法被铝材散热板即时带走,则发光二极管散热构造将存在过热烧毁的潜在风险。
综上所述,现有量产的LED多采用热沉散热,但是将发光二极管焊接到PCB表面后,由于PCB的热传导系数非常的低,因此发光二极管热沉的热量无法有效被传导出去。另外,现有发光二极管散热构造还需要额外搭配铝挤等散热结构,因此也增加了组装上的成本及复杂度。
因此,有必要提供一种发光二极管构造及背光模块,以解决现有技术所存在的发光二极管的散热问题。
技术问题
本发明提供一种发光二极管散热构造及背光模块,以解决上述现有技术所存在的发光二极管的散热问题。
技术解决方案
本发明的主要目的是提供一种发光二极管散热构造及背光模块,所述发光二极管散热构造包含一散热底板、多个散热灯座、多个发光二极管芯片及至少一电路板。所述散热底板呈长条状;所述多个散热灯座呈柱状,且排成一列的设置于所述散热底板的上表面,每一所述散热灯座的顶面设有一凹部;设于所述散热灯座凹部内的所述多个发光二极管芯片,通过导线电性连接于设于所述散热底板上表面的所述电路板。
为达上述目的,本发明提供一种发光二极管散热构造,其包含:
一散热底板,呈长条状,具有一上表面;
多个散热灯座,呈柱状且排成一列的设置于所述散热底板的上表面,每一所述散热灯座的顶面设有一凹部;
多个发光二极管芯片,设于每一所述散热灯座的凹部之内;及
一电路板,设于所述散热底板的上表面。
在本发明的一实施例中,每一所述发光二极管芯片通过二导线电性连接于所述电路板。
在本发明的一实施例中,所述散热灯座的底部具有沟槽,所述电路板部份卡入所述沟槽。
在本发明的一实施例中,所述散热底板与所述散热灯座是一体成型。
为达上述目的,本发明另提供一种发光二极管散热构造,其包含:
一散热底板,呈长条状,具有一上表面;
多个散热灯座,呈柱状且排成一列的设置于所述散热底板的上表面,每一所述散热灯座的顶面设有一凹部;
多个发光二极管芯片,设于每一所述散热灯座的凹部之内;及
二电路板,分别设于所述多个散热灯座两侧的所述散热底板的上表面。
在本发明的一实施例中,每一所述发光二极管芯片通过二导线分别电性连接于所述二电路板。
在本发明的一实施例中,所述散热灯座的底部具有沟槽,所述电路板部份卡入所述沟槽。
在本发明的一实施例中,所述散热底板与所述散热灯座是一体成型。
为达上述目的,本发明另提供一种背光模块,其包含一背板、一导光板、一光学膜片组及胶框,所述背板的至少一侧缘上设有侧壁部,所述背板中央承载所述导光板,所述导光板上设有所述光学膜片组,所述胶框包覆于所述背板的外缘,所述背光模块的背板的至少一侧缘的侧壁部的内侧设有至少一发光二极管散热构造,所述发光二极管散热构造包含:
一散热底板,呈长条状,具有一上表面;
多个散热灯座,呈柱状且排成一列的设置于所述散热底板的上表面,每一所述散热灯座的顶面设有一凹部;
多个发光二极管芯片,设于每一所述散热灯座的凹部之内;及
至少一电路板,设于所述散热底板的上表面。
在本发明的一实施例中,所述至少一电路板是一个电路板,每一所述发光二极管芯片通过二导线分别电性连接于所述二电路板。
在本发明的一实施例中,所述至少一电路板是二个电路板,每一所述发光二极管芯片通过二导线电性连接于所述电路板。
在本发明的一实施例中,所述散热灯座的底部具有沟槽,所述电路板部份卡入所述沟槽。
在本发明的一实施例中,所述散热底板与所述散热灯座是一体成型。本发明的发光二极管散热构造及背光模块,由于将所述发光二极管芯片所产生的热量通过所述散热灯座及所述散热底板而向外扩散,不会受到所述电路板的隔绝,因而能相对提升所述发光二极管散热构造的散热效率及使用寿命。并且,本发明发光二极管散热构造可不需要褡配例如铝挤等散热构造,从而简化了所述发光二极管散热构造的设计,同时节省了组装上的成本。
有益效果
本发明的发光二极管散热构造及背光模块,由于将所述发光二极管芯片所产生的热量通过所述散热灯座及所述散热底板而向外扩散,不会受到所述电路板的隔绝,因而能相对提升所述发光二极管散热构造的散热效率及使用寿命。并且,本发明发光二极管散热构造可不需要褡配例如铝挤等散热构造,从而简化了所述发光二极管散热构造的设计,同时节省了组装上的成本。
附图说明
图1:本发明发光二极管散热构造的第一实施例的局部立体图。
图2:本发明发光二极管散热构造的第一实施例的局部立体剖视图。
图3:本发明发光二极管散热构造的第一实施例设于一背光模块的局部侧视图。
图4:本发明发光二极管散热构造的第二实施例的立体剖视图。
本发明的最佳实施方式
为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下。再者,本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图1及图2所示,图1揭示本发明发光二极管散热构造的第一实施例的局部立体图;图2揭示本发明发光二极管散热构造的第一实施例的局部立体剖视图。其中,本发明第一实施例的发光二极管散热构造100主要应用在照明领域或液晶显示器领域,特别是液晶显示器的背光模块领域,本发明将于下文详细说明上述各组件。
本发明所述发光二极管散热构造100主要包含:一散热底板110、多个散热灯座120、多个发光二极管芯片130及二电路板140。所述散热底板110约呈长条状,并具有一上表面111;所述多个散热灯座120约呈柱状,且排成一列的设置于所述散热底板110的上表面111。其中,每一所述散热灯座120的顶面设有一凹部121,并且至少一发光二极管芯片130对应设于每一所述散热灯座120的凹部121之内;所述二电路板140则分别设于所述多个散热灯座120两侧的所述散热底板110的上表面111。
如图1所示,每一所述发光二极管芯片130是通过二导线150分别电性连接于所述二电路板140。详细说来,所述导线150一端是连接于所述发光二极管芯片130的表面接点或延伸而出的电极片(未绘示)上,所述导线150另一端是连接于所述电路板140的焊垫上(未标示)。并且,所述发光二极管芯片130是通过所述二电路板140在电路上的并联或串联来进行点亮。
另外,优选的,所述散热灯座120的底部具有沟槽122,所述沟槽122可能是如图所示的环状槽的形式,或者所述沟槽122也可为一直槽状的形式,而所述电路板140部份可卡入所述沟槽122,以达到空间上的有效利用。
再者,优选的,所述散热底板110与所述散热灯座120是一体成型的设计,以提高热传导效率以及简化制作工序。并且,所述散热底板110与所述散热灯座120可由易于散热及加工的金属材料所制成,例如铝。
请参照图3所示,图3揭示本发明发光二极管散热构造的第一实施例设于一背光模块的局部侧视图。一背光模块200,其包含一背板210、一导光板220、一光学膜片组230及一胶框240,所述背板210的至少一侧缘上设有垂直的侧壁部211。所述背板210中央承载所述导光板220,所述导光板220上设有所述光学膜片组230,所述胶框240包覆于所述背板210的外缘,所述胶框240由上而下的固定所述光学膜片组230及所述导光板220,以形成所述侧入式背光模块200。
另外,于所述侧入式背光模块200上再迭设一液晶面板300,并且以一外壳400包覆及固定所述液晶面板300及所述侧入式背光模块200,即组成一液晶显示器。
其中,所述背板210的至少一侧缘的侧壁部211的内侧设有至少一所述发光二极管散热构造100。所述发光二极管散热构造100可通过锁固、卡合或粘贴以紧贴固定于所述背板210的侧壁部211。
如图2及图3所示,由于所述发光二极管芯片130所产生的热量能通过所述散热灯座120及所述散热底板110而向外扩散,不会受到所述电路板140的隔绝。因此,传至所述散热底板110的热量能进一步的通过所述背板210的侧壁部211传至所述背板210,并通过所述背板210的外侧来进行散热。由于,所述发光二极管芯片130的热量可有效被传导出去,因此能相对提升所述发光二极管散热构造100的散热效率及使用寿命。并且,本发明发光二极管散热构造100可不需要褡配例如铝挤等散热构造,从而简化了所述发光二极管散热构造100的设计,以及节省了组装成本。
请参照图4所示,其揭示本发明发光二极管散热构造的第二实施例的立体剖视图。本实施例中的发光二极管散热构造100’相似于第一实施例的所述发光二极管散热构造100,因此沿用相同的组件符号与名称,所述发光二极管散热构造100’主要包含:一散热底板110’、多个散热灯座120’、多个发光二极管芯片130’及一电路板140’。本发明第二实施例的所述发光二极管散热构造100’与第一实施例的所述发光二极管散热构造100不同之处在于:本实施例的所述发光二极管散热构造100’的散热灯座120’是偏置设于所述散热底板110’上表面111’的一侧,并且所述散热底板110’的上表面111’只设有一个所述电路板140’。在本实施例中每一所述发光二极管芯片130’是通过二导线150’电性连接于同一个所述电路板140’,并且通过所述电路板140’的电路以点亮所述发光二极管芯片130’。
另外,在本实施例中所述散热灯座120’的底部省略了第一实施例的所述沟槽121的设计,因此可使得所述发光二极管散热构造100’在制作及组装上更为简易。
综上所述,相较于现有发光二极管散热构造使用热沉以进行散热。但由于热沉的热量受到电路板的阻隔而无法有效被传导出去。本发明的所述发光二极管散热构造100包含散热底板110、多个散热灯座120、多个发光二极管芯片130及至少一电路板140。通过所述散热灯座120与所述散热底板110直接相连,所述发光二极管芯片130所产生的热量能通过所述散热灯座120及所述散热底板110而向外扩散,不会受到所述电路板140的隔绝。并且传至所述散热底板110的热量能进一步的通过所述背板210的侧壁部211传至所述背板210,并通过所述背板210外侧的空气进行散热。因此,所述发光二极管芯片130的热量可有效被传导出去,故能相对提升所述发光二极管散热构造100的散热效率及使用寿命。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (13)

  1. 一种发光二极管散热构造,其特征在于:所述发光二极管散热构造包含:
    一散热底板,呈长条状,具有一上表面;
    多个散热灯座,呈柱状,排成一列的设置于所述散热底板的上表面,每一所述散热灯座的顶面设有一凹部;
    多个发光二极管芯片,设于每一所述散热灯座的凹部之内;及
    一电路板,设于所述散热底板的上表面。
  2. 如权利要求1所述的发光二极管散热构造,其特征在于:每一所述发光二极管芯片通过二导线电性连接于所述电路板。
  3. 如权利要求1所述的发光二极管散热构造,其特征在于:所述散热灯座的底部具有沟槽,所述电路板部份卡入所述沟槽。
  4. 如权利要求1所述的发光二极管散热构造,其特征在于:所述散热底板与所述散热灯座是一体成型。
  5. 一种发光二极管散热构造,其特征在于:所述发光二极管散热构造包含:
    一散热底板,呈长条状,具有一上表面;
    多个散热灯座,呈柱状,排成一列的设置于所述散热底板的上表面,每一所述散热灯座的顶面设有一凹部;
    多个发光二极管芯片,设于每一所述散热灯座的凹部之内;及
    二电路板,分别设于所述多个散热灯座两侧的所述散热底板的上表面。
  6. 如权利要求5所述的发光二极管散热构造,其特征在于:每一所述发光二极管芯片通过二导线分别电性连接于所述二电路板。
  7. 如权利要求5所述的发光二极管散热构造,其特征在于:所述散热灯座的底部具有沟槽,所述电路板部份卡入所述沟槽。
  8. 如权利要求5所述的发光二极管散热构造,其特征在于:所述散热底板与所述散热灯座是一体成型。
  9. 一背光模块,其包含一背板、一导光板、一光学膜片组及一胶框,所述背板的至少一侧缘上设有侧壁部,所述背板中央承载所述导光板,所述导光板上设有所述光学膜片组,所述胶框包覆于所述背板的外缘;所述背光模块的特征在于:所述背板的至少一侧缘的侧壁部的内侧设有至少一发光二极管散热构造,所述发光二极管散热构造包含:
    一散热底板,呈长条状,具有一上表面;
    多个散热灯座,呈柱状,排成一列的设置于所述散热底板的上表面,每一所述散热灯座的顶面设有一凹部;
    多个发光二极管芯片,设于每一所述散热灯座的凹部之内;及
    至少一电路板,设于所述散热底板的上表面。
  10. 如权利要求9所述的背光模块,其特征在于:所述至少一电路板是一个电路板,每一所述发光二极管芯片通过二导线分别电性连接于所述二电路板。
  11. 如权利要求9所述的背光模块,其特征在于:所述至少一电路板是二个电路板,每一所述发光二极管芯片通过二导线电性连接于所述电路板。
  12. 如权利要求9所述的背光模块,其特征在于:所述散热灯座的底部具有沟槽,所述电路板部份卡入所述沟槽。
  13. 如权利要求9所述的背光模块,其特征在于:所述散热底板与所述散热灯座是一体成型。
PCT/CN2011/074485 2011-05-16 2011-05-23 发光二极管散热构造及背光模块 WO2012155361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/203,278 US20120294040A1 (en) 2011-05-16 2011-05-23 Light-emitting diode heat-dissipation structure and backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011201558375U CN202103046U (zh) 2011-05-16 2011-05-16 发光二极管散热构造及背光模块
CN201120155837.5 2011-05-16

Publications (1)

Publication Number Publication Date
WO2012155361A1 true WO2012155361A1 (zh) 2012-11-22

Family

ID=45389047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074485 WO2012155361A1 (zh) 2011-05-16 2011-05-23 发光二极管散热构造及背光模块

Country Status (2)

Country Link
CN (1) CN202103046U (zh)
WO (1) WO2012155361A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134477B2 (en) 2012-07-02 2015-09-15 Quan Li Backlight module and LED packaging having fixed structure
CN102720997B (zh) * 2012-07-02 2014-10-29 深圳市华星光电技术有限公司 一种背光模组及led的封装结构
US9028092B2 (en) 2012-10-31 2015-05-12 Shenzhen China Star Optoelectronics Technology Co., Ltd. LED light bar and backlight module using the LED light bar
CN102900989A (zh) * 2012-10-31 2013-01-30 深圳市华星光电技术有限公司 Led灯条及用该led灯条的背光模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010030866A1 (en) * 2000-03-31 2001-10-18 Relume Corporation LED integrated heat sink
US6501103B1 (en) * 2001-10-23 2002-12-31 Lite-On Electronics, Inc. Light emitting diode assembly with low thermal resistance
CN1466782A (zh) * 2001-08-28 2004-01-07 ���µ繤��ʽ���� 使用led的发光装置
CN1790117A (zh) * 2005-12-21 2006-06-21 友达光电股份有限公司 显示器的散热结构
CN1795567A (zh) * 2003-05-26 2006-06-28 松下电工株式会社 发光器件
US20060139932A1 (en) * 2004-12-27 2006-06-29 Lg.Philips Lcd Co., Ltd Light-emitting unit with enhanced thermal dissipation and method for fabricating the same
CN2842746Y (zh) * 2005-09-26 2006-11-29 盟立光能科技股份有限公司 发光二极体模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010030866A1 (en) * 2000-03-31 2001-10-18 Relume Corporation LED integrated heat sink
CN1466782A (zh) * 2001-08-28 2004-01-07 ���µ繤��ʽ���� 使用led的发光装置
US6501103B1 (en) * 2001-10-23 2002-12-31 Lite-On Electronics, Inc. Light emitting diode assembly with low thermal resistance
CN1795567A (zh) * 2003-05-26 2006-06-28 松下电工株式会社 发光器件
US20060139932A1 (en) * 2004-12-27 2006-06-29 Lg.Philips Lcd Co., Ltd Light-emitting unit with enhanced thermal dissipation and method for fabricating the same
CN2842746Y (zh) * 2005-09-26 2006-11-29 盟立光能科技股份有限公司 发光二极体模组
CN1790117A (zh) * 2005-12-21 2006-06-21 友达光电股份有限公司 显示器的散热结构

Also Published As

Publication number Publication date
CN202103046U (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2013143158A1 (zh) 发光二极管灯条构造
WO2012155367A1 (zh) 液晶显示器及背光模组
WO2013086712A1 (zh) 背光模组及液晶显示装置
WO2012129839A1 (zh) Led灯条固定结构及液晶显示器
WO2013170509A1 (zh) 散热铝挤结构及相应的背光模块
WO2012006809A1 (zh) 背光模块及其灯条定位构造
US9004721B2 (en) Light source heat dissipation structure and backlight module
WO2012155361A1 (zh) 发光二极管散热构造及背光模块
WO2014029131A1 (zh) 液晶模块及其前框构造
WO2012037746A1 (zh) 具有散热功能的发光二极管灯条构造
WO2014067173A1 (zh) Led灯条及用该led灯条的背光模组
WO2014067130A1 (zh) 卡合式液晶模块
WO2013086715A1 (zh) 背板及相应的背光模组
KR101774277B1 (ko) 액정표시장치
US8746947B2 (en) Backlight module, LCD device and light source of backlight module
WO2013152500A1 (zh) 背光模块及相应的液晶显示装置
WO2013152480A1 (zh) Led光源及相应的背光模块
KR20080059719A (ko) 백라이트 유닛 및 이를 구비한 액정표시모듈
WO2013134971A1 (zh) 背光模块以及液晶显示装置
WO2013117010A1 (zh) 背光模组及液晶显示器
WO2012045219A1 (zh) 背光模块的发光源散热构造
WO2012058837A1 (zh) 发光源散热构造及背光模块
US20220284836A1 (en) Display Module and Tiled Display Device
WO2014067160A1 (zh) 具有f型框架组件的液晶模块及其组装方法
WO2012155371A1 (zh) 通过隔热处理的背光模组

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13203278

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865887

Country of ref document: EP

Kind code of ref document: A1