WO2012155282A2 - 6-komponenten dynamometer - Google Patents

6-komponenten dynamometer Download PDF

Info

Publication number
WO2012155282A2
WO2012155282A2 PCT/CH2012/000106 CH2012000106W WO2012155282A2 WO 2012155282 A2 WO2012155282 A2 WO 2012155282A2 CH 2012000106 W CH2012000106 W CH 2012000106W WO 2012155282 A2 WO2012155282 A2 WO 2012155282A2
Authority
WO
WIPO (PCT)
Prior art keywords
rod
dynamometer according
sensor
dynamometer
plates
Prior art date
Application number
PCT/CH2012/000106
Other languages
English (en)
French (fr)
Other versions
WO2012155282A3 (de
Inventor
Rolf Thiel
Andreas Kirchheim
Original Assignee
Kistler Holding Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kistler Holding Ag filed Critical Kistler Holding Ag
Publication of WO2012155282A2 publication Critical patent/WO2012155282A2/de
Publication of WO2012155282A3 publication Critical patent/WO2012155282A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/162Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0076Force sensors associated with manufacturing machines

Definitions

  • the invention relates to a 6-component dynamometer for measuring forces and moments in all three cartesian directions (x, y, z), comprising a lower rigid plate, an upper rigid plate spaced therefrom, and six in rod sensors arranged at an angle to each other, which connect the two plates to each other, wherein each rod sensor comprises a rod with a rod axis A0 and with a force sensor disposed therein, which can measure a force in the direction of the rod axis.
  • PRIOR ART ⁇ -composite dynamometers are used to measure the three components of an acting force vector F as well as the three components of an acting moment vector M.
  • the piezoelectric sensor system on which such a measuring system is based measures the forces virtually without direction.
  • Dynamometers are ideal for general multi-component force measurement for cutting force measurements when milling and grinding or turning. Workpieces or fixtures can be mounted in a few easy steps on a tapped upper plate of such a dynamometer.
  • CONFIRMATION COPY because deviations of the position of the measuring plate from an ideal sensor affect all the measuring plates in the stack and thereby cause errors.
  • a newer version of the ⁇ -component dynamometer is the hexapod dynamometer. It is formed by six rod sensors which, at an angle to each other, connect two parallel plates. Each of the six bar sensors now measures one of the forces or moments, with much less influence on the other bar sensors in this setup.
  • the design of the bars between the plates should ideally be such that the bar sensors only detect forces in the axial direction of the bars and at the same time are insensitive to all other forces. Unfortunately, this can only be achieved approximately.
  • Errors are caused by measurements on the hexapod dynamometers by finite stiffnesses of the plates and the rod sensors, but most of all by unfavorable attachment of the rod sensors to the plates. So that the force is always passed only through the axis of these sensors, the. Bearings between the plates and the rod sensors can always adapt to the slightly changed plate orientations, which arise from the load bearing of the forces and moments.
  • the rod sensors are usually stored in ball joints or in other receiving elements, which allows a spherical realignment of the rod sensors.
  • a disadvantage of these pickups is the game 'must always be present in articulated bearings, because game in turn cause incorrect measurements. Presentation of the invention
  • the object of the present invention is to describe an attachment between the plates and the rod sensors, which causes a smaller error with changed plate alignment.
  • each rod has sensor via two end pieces which are connected joint-free in the axial extension on both sides of the rod with this fixed, wherein each end piece comprises a solid-body joint, and joint-free firmly 'is fixed JE piping plate.
  • a solid-state joint is a region of a component which allows a relative movement in the form of a rotation between two rigid body regions by bending.
  • each end piece also has a spherical connection piece, which is fixed to the joint without joints. respective plate is fixed.
  • a spherical connection piece By placing the spherical connection piece in a recess provided for this purpose in the respective plate, it can be used stress-free on the respective plate during assembly. It has been found that the measurement error is reduced by such an attachment of the rod sensors and thus the measurement becomes more accurate.
  • FIG. 1 is a schematic perspective view of a conventional 6-component sensor with stacked sensor plates according to the prior art
  • Fig. 2 is a schematic perspective view of a conventional 6-component hexapod sensor according to the prior art
  • FIG. 3 is a schematic perspective view of a 6-component hexapod sensor according to the invention.
  • FIG. 4 shows a schematic view of a rod sensor according to the invention
  • Fig. 5 is a schematic view of an inventive
  • Fig. -6 is a schematic view of an inventive
  • Fig. 7 is a schematic view of an inventive
  • End piece of a rod sensor installed in a plate upon application of force
  • FIG. 8 shows an alternative installation variant of an end piece of a rod sensor in a plate.
  • FIG. 1 shows a schematic perspective view of a conventional 6-component sensor, a dynamometer 1, with stacked Sensor plates 20.1 - 20.6 according to the prior art.
  • the bottom three sensor plates 20.1, 20.2 and 20.3 measure the forces in the three directions Fx, Fy and Fz, while the three top sensor plates 20.4, 20.5 and 20.6 measure the moments in these three directions Mx, My and Mz.
  • the resulting induced force F and the resulting induced moment M are shown in this figure and in Figure 2 as arrows and labeled F (force) and M (moment).
  • FIG. 2 shows a schematic perspective illustration of a conventional 6-component hexapod sensor 1 according to the prior art.
  • the initiating force F and the initiating moment M act here on an upper rigid plate 3, which is arranged at a distance to a lower rigid plate 2. Between these plates 2, 3 symbolically six bar sensors 4 are shown, which connect these plates 2, 3 with each other.
  • the arrows F1, F2,... F6 describe the directions and magnitudes of the forces which are determined by the rod sensors 4 after the force F and the moment M act on the upper plate 3.
  • FIG. 3 is a schematic perspective view of a 6-component hexapod sensor or 6-component dynamometer according to the invention, suitable for measuring forces and moments in all three Cartesian directions x, y, z. These. Coordinates x, y and -z are indicated in FIG.
  • the upper plate 3 preferably has fastening devices 16 for fixing a workpiece.
  • the 6-component hexapod sensor is used to measure forces and moments during. Processing, for example, when milling a workpiece which is fixed on the upper plate 3. The workpiece can do this anywhere on the top Plate 3 rest and the force can be placed anywhere. attack the plate 3, not only in the center.
  • This dynamometer 1 comprises a lower rigid plate 2, an upper plate 3 spaced therefrom and six rod sensors 4 arranged at an angle to each other, which connect the two plates 2, 3 to one another.
  • the plates 2, 3 are preferably arranged parallel to one another.
  • all at least six rod sensors 4 are configured identically. It is also possible to use 8, 10 or 12 rod sensors 4 in order to further increase the measuring accuracy. In this case, an overdetermined system of equations can be created in which the measurement error can be minimized by the least squares method.
  • Each rod sensor 4 also shown in FIG. 4, comprises a rod 5 with a rod axis A and a force sensor 6 arranged therein, which can measure a force F in the direction of the rod axis A.
  • the force sensor 6 can be provided with a connection 12, as shown in FIG. 3, for forwarding these measurement signals.
  • the force sensor 6 is preferably arranged centrally in the rod 5, in the center plane E, which is orthogonal to the axis A of the rod sensor 4.
  • each rod sensor 4 is formed substantially axisymmetric to the axis A and / or mirror-symmetrical to the center plane E. This symmetry relates to the strengths and the distances in the rod sensor 4, but not subordinate elements such as the terminals 12, which may deviate from such symmetries, as long as the strength symmetry of a rod sensor thereof is not disturbed.
  • the rod sensor 4 comprises two end pieces 7, which are connected in an axial extension on both sides of the rod 5 articulated with this fixed.
  • Each end piece 7 has a Fest.Mechgelenk 8 and is fixed to the joint the respective plate 2, 3 fixed, as shown in Fig. 5.
  • each rod sensor 4 is configured in its axial direction A very rigid and immovable. Apart from these solid-body joints 8, the rod sensor 4 preferably has no further joints.
  • FIGS. 6 and 7 a solid-body joint 8 of an end piece 7 according to the invention of a rod sensor 4, installed in a plate 2, 3, is shown in a schematic view.
  • Fig. 6 shows the end piece 7 in the unloaded state, and Fig. 7 under the action of force, but with greatly exaggerated deflection.
  • Each end piece 7 comprises a solid-body joint 8, that is to say a region which permits relative movement between the two adjacent regions, in particular a bending, rotation or bending about an axis transversely to the rod axis A. Of these two adjacent areas one is fixedly connected to the rod 5, the other fixed to the plate 2, 3.
  • each end piece 7 has a spherical connecting piece 10, which is fixedly fixed to the respective plate 2, 3 without joints.
  • a spherical connecting piece 10 which is fixedly fixed to the respective plate 2, 3 without joints.
  • the spherical connecting pieces 10 are designed as a ball and close the rod sensors 4 on both sides, they are only connected to the solid joints 8 on the rods.
  • the fittings 10 are integrally connected to the solid joints 8.
  • the recess 13 is frusto-conical or conical, as shown in FIG.
  • a support line 14 in the form of a circular line, if at least this portion of the recess 13 is frustoconical .
  • the rod sensors 5 can be stress-free and backlash in this truncated cone-shaped recess 13 of the two Insert plates 2, 3 and then fix.
  • 3 clamping devices 15 may be provided, as shown in Fig. 8, which act in the Z direction to the plates. These cause no displacement of the rod sensors 4 in their fixation and thus no strain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Die Erfindung betrifft ein 6-Komponenten Dynamometer zum Messen von Kräften und Momenten in jeweils allen drei kartesischen Richtungen (x, y, z). Es umfasst eine untere steife Platte (2), eine beabstandet zu dieser angeordnete obere steife Platte (3) sowie sechs in einem Winkel zueinander angeordnete Stabsensoren (4), welche die beiden Platten (2, 3) miteinander verbinden. Jeder Stabsensor (4) umfasst einen Stab (5) mit einer Stabachse A und mit einem darin angeordnetem Kraftsensor (6), welcher eine Kraft (F) in Richtung der Stabachse (A) messen kann, sowie zwei Endstücke (7), welche in axialer Verlängerung beidseitig des Stabes (5) gelenkfrei mit diesem fest verbunden sind. Erfindungsgemäss weist jedes Endstück (7) ein Festkörpergelenk (8) und ein sphärisches Anschlussstück (10) auf, welches gelenkfrei fest an einer der Platten (2, 3) fixiert ist.

Description

6-KOMPONENTEN DYNAMOMETER Technisches Gebiet
Die Erfindung betrifft ein 6-Komponenten Dynamometer zum Messen, von Kräften und Momenten in jeweils allen drei kartesi- 5 sehen Richtungen (x, y, z) , umfassend eine untere steife Platte, eine beabstandet zu dieser angeordnete obere steife Platte, sowie sechs in einem Winkel zueinander angeordnete Stabsensoren, welche die beiden Platten miteinander verbinden, wobei jeder Stabsensor einen Stab mit einer Stabachse A0 und mit einem darin angeordnetem Kraftsensor umfasst, welcher eine Kraft in Richtung der Stabachse messen kann.
Stand der Technik β-Kompohenten Dynamometer dienen dem Messen der drei Komponenten eines einwirkenden Kraftvektors F sowie der drei Kom-5 ponenten eines einwirkenden Momentvektors M. Die piezoelektrische Sensorik, auf welchem ein solches Messsystem basiert, misst die Kräfte praktisch weglos. Dynamometer eignen sich ausgezeichnet für die allgemeine Mehrkomponenten-Kraftmessung für Schnittkraftmessungen beim Fräsen und Schleifen oder beim0 Drehen. Werkstücke oder Spannvorrichtungen können mit wenigen Handgriffen auf einer mit Gewindebohrungen versehenen oberen Platte eines solchen Dynamometers montiert werden.
Frühere β-Komponenten Dynamometer waren als Stapel von einzelnen Messsensor-Platten aufgebaut, wobei jede Messplatte '5 eine Kraft oder ein Moment in eine der Richtungen x, x oder z messen konnte. Auf Grund immer höherer Anforderungen an die Genauigkeit erreichte dieser Aufbau' aber bald seine Grenzen,
BESTÄTIGUNGSKOPIE weil Abweichungen der Lage der Messplatte von einem idealen Sensor alle Messplatten im Stapel beeinflussen und dadurch Fehler verursacht.
Eine neuere Version des β-Komponenten Dynamometers ist das Hexapoden Dynamometer. Es wird durch sechs Stabsensoren gebildet, welche, in einem Winkel zueinander angeordnet, zwei parallele Platten verbinden. Jeder der sechs Stabsensoren misst nun eine der Kräfte oder Momente, wobei die Beeinflussung der anderen Stabsensoren in diesem Aufbau viel geringer ist. Die Auslegung der Stäbe zwischen den Platten · sollte idealerweise so sein, dass die Stabsensoren nur Kräfte in Axialrichtung der Stäbe erfassen und gleichzeitig für alle anderen Kräfte unempfindlich sind. Dies kann leider nur näherungsweise erreicht werden.
Fehler entstehen bei den Messungen auf den Hexapoden Dynamometern durch endliche Steifigkeiten der Platten und der Stabsensoren, am meisten jedoch durch ungünstige Anbringung der Stabsensoren an die Platten. Damit die Kraft stets nur durch die Achse dieser Sensoren geleitet wird, müssten sich die. Lager zwischen den Platten und den Stabsensoren stets den geringfügig geänderten Plattenausrichtungen anpassen können, welche durch die Lastaufnahme der Kräfte und Momente entstehen .
Aus diesem Grund werden die Stabsensoren in der Regel in Kugelgelenken oder in anderen Aufnahmeelementen gelagert, welche eine sphärische Neuausrichtung der Stabsensoren ermöglicht. Nachteilig an diesen Aufnehmern ist der Spiel, ' der stets bei gelenkigen Lagern vorhanden sein muss, weil Spiel wiederum Fehlmessungen verursachen. Darstellung der Erfindung
Aufgabe der vorliegenden Erfindung ist es, eine Anbringung zwischen den Platten und den Stabsensoren zu beschreiben, welche einen geringeren Fehler bei geänderter Plattenausrich- tung hervorruft.
Erfindungsgemäss verfügt jeder Stabsensor über zwei Endstücke, welche ,in axialer Verlängerung beidseitig des Stabes gelenkfrei mit diesem fest verbunden sind, wobei jedes Endstück ein Festkörpergelenk aufweist und gelenkfrei fest an' der je- weiligen Platte fixiert ist. Als Festkörpergelenk bezeichnet man einen Bereich eines Bauteils,- welcher eine Relativbewegung in Form einer Drehung zwischen zwei Starrkörperbereichen durch Biegung erlaubt.
Erfindungsgemäss weist jedes Endstück zudem ein sphärisches Anschlussstück auf, welches gelenkfrei fest mit der . jeweiligen Platte fixiert ist. Indem das sphärisches Anschlussstück in eine dafür vorgesehene Aussparung in der jeweiligen Platte gestellt wird lässt es sich bei der Montage spannungsfrei an die jeweilige Platte einsetzen. Es hat sich gezeigt, dass sich der Messfehler durch eine solche Anbringung der Stabsensoren verringert und die Messung dadurch genauer wird.
Kurze Beschreibung der Zeichnungen
Im Folgenden wird die Erfindung unter Beizug der Zeichnungen näher erklärt. Es zeigen Fig. 1 eine schematische perspektivische Darstellung eines konventionellen 6-Komponenten Sensors mit aufgestapelten Sensorplatten nach dem Stand" der Technik;
Fig. 2 eine schematische perspektivische Darstellung eines konventionellen 6-Komponenten Hexapodensensors nach dem Stand der Technik;
Fig. 3 eine schematische perspektivische Darstellung eines erfindungsgemässen 6-Komponenten Hexapodensensors;
Fig. 4 eine schematische Ansicht eines erfindungsgemässen ■ Stabsensors;
Fig. 5 eine schematische Ansicht eines erfindungsgemässen
Stabsensors, eingebaut zwischen den Platten;
Fig. -6 eine schematische Ansicht eines erfindungsgemässen
Endstücks eines Stabsensors eingebaut in einer Platte;
Fig. 7 eine schematische Ansicht eines erfindungsgemässen
Endstücks eines Stabsensors eingebaut in einer Platte bei Krafteinwirkung;
Fig. 8 eine alternative Einbauvariante eines Endstücks ei- nes Stabsensors in eine Platte.
Wege zur Ausführung der Erfindung
Im Folgenden beschreibt jede Bezugsziffer stets dieselbe Komponente resp. dasselbe Element. Die Fig. 1 zeigt eine schematische perspektivische Darstellung eines konventionellen 6- Komponenten Sensors, eines Dynamometers 1, mit aufgestapelten Sensorplatten 20.1 - 20.6 nach dem Stand der Technik. Die untersten drei Sensorplatten 20.1, 20.2 und 20.3 messen dabei die Kräfte in die drei Richtungen Fx, Fy und Fz, während die drei oberen Sensorplatten 20.4, 20.5 und 20.6 die Momente in diese drei Richtungen Mx, My und Mz messen. Die resultierende eingeleitete Kraft F und das resultierende eingeleitete Moment M sind in dieser Abbildung sowie in Abbildung 2 als Pfeile dargestellt und mit F (Kraft) und M (Moment) gekennzeichnet. In Fig. 2 ist eine schematische perspektivische Darstellung eines konventionellen 6-Komponenten Hexapodensensors 1 nach dem Stand der Technik dargestellt. Die einleitende Kraft F und das einleitende Moment M wirken hier auf eine obere steife Platte 3, die beabstandet zu einer unteren steifen Platte 2 angeordnet ist. Zwischen diesen Platten 2, 3 sind symbo- lisch sechs Stabsensoren 4 dargestellt, welche diese Platten 2, 3 miteinander verbinden. Die Pfeile Fl, F2, ... F6 be-, zeichnen dabei die Richtungen und Beträge der Kräfte, die von den Stabsensoren 4 ermittelt werden, nachdem die Kraft F und das Moment M auf die obere Platte 3 einwirkt.
Fig. 3 ist eine schematische perspektivische Darstellung eines erfindungsgemässen 6-Komponenten Hexapodensensors oder 6- Komponenten Dynamometers, geeignet zum Messen von Kräften und Momenten in jeweils allen drei kartesischen Richtungen x, y, z. Diese. Koordinaten x, y und -z sind in der Fig. 3 angegeben.
Die obere Platte 3 weist vorzugsweise Befestigungsvorrichtungen 16 auf zum Fixieren eines Werkstücks. Insbesondere dient der 6-Komponenten Hexapodensensor zum Messen von Kräften und Momenten beim. Bearbeiten, beispielsweise beim Fräsen eines Werkstückes, das auf der oberen Platte 3 fixiert ist. Das Werkstück kann dazu an einem beliebigen Ort auf der oberen Platte 3 aufliegen und die Kraft kann an einem beliebigen Ort auf. der Platte 3 angreifen, nicht nur im Zentrum.
Dieser Dynamometer 1 umfasst eine untere steife Platte 2, eine beabstandet zu dieser angeordnete obere steife Platte 3 sowie sechs in einem Winkel zueinander angeordnete Stabsensoren 4, welche die beiden Platten 2, 3 miteinander verbinden. Die Platten 2, 3 sind vorzugsweise parallel zueinander angeordnet. Bevorzugt sind alle mindestens sechs Stabsensoren 4 identisch ausgestaltet. Es können auch 8, 10 oder 12 Stabsensoren 4 verwendet werden, um die Messgenauigkeit weiter zu erhöhen. In diesem Fall kann ein überbestimmten Gleichungssystemen erstellt werden, bei dem der Messfehler durch die kleinste Quadrate Methode rechnerisch minimiert werden kann.
Jeder Stabsensor 4, auch dargestellt in Fig. 4, umfasst einen Stab 5 mit einer Stabachse A und einen darin angeordnetem Kraftsensor 6, welcher eine Kraft F in Richtung der Stabachse A messen kann. Der Kraftsensor 6 kann mit einem Anschluss 12 versehen sein, wie in Fig. 3 dargestellt, zum Weiterleiten dieser Messsignale. Der Kraftsensor 6 ist vorzugsweise mittig im Stab 5 angeordnet, in der Mittelebene E, welche orthogonal zur Achse A des Stabsensors 4 verläuft. Vorzugsweise ist jeder Stabsensor 4 im wesentlichen achssymmetrisch zur Achse A und/oder spiegelsymmetrisch zur Mittelebene E ausgebildet. Diese Symmetrie betrifft die Festigkeiten und die Abstände im Stabsensor 4, nicht aber untergeordnete Elemente wie die Anschlüsse 12, die von solchen Symmetrien abweichen können, solange die Festigkeitssymmetrie eines Stabsensors davon nicht gestört wird.
Der Stabsensor 4 umfasst erfindungsgemäss zwei Endstücke 7, welche in axialer Verlängerung beidseitig des Stabes 5 gelenkfrei mit diesem fest verbunden sind. Jedes Endstück 7 weist ein Fest.körpergelenk 8 auf und ist gelenkfrei fest an der jeweiligen Platte 2, 3 fixiert, wie in Fig. 5 dargestellt. Vorzugsweise ist jeder Stabsensor 4 in seiner Axialrichtung A sehr steif und unbeweglich ausgestaltet. Abgesehen von diesen Festkörpergelenken 8 verfügt der Stabsensor 4 vor- zugsweise über keine weiteren Gelenke.
In Fig. 6 und 7 ist jeweils ein Festkörpergelenk 8 eines er- findungsgemässen Endstücks 7 eines Stabsensors 4, eingebaut in eine Platte 2, 3, in einer schematischen Ansicht dargestellt. Fig. 6 zeigt das Endstück 7 in unbelasteten Zustand, und Fig. 7 unter Krafteinwirkung, allerdings mit stark übertriebener Auslenkung.
Jedes Endstück 7 umfasst ein Festkörpergelenk 8, also einen Bereich, welcher eine Relativbewegung zwischen den zwei benachbarten Bereichen, insbesondere eine Biegung, Drehung oder ein Abknicken um eine Achse quer zur Stabachse A zulässt. Von diesen zwei benachbarten Bereichen ist einer fest mit dem Stab 5, der andere fest mit der Platte 2, 3 verbunden.
Das Festkörpergelenk 8 ist hier als Einschnürung 9 ausgestaltet, also als verjüngter Bereich. Es hat sich als vorteilhaft erwiesen, diese Einschnürung 9 zylindrisch auszugestalten. Dadurch kann sich die Biegung unter einer Last auf einen grösseren Bereich verteilen als wenn die Einschnürung 9 nur durch eine dünnsten Stelle des Festkörpergelenks 8 ausgestaltet wäre. Erfindungsgemäss weist jedes Endstück 7 ein sphärisches Anschlussstück 10 auf, welches gelenkfrei fest mit der jeweiligen Platte 2, 3 fixiert ist. Dadurch lässt es sich bei der Montage spannungsfrei an die jeweilige Platte 2, 3 einsetzen, indem das sphärisches Anschlussstück 10 in eine dafür vorge- sehene Aussparung 13 in der jeweiligen Platte 2, 3 gestellt wird. Mit einer Stellschraube 11 kann das sphärische Anschlussstück 10 anschliessend in. der Aussparung 13 an dieser Stelle fixiert werden.
Die sphärischen Anschlussstücke 10 sind dabei als Kugel aus- gestaltet und schliessen die Stabsensoren 4 beidseitig ab, sie sind einzig an den Festkörpergelenken 8 an den Stäben verbunden. Vorzugsweise sind die Anschlussstücke 10 einstückig mit den Festkörpergelenken 8 verbunden.
In einer bevorzugten Ausführungsform ist die Aussparung 13 kegelstumpfförmig oder kegelförmig ausgestaltet, wie in Fig. 8 darfestellt. So ergibt sich beim Einsetzen des sphärischen Anschlussstückes 10 in die Aussparung 13 eine Auflagelinie 14 in der Form einer Kreislinie, wenn mindestens dieser Bereich der Aussparung 13 kegelstumpfförmig ist.. Die Stabsensoren 5 lassen sich spannungsfrei und spielfrei in diese kegelstumpf- förmigen Aussparung 13 der beiden Platten2, 3 einsetzen und anschliessend fixieren.
Als alternative Fixierung der sphärischen Anschlussstücke 10 an den jeweiligen Platten 2, 3 können Klemmvorrichtungen 15 vorgesehen sein, wie in Fig. 8 dargestellt, welche in Z- Richtung zu den Platten wirken. Diese verursachen keine Verschiebung der Stabsensoren 4 bei deren Fixierung und somit auch keine Verspannung.
Unter Last, also bei veränderter relativen Lage der oberen Platte 3 zur unteren Platte 2 können die Festkörpergelenke 8 stets spielfrei die optimale Lage einnehmen. Dadurch wird gewährleistet, ' dass stets nur eine axiale Kraft auf den Stab 5 im Stabsensor 4 und somit auf den darin angeordneten Kraftsensor 6 wirkt. Durch die spielfreie Lagerung der Stabsensoren 4 werden Fehlerquellen eliminiert, wel he nach dem Stand der Technik in den Messwerten enthalten waren.
Bezugszeichenliste
Dynamometer, 6-Komponenten Hexapodensensor untere, steife Platte
obere, steife Platte
Stabsensor
Stab
Kraftsensor '
7 Endstück
8 Festkörpergelenk
9 Einschnürung, zylindrisch
10 Sphärisches Anschlussstück;
11 Stellschraube
12 Anschluss
13 Aussparung
14 Bereich der Auflagelinie
15 Klemmvorrichtung
16 BefestigungsVorrichtungen
, 20.6 Sensorplatten
Achse des Stabes
Mittelebene des Stabes
x, y, z kartesische Richtungen
resultierende, einleitende Kraft
Fx, Fx, Fz Kräfte in kartesischen Koordinaten resultierendes, einleitendes Moment
Mx, Mx, Mz Momente in kartesischen Koordinaten
Fl, F2, F6 gemessene Kräfte

Claims

Patentansprüche β-Komponenten Dynamometer zum Messen von Kräften und Momenten in jeweils allen drei kartesischen Richtungen (x, y, z), umfassend eine untere steife Platte
(2), eine beabstandet zu dieser angeordnete obere steife Platte (3) sowie sechs in einem Winkel zueinander angeordnete Stabsensoren (4), welche die beiden Platten (2,
3) miteinander verbinden, wobei jeder Stabsensor
(4) einen Stab (5) mit einer Stabachse A und mit einem darin angeordnetem Kraftsensor (6) umfasst, welcher eine Kraft (F) in Richtung der Stabachse, (A) messen kann, sowie zwei Endstücke (7), welche in axialer Verlängerung beidseitig des Stabes
(5) gelenkfrei mit diesem fest verbunden, sind, dadurch gekennzeichnet, dass jedes Endstück (7) ein Festkörperge- lenk (8) und ein sphärisches Anschlussstück (10) aufweist, welches gelenkfrei fest . an einer der Platten (2, 3) fixiert ist.
Dynamometer nach Anspruch 1, dadurch gekennzeichnet, dass jedes Festkörpergelenk (8) eine Biegung um eine Achse quer zur Stabachse A zulässt.,
Dynamometer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jedes Festkörpergelenk (8) als Einschnürung (9) ausgestaltet ist.
Dynamometer nach Anspruch 3, dadurch gekennzeichnet, dass jede Einschnürung (9) zylindrisch ausgestaltet ist.
Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder Stabsensor (4) abgesehen von den beiden Festkörpergelenken (8) über keine weiteren Gelenke verfügt.
6. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das sphärische Anschlussstück (10) mit einer Stellschraube (11) an der jeweiligen Platte (2, 3) fixiert ist.
7. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kraftsensor (6) mittig im Stabsensor (4) angeordnet ist.
8. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder Stabsensor (4) im We- sentlichen achssymmetrisch und/oder spiegelsymmetrisch bezüglich seiner orthogonal zur Achse A verlaufenden Mittelebene E ausgebildet ist.
9. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder Stabsensor (4) in sei- ner Axialrichtung A sehr steif und unbeweglich ausgestaltet ist .
10. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alle Stabsensoren (4) identisch ausgestaltet sind.
11. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass insgesamt 8, 10 oder 12 Stabsensoren (4) angeordnet sind.
12. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Platten (2, 3) parallel zueinander angeordnet sind.
13. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,- dass die Aussparung (13) im Bereich der Auflagelinie (14) des sphärischen Anschlussstückes (10) kegelstumpfförmig ausgestaltet ist.
14. Dynamometer nach Anspruch 13, dadurch gekennzeichnet, dass das sphärische Anschlussstück (10) mit einer Klemmvorrichtung (15) an der jeweiligen Platte (2, 3) fixiert ist .
15. Dynamometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die obere Platte (3) Befestigungsvorrichtungen (16) aufweist zürn Fixieren eines Werkstücks.
16. Dynamometer nach einem- Anspruch 15 zum Messen von Kräften und Momenten beim Bearbeiten, insbesondere beim Fräsen eines Werkstückes, das auf der oberen Platte (3) fixiert ist .
PCT/CH2012/000106 2011-05-17 2012-05-16 6-komponenten dynamometer WO2012155282A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00828/11A CH704968A1 (de) 2011-05-17 2011-05-17 6-Komponenten-Dynamometer.
CH828/11 2011-05-17

Publications (2)

Publication Number Publication Date
WO2012155282A2 true WO2012155282A2 (de) 2012-11-22
WO2012155282A3 WO2012155282A3 (de) 2013-03-21

Family

ID=47177387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2012/000106 WO2012155282A2 (de) 2011-05-17 2012-05-16 6-komponenten dynamometer

Country Status (2)

Country Link
CH (1) CH704968A1 (de)
WO (1) WO2012155282A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674385A (zh) * 2013-11-20 2014-03-26 上海宇航系统工程研究所 一种新型六维力传感器装置
DE102012223189A1 (de) * 2012-12-14 2014-06-18 Zf Friedrichshafen Ag Mehrkomponentensensor
FR3001540A1 (fr) * 2013-01-25 2014-08-01 Centre Nat Rech Scient Dispositif de mesure de torseur d'efforts, de structure du type multipode
DE102014117244A1 (de) * 2014-11-25 2016-05-25 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät und Verfahren zur Kompensation großer Werkstückmassen
ES2651720A1 (es) * 2016-07-26 2018-01-29 Universidade De Vigo Sistema de fijación mecánico flexible reconfigurable para la medición de desplazamientos y fuerzas
US11566954B2 (en) 2019-12-26 2023-01-31 Industrial Technology Research Institute Force measurement device for measuring low-frequency force and high-frequency force

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2529333A1 (fr) * 1982-06-25 1983-12-30 Onera (Off Nat Aerospatiale) Poignet a detection de six composantes d'effort
FR2549916B1 (fr) * 1983-07-25 1988-05-20 Onera (Off Nat Aerospatiale) Dispositif d'articulation actif a compliance
JPH07102510B2 (ja) * 1993-05-21 1995-11-08 工業技術院長 マイクロマニピュレータ
US6105438A (en) * 1998-09-11 2000-08-22 The United States Of America As Represented By The Secretary Of The Navy Reconfigurable multiple component load measuring device
DE10217018B4 (de) * 2002-04-12 2004-06-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Monolithisch ausgebildeter Kraft-Moment-Sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223189A1 (de) * 2012-12-14 2014-06-18 Zf Friedrichshafen Ag Mehrkomponentensensor
FR3001540A1 (fr) * 2013-01-25 2014-08-01 Centre Nat Rech Scient Dispositif de mesure de torseur d'efforts, de structure du type multipode
CN103674385A (zh) * 2013-11-20 2014-03-26 上海宇航系统工程研究所 一种新型六维力传感器装置
DE102014117244A1 (de) * 2014-11-25 2016-05-25 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät und Verfahren zur Kompensation großer Werkstückmassen
US10451398B2 (en) 2014-11-25 2019-10-22 Carl Zeiss Industrielle Messtechnik Gmbh Coordinate measuring machine and method for compensating for large workpiece masses
ES2651720A1 (es) * 2016-07-26 2018-01-29 Universidade De Vigo Sistema de fijación mecánico flexible reconfigurable para la medición de desplazamientos y fuerzas
US11566954B2 (en) 2019-12-26 2023-01-31 Industrial Technology Research Institute Force measurement device for measuring low-frequency force and high-frequency force

Also Published As

Publication number Publication date
WO2012155282A3 (de) 2013-03-21
CH704968A1 (de) 2012-11-30

Similar Documents

Publication Publication Date Title
WO2012155282A2 (de) 6-komponenten dynamometer
EP2395335B1 (de) Drehmoment-Aufnehmer mit U-Profil-Steg
EP1588118B1 (de) Tastkopf für ein koordinatenmessgerät
DE4336773C2 (de) Einrichtung zum Messen von Drücken, Kräften und Momenten
CH628433A5 (de) Kraft-drehmoment-fuehler.
EP2153185B1 (de) Justierbare parallelführung für kompakte gravimetrische messinstrumente
WO1997003296A1 (de) Messeinrichtung für die dehnung eines gewindebolzens oder einer schraube
DE2824121A1 (de) Dehnungsmessvorrichtung
EP0136437B1 (de) Mehrkomponentenkraft- und -momentenmesskörper mit Dehnungsmessstreifen
EP2312261B1 (de) Vorrichtung zur Überprüfung der Genauigkeit von Werkzeugmaschinen und Messeinrichtungen
EP1672335A1 (de) Wägemodul mit einer positionspräzisen Überlastschutzvorrichtung
DE60309681T2 (de) Ausdehnungsmesssonde
DE2637952B2 (de) Kraftmeßelement zur Bildung einer KraftmeBplattform
EP0573806B1 (de) Präzisionswaage
EP0338325A1 (de) Ringtorsions-Kraftmessvorrichtung
DE102004033925B4 (de) Drehmoment-Messaufnehmer
DE102006044522A1 (de) Vorrichtung zur Bestimmung von Torsionsmomenten im Submikronewtonmeterbereich
DE3225173C2 (de) Verbindungsvorrichtung zur Verbindung einer Werkzeugmaschinenspindel mit kegelförmiger Aufnahmebohrung mit einem Werkzeughalter
EP1292809B1 (de) Sensor zur dehnungs- und spannungsaufnahme in festen materialien
DD218458A1 (de) Kraft-momenten-fuehler
DE10238077B4 (de) Drehmoment-Normalmesseinrichtung
DE202016008911U1 (de) Ein- oder mehrachsige Kraftmesseinrichtung mit kurzer Verformungszone
EP2502022A1 (de) Mess- und prüfvorrichtung mit segmentiertem gewinde und zueinander verstellbaren gewindesegmenten
DE102010016211B4 (de) Verfahren zur Überwachung von Schraubverbindungen sowie Schrauben oder Schraubenbolzen zur Überwachung von Schraubverbindungen an Flanschverbindungen.
DE102019215294B4 (de) Robotik-Kraftmesseinrichtung

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12724536

Country of ref document: EP

Kind code of ref document: A2