WO2012153625A1 - Coated film - Google Patents

Coated film Download PDF

Info

Publication number
WO2012153625A1
WO2012153625A1 PCT/JP2012/060872 JP2012060872W WO2012153625A1 WO 2012153625 A1 WO2012153625 A1 WO 2012153625A1 JP 2012060872 W JP2012060872 W JP 2012060872W WO 2012153625 A1 WO2012153625 A1 WO 2012153625A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
compound
film
coating
polyester
Prior art date
Application number
PCT/JP2012/060872
Other languages
French (fr)
Japanese (ja)
Inventor
川崎泰史
藤田真人
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2012153625A1 publication Critical patent/WO2012153625A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a coated film, for example, a coated film that needs to reduce interference unevenness due to reflection of external light, such as a liquid crystal display, a plasma display panel, and organic electroluminescence.
  • polyester films are frequently used for various optical films, and are used for applications such as touch panels, antireflection films, prism sheets, light diffusion sheets, and electromagnetic wave shielding films, which are members of liquid crystals and plasma displays.
  • the base film used for these members is required to have excellent transparency and visibility.
  • polyester films are often hard-coated to improve performance such as curling prevention, scratching prevention, and surface hardness.
  • the polyester film excellent in transparency and mechanical characteristics is generally used as a base material.
  • an easily adhesive coating layer is generally provided as an intermediate layer. For this reason, interference unevenness occurs unless the refractive index of the three layers of the polyester film, the easily adhesive coating layer, and the hard coat layer is taken into consideration.
  • the refractive index of the coating layer for reducing interference unevenness is considered to be around the geometric mean of the refractive index of the polyester film of the substrate and the refractive index of the hard coat layer, and is adjusted to the refractive index around this. Ideally. Since the refractive index of the polyester film is high, it is generally necessary to design the coating layer with a high refractive index.
  • An example of improving interference unevenness by increasing the refractive index of the coating layer is, for example, a method of combining a metal chelate compound having a high refractive index and a resin in the coating layer (Patent Document 1).
  • the stability of the coating solution may not be sufficient depending on the combination due to the instability of the metal chelate in the aqueous solution, which may lead to an increase in the liquid exchange work when producing for a long time.
  • the high refractive index material used normally is inferior to adhesiveness with surface functional layers, such as a hard-coat layer. Therefore, a coating layer that can effectively improve adhesion even when combined with a high refractive index material is required.
  • the present invention has been made in view of the above circumstances, and the problem to be solved is that interference unevenness due to reflection of external light is reduced, the adhesiveness with various surface functional layers such as a hard coat is excellent, and ultraviolet rays are absorbed. It is in providing the coating film which can be performed.
  • the gist of the present invention is a coating film having a coating layer on at least one outermost layer of the polyester film, wherein at least one layer of the polyester film contains an ultraviolet absorber, and the coating layer is a metal oxide.
  • Product (A), and two or more kinds of crosslinking agents (B) each selected from the group of oxazoline compounds, epoxy compounds, melamine compounds, isocyanate compounds, carbodiimide compounds, metal chelate compounds, and silane coupling compounds A coating film characterized in that it is formed from a coating solution and has one minimum value in the wavelength range of 400 to 800 nm, and the absolute reflectance at the minimum value is 4.0% or more. Exist.
  • the coated film of the present invention when various surface functional layers such as a hard coat are laminated, interference unevenness due to reflection of external light is small, adhesion with various surface functional layers is excellent, and ultraviolet rays can be absorbed. Can be provided, and its industrial value is high.
  • the polyester film constituting the coated film in the present invention may have a single layer structure or a multilayer structure, and may have four or more layers as long as the gist of the present invention is not exceeded other than the two-layer or three-layer structure. It may be a multilayer and is not particularly limited.
  • the polyester used in the present invention may be a homopolyester or a copolyester.
  • a homopolyester those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
  • the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid
  • examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
  • Typical polyester includes polyethylene terephthalate and the like.
  • examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (for example, p-oxybenzoic acid).
  • examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexanedimethanol, neopentyl glycol and the like.
  • the polymerization catalyst for polyester is not particularly limited, and conventionally known compounds can be used. Examples thereof include antimony compounds, titanium compounds, germanium compounds, manganese compounds, aluminum compounds, magnesium compounds, calcium compounds and the like.
  • the polyester film of the present invention it is necessary to contain an ultraviolet absorber in order to improve the weather resistance of the film and prevent deterioration of the liquid crystal of the liquid crystal display.
  • the ultraviolet absorber is not particularly limited as long as it is a compound that absorbs ultraviolet rays and can withstand the heat applied in the production process of the polyester film.
  • an organic ultraviolet absorber there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • an organic type ultraviolet absorber For example, a cyclic imino ester type, a benzotriazole type, a benzophenone type etc. are mentioned. From the viewpoint of durability, a cyclic imino ester type and a benzotriazole type are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
  • the cyclic imino ester-based ultraviolet absorber is not limited to the following, and examples thereof include 2-methyl-3,1-benzoxazin-4-one and 2-butyl-3,1-benzoxazine-4. -One, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1-benzoxazin-4-one, 2- (4-biphenyl) -3, 1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl-3,1-benzoxazin-4-one, 2-p-benzoyl Phenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o-methoxyphenyl-3,1-benzoxazin-4-one 2-cyclohexyl-3,1-benzoxazin-4-one, 2-
  • the benzotriazole-based ultraviolet absorber is not limited to the following, and examples thereof include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2 '-Hydroxy-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2'- Hydroxy-5 '-(methacryloyloxyhexyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-tert-butyl-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2 -[2'-hydroxy-5'-tert-butyl-3 '-(methac Royloxyethyl)
  • a benzoxazinone-based compound which is difficult to be yellowed is preferably used.
  • a compound represented by the following general formula (1) is more preferably used. It is done.
  • R represents a divalent aromatic hydrocarbon group
  • X 1 and X 2 are each independently selected from hydrogen or the following functional group group, but are not necessarily limited thereto.
  • the amount of the ultraviolet absorber to be contained in the coated film of the present invention depends on the thickness of the polyester film and cannot be generally stated, but is usually 0.1 to 10% by weight, preferably 0.2 to 3% by weight. %, More preferably 0.3 to 2% by weight.
  • the ultraviolet absorber is less than 0.1% by weight, the ultraviolet ray cannot be sufficiently absorbed, and the liquid crystal is easily deteriorated by the ultraviolet ray transmitted through the polyester film, so that the amount of the ultraviolet absorber exceeding 10% by weight is contained. In such a case, the ultraviolet absorber may bleed out on the surface, which may cause deterioration in surface functionality such as adhesion deterioration.
  • the ultraviolet absorber is preferably blended in the intermediate layer.
  • the compound can be prevented from bleeding out to the film surface, and as a result, properties such as film adhesion can be maintained.
  • a three-layer structure is preferable from the viewpoint that stable production can be achieved even in a multilayer structure.
  • the light transmittance at a wavelength of 380 nm is 10% or less, preferably 5% or less, more preferably 2% or less, as a measure of the amount of ultraviolet rays. If it is 1% or less, it is a very preferable state.
  • the light transmittance at a wavelength of 380 nm can be adjusted by changing the type and amount of the above-described ultraviolet absorber.
  • the polyester layer of the film of the present invention it is preferable to blend particles for the main purpose of imparting slipperiness and preventing scratches in each step.
  • the kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness.
  • Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid.
  • examples include inorganic particles such as magnesium, kaolin, aluminum oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin.
  • precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
  • the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction
  • the average particle diameter of the particles is usually 0.01 to 5 ⁇ m, preferably 0.01 to 3 ⁇ m. If the average particle size is less than 0.01 ⁇ m, the slipperiness may not be sufficiently imparted, or the particles may be aggregated to make the dispersibility insufficient, thereby reducing the transparency of the film. On the other hand, when the thickness exceeds 5 ⁇ m, the surface roughness of the film becomes too rough, and a problem may occur when various surface functional layers are applied in a subsequent process.
  • the particle content in the polyester layer is usually 0.0001 to 5% by weight, preferably 0.0003 to 3% by weight.
  • the slipperiness of the film may be insufficient.
  • the content exceeds 5% by weight the transparency of the film is insufficient. There is.
  • the method for adding particles to the polyester layer is not particularly limited, and a conventionally known method can be adopted.
  • it can be added at any stage for producing the polyester constituting each layer, but it is preferably added after completion of esterification or transesterification.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder is done by methods.
  • antioxidants In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments, and the like can be added to the polyester film in the present invention as necessary.
  • the thickness of the polyester film in the present invention is not particularly limited as long as it can be formed as a film, but is usually 10 to 300 ⁇ m, preferably 25 to 250 ⁇ m.
  • a production example of the polyester film in the present invention will be specifically described, but is not limited to the following production examples. That is, a method of using the polyester raw material described above and cooling and solidifying a molten sheet extruded from a die with a cooling roll to obtain an unstretched sheet is preferable. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine.
  • the stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times.
  • the film is stretched in the direction perpendicular to the first stretching direction.
  • the stretching temperature is usually 70 to 170 ° C.
  • the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there.
  • heat treatment is performed at a temperature of 180 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film.
  • a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
  • the simultaneous biaxial stretching method can also be adopted for the production of the polyester film constituting the coated film.
  • the simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is usually controlled at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film.
  • a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
  • the coating layer constituting the coating film in the present invention
  • it may be provided by in-line coating which treats the film surface during the process of forming a polyester film, or offline coating which is applied outside the system on a once produced film may be adopted. Since the coating can be performed simultaneously with the film formation, the production can be handled at a low cost, and therefore in-line coating is preferably used.
  • the in-line coating is not limited to the following, for example, in the sequential biaxial stretching, a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished.
  • a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished.
  • the coating layer is provided on the polyester film by in-line coating, it is possible to apply at the same time as the film formation, and the coating layer can be processed at a high temperature in the heat treatment process of the polyester film after stretching. Performances such as adhesion to various surface functional layers that can be formed on the layer and heat-and-moisture resistance can be improved.
  • the thickness of an application layer can also be changed with a draw ratio, and compared with offline coating, thin film coating can be performed more easily. That is, a film suitable as a polyester film can be produced by in-line coating, particularly coating before stretching.
  • At least one surface of a polyester film containing an ultraviolet absorber has a coating layer formed from a coating solution containing a metal oxide (A) and two or more types of crosslinking agents (B), It is an essential requirement to have a coating layer having one minimum value in the wavelength range of 400 to 800 nm and having an absolute reflectance of 4.0% or more at the minimum value. is there.
  • the metal oxide in the present invention is mainly used for adjusting the refractive index of the coating layer.
  • the refractive index of the resin used in the coating layer is low, it is preferable to use a metal oxide having a high refractive index, and it is preferable to use a refractive index of 1.7 or more.
  • the metal oxide include, for example, zirconium oxide, titanium oxide, tin oxide, yttrium oxide, antimony oxide, indium oxide, zinc oxide, antimontin oxide, indium tin oxide, and the like. You may use 2 or more types. Among these, zirconium oxide and titanium oxide are more preferably used. In particular, zirconium oxide is more preferably used from the viewpoint of weather resistance.
  • the metal oxide is preferably used in the form of particles because there is a concern that the adhesion may be lowered depending on the use form, and the average particle size is preferably 100 nm or less, more preferably from the viewpoint of transparency. It is 50 nm or less, more preferably 25 nm or less.
  • the coating liquid for forming the coating layer contains two or more types of crosslinking agents, but these have adhesion with a surface functional layer such as a hard coat layer provided on the coating layer. Can be improved.
  • a surface functional layer such as a hard coat layer provided on the coating layer.
  • crosslinking agent in the present invention examples include oxazoline compounds, epoxy compounds, melamine compounds, isocyanate compounds, carbodiimide compounds, metal chelate compounds, and silane coupling compounds.
  • crosslinking agents from the viewpoint of good adhesion, it is particularly preferable to use an oxazoline compound or an epoxy compound, and it is more preferable to use an oxazoline compound and an epoxy compound in combination.
  • An oxazoline compound is a compound having an oxazoline group in the molecule.
  • a polymer containing an oxazoline group is preferable, and it can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer.
  • alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene
  • Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alky
  • An epoxy compound is a compound having an epoxy group in the molecule.
  • Examples include condensates of epichlorohydrin with hydroxyl groups and amino groups such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, and bisphenol A, and polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. is there.
  • polyepoxy compound examples include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane.
  • polyglycidyl ether and diepoxy compound examples include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether.
  • Polypropylene glycol diglycidyl ether polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N′-tetraglycidyl-m-xylyl. Examples include range amine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
  • the melamine compound is a compound having a melamine skeleton in the compound.
  • an alkylolated melamine derivative a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and a mixture thereof can be used.
  • alcohol used for etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used.
  • a melamine compound either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used.
  • a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
  • the isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate.
  • isocyanates include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate.
  • Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate
  • Alicyclic isocyanates such as bets are exemplified.
  • polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination.
  • isocyanates aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
  • the blocking agent When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol.
  • active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ⁇ -caprolactam and ⁇ -valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetal Examples include oxime compounds such as dooxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
  • the isocyanate compound in the present invention may be used alone or as a mixture or combination with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
  • a carbodiimide-based compound is a compound having a carbodiimide or carbodiimide derivative structure, and improves adhesion with a surface functional layer such as a hard coat layer that can be formed on the coating layer, and improves the heat and moisture resistance of the coating layer. It is used for.
  • the carbodiimide compound is a compound having one or more carbodiimide or carbodiimide derivative structures in the molecule, but a polycarbodiimide compound having two or more in the molecule is more preferable for better adhesion and the like.
  • the carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used.
  • the diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used.
  • tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.
  • cross-linking agents are used in a design that improves the performance of the coating layer by reacting in the drying process or film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.
  • the coated film of the present invention various improvements are made to improve the coated surface, reduce interference unevenness when various surface functional layers such as a hard coat layer are laminated on the coated surface, and improve transparency and adhesion. It is preferable to use a polymer of
  • the polymer examples include polyester resin, acrylic resin, urethane resin, polyvinyl (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymer, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starches. Etc.
  • a polyester resin, an acrylic resin, or a urethane resin from the viewpoint of improving adhesion with a surface functional layer such as a hard coat layer and improving the appearance of coating.
  • a polyester resin is particularly preferable from the viewpoint that a large number of aromatic compounds such as a benzene ring can be contained in the molecule, thereby increasing the refractive index.
  • the condensed polycyclic aromatic compound is preferably a polymer compound such as a polyester resin, an acrylic resin, or a urethane resin.
  • polyester resins are more preferable because more condensed polycyclic aromatics can be introduced.
  • a method of incorporating the condensed polycyclic aromatic into the polyester resin for example, two or more hydroxyl groups are introduced into the condensed polycyclic aromatic as a substituent to form a diol component or a polyvalent hydroxyl component, or There is a method in which two or more acid groups are introduced to prepare a dicarboxylic acid component or a polyvalent carboxylic acid component.
  • the condensed polycyclic aromatic contained in the coating layer is preferably a compound having a naphthalene skeleton in that it is difficult to be colored.
  • a resin in which a naphthalene skeleton is incorporated as a polyester component is suitably used in terms of good adhesion to various surface functional layers formed on the coating layer and transparency.
  • Representative examples of the naphthalene skeleton include 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid.
  • the condensed polycyclic aromatic has a refractive index of a refractive index by introducing a substituent containing a sulfur element, an aromatic substituent such as a phenyl group, a halogen element group, and the like. Improvements can be expected, and substituents such as alkyl groups, ester groups, and amide groups may be introduced from the viewpoints of coatability and adhesion.
  • the coating layer may contain particles other than the above-described metal oxide for the purpose of improving the adhesion and slipperiness of the coating layer.
  • the average particle diameter is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and particularly preferably 0.2 ⁇ m or less from the viewpoint of the transparency of the film.
  • Specific examples of the particles include silica, alumina, kaolin, calcium carbonate, and organic particles.
  • the coating layer has an antifoaming agent, a coating property improving agent, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, an antioxidant, foaming as necessary. Agents, dyes, pigments and the like may be contained.
  • the content of the metal oxide (A) in the coating solution is usually 3 to 70% by weight, preferably 5 to 50% by weight, more preferably 5 to 40% by weight, and particularly preferably 8% as a ratio to the total nonvolatile components. ⁇ 30% by weight.
  • the amount of the metal oxide is less than 3% by weight, the refractive index of the coating layer cannot be made sufficiently high, so that interference unevenness may not be reduced.
  • it exceeds 70% by weight the coating layer is transparent. Sexuality may worsen.
  • the content of the two or more kinds of crosslinking agents (B) in the coating solution is usually 2 to 80% by weight, more preferably 4 to 60% by weight, and further preferably 10 to 40% by weight as a ratio to the total nonvolatile components. is there. If it is out of these ranges, if there is a possibility that the adhesion with the surface functional layer such as the hard coat layer may be lowered, or if the coated surface condition deteriorates, the surface functional layer such as the hard coat layer is formed. Visibility may not be good due to uneven interference.
  • the content of the oxazoline compound in the nonvolatile component of the coating solution is usually 1 to 50% by weight, more preferably 1 to 30% by weight, and further preferably 3 to 20% by weight. . If the amount is less than 1% by weight, there is a concern that the adhesion to the surface functional layer such as a hard coat layer may be lowered. If the amount exceeds 50% by weight, the refractive index of the coating layer is lowered, thereby causing a hard coat layer or the like. Visibility may not be good due to interference unevenness after the surface functional layer is formed.
  • the content of the epoxy compound in the non-volatile component of the coating solution is usually 1 to 50% by weight, more preferably 3 to 30% by weight, and still more preferably 5 to 20% by weight. is there. When it is out of these ranges, there is a possibility that the adhesion with the surface functional layer such as the hard coat layer may be lowered, or the coated surface state may be deteriorated.
  • the proportion of the condensed polycyclic aromatic compound in the compound is usually 5 to 80% by weight, preferably 10 to 60%. % By weight.
  • the content of the condensed polycyclic aromatic compound in the nonvolatile component of the coating solution is usually 80% by weight or less, preferably 5 to 70% by weight, and more preferably 10 to 50% by weight.
  • the ratio of the condensed polycyclic aromatic can be determined by, for example, dissolving and extracting the coating layer with an appropriate solvent or warm water, separating by chromatography, analyzing the structure by NMR or IR, and further pyrolyzing GC-MS (gas It can be determined by analysis by chromatography mass spectrometry) or optical analysis.
  • a coating layer can also be provided on the surface opposite to the surface on which the coating layer is provided.
  • a functional layer such as a microlens layer, a prism layer, an anti-sticking layer, a light diffusion layer, a hard coat layer, an adhesive layer, or a print layer
  • Adhesion with the functional layer can be improved.
  • a conventionally well-known thing can be used as a component of the coating layer formed in the surface on the opposite side.
  • binder polymers such as polyester resins, acrylic resins and urethane resins, cross-linking agents such as oxazoline compounds, epoxy compounds, melamine compounds and isocyanate compounds, and these materials may be used alone or in combination. May be used in combination. Further, it may be a coating layer (a coating layer having the same surface on both sides of the polyester film) containing a metal oxide, a compound derived from an oxazoline compound, and a compound derived from an epoxy compound as described above.
  • the analysis of the components in the coating layer can be performed, for example, by analysis of TOF-SIMS, ESCA, fluorescent X-rays and the like.
  • a coating layer When providing a coating layer by in-line coating, apply the above-mentioned series of compounds as an aqueous solution or water dispersion on a polyester film with a coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight. It is preferable to produce a coated film at. Moreover, in the range which does not impair the main point of this invention, a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.
  • the thickness of the coated layer provided on the polyester film is usually 0.04 to 0.20 ⁇ m, preferably 0.07 to 0.15 ⁇ m.
  • the film thickness is out of the above range, visibility may deteriorate due to interference unevenness after the surface functional layer is laminated.
  • a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating or the like can be used.
  • the drying and curing conditions for forming the coating layer on the polyester film are not particularly limited.
  • the coating layer is provided by off-line coating, it is usually 3 to 40 at 80 to 200 ° C.
  • the heat treatment should be performed for a second, preferably 100 to 180 ° C. for 3 to 40 seconds.
  • the coating layer is provided by in-line coating, it is usually preferable to perform heat treatment at 70 to 280 ° C. for 3 to 200 seconds as a guide.
  • polyester film constituting the coating film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
  • the coating layer in the present invention has a refractive index adjusted to suppress the occurrence of interference unevenness, and the refractive index (1.55-1.65) is the polyester film (refractive index) of the substrate. : 1.60 to 1.70) and S (refractive index of 1.45 to 1.65) in the vicinity of the geometric mean of the hard coat layer and the like.
  • the refractive index of the coating layer and the reflectance of the coating layer are closely related.
  • For the absolute reflectance of the present invention a graph showing the wavelength on the horizontal axis and the reflectance on the vertical axis is drawn, and the minimum value of the reflectance needs to be one in the wavelength range of 400 to 800 nm, and the minimum value is 4 0.0% or more. In the absolute reflectance range of the present invention, if the minimum value appears at the same wavelength, the reflectance of the minimum value is a high value when the refractive index is high, and a low value when the refractive index is low.
  • the absolute reflectance has one minimum value in the wavelength range of 400 to 800 nm, more preferably one minimum value in the wavelength range of 500 to 700 nm.
  • the minimum value is usually 4.0 to 6.5%, preferably 4.5 to 6.2%. If the minimum value in the wavelength range of 400 to 800 nm is not one, and if the absolute reflectance of the minimum value is outside the above value, interference unevenness occurs after the surface functional layer such as the hard coat layer is formed. The visibility of the film may be reduced.
  • a film having high transparency is more preferred for use in applications requiring transparency such as for displays.
  • haze is mentioned as one index of transparency, and the value is usually 1.5% or less, preferably 1.2% or less, and more preferably 1.0% or less.
  • the visibility of the film may be lowered.
  • the polyester film of the present invention is generally provided with a surface functional layer such as a hard coat layer on the coating layer.
  • a surface functional layer such as a hard coat layer on the coating layer.
  • cured materials such as reactive silicon compounds, such as monofunctional (meth) acrylate, polyfunctional (meth) acrylate, and tetraethoxysilane.
  • reactive silicon compounds such as monofunctional (meth) acrylate, polyfunctional (meth) acrylate, and tetraethoxysilane.
  • a polymerization cured product of a composition containing an ultraviolet curable polyfunctional (meth) acrylate is particularly preferable.
  • composition containing an ultraviolet curable polyfunctional (meth) acrylate is not particularly limited.
  • the UV-curable polyfunctional (meth) acrylate is not particularly limited.
  • composition containing an ultraviolet curable polyfunctional (meth) acrylate are not particularly limited. Examples thereof include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers, and leveling agents.
  • inorganic or organic fine particles include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers, and leveling agents.
  • an arbitrary amount of solvent can be added.
  • the hard coat layer when an organic material is used, a general wet coat method such as a roll coat method or a die coat method is employed.
  • the formed hard coat layer can be subjected to a curing reaction by heating, irradiation with active energy rays such as ultraviolet rays and electron beams as necessary.
  • the refractive index of the surface functional layer formed on the coating layer is generally 1.45 to 1.65 as described above.
  • Coating layer thickness measurement method The surface of the coating layer was dyed with RuO 4 and embedded in an epoxy resin. Thereafter, the section prepared by the ultrathin section method was stained with RuO 4 , and the cross section of the coating layer was measured using TEM (H-7650 manufactured by Hitachi High-Technologies Corporation, acceleration voltage 100 V).
  • Haze measurement method Measurement was performed according to JIS K 7136 using a haze meter HM-150 manufactured by Murakami Color Research Laboratory.
  • the obtained film is visually observed under a three-wavelength light area type fluorescent lamp, and interference unevenness is observed.
  • a when interference unevenness cannot be confirmed is A
  • B is thin but linear.
  • the case where the interference unevenness was confirmed was C
  • the case where the clear interference unevenness was confirmed was D.
  • Evaluation method of adhesion In order to evaluate the tighter adhesion, the materials obtained by removing antimony pentoxide from the hard coat liquid used in the evaluation of the above (5) were examined. That is, 80 parts by weight of dipentaerythritol hexaacrylate, 20 parts by weight of 2-hydroxy-3-phenoxypropyl acrylate, 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals), and 200 parts by weight of methyl ethyl ketone The coating liquid was applied so as to have a dry film thickness of 5 ⁇ m and cured by irradiating with ultraviolet rays to form a hard coat layer.
  • a photopolymerization initiator trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals
  • the obtained film was subjected to 10 ⁇ 10 cross-cut after 100 hours in an environment of 80 ° C. and 90% RH, and then a 18 mm wide tape (cello tape (registered trademark) CT manufactured by Nichiban Co., Ltd.) -18) is attached, and the peeled surface is observed after abrupt peeling at a 180 degree peel angle.
  • a 18 mm wide tape cello tape (registered trademark) CT manufactured by Nichiban Co., Ltd.) -18
  • B is 10%. If it is less than 50%, it is C, and if it is 50% or more, it is D.
  • the polyester used in the examples and comparative examples was prepared as follows. ⁇ Method for producing polyester (A)> Using 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol as starting materials, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst is placed in the reactor, the reaction start temperature is set to 150 ° C., and the methanol is distilled off gradually. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part by weight of ethyl acid phosphate to this reaction mixture, 0.04 part by weight of antimony trioxide was added, and a polycondensation reaction was carried out for 4 hours.
  • the temperature was gradually raised from 230 ° C. to 280 ° C.
  • the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg.
  • the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.63 due to a change in stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure.
  • the intrinsic viscosity of the obtained polyester (A) was 0.63.
  • ⁇ Method for producing polyester (B)> In the method for producing polyester (A), after adding 0.04 part by weight of ethyl acid phosphate, 0.2 part by weight of silica particles dispersed in ethylene glycol having an average particle size of 1.6 ⁇ m and 0.04 part of antimony trioxide are obtained.
  • a polyester (B) was obtained using the same method as the production method of the polyester (A) except that the polycondensation reaction was stopped at a time corresponding to the intrinsic viscosity of 0.65 by adding parts by weight. The obtained polyester (B) had an intrinsic viscosity of 0.65.
  • polyester (C) ⁇ Method for producing polyester (C)>
  • the polyester (A) was subjected to a vented twin screw extruder and 2,2 ′-(1,4-phenylene) bis [4H-3,1-benzoxazin-4-one] (manufactured by CYTEC Co., Ltd.) as an ultraviolet absorber.
  • “CYASORB UV-3638” molecular weight 369) was supplied to a concentration of 10% by weight, melt-kneaded to form chips, and an ultraviolet absorbent master batch polyester (C) was prepared.
  • the intrinsic viscosity of the obtained polyester (C) was 0.59.
  • Examples of compounds constituting the coating layer are as follows.
  • Oxazoline compounds (IIA) Acrylic polymer “Epocross WS-500” having an oxazoline group and a polyalkylene oxide chain (manufactured by Nippon Shokubai Co., Ltd., containing about 38% by weight of 1-methoxy-2-propanol solvent) ⁇ Oxazoline compounds: (IIB) Acrylic polymer “Epocross WS-700” having an oxazoline group and a polyalkylene oxide chain (manufactured by Nippon Shokubai Co., Ltd., VOC free type)
  • Example 1 A mixed raw material in which polyesters (A) and (B) are mixed at a ratio of 90% and 10%, respectively, is used as a raw material for the outermost layer (surface layer), and polyesters (A) and (C) are respectively at a ratio of 90% and 10%.
  • the absolute reflectance of the obtained polyester film was measured, the minimum value was 600 nm, and the reflectance was 4.2%.
  • the film after laminating the hard coat layer had no clear interference unevenness, good adhesion, low haze, and good transparency.
  • permeability in 380 nm was 0.4%, and it has confirmed that it was absorbing the ultraviolet-ray.
  • Table 2 The properties of this film are shown in Table 2 below.
  • Example 1 In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film. As shown in Table 2, the finished polyester film had high reflectivity, good interference unevenness level, and good adhesion.
  • Example 22 A mixed raw material obtained by mixing polyester (A) and (B) at a ratio of 90% and 10%, respectively, is used as a raw material for the outermost layer (surface layer), and polyesters (A) and (C) are at a ratio of 94% and 6%, respectively.
  • a polyester film was obtained in the same manner as in Example 1 except that the composition was changed to a thickness of 188 ⁇ m.
  • the completed polyester film is as shown in Table 2. Further, the transmittance at 380 nm was 0.2%, and it was confirmed that ultraviolet rays were absorbed.
  • Comparative Examples 1 to 5 In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film. When the finished coating film was evaluated, as shown in Table 2, when clear interference unevenness could be observed, the adhesion was inferior.
  • Comparative Example 6 A mixed raw material obtained by mixing polyester (A) and (B) at a ratio of 90% and 10%, respectively, is used as a raw material for the outermost layer (surface layer), and polyester (A) is used as a raw material for the intermediate layer.
  • a polyester film was obtained in the same manner as in Example 1 except that the composition was changed to the coating composition shown in 1. When the finished coated film was evaluated, as shown in Table 2, the transmittance at 380 nm was 87.7%, and it was confirmed that ultraviolet rays were not absorbed.
  • the film of the present invention for example, in various optical films that are members of liquid crystal or plasma displays, molding films, etc., for applications that place importance on adhesion and visibility with surface functional layers such as hard coat layers. It can be suitably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a coated film that is suitable for use in situations when it is necessary for a hardcoat layer or the like to have good visibility and adhesion properties, and to be capable of absorbing ultraviolet rays, e.g. in various types of optical films such as the members of a liquid crystal display. Specifically provided is a coated film having a coating layer as the outermost layer on at least one surface of a polyester film, wherein at least one layer of the polyester film includes an ultraviolet ray absorber, and the coating layer is formed from a coating solution including a metal oxide and at least two crosslinking agents, and has an absolute reflectance with a minimum value in the wavelength range of 400-800 nm, said minimum value being an absolute reflectance of at least 4.0%.

Description

塗布フィルムCoating film
 本発明は、塗布フィルムに関するものであり、例えば、液晶ディスプレイ、プラズマディスプレイパネル、有機エレクトロルミネッセンス等、外光反射による干渉ムラの軽減が必要な塗布フィルムに関するものである。 The present invention relates to a coated film, for example, a coated film that needs to reduce interference unevenness due to reflection of external light, such as a liquid crystal display, a plasma display panel, and organic electroluminescence.
 近年、ポリエステルフィルムは、各種の光学用フィルムに多く用いられ、液晶やプラズマディスプレイ等の部材であるタッチパネル、反射防止フィルム、プリズムシート、光拡散シート、電磁波シールドフィルム等の用途に用いられている。これらの部材に用いられるベースフィルムには優れた透明性、視認性が要求される。 In recent years, polyester films are frequently used for various optical films, and are used for applications such as touch panels, antireflection films, prism sheets, light diffusion sheets, and electromagnetic wave shielding films, which are members of liquid crystals and plasma displays. The base film used for these members is required to have excellent transparency and visibility.
 これらフィルムにはカール防止や傷つき防止、表面硬度等の性能を向上させるために、ハードコート加工されることが多い。また、基材としては、透明性、機械特性に優れたポリエステルフィルムが一般的に使用される。ポリエステルフィルムとハードコート層との密着性を向上させるために、中間層として易接着の塗布層が設けられる場合が一般的である。そのため、ポリエステルフィルム、易接着の塗布層、ハードコート層の3層の屈折率を考慮しないと干渉ムラが発生してしまう。 These films are often hard-coated to improve performance such as curling prevention, scratching prevention, and surface hardness. Moreover, as a base material, the polyester film excellent in transparency and mechanical characteristics is generally used. In order to improve the adhesion between the polyester film and the hard coat layer, an easily adhesive coating layer is generally provided as an intermediate layer. For this reason, interference unevenness occurs unless the refractive index of the three layers of the polyester film, the easily adhesive coating layer, and the hard coat layer is taken into consideration.
 干渉ムラのあるフィルムをタッチパネル等のディスプレイに使用すると、視認性の悪いものになってしまい、使用しづらいものとなってしまう。そのため干渉ムラ対策をすることが求められている。一般的には、干渉ムラを軽減させるための塗布層の屈折率は、基材のポリエステルフィルムの屈折率とハードコート層の屈折率の相乗平均付近と考えられ、この辺りの屈折率に調整することが理想的である。ポリエステルフィルムの屈折率が高いため、一般的には塗布層の屈折率を高く設計する必要がある。 If a film with uneven interference is used for a display such as a touch panel, it becomes poorly visible and difficult to use. Therefore, it is required to take measures against interference unevenness. In general, the refractive index of the coating layer for reducing interference unevenness is considered to be around the geometric mean of the refractive index of the polyester film of the substrate and the refractive index of the hard coat layer, and is adjusted to the refractive index around this. Ideally. Since the refractive index of the polyester film is high, it is generally necessary to design the coating layer with a high refractive index.
 塗布層の屈折率を高くして、干渉ムラを改善した例としては、例えば、塗布層中に屈折率の高い金属キレート化合物と樹脂とを組み合わせる方法がある(特許文献1)。この場合は、水溶液中での金属キレートの不安定さから、組み合わせによっては塗布液の安定性が十分でない場合があり、長時間の生産を行う場合、液交換作業の増加を招く可能性がある。また通常用いられる高屈折率材料はハードコート層等の表面機能層との密着性に劣る。そのため高屈折率材料と組み合わせても効果的に密着性を向上することができる塗布層が求められている。 An example of improving interference unevenness by increasing the refractive index of the coating layer is, for example, a method of combining a metal chelate compound having a high refractive index and a resin in the coating layer (Patent Document 1). In this case, the stability of the coating solution may not be sufficient depending on the combination due to the instability of the metal chelate in the aqueous solution, which may lead to an increase in the liquid exchange work when producing for a long time. . Moreover, the high refractive index material used normally is inferior to adhesiveness with surface functional layers, such as a hard-coat layer. Therefore, a coating layer that can effectively improve adhesion even when combined with a high refractive index material is required.
 また、近年、電子ブック、カーナビゲーション、ゲーム機等、屋外で使用される用途でも各種の光学用フィルムが使われている。特に屋外使用の場合は紫外線量が増加するため、液晶をはじめとする部材の劣化が懸念される。そのため、紫外線から各種の部材を守る機能が求められている。 In recent years, various optical films are also used in applications such as e-books, car navigation systems, and game machines that are used outdoors. Particularly in the case of outdoor use, the amount of ultraviolet rays increases, so there is a concern about deterioration of members such as liquid crystal. Therefore, a function for protecting various members from ultraviolet rays is required.
特開2005-97571号公報JP 2005-97571 A
 本発明は、上記実情に鑑みなされたものであって、その解決課題は、外光反射による干渉ムラが軽減され、ハードコート等の各種の表面機能層との密着性に優れ、紫外線を吸収することができる塗布フィルムを提供することにある。 The present invention has been made in view of the above circumstances, and the problem to be solved is that interference unevenness due to reflection of external light is reduced, the adhesiveness with various surface functional layers such as a hard coat is excellent, and ultraviolet rays are absorbed. It is in providing the coating film which can be performed.
 本発明者らは、上記実情に鑑み、鋭意検討した結果、特定の構成からなるポリエステルフィルムを用いれば、上述の課題を容易に解決できることを知見し、本発明を完成させるに至った。 As a result of intensive studies in view of the above circumstances, the present inventors have found that the above-mentioned problems can be easily solved by using a polyester film having a specific configuration, and have completed the present invention.
 すなわち、本発明の要旨は、ポリエステルフィルムの少なくとも片面の最外層に塗布層を有する塗布フィルムであって、上記のポリエステルフィルムの少なくとも一層は紫外線吸収剤を含有し、上記の塗布層は、金属酸化物(A)、およびオキサゾリン化合物、エポキシ化合物、メラミン化合物、イソシアネート系化合物、カルボジイミド系化合物、金属キレート化合物、シランカップリング化合物の群からそれぞれ選択される2種類以上の架橋剤(B)を含有する塗布液から形成され、そして、絶対反射率が波長400~800nmの範囲で極小値を1つ有し、当該極小値における絶対反射率が4.0%以上であることを特徴とする塗布フィルムに存する。 That is, the gist of the present invention is a coating film having a coating layer on at least one outermost layer of the polyester film, wherein at least one layer of the polyester film contains an ultraviolet absorber, and the coating layer is a metal oxide. Product (A), and two or more kinds of crosslinking agents (B) each selected from the group of oxazoline compounds, epoxy compounds, melamine compounds, isocyanate compounds, carbodiimide compounds, metal chelate compounds, and silane coupling compounds A coating film characterized in that it is formed from a coating solution and has one minimum value in the wavelength range of 400 to 800 nm, and the absolute reflectance at the minimum value is 4.0% or more. Exist.
 本発明の塗布フィルムによれば、ハードコート等の種々の表面機能層を積層した際に外光反射による干渉ムラが少なく、種々の表面機能層との密着性に優れ、紫外線を吸収することができるフィルムを提供することができ、その工業的価値は高い。 According to the coated film of the present invention, when various surface functional layers such as a hard coat are laminated, interference unevenness due to reflection of external light is small, adhesion with various surface functional layers is excellent, and ultraviolet rays can be absorbed. Can be provided, and its industrial value is high.
 本発明における塗布フィルムを構成するポリエステルフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。 The polyester film constituting the coated film in the present invention may have a single layer structure or a multilayer structure, and may have four or more layers as long as the gist of the present invention is not exceeded other than the two-layer or three-layer structure. It may be a multilayer and is not particularly limited.
 本発明において使用するポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、p-オキシ安息香酸など)等の一種または二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4-シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。 The polyester used in the present invention may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Typical polyester includes polyethylene terephthalate and the like. On the other hand, examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (for example, p-oxybenzoic acid). One or two or more types can be mentioned, and examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexanedimethanol, neopentyl glycol and the like.
 ポリエステルの重合触媒としては、特に制限はなく、従来公知の化合物を使用することができ、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。 The polymerization catalyst for polyester is not particularly limited, and conventionally known compounds can be used. Examples thereof include antimony compounds, titanium compounds, germanium compounds, manganese compounds, aluminum compounds, magnesium compounds, calcium compounds and the like.
 本発明のポリエステルフィルム中にはフィルムの耐候性の向上、液晶ディスプレイの液晶等の劣化防止のために、紫外線吸収剤を含有させる必要がある。紫外線吸収剤は、紫外線を吸収する化合物で、ポリエステルフィルムの製造工程で付加される熱に耐えうるものであれば特に限定されない。 In the polyester film of the present invention, it is necessary to contain an ultraviolet absorber in order to improve the weather resistance of the film and prevent deterioration of the liquid crystal of the liquid crystal display. The ultraviolet absorber is not particularly limited as long as it is a compound that absorbs ultraviolet rays and can withstand the heat applied in the production process of the polyester film.
 紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤があるが、透明性の観点からは有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、特に限定されないが、例えば、環状イミノエステル系、ベンゾトリアゾール系、ベンゾフェノン系などが挙げられる。耐久性の観点からは環状イミノエステル系、ベンゾトリアゾール系がより好ましい。また、紫外線吸収剤を2種類以上併用して用いることも可能である。 As the ultraviolet absorber, there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency. Although it does not specifically limit as an organic type ultraviolet absorber, For example, a cyclic imino ester type, a benzotriazole type, a benzophenone type etc. are mentioned. From the viewpoint of durability, a cyclic imino ester type and a benzotriazole type are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
 環状イミノエステル系の紫外線吸収剤としては、下記に限定されるものではないが、例えば、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オン、2-(1-または2-ナフチル)-3,1-ベンゾオキサジン-4-オン、2-(4-ビフェニル)-3,1-ベンゾオキサジン-4-オン、2-p-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-m-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-p-ベンゾイルフェニル-3,1-ベンゾオキサジン-4-オン、2-p-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-o-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-シクロヘキシル-3,1-ベンゾオキサジン-4-オン、2-p-(またはm-)フタルイミドフェニル-3,1-ベンゾオキサジン-4-オン、N-フェニル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)フタルイミド、N-ベンゾイル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)アニリン、N-ベンゾイル-N-メチル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)アニリン、2-(p-(N-メチルカルボニル)フェニル)-3,1-ベンゾオキサジン-4-オン、2,2’-ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-エチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-テトラメチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-デカメチレンビス(3,1-ベンゾオキサジン-4-オン、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2,6-または1,5-ナフチレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-メチル-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-ニトロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-クロロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(1,4-シクロヘキシレン)ビス(3,1-ベンゾオキサジン-4-オン)、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ベンゼン、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,4,6-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,8-ジメチル-4H,6H-ベンゾ(1,2-d;5,4-d’)ビス(1,3)-オキサジン-4,6-ジオン、2,7-ジメチル-4H,9H-ベンゾ(1,2-d;4,5-d’)ビス(1,3)-オキサジン-4,9-ジオン、2,8-ジフェニル-4H,8H-ベンゾ(1,2-d;5,4-d’)ビス(1,3)-オキサジン-4,6-ジオン、2,7-ジフェニル-4H,9H-ベンゾ(1,2-d;4,5-d’)ビス(1,3)-オキサジン-4,6-ジオン、6,6’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ビス(2-エチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-エチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ブチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ブチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-オキシビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-スルホニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-カルボニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン、6,7’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)などが挙げられる。 The cyclic imino ester-based ultraviolet absorber is not limited to the following, and examples thereof include 2-methyl-3,1-benzoxazin-4-one and 2-butyl-3,1-benzoxazine-4. -One, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1-benzoxazin-4-one, 2- (4-biphenyl) -3, 1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl-3,1-benzoxazin-4-one, 2-p-benzoyl Phenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o-methoxyphenyl-3,1-benzoxazin-4-one 2-cyclohexyl-3,1-benzoxazin-4-one, 2-p- (or m-) phthalimidophenyl-3,1-benzoxazin-4-one, N-phenyl-4- (3,1-benzo Oxazin-4-one-2-yl) phthalimide, N-benzoyl-4- (3,1-benzoxazin-4-one-2-yl) aniline, N-benzoyl-N-methyl-4- (3,1 -Benzoxazin-4-one-2-yl) aniline, 2- (p- (N-methylcarbonyl) phenyl) -3,1-benzoxazin-4-one, 2,2'-bis (3,1- Benzoxazin-4-one), 2,2′-ethylenebis (3,1-benzoxazin-4-one), 2,2′-tetramethylenebis (3,1-benzoxazin-4-one), 2 , 2'-Deca Tylene bis (3,1-benzoxazin-4-one, 2,2'-p-phenylenebis (3,1-benzoxazin-4-one), 2,2'-m-phenylenebis (3,1-benzo Oxazin-4-one), 2,2 '-(4,4'-diphenylene) bis (3,1-benzoxazin-4-one), 2,2'-(2,6- or 1,5-naphthylene ) Bis (3,1-benzoxazin-4-one), 2,2 ′-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2 -Nitro-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 '-(2-chloro-p-phenylene) bis (3,1-benzoxazin-4-one), 2 , 2 '-(1,4-cyclohexylene) bis (3,1-benzoo Xazin-4-one), 1,3,5-tri (3,1-benzoxazin-4-one-2-yl) benzene, 1,3,5-tri (3,1-benzoxazin-4-one) -2-yl) naphthalene, 2,4,6-tri (3,1-benzoxazin-4-one-2-yl) naphthalene, 2,8-dimethyl-4H, 6H-benzo (1,2-d; 5,4-d ′) bis (1,3) -oxazine-4,6-dione, 2,7-dimethyl-4H, 9H-benzo (1,2-d; 4,5-d ′) bis (1 , 3) -Oxazine-4,9-dione, 2,8-diphenyl-4H, 8H-benzo (1,2-d; 5,4-d ′) bis (1,3) -oxazine-4,6- Dione, 2,7-diphenyl-4H, 9H-benzo (1,2-d; 4,5-d ′) bis (1,3) -oxazine 4,6-dione, 6,6'-bis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6'-bis (2-ethyl-4H, 3,1-benzoxazine -4-one), 6,6'-bis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6'-methylenebis (2-methyl-4H, 3,1-benzoxazine) -4-one), 6,6′-methylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-ethylenebis (2-methyl-4H, 3,1-benzo) Oxazin-4-one), 6,6′-ethylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-butylenebis (2-methyl-4H, 3,1- Benzoxazin-4-one), 6,6′-butylenebis (2 Phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-oxybis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-oxybis (2- Phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-sulfonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-sulfonylbis ( 2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-carbonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-carbonyl Bis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7,7′-methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′- Methylenebis (2-phenyl-4H , 3,1-benzoxazin-4-one), 7,7′-bis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-ethylenebis (2-methyl-) 4H, 3,1-benzoxazin-4-one), 7,7′-oxybis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-sulfonylbis (2-methyl) -4H, 3,1-benzoxazin-4-one), 7,7'-carbonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7'-bis (2- Methyl-4H, 3,1-benzoxazin-4-one), 6,7′-bis (2-phenyl-4H, 3,1-benzoxazin-4-one, 6,7′-methylenebis (2-methyl) -4H, 3,1-benzoxazin-4-one), 6,7 ' Methylene bis (2-phenyl-4H, 3,1-benzoxazin-4-one), and the like.
 ベンゾトリアゾール系の紫外線吸収剤としては、下記に限定されるものではないが、例えば、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシヘキシル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-tert-ブチル-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-tert-ブチル-3’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5'-(メタクリロイルオキシエチル)フェニル]-5-クロロ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-メトキシ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-シアノ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-tert-ブチル-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-ニトロ-2H-ベンゾトリアゾールなどが挙げられる。 The benzotriazole-based ultraviolet absorber is not limited to the following, and examples thereof include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2 '-Hydroxy-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2'- Hydroxy-5 '-(methacryloyloxyhexyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-tert-butyl-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2 -[2'-hydroxy-5'-tert-butyl-3 '-(methac Royloxyethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [2′-hydroxy-5 ′ -(Methacryloyloxyethyl) phenyl] -5-methoxy-2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-cyano-2H-benzotriazole, 2- [2 '-Hydroxy-5'-(methacryloyloxyethyl) phenyl] -5-tert-butyl-2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-nitro-2H -Benzotriazole and the like.
 上記化合物のうち、色調を考慮した場合、黄色味が付きにくいベンゾオキサジノン系の化合物が好適に用いられ、その例としては、下記の一般式(1)で表されるものがより好適に用いられる。 Among the above compounds, when considering the color tone, a benzoxazinone-based compound which is difficult to be yellowed is preferably used. As an example thereof, a compound represented by the following general formula (1) is more preferably used. It is done.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rは2価の芳香族炭化水素基を表しXおよびXはそれぞれ独立して水素または以下の官能基群から選ばれるが、必ずしもこれらに限定されるものではない。 In the above formula, R represents a divalent aromatic hydrocarbon group, and X 1 and X 2 are each independently selected from hydrogen or the following functional group group, but are not necessarily limited thereto.
 官能基群:アルキル基、アリール基、ヘテロアリール基、ハロゲン、アルコキシル基、アリールオキシ基、ヒドロキシル基、カルボキシル基、エステル基、ニトロ基
 上記構造式で表される化合物の中でも、本発明においては、2、2’-(1、4-フェニレン)ビス[4H-3、1-ベンゾオキサジン-4-オン]が特に好ましい。
Functional group: alkyl group, aryl group, heteroaryl group, halogen, alkoxyl group, aryloxy group, hydroxyl group, carboxyl group, ester group, nitro group Among the compounds represented by the above structural formula, in the present invention, 2,2 ′-(1,4-phenylene) bis [4H-3,1-benzoxazin-4-one] is particularly preferred.
 本発明の塗布フィルム中に含有させる紫外線吸収剤の量は、ポリエステルフィルムの厚さにも依存するため一概には言えないが、通常0.1~10重量%、好ましくは0.2~3重量%、さらに好ましくは0.3~2重量%のである。紫外線吸収剤が0.1重量%未満の場合、十分に紫外線を吸収できず、ポリエステルフィルムを透過する紫外線によって、液晶等が劣化しやすくなり、10重量%を超える量の紫外線吸収剤を含有させた場合は、表面に紫外線吸収剤がブリードアウトし、密着性低下等、表面機能性の悪化を招くおそれがある。 The amount of the ultraviolet absorber to be contained in the coated film of the present invention depends on the thickness of the polyester film and cannot be generally stated, but is usually 0.1 to 10% by weight, preferably 0.2 to 3% by weight. %, More preferably 0.3 to 2% by weight. When the ultraviolet absorber is less than 0.1% by weight, the ultraviolet ray cannot be sufficiently absorbed, and the liquid crystal is easily deteriorated by the ultraviolet ray transmitted through the polyester film, so that the amount of the ultraviolet absorber exceeding 10% by weight is contained. In such a case, the ultraviolet absorber may bleed out on the surface, which may cause deterioration in surface functionality such as adhesion deterioration.
 また、多層構造のフィルムの場合、少なくとも3層構造のものが好ましく、紫外線吸収剤は、その中間層に配合することが好ましい。中間層に紫外線吸収剤を配合することにより、当該化合物がフィルム表面へブリードアウトしてくるのを防ぐことができ、その結果、フィルムの密着性等の特性を維持することができる。多層構造の中でも安定した製造ができるという観点において、3層構造が好ましい。 In the case of a multilayer film, it is preferably at least a three-layer structure, and the ultraviolet absorber is preferably blended in the intermediate layer. By blending an ultraviolet absorber in the intermediate layer, the compound can be prevented from bleeding out to the film surface, and as a result, properties such as film adhesion can be maintained. A three-layer structure is preferable from the viewpoint that stable production can be achieved even in a multilayer structure.
 本発明の塗布フィルムによって、紫外線による液晶等の劣化を防止するため、紫外線量の目安として、波長380nmの光線透過率が10%以下、好ましくは5%以下、さらに好ましくは2%以下であり、1%以下であれば非常に好ましい状態である。波長380nmの光線透過率は上述の紫外線吸収剤の種類と量を変更することにより調整することが可能である。 In order to prevent deterioration of the liquid crystal and the like due to ultraviolet rays by the coated film of the present invention, the light transmittance at a wavelength of 380 nm is 10% or less, preferably 5% or less, more preferably 2% or less, as a measure of the amount of ultraviolet rays. If it is 1% or less, it is a very preferable state. The light transmittance at a wavelength of 380 nm can be adjusted by changing the type and amount of the above-described ultraviolet absorber.
 本発明のフィルムのポリエステル層中には、易滑性の付与および各工程での傷発生防止を主たる目的として、粒子を配合することが好ましい。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。 In the polyester layer of the film of the present invention, it is preferable to blend particles for the main purpose of imparting slipperiness and preventing scratches in each step. The kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness. Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid. Examples include inorganic particles such as magnesium, kaolin, aluminum oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
 使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。 The shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color, etc. These series of particles may be used in combination of two or more as required.
 また、粒子の平均粒径は、通常0.01~5μm、好ましくは0.01~3μmである。平均粒径が0.01μm未満の場合には、易滑性を十分に付与できなかったり、粒子が凝集して、分散性が不十分となり、フィルムの透明性を低下させたりする場合がある。一方、5μmを超える場合には、フィルムの表面粗度が粗くなりすぎて、後工程において種々の表面機能層を塗設させる場合等に不具合が生じる場合がある。 The average particle diameter of the particles is usually 0.01 to 5 μm, preferably 0.01 to 3 μm. If the average particle size is less than 0.01 μm, the slipperiness may not be sufficiently imparted, or the particles may be aggregated to make the dispersibility insufficient, thereby reducing the transparency of the film. On the other hand, when the thickness exceeds 5 μm, the surface roughness of the film becomes too rough, and a problem may occur when various surface functional layers are applied in a subsequent process.
 さらにポリエステル層中の粒子含有量は、通常0.0001~5重量%、好ましくは0.0003~3重量%である。粒子含有量が0.0001重量%未満の場合には、フィルムの易滑性が不十分な場合があり、一方、5重量%を超えて添加する場合にはフィルムの透明性が不十分な場合がある。 Further, the particle content in the polyester layer is usually 0.0001 to 5% by weight, preferably 0.0003 to 3% by weight. When the particle content is less than 0.0001% by weight, the slipperiness of the film may be insufficient. On the other hand, when the content exceeds 5% by weight, the transparency of the film is insufficient. There is.
 ポリエステル層中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化もしくはエステル交換反応終了後、添加するのが良い。 The method for adding particles to the polyester layer is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester constituting each layer, but it is preferably added after completion of esterification or transesterification.
 また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。 Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. It is done by methods.
 なお、本発明におけるポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。 In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments, and the like can be added to the polyester film in the present invention as necessary.
 本発明におけるポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常10~300μm、好ましくは25~250μmである。 The thickness of the polyester film in the present invention is not particularly limited as long as it can be formed as a film, but is usually 10 to 300 μm, preferably 25 to 250 μm.
 次に本発明におけるポリエステルフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。すなわち、先に述べたポリエステル原料を使用し、ダイから押し出された溶融シートを冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法や液体塗布密着法が好ましく採用される。次に得られた未延伸シートは二軸方向に延伸される。その場合、まず、前記の未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70~120℃、好ましくは80~110℃であり、延伸倍率は通常2.5~7倍、好ましくは3.0~6倍である。次いで、一段目の延伸方向と直交する方向に延伸するが、その場合、延伸温度は通常70~170℃であり、延伸倍率は通常3.0~7倍、好ましくは3.5~6倍である。そして、引き続き180~270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。 Next, a production example of the polyester film in the present invention will be specifically described, but is not limited to the following production examples. That is, a method of using the polyester raw material described above and cooling and solidifying a molten sheet extruded from a die with a cooling roll to obtain an unstretched sheet is preferable. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the film is stretched in the direction perpendicular to the first stretching direction. In this case, the stretching temperature is usually 70 to 170 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there. Subsequently, heat treatment is performed at a temperature of 180 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
 また、本発明においては塗布フィルムを構成するポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70~120℃、好ましくは80~110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法であり、延伸倍率としては、面積倍率で4~50倍、好ましくは7~35倍、さらに好ましくは10~25倍である。そして、引き続き、170~250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。 In the present invention, the simultaneous biaxial stretching method can also be adopted for the production of the polyester film constituting the coated film. The simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is usually controlled at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
 次に本発明における塗布フィルムを構成する塗布層の形成について説明する。塗布層に関しては、ポリエステルフィルムの製膜工程中にフィルム表面を処理する、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよい。製膜と同時に塗布が可能であるため、製造が安価に対応可能であることから、インラインコーティングが好ましく用いられる。 Next, the formation of the coating layer constituting the coating film in the present invention will be described. Regarding the coating layer, it may be provided by in-line coating which treats the film surface during the process of forming a polyester film, or offline coating which is applied outside the system on a once produced film may be adopted. Since the coating can be performed simultaneously with the film formation, the production can be handled at a low cost, and therefore in-line coating is preferably used.
 インラインコーティングについては、以下に限定するものではないが、例えば、逐次二軸延伸においては、特に縦延伸が終了した横延伸前にコーティング処理を施すことができる。インラインコーティングによりポリエステルフィルム上に塗布層が設けられる場合には、製膜と同時に塗布が可能になると共に、延伸後のポリエステルフィルムの熱処理工程で、塗布層を高温で処理することができるため、塗布層上に形成され得る各種の表面機能層との密着性や耐湿熱性等の性能を向上させることができる。また、延伸前にコーティングを行う場合は、塗布層の厚みを延伸倍率により変化させることもでき、オフラインコーティングに比べ、薄膜コーティングをより容易に行うことができる。すなわち、インラインコーティング、特に延伸前のコーティングにより、ポリエステルフィルムとして好適なフィルムを製造することができる。 Although the in-line coating is not limited to the following, for example, in the sequential biaxial stretching, a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished. When the coating layer is provided on the polyester film by in-line coating, it is possible to apply at the same time as the film formation, and the coating layer can be processed at a high temperature in the heat treatment process of the polyester film after stretching. Performances such as adhesion to various surface functional layers that can be formed on the layer and heat-and-moisture resistance can be improved. Moreover, when coating before extending | stretching, the thickness of an application layer can also be changed with a draw ratio, and compared with offline coating, thin film coating can be performed more easily. That is, a film suitable as a polyester film can be produced by in-line coating, particularly coating before stretching.
 本発明においては、紫外線吸収剤を含有するポリエステルフィルムの少なくとも片面に、金属酸化物(A)および2種類以上の架橋剤(B)を含有する塗布液から形成される塗布層を有し、当塗布層の絶対反射率が波長400~800nmの範囲で極小値を1つ有し、当該極小値における絶対反射率が4.0%以上である塗布層を有することを必須の要件とするものである。 In the present invention, at least one surface of a polyester film containing an ultraviolet absorber has a coating layer formed from a coating solution containing a metal oxide (A) and two or more types of crosslinking agents (B), It is an essential requirement to have a coating layer having one minimum value in the wavelength range of 400 to 800 nm and having an absolute reflectance of 4.0% or more at the minimum value. is there.
 本発明における金属酸化物は、主に塗布層の屈折率調整のために使用するものである。特に塗布層中に使用する樹脂の屈折率が低いために、高い屈折率を有する金属酸化物を使用することが好ましく、屈折率として1.7以上のものを使用することが好ましい。金属酸化物の具体例としては、例えば、酸化ジルコニウム、酸化チタン、酸化スズ、酸化イットリウム、酸化アンチモン、酸化インジウム、酸化亜鉛、アンチモンチンオキサイド、インジウムチンオキサイド等が挙げられ、これらを単独で使用しても良いし、2種類以上使用しても良い。これらの中でも酸化ジルコニウムや酸化チタンがより好適に用いられ、特に、耐候性の観点から酸化ジルコニウムがより好適に用いられる。 The metal oxide in the present invention is mainly used for adjusting the refractive index of the coating layer. In particular, since the refractive index of the resin used in the coating layer is low, it is preferable to use a metal oxide having a high refractive index, and it is preferable to use a refractive index of 1.7 or more. Specific examples of the metal oxide include, for example, zirconium oxide, titanium oxide, tin oxide, yttrium oxide, antimony oxide, indium oxide, zinc oxide, antimontin oxide, indium tin oxide, and the like. You may use 2 or more types. Among these, zirconium oxide and titanium oxide are more preferably used. In particular, zirconium oxide is more preferably used from the viewpoint of weather resistance.
 金属酸化物は、使用形態によっては密着性が低下する懸念があるため、粒子の状態で使用することが好ましく、また、その平均粒径は透明性の観点から、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは25nm以下である。 The metal oxide is preferably used in the form of particles because there is a concern that the adhesion may be lowered depending on the use form, and the average particle size is preferably 100 nm or less, more preferably from the viewpoint of transparency. It is 50 nm or less, more preferably 25 nm or less.
 本発明においては、塗布層を形成させるための塗布液に2種類以上の架橋剤を含有するものであるが、これらは塗布層上に設けられるハードコート層等の表面機能層との密着性を向上させることができる。1種類の架橋剤でも密着性を向上させることができることを見出したが、2種類以上の架橋剤を併用することにより、さらに密着性を向上させることができ、特に湿熱試験後の密着性を改善できることを見出した。 In the present invention, the coating liquid for forming the coating layer contains two or more types of crosslinking agents, but these have adhesion with a surface functional layer such as a hard coat layer provided on the coating layer. Can be improved. We have found that even one type of cross-linking agent can improve adhesion, but by using two or more types of cross-linking agents together, it is possible to further improve the adhesion, particularly improving the adhesion after the wet heat test. I found that I can do it.
 本発明における架橋剤とは、オキサゾリン化合物、エポキシ化合物、メラミン化合物、イソシアネート系化合物、カルボジイミド系化合物、金属キレート化合物、シランカップリング化合物等が挙げられる。これら架橋剤の中でも密着性が良好であるという観点において、特にオキサゾリン化合物あるいはエポキシ化合物を使用することが好ましく、さらに好ましくはオキサゾリン化合物とエポキシ化合物を併用することである。 Examples of the crosslinking agent in the present invention include oxazoline compounds, epoxy compounds, melamine compounds, isocyanate compounds, carbodiimide compounds, metal chelate compounds, and silane coupling compounds. Among these crosslinking agents, from the viewpoint of good adhesion, it is particularly preferable to use an oxazoline compound or an epoxy compound, and it is more preferable to use an oxazoline compound and an epoxy compound in combination.
 オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物である。特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。 An oxazoline compound is a compound having an oxazoline group in the molecule. In particular, a polymer containing an oxazoline group is preferable, and it can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide, Examples of the alkyl group include unsaturated amides such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc .; vinyl acetate Vinyl esters such as vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α, β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride And α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene, and the like, and one or more of these monomers can be used.
 エポキシ化合物とは、分子内にエポキシ基を有する化合物である。例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等が挙げられる。 An epoxy compound is a compound having an epoxy group in the molecule. Examples include condensates of epichlorohydrin with hydroxyl groups and amino groups such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, and bisphenol A, and polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. is there. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Examples of the polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N′-tetraglycidyl-m-xylyl. Examples include range amine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
 メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことである。例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。 The melamine compound is a compound having a melamine skeleton in the compound. For example, an alkylolated melamine derivative, a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and a mixture thereof can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Moreover, as a melamine compound, either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used. Further, a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
 イソシアネート系化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。 The isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate. Examples of isocyanates include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate Ne Alicyclic isocyanates such as bets are exemplified. Further, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
 ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。 When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol. Compounds, active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ε-caprolactam and δ-valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetal Examples include oxime compounds such as dooxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
 また、本発明におけるイソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することが好ましい。 In addition, the isocyanate compound in the present invention may be used alone or as a mixture or combination with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
 カルボジイミド系化合物とは、カルボジイミド、あるいはカルボジイミド誘導体構造を有する化合物のことであり、塗布層上に形成され得るハードコート層等の表面機能層との密着性の向上や、塗布層の耐湿熱性の向上のために用いられるものである。カルボジイミド系化合物は、分子内にカルボジイミド、あるいはカルボジイミド誘導体構造を1つ以上有する化合物であるが、より良好な密着性等のために、分子内に2つ以上有するポリカルボジイミド系化合物がより好ましい。 A carbodiimide-based compound is a compound having a carbodiimide or carbodiimide derivative structure, and improves adhesion with a surface functional layer such as a hard coat layer that can be formed on the coating layer, and improves the heat and moisture resistance of the coating layer. It is used for. The carbodiimide compound is a compound having one or more carbodiimide or carbodiimide derivative structures in the molecule, but a polycarbodiimide compound having two or more in the molecule is more preferable for better adhesion and the like.
 カルボジイミド系化合物は従来公知の技術で合成することができ、一般的には、ジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが挙げられる。 The carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used. The diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used. Specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa Examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.
 さらに本発明の効果を消失させない範囲において、ポリカルボジイミド系化合物の水溶性や水分散性を向上するために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。 Furthermore, in order not to lose the effect of the present invention, in order to improve the water solubility and water dispersibility of the polycarbodiimide compound, adding a surfactant, polyalkylene oxide, quaternary ammonium salt of dialkylamino alcohol, You may add and use hydrophilic monomers, such as a hydroxyalkyl sulfonate.
 なお、これら架橋剤は、乾燥過程や、製膜過程において、反応させて塗布層の性能を向上させる設計で用いている。できあがった塗布層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。 These cross-linking agents are used in a design that improves the performance of the coating layer by reacting in the drying process or film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.
 本発明における塗布フィルムにおいて、塗布面状の向上、塗布面上にハードコート層等の種々の表面機能層が積層されたときの干渉ムラの低減、透明性や密着性の向上等のために各種のポリマーを使用することが好ましい。 In the coated film of the present invention, various improvements are made to improve the coated surface, reduce interference unevenness when various surface functional layers such as a hard coat layer are laminated on the coated surface, and improve transparency and adhesion. It is preferable to use a polymer of
 ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル(ポリビニルアルコール、ポリ塩化ビニル、塩化ビニル酢酸ビニル共重合体等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でもハードコート層等の表面機能層との密着性向上、塗布外観向上の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂を使用することが好ましい。また、分子内にベンゼン環等の芳香族化合物を数多く含有させることができ、それにより屈折率を高くすることができるという観点から、特にポリエステル樹脂が好ましい。 Specific examples of the polymer include polyester resin, acrylic resin, urethane resin, polyvinyl (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymer, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starches. Etc. Among these, it is preferable to use a polyester resin, an acrylic resin, or a urethane resin from the viewpoint of improving adhesion with a surface functional layer such as a hard coat layer and improving the appearance of coating. In addition, a polyester resin is particularly preferable from the viewpoint that a large number of aromatic compounds such as a benzene ring can be contained in the molecule, thereby increasing the refractive index.
 また、さらに塗布層の屈折率をより調整しやすくするため、下記式で例示されるような、ナフタレン、アントラセン、フェナントレン、ナフタセン、ベンゾ[a]アントラセン、ベンゾ[a]フェナントレン、ピレン、ベンゾ[c]フェナントレン、ペリレン等の縮合多環式芳香族構造を有する化合物を併用することが好ましい。 Furthermore, in order to make it easier to adjust the refractive index of the coating layer, naphthalene, anthracene, phenanthrene, naphthacene, benzo [a] anthracene, benzo [a] phenanthrene, pyrene, benzo [c It is preferable to use a compound having a condensed polycyclic aromatic structure such as phenanthrene or perylene.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ポリエステルフィルム上への塗布性を考慮すると、上記の縮合多環式芳香族化合物は、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等の高分子化合物が好ましい。特にポリエステル樹脂にはより多くの縮合多環式芳香族を導入することができるためより好ましい。 In consideration of applicability on a polyester film, the condensed polycyclic aromatic compound is preferably a polymer compound such as a polyester resin, an acrylic resin, or a urethane resin. In particular, polyester resins are more preferable because more condensed polycyclic aromatics can be introduced.
 縮合多環式芳香族をポリエステル樹脂に組み込む方法としては、例えば、縮合多環式芳香族に置換基として水酸基を2つあるいはそれ以上導入してジオール成分あるいは多価水酸基成分とするか、あるいはカルボン酸基を2つあるいはそれ以上導入してジカルボン酸成分あるいは多価カルボン酸成分として作成する方法がある。 As a method of incorporating the condensed polycyclic aromatic into the polyester resin, for example, two or more hydroxyl groups are introduced into the condensed polycyclic aromatic as a substituent to form a diol component or a polyvalent hydroxyl component, or There is a method in which two or more acid groups are introduced to prepare a dicarboxylic acid component or a polyvalent carboxylic acid component.
 塗布フィルム製造工程において、着色がしにくいという点で、塗布層に含有する縮合多環式芳香族はナフタレン骨格を有する化合物が好ましい。また、塗布層上に形成される各種表面機能層との密着性や、透明性が良好であるという点で、ポリエステル構成成分としてナフタレン骨格を組み込んだ樹脂が好適に用いられる。当該ナフタレン骨格としては、代表的なものとして、1,5-ナフタレンジカルボン酸および2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸が挙げられる。 In the coated film manufacturing process, the condensed polycyclic aromatic contained in the coating layer is preferably a compound having a naphthalene skeleton in that it is difficult to be colored. In addition, a resin in which a naphthalene skeleton is incorporated as a polyester component is suitably used in terms of good adhesion to various surface functional layers formed on the coating layer and transparency. Representative examples of the naphthalene skeleton include 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid.
 なお、縮合多環式芳香族には、水酸基やカルボン酸基以外にも、硫黄元素を含有する置換基、フェニル基等の芳香族置換基、ハロゲン元素基等を導入することにより、屈折率の向上が期待でき、塗布性や密着性の観点から、アルキル基、エステル基、アミド基等の置換基を導入してもよい。 In addition to the hydroxyl group and the carboxylic acid group, the condensed polycyclic aromatic has a refractive index of a refractive index by introducing a substituent containing a sulfur element, an aromatic substituent such as a phenyl group, a halogen element group, and the like. Improvements can be expected, and substituents such as alkyl groups, ester groups, and amide groups may be introduced from the viewpoints of coatability and adhesion.
 また、本発明は、塗布層中に、塗布層の固着性、滑り性改良を目的として上述の金属酸化物以外の粒子を含有してもよい。その平均粒径はフィルムの透明性の観点から好ましくは1.0μm以下であり、さらに好ましくは0.5μm以下、特に好ましくは0.2μm以下である。粒子の具体例としてはシリカ、アルミナ、カオリン、炭酸カルシウム、有機粒子等が挙げられる。 Further, in the present invention, the coating layer may contain particles other than the above-described metal oxide for the purpose of improving the adhesion and slipperiness of the coating layer. The average particle diameter is preferably 1.0 μm or less, more preferably 0.5 μm or less, and particularly preferably 0.2 μm or less from the viewpoint of the transparency of the film. Specific examples of the particles include silica, alumina, kaolin, calcium carbonate, and organic particles.
 さらに本発明の主旨を損なわない範囲において、塗布層には必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等が含有されてもよい。 Furthermore, as long as it does not impair the gist of the present invention, the coating layer has an antifoaming agent, a coating property improving agent, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, an antioxidant, foaming as necessary. Agents, dyes, pigments and the like may be contained.
 塗布液中の金属酸化物(A)の含有量は、全不揮発成分に対する割合として、通常3~70重量%、好ましくは5~50重量%、さらに好ましくは5~40重量%、特に好ましくは8~30重量%である。金属酸化物の量が3重量%未満の場合は塗布層の屈折率を十分に高くすることができないことにより、干渉ムラが軽減されない場合があり、70重量%を超える場合は、塗布層の透明性が悪化する場合がある。 The content of the metal oxide (A) in the coating solution is usually 3 to 70% by weight, preferably 5 to 50% by weight, more preferably 5 to 40% by weight, and particularly preferably 8% as a ratio to the total nonvolatile components. ~ 30% by weight. When the amount of the metal oxide is less than 3% by weight, the refractive index of the coating layer cannot be made sufficiently high, so that interference unevenness may not be reduced. When it exceeds 70% by weight, the coating layer is transparent. Sexuality may worsen.
 塗布液中の2種類以上架橋剤(B)の含有量は、全不揮発成分に対する割合として、通常2~80重量%、より好ましくは4~60重量%囲、さらに好ましくは10~40重量%である。これらの範囲より外れる場合は、ハードコート層等の表面機能層との密着性が低下する可能性が懸念される場合、塗布面状が悪化する場合、ハードコート層等の表面機能層形成後の干渉ムラにより、視認性が良くない場合がある。 The content of the two or more kinds of crosslinking agents (B) in the coating solution is usually 2 to 80% by weight, more preferably 4 to 60% by weight, and further preferably 10 to 40% by weight as a ratio to the total nonvolatile components. is there. If it is out of these ranges, if there is a possibility that the adhesion with the surface functional layer such as the hard coat layer may be lowered, or if the coated surface condition deteriorates, the surface functional layer such as the hard coat layer is formed. Visibility may not be good due to uneven interference.
 架橋剤としてオキサゾリン化合物を使用する場合、塗布液の不揮発成分中のオキサゾリン化合物の含有量は、通常1~50重量%、より好ましくは1~30重量%、さらに好ましくは3~20重量%である。1重量%未満の場合、ハードコート層等の表面機能層との密着性が低下する可能性が懸念され、50重量%を超える場合、塗布層の屈折率が低くなることにより、ハードコート層等の表面機能層形成後の干渉ムラにより、視認性が良くない場合がある。 When an oxazoline compound is used as a crosslinking agent, the content of the oxazoline compound in the nonvolatile component of the coating solution is usually 1 to 50% by weight, more preferably 1 to 30% by weight, and further preferably 3 to 20% by weight. . If the amount is less than 1% by weight, there is a concern that the adhesion to the surface functional layer such as a hard coat layer may be lowered. If the amount exceeds 50% by weight, the refractive index of the coating layer is lowered, thereby causing a hard coat layer or the like. Visibility may not be good due to interference unevenness after the surface functional layer is formed.
 架橋剤としてエポキシ化合物を使用する場合、塗布液の不揮発成分中のエポキシ化合物の含有量は、通常1~50重量%囲、より好ましくは3~30重量%、さらに好ましくは5~20重量%である。これらの範囲より外れる場合は、ハードコート層等の表面機能層との密着性が低下する可能性が懸念される場合や、塗布面状が悪化する場合がある。 When an epoxy compound is used as the crosslinking agent, the content of the epoxy compound in the non-volatile component of the coating solution is usually 1 to 50% by weight, more preferably 3 to 30% by weight, and still more preferably 5 to 20% by weight. is there. When it is out of these ranges, there is a possibility that the adhesion with the surface functional layer such as the hard coat layer may be lowered, or the coated surface state may be deteriorated.
 本発明における塗布フィルムを構成する塗布層に用いられうる縮合多環式芳香族化合物は、その化合物中で縮合多環式芳香族の占める割合は、通常5~80重量%、好ましくは10~60重量%である。また、塗布液の不揮発成分中の縮合多環式芳香族化合物の含有量は、通常80重量%以下、好ましくは5~70重量%、さらに好ましくは10~50重量%ある。これらの範囲で使用することにより、塗布層の屈折率の調整が容易となり、ハードコート層等の表面機能層を形成後の干渉ムラの軽減がしやすくなる。なお、縮合多環式芳香族の割合は、例えば、適当な溶剤または温水で塗布層を溶解抽出し、クロマトグラフィーで分取し、NMRやIRで構造を解析、さらに熱分解GC-MS(ガスクロマトグラフィー質量分析)や光学的な分析等で解析することにより求めることができる。 In the condensed polycyclic aromatic compound that can be used in the coating layer constituting the coated film in the present invention, the proportion of the condensed polycyclic aromatic compound in the compound is usually 5 to 80% by weight, preferably 10 to 60%. % By weight. The content of the condensed polycyclic aromatic compound in the nonvolatile component of the coating solution is usually 80% by weight or less, preferably 5 to 70% by weight, and more preferably 10 to 50% by weight. By using within these ranges, the refractive index of the coating layer can be easily adjusted, and interference unevenness after forming a surface functional layer such as a hard coat layer can be easily reduced. The ratio of the condensed polycyclic aromatic can be determined by, for example, dissolving and extracting the coating layer with an appropriate solvent or warm water, separating by chromatography, analyzing the structure by NMR or IR, and further pyrolyzing GC-MS (gas It can be determined by analysis by chromatography mass spectrometry) or optical analysis.
 本発明のポリエステルフィルムにおいて、上述した塗布層を設けた面と反対側の面にも塗布層を設けることも可能である。例えば、ハードコート層等の表面機能層を形成する反対側にマイクロレンズ層、プリズム層、スティッキング防止層、光拡散層、ハードコート層、粘着層、印刷層等の機能層を形成する場合に、当該機能層との密着性を向上させることが可能である。反対側の面に形成する塗布層の成分としては、従来公知のものを使用することができる。例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等のバインダーポリマー、オキサゾリン化合物、エポキシ化合物、メラミン化合物、イソシアネート系化合物等の架橋剤等が挙げられ、これらの材料を単独で用いてもよいし、複数種を併用して用いてもよい。また、上述してきたような金属酸化物、オキサゾリン化合物由来の化合物、およびエポキシ化合物由来の化合物を含有する塗布層(ポリエステルフィルムに両面同一の塗布層)であってもよい。 In the polyester film of the present invention, a coating layer can also be provided on the surface opposite to the surface on which the coating layer is provided. For example, when forming a functional layer such as a microlens layer, a prism layer, an anti-sticking layer, a light diffusion layer, a hard coat layer, an adhesive layer, or a print layer on the opposite side of forming a surface functional layer such as a hard coat layer, Adhesion with the functional layer can be improved. A conventionally well-known thing can be used as a component of the coating layer formed in the surface on the opposite side. Examples thereof include binder polymers such as polyester resins, acrylic resins and urethane resins, cross-linking agents such as oxazoline compounds, epoxy compounds, melamine compounds and isocyanate compounds, and these materials may be used alone or in combination. May be used in combination. Further, it may be a coating layer (a coating layer having the same surface on both sides of the polyester film) containing a metal oxide, a compound derived from an oxazoline compound, and a compound derived from an epoxy compound as described above.
 塗布層中の成分の分析は、例えば、TOF-SIMS、ESCA、蛍光X線等の分析によって行うことができる。 The analysis of the components in the coating layer can be performed, for example, by analysis of TOF-SIMS, ESCA, fluorescent X-rays and the like.
 インラインコーティングによって塗布層を設ける場合は、上述の一連の化合物を水溶液または水分散体として、固形分濃度が0.1~50重量%程度を目安に調整した塗布液をポリエステルフィルム上に塗布する要領にて塗布フィルムを製造するのが好ましい。また、本発明の主旨を損なわない範囲において、水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。有機溶剤は1種類のみでもよく、適宜、2種類以上を使用してもよい。 When providing a coating layer by in-line coating, apply the above-mentioned series of compounds as an aqueous solution or water dispersion on a polyester film with a coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight. It is preferable to produce a coated film at. Moreover, in the range which does not impair the main point of this invention, a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.
 本発明における塗布フィルムに関して、ポリエステルフィルム上に設けられる塗布層の膜厚は、通常0.04~0.20μm、好ましくは0.07~0.15μmである。膜厚が上記範囲より外れる場合は、表面機能層を積層後の干渉ムラにより、視認性が悪化する場合がある。 Regarding the coated film in the present invention, the thickness of the coated layer provided on the polyester film is usually 0.04 to 0.20 μm, preferably 0.07 to 0.15 μm. When the film thickness is out of the above range, visibility may deteriorate due to interference unevenness after the surface functional layer is laminated.
 本発明において、塗布層を設ける方法はリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。 In the present invention, as a method of providing the coating layer, a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating or the like can be used.
 本発明において、ポリエステルフィルム上に塗布層を形成する際の乾燥および硬化条件に関しては特に限定されるわけではなく、例えば、オフラインコーティングにより塗布層を設ける場合、通常、80~200℃で3~40秒間、好ましくは100~180℃で3~40秒間を目安として熱処理を行うのが良い。 In the present invention, the drying and curing conditions for forming the coating layer on the polyester film are not particularly limited. For example, when the coating layer is provided by off-line coating, it is usually 3 to 40 at 80 to 200 ° C. The heat treatment should be performed for a second, preferably 100 to 180 ° C. for 3 to 40 seconds.
 一方、インラインコーティングにより塗布層を設ける場合、通常、70~280℃で3~200秒間を目安として熱処理を行うのが良い。 On the other hand, when the coating layer is provided by in-line coating, it is usually preferable to perform heat treatment at 70 to 280 ° C. for 3 to 200 seconds as a guide.
 また、オフラインコーティングあるいはインラインコーティングに係わらず、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。本発明における塗布フィルムを構成するポリエステルフィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。 In addition, regardless of off-line coating or in-line coating, heat treatment and active energy ray irradiation such as ultraviolet irradiation may be used in combination as necessary. The polyester film constituting the coating film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
 本発明における塗布層は、干渉ムラの発生を抑制するために、屈折率の調整がされたものであり、その屈折率(1.55~1.65)は、基材のポリエステルフィルム(屈折率:1.60~1.70)とハードコート層等のS(屈折率が1.45~1.65)の相乗平均付近に設計したものである。塗布層の屈折率と塗布層の反射率は密接な関係がある。本発明の絶対反射率は、横軸に波長、縦軸に反射率を示すグラフを描き、反射率の極小値が波長400~800nmの範囲に1つである必要があり、その極小値は4.0%以上である。本発明の絶対反射率の範囲においては、その極小値が同じ波長に現れるならば、極小値の反射率は、屈折率が高い場合は高い値となり、屈折率が低い場合は低い値となる。 The coating layer in the present invention has a refractive index adjusted to suppress the occurrence of interference unevenness, and the refractive index (1.55-1.65) is the polyester film (refractive index) of the substrate. : 1.60 to 1.70) and S (refractive index of 1.45 to 1.65) in the vicinity of the geometric mean of the hard coat layer and the like. The refractive index of the coating layer and the reflectance of the coating layer are closely related. For the absolute reflectance of the present invention, a graph showing the wavelength on the horizontal axis and the reflectance on the vertical axis is drawn, and the minimum value of the reflectance needs to be one in the wavelength range of 400 to 800 nm, and the minimum value is 4 0.0% or more. In the absolute reflectance range of the present invention, if the minimum value appears at the same wavelength, the reflectance of the minimum value is a high value when the refractive index is high, and a low value when the refractive index is low.
 本発明における絶対反射率は、波長400~800nmの範囲に極小値が1つ存在、より好ましくは波長500~700nmの範囲に極小値が1つ存在するものである。また、その極小値の値は、通常4.0~6.5%、好ましくは4.5~6.2%である。波長400~800nmの範囲にある極小値が1つではない場合、また、極小値の絶対反射率が上記の値を外れる場合は、ハードコート層等の表面機能層を形成後に干渉ムラが発生し、フィルムの視認性が低下する場合がある。 In the present invention, the absolute reflectance has one minimum value in the wavelength range of 400 to 800 nm, more preferably one minimum value in the wavelength range of 500 to 700 nm. The minimum value is usually 4.0 to 6.5%, preferably 4.5 to 6.2%. If the minimum value in the wavelength range of 400 to 800 nm is not one, and if the absolute reflectance of the minimum value is outside the above value, interference unevenness occurs after the surface functional layer such as the hard coat layer is formed. The visibility of the film may be reduced.
 本発明においては、ディスプレイ用等、透明性が要求される用途に使用する場合のために、透明性が高いフィルムがより好まれる。例えば、透明性の1つの指標としてヘーズが挙げられ、その値は、通常1.5%以下、好ましくは1.2%以下、さらに好ましくは1.0%以下である。ヘーズが高い場合は、フィルムの視認性が低下する場合がある。 In the present invention, a film having high transparency is more preferred for use in applications requiring transparency such as for displays. For example, haze is mentioned as one index of transparency, and the value is usually 1.5% or less, preferably 1.2% or less, and more preferably 1.0% or less. When the haze is high, the visibility of the film may be lowered.
 本発明のポリエステルフィルムには、塗布層の上にハードコート層等の表面機能層を設けるのが一般的である。ハードコート層に使用される材料としては、特に限定されないが、例えば、単官能(メタ)アクリレート、多官能(メタ)アクリレート、テトラエトキシシラン等の反応性珪素化合物等の硬化物が挙げられる。これらのうち生産性及び硬度の両立の観点より、紫外線硬化性の多官能(メタ)アクリレートを含む組成物の重合硬化物であることが特に好ましい。 The polyester film of the present invention is generally provided with a surface functional layer such as a hard coat layer on the coating layer. Although it does not specifically limit as a material used for a hard-coat layer, For example, hardened | cured materials, such as reactive silicon compounds, such as monofunctional (meth) acrylate, polyfunctional (meth) acrylate, and tetraethoxysilane, are mentioned. Among these, from the viewpoint of achieving both productivity and hardness, a polymerization cured product of a composition containing an ultraviolet curable polyfunctional (meth) acrylate is particularly preferable.
 紫外線硬化性の多官能(メタ)アクリレートを含む組成物としては特に限定されるものでない。例えば、公知の紫外線硬化性の多官能(メタ)アクリレートを一種類以上混合したもの、紫外線硬化性ハードコート材として市販されているもの、或いはこれら以外に本実施形態の目的を損なわない範囲において、その他の成分を更に添加したものを用いることができる。 The composition containing an ultraviolet curable polyfunctional (meth) acrylate is not particularly limited. For example, a mixture of one or more known ultraviolet curable polyfunctional (meth) acrylates, those commercially available as ultraviolet curable hard coat materials, or other than those that do not impair the purpose of this embodiment, What added the other component further can be used.
 紫外線硬化性の多官能(メタ)アクリレートとしては、特に限定されるものではないが、例えばジペンタエリスリトールヘキサ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,6-ビス(3-アクリロイルオキシ-2-ヒドロキシプロピルオキシ)ヘキサン等の多官能アルコールの(メタ)アクリル誘導体や、ポリエチレングリコールジ(メタ)アクリレート、そしてポリウレタン(メタ)アクリレート等が挙げられる。 The UV-curable polyfunctional (meth) acrylate is not particularly limited. For example, dipentaerythritol hexa (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, tetramethylolmethanetri (meth) acrylate, (Meth) acryl derivatives of polyfunctional alcohols such as trimethylolpropane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,6-bis (3-acryloyloxy-2-hydroxypropyloxy) hexane And polyethylene glycol di (meth) acrylate and polyurethane (meth) acrylate.
 紫外線硬化性の多官能(メタ)アクリレートを含む組成物に含まれるその他の成分は特に限定されるものではない。例えば、無機又は有機の微粒子、重合開始剤、重合禁止剤、酸化防止剤、帯電防止剤、分散剤、界面活性剤、光安定剤及びレベリング剤等が挙げられる。また、ウェットコーティング法において成膜後乾燥させる場合には、任意の量の溶媒を添加することができる。 Other components contained in the composition containing an ultraviolet curable polyfunctional (meth) acrylate are not particularly limited. Examples thereof include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers, and leveling agents. In addition, when the film is dried after film formation in the wet coating method, an arbitrary amount of solvent can be added.
 ハードコート層の形成方法は、有機材料を用いた場合にはロールコート法、ダイコート法等の一般的なウェットコート法が採用される。形成されたハードコート層には必要に応じて加熱や紫外線、電子線等の活性エネルギー線照射を施し、硬化反応を行うことができる。なお、塗布層の上に形成される表面機能層の屈折率は、前述の通り、一般的に1.45~1.65である。 As a method for forming the hard coat layer, when an organic material is used, a general wet coat method such as a roll coat method or a die coat method is employed. The formed hard coat layer can be subjected to a curing reaction by heating, irradiation with active energy rays such as ultraviolet rays and electron beams as necessary. The refractive index of the surface functional layer formed on the coating layer is generally 1.45 to 1.65 as described above.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. The measurement method and evaluation method used in the present invention are as follows.
(1)ポリエステルの極限粘度の測定方法:
 ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measuring method of intrinsic viscosity of polyester:
1 g of polyester from which other polymer components and pigments incompatible with polyester were removed was precisely weighed, 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) was added and dissolved, and measurement was performed at 30 ° C.
(2)平均粒径の測定方法:
 TEM(株式会社日立ハイテクノロジーズ製「H-7650」加速電圧100V)を使用して塗布層を観察し、粒子10個の粒径の平均値を平均粒径とした。
(2) Measuring method of average particle diameter:
The coating layer was observed using TEM (“H-7650” acceleration voltage 100 V manufactured by Hitachi High-Technologies Corporation), and the average value of the particle size of 10 particles was defined as the average particle size.
(3)塗布層の膜厚測定方法:
 塗布層の表面をRuOで染色し、エポキシ樹脂中に包埋した。その後、超薄切片法により作成した切片をRuOで染色し、塗布層断面をTEM(株式会社日立ハイテクノロジーズ製 H-7650、加速電圧100V)を用いて測定した。
(3) Coating layer thickness measurement method:
The surface of the coating layer was dyed with RuO 4 and embedded in an epoxy resin. Thereafter, the section prepared by the ultrathin section method was stained with RuO 4 , and the cross section of the coating layer was measured using TEM (H-7650 manufactured by Hitachi High-Technologies Corporation, acceleration voltage 100 V).
(4)ポリエステルフィルムにおける塗布層表面からの絶対反射率の評価方法:
 あらかじめ、ポリエステルフィルムの測定裏面に黒テープ(ニチバン株式会社製ビニールテープVT―50)を貼り、分光光度計(日本分光株式会社製 紫外可視分光光度計「V-570」および自動絶対反射率測定装置「ARM-500N」)を使用し、同期モード、入射角5°、N偏光、レスポンス Fast、データ取区間隔1.0nm、バンド幅10nm、走査速度1000m/minの条件で、塗布層面における波長範囲300~800nmの絶対反射率を測定し、その極小値における波長(ボトム波長)と反射率を評価した。
(4) Evaluation method of absolute reflectance from coating layer surface in polyester film:
A black tape (vinyl tape VT-50 manufactured by Nichiban Co., Ltd.) is pasted on the measurement film back of the polyester film in advance, and a spectrophotometer (UV-spectrophotometer “V-570” manufactured by JASCO Corporation) and an automatic absolute reflectance measuring device. "ARM-500N"), the wavelength range on the coating layer surface under the conditions of synchronous mode, incident angle 5 °, N polarization, response fast, data acquisition interval 1.0 nm, bandwidth 10 nm, scanning speed 1000 m / min The absolute reflectance at 300 to 800 nm was measured, and the wavelength (bottom wavelength) and reflectance at the minimum value were evaluated.
(5)ヘーズの測定方法:
 株式会社村上色彩技術研究所製ヘーズメーターHM-150を使用して、JIS K 7136で測定した。
(5) Haze measurement method:
Measurement was performed according to JIS K 7136 using a haze meter HM-150 manufactured by Murakami Color Research Laboratory.
(6)干渉ムラの評価方法:
 ポリエステルフィルムの塗布層側に、ジペンタエリスリトールヘキサアクリレート72重量部、2-ヒドロキシ-3-フェノキシプロピルアクリレート18重量部、五酸化アンチモン10重量部、光重合開始剤(商品名:「イルガキュア184」チバスペシャルティケミカル製)1重量部、メチルエチルケトン200重量部の混合塗液を乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させハードコート層を形成した。得られたフィルムを3波長光域型蛍光灯下で目視にて、干渉ムラを観察し、干渉ムラが確認できないものをA、薄くまばらな干渉ムラが確認されるものをB、薄いが線状の干渉ムラが確認できるものをC、明瞭な干渉ムラが確認されるものをDとした。
(6) Interference unevenness evaluation method:
On the coating layer side of the polyester film, 72 parts by weight of dipentaerythritol hexaacrylate, 18 parts by weight of 2-hydroxy-3-phenoxypropyl acrylate, 10 parts by weight of antimony pentoxide, a photopolymerization initiator (trade name: “Irgacure 184” Ciba A mixed coating solution of 1 part by weight (made by Specialty Chemicals) and 200 parts by weight of methyl ethyl ketone was applied so as to have a dry film thickness of 5 μm and cured by irradiation with ultraviolet rays to form a hard coat layer. The obtained film is visually observed under a three-wavelength light area type fluorescent lamp, and interference unevenness is observed. A when interference unevenness cannot be confirmed is A, when thin sparse interference unevenness is confirmed, B is thin but linear. The case where the interference unevenness was confirmed was C, and the case where the clear interference unevenness was confirmed was D.
(7)密着性の評価方法:
 より厳しい密着性の評価を行うために、上記(5)の評価で使用したハードコート液から五酸化アンチモンを除いた材料で検討した。すなわち、ジペンタエリスリトールヘキサアクリレート80重量部、2-ヒドロキシ-3-フェノキシプロピルアクリレート20重量部、光重合開始剤(商品名:イルガキュア184、チバスペシャルティケミカル製)5重量部、メチルエチルケトン200重量部の混合塗液を乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させハードコート層を形成した。得られたフィルムに対して、80℃、90%RHの環境下で100時間後、10×10のクロスカットをして、その上に18mm幅のテープ(ニチバン株式会社製セロテープ(登録商標)CT-18)を貼り付け、180度の剥離角度で急激にはがした後の剥離面を観察し、剥離面積が3%未満の場合はA、3%以上10%未満の場合はB、10%以上50%未満の場合はC、50%以上の場合はDとした。
(7) Evaluation method of adhesion:
In order to evaluate the tighter adhesion, the materials obtained by removing antimony pentoxide from the hard coat liquid used in the evaluation of the above (5) were examined. That is, 80 parts by weight of dipentaerythritol hexaacrylate, 20 parts by weight of 2-hydroxy-3-phenoxypropyl acrylate, 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals), and 200 parts by weight of methyl ethyl ketone The coating liquid was applied so as to have a dry film thickness of 5 μm and cured by irradiating with ultraviolet rays to form a hard coat layer. The obtained film was subjected to 10 × 10 cross-cut after 100 hours in an environment of 80 ° C. and 90% RH, and then a 18 mm wide tape (cello tape (registered trademark) CT manufactured by Nichiban Co., Ltd.) -18) is attached, and the peeled surface is observed after abrupt peeling at a 180 degree peel angle. When the peeled area is less than 3%, A is 3% or more and less than 10%, and B is 10%. If it is less than 50%, it is C, and if it is 50% or more, it is D.
(8)波長380nmの透過率の測定:
 分光光度計(株式会社島津製作所製UV-3100PC型)により、スキャン速度を低速、サンプリングピッチを2nm、波長300~700nm領域で連続的に光線透過率を測定し、380nm波長での光線透過率を検出した。
(8) Measurement of transmittance at a wavelength of 380 nm:
Using a spectrophotometer (UV-3100PC type, manufactured by Shimadzu Corporation), the light transmittance was measured continuously at a low scanning speed, a sampling pitch of 2 nm, and a wavelength range of 300 to 700 nm, and the light transmittance at a wavelength of 380 nm was measured. Detected.
 実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
<ポリエステル(A)の製造方法>
 テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム・四水塩0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04重量部を添加した後、三酸化アンチモン0.04重量部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.63に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステル(A)の極限粘度は0.63であった。
The polyester used in the examples and comparative examples was prepared as follows.
<Method for producing polyester (A)>
Using 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol as starting materials, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst is placed in the reactor, the reaction start temperature is set to 150 ° C., and the methanol is distilled off gradually. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part by weight of ethyl acid phosphate to this reaction mixture, 0.04 part by weight of antimony trioxide was added, and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.63 due to a change in stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester (A) was 0.63.
<ポリエステル(B)の製造方法>
 ポリエステル(A)の製造方法において、エチルアシッドフォスフェート0.04重量部を添加後、平均粒径1.6μmのエチレングリコールに分散させたシリカ粒子を0.2重量部、三酸化アンチモン0.04重量部を加えて、極限粘度0.65に相当する時点で重縮合反応を停止した以外は、ポリエステル(A)の製造方法と同様の方法を用いてポリエステル(B)を得た。得られたポリエステル(B)は、極限粘度0.65であった。
<Method for producing polyester (B)>
In the method for producing polyester (A), after adding 0.04 part by weight of ethyl acid phosphate, 0.2 part by weight of silica particles dispersed in ethylene glycol having an average particle size of 1.6 μm and 0.04 part of antimony trioxide are obtained. A polyester (B) was obtained using the same method as the production method of the polyester (A) except that the polycondensation reaction was stopped at a time corresponding to the intrinsic viscosity of 0.65 by adding parts by weight. The obtained polyester (B) had an intrinsic viscosity of 0.65.
<ポリエステル(C)の製造方法>
 ポリエステル(A)をベント付き二軸押出機に供して、紫外線吸収剤として2,2’-(1,4-フェニレン)ビス[4H-3,1-ベンゾオキサジン-4-オン](CYTEC社製「CYASORB UV-3638」分子量369)を10重量%濃度となるように供給して溶融混練りしてチップ化を行い、紫外線吸収剤マスターバッチポリエステル(C)を作成した。得られたポリエステル(C)の極限粘度は、0.59であった。
<Method for producing polyester (C)>
The polyester (A) was subjected to a vented twin screw extruder and 2,2 ′-(1,4-phenylene) bis [4H-3,1-benzoxazin-4-one] (manufactured by CYTEC Co., Ltd.) as an ultraviolet absorber. “CYASORB UV-3638” molecular weight 369) was supplied to a concentration of 10% by weight, melt-kneaded to form chips, and an ultraviolet absorbent master batch polyester (C) was prepared. The intrinsic viscosity of the obtained polyester (C) was 0.59.
 塗布層を構成する化合物例は以下のとおりである。
(化合物例)
・金属酸化物:(IA)平均粒径15nmの酸化ジルコニウム粒子
・金属酸化物:(IB)平均粒径15nmの酸化チタン粒子
Examples of compounds constituting the coating layer are as follows.
(Compound example)
Metal oxide: (IA) Zirconium oxide particles having an average particle diameter of 15 nm Metal oxide: (IB) Titanium oxide particles having an average particle diameter of 15 nm
・オキサゾリン化合物:(IIA)
 オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリルポリマー「エポクロスWS-500」(株式会社日本触媒製、1-メトキシ-2-プロパノール溶剤約38重量%を含有するタイプ)
・オキサゾリン化合物:(IIB)
オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリルポリマー「エポクロスWS-700」(株式会社日本触媒製、VOCフリータイプ)
・ Oxazoline compounds: (IIA)
Acrylic polymer “Epocross WS-500” having an oxazoline group and a polyalkylene oxide chain (manufactured by Nippon Shokubai Co., Ltd., containing about 38% by weight of 1-methoxy-2-propanol solvent)
・ Oxazoline compounds: (IIB)
Acrylic polymer “Epocross WS-700” having an oxazoline group and a polyalkylene oxide chain (manufactured by Nippon Shokubai Co., Ltd., VOC free type)
・エポキシ化合物:(IIIA)ポリグリセロールポリグリシジルエーテルである「デナコールEX-521」(ナガセケムテックス株式会社製)。
・エポキシ化合物:(IIIB)エポキシ樹脂である「デナコールEX-1410」(ナガセケムテックス株式会社製)。
Epoxy compound: (IIIA) “Denacol EX-521” (manufactured by Nagase ChemteX Corporation), which is polyglycerol polyglycidyl ether.
Epoxy compound: (IIIB) “Denacol EX-1410” which is an epoxy resin (manufactured by Nagase ChemteX Corporation).
・縮合多環式芳香族を有するポリエステル樹脂:(IVA)
 下記組成で共重合したポリエステル樹脂の水分散体
 モノマー組成:(酸成分)2,6-ナフタレンジカルボン酸/5-ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/ジエチレングリコール=92/8//80/20(mol%)
・ポリエステル樹脂:(IVB)
 下記組成で共重合したポリエステル樹脂の水分散体
 モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5-ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4-ブタンジオール/ジエチレングリコール=56/40/4//70/20/10(mol%)
・アクリル樹脂:(IVC)下記組成で重合したアクリル樹脂の水分散体
 エチルアクリレート/n-ブチルアクリレート/メチルメタクリレート/N-メチロールアクリルアミド/アクリル酸=65/21/10/2/2(重量%)の乳化重合体(乳化剤:アニオン系界面活性剤)
・ウレタン樹脂(IVD)
 カルボン酸水分散型ポリエステルポリウレタン樹脂である「ハイドランAP-40」(DIC株式会社製)
・ Condensed polycyclic aromatic polyester resin: (IVA)
Water dispersion of polyester resin copolymerized with the following composition: Monomer composition: (acid component) 2,6-naphthalenedicarboxylic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / diethylene glycol = 92/8 // 80/20 (mol%)
・ Polyester resin: (IVB)
Water dispersion of polyester resin copolymerized with the following composition: Monomer composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / 1,4-butanediol / diethylene glycol = 56/40/4 // 70/20/10 (mol%)
Acrylic resin: (IVC) Aqueous dispersion of acrylic resin polymerized with the following composition: ethyl acrylate / n-butyl acrylate / methyl methacrylate / N-methylol acrylamide / acrylic acid = 65/21/10/2/2 (% by weight) Emulsion polymer (emulsifier: anionic surfactant)
・ Urethane resin (IVD)
“Hydran AP-40”, a carboxylic acid water-dispersed polyester polyurethane resin (manufactured by DIC Corporation)
・ヘキサメトキシメチルメラミン(V) ・ Hexamethoxymethylmelamine (V)
・粒子:(VIA) 平均粒径0.07μmのシリカ粒子
・粒子:(VIB) 平均粒径0.15μmのシリカ粒子
・ Particles: (VIA) Silica particles with an average particle size of 0.07 μm ・ Particles: (VIB) Silica particles with an average particle size of 0.15 μm
 実施例1:
 ポリエステル(A)、(B)をそれぞれ90%、10%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(C)をそれぞれ90%、10%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=1:18:1の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.4倍延伸した後、この縦延伸フィルムの両面に、下記表1に示す塗布液1を塗布し、テンターに導き、横方向に120℃で4.0倍延伸し、225℃で熱処理を行った後、横方向に2%弛緩し、膜厚(乾燥後)が0.10μmの塗布層を有する厚さ100μmのポリエステルフィルムを得た。
Example 1:
A mixed raw material in which polyesters (A) and (B) are mixed at a ratio of 90% and 10%, respectively, is used as a raw material for the outermost layer (surface layer), and polyesters (A) and (C) are respectively at a ratio of 90% and 10%. Each of the mixed raw materials is fed to two extruders as a raw material for the intermediate layer, melted at 285 ° C., and then two types and three layers (surface layer / intermediate layer / A non-stretched sheet was obtained by coextrusion and cooling and solidification in a layer configuration of (surface layer = 1: 18: 1 discharge amount). Next, the film was stretched 3.4 times in the longitudinal direction at a film temperature of 85 ° C. using the difference in peripheral speed of the roll, and then the coating liquid 1 shown in Table 1 below was applied to both sides of the longitudinally stretched film, and led to a tenter. Polyester with a thickness of 100 μm having a coating layer with a coating layer thickness of 0.10 μm after stretching by 4.0% at 120 ° C. in the transverse direction and heat treatment at 225 ° C. A film was obtained.
 得られたポリエステルフィルムの絶対反射率を測定したところ、極小値は600nmで、その反射率は4.2%であった。ハードコート層を積層後のフィルムには明瞭な干渉ムラはなく、また密着性も良好であり、ヘーズも低く透明性も良好であった。また380nmにおける透過率は0.4%であり、紫外線を吸収していることが確認できた。このフィルムの特性を下記表2に示す。 When the absolute reflectance of the obtained polyester film was measured, the minimum value was 600 nm, and the reflectance was 4.2%. The film after laminating the hard coat layer had no clear interference unevenness, good adhesion, low haze, and good transparency. Moreover, the transmittance | permeability in 380 nm was 0.4%, and it has confirmed that it was absorbing the ultraviolet-ray. The properties of this film are shown in Table 2 below.
 実施例2~21:
 実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは表2に示すとおり、高い反射率を有し、干渉ムラレベルも良好で、密着性も良好なものであった。
Examples 2 to 21:
In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film. As shown in Table 2, the finished polyester film had high reflectivity, good interference unevenness level, and good adhesion.
 実施例22:
 ポリエステル(A)、(B)をそれぞれ90%、10%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(C)をそれぞれ94%、6%の割合で混合した混合原料を中間層の原料として使用し、2種3層(表層/中間層/表層=1:25:1の吐出量)の層構成で共押出し、塗布剤組成を表1に示す塗布剤組成にし、厚さ188μmに変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは表2に示すとおりであり、また、380nmにおける透過率は0.2%であり、紫外線を吸収していることが確認できた。
Example 22:
A mixed raw material obtained by mixing polyester (A) and (B) at a ratio of 90% and 10%, respectively, is used as a raw material for the outermost layer (surface layer), and polyesters (A) and (C) are at a ratio of 94% and 6%, respectively. Using the mixed raw material mixed as the raw material for the intermediate layer, co-extrusion with a layer configuration of two types and three layers (surface layer / intermediate layer / surface layer = 1: 25: 1 discharge amount) and coating composition shown in Table 1 A polyester film was obtained in the same manner as in Example 1 except that the composition was changed to a thickness of 188 μm. The completed polyester film is as shown in Table 2. Further, the transmittance at 380 nm was 0.2%, and it was confirmed that ultraviolet rays were absorbed.
 比較例1~5:
 実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がった塗布フィルムを評価したところ、表2に示すとおり、明瞭な干渉ムラが観察できる場合、密着性が劣る場合が見られた。
Comparative Examples 1 to 5:
In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film. When the finished coating film was evaluated, as shown in Table 2, when clear interference unevenness could be observed, the adhesion was inferior.
 比較例6:
 ポリエステル(A)、(B)をそれぞれ90%、10%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)を中間層の原料として使用し、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がった塗布フィルムを評価したところ、表2に示すとおり、380nmにおける透過率は87.7%であり、紫外線を吸収していないことが確認できた。
Comparative Example 6:
A mixed raw material obtained by mixing polyester (A) and (B) at a ratio of 90% and 10%, respectively, is used as a raw material for the outermost layer (surface layer), and polyester (A) is used as a raw material for the intermediate layer. A polyester film was obtained in the same manner as in Example 1 except that the composition was changed to the coating composition shown in 1. When the finished coated film was evaluated, as shown in Table 2, the transmittance at 380 nm was 87.7%, and it was confirmed that ultraviolet rays were not absorbed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明のフィルムは、例えば、液晶やプラズマディスプレイ等の部材である各種の光学用フィルムや、成形用フィルム等において、ハードコート層等の表面機能層との密着性および視認性を重視する用途に好適に利用することができる。 The film of the present invention, for example, in various optical films that are members of liquid crystal or plasma displays, molding films, etc., for applications that place importance on adhesion and visibility with surface functional layers such as hard coat layers. It can be suitably used.

Claims (8)

  1.  ポリエステルフィルムの少なくとも片面の最外層に塗布層を有する塗布フィルムであって、上記のポリエステルフィルムの少なくとも一層は紫外線吸収剤を含有し、上記の塗布層は、金属酸化物(A)、およびオキサゾリン化合物、エポキシ化合物、メラミン化合物、イソシアネート系化合物、カルボジイミド系化合物、金属キレート化合物、シランカップリング化合物の群からそれぞれ選択される2種類以上の架橋剤(B)を含有する塗布液から形成され、そして、絶対反射率が波長400~800nmの範囲で極小値を1つ有し、当該極小値における絶対反射率が4.0%以上であることを特徴とする塗布フィルム。 A coated film having a coated layer on at least one outermost layer of the polyester film, wherein at least one layer of the polyester film contains an ultraviolet absorber, and the coated layer comprises a metal oxide (A) and an oxazoline compound. , An epoxy compound, a melamine compound, an isocyanate compound, a carbodiimide compound, a metal chelate compound, a coating solution containing two or more kinds of crosslinking agents (B) each selected from the group of silane coupling compounds, and A coated film having one minimum value in the range of 400 to 800 nm in absolute reflectance, and having an absolute reflectance of 4.0% or more at the minimum value.
  2.  全不揮発成分に対する割合として、塗布液中の金属酸化物(A)の含有量が3~70重量%、塗布液中の2種類以上架橋剤(B)の含有量が2~80重量%である請求項1に記載の塗布フィルム。 The ratio of the metal oxide (A) in the coating solution is 3 to 70% by weight, and the content of two or more kinds of crosslinking agents (B) in the coating solution is 2 to 80% by weight as a ratio to the total nonvolatile components. The coated film according to claim 1.
  3.  2種類以上の架橋剤(B)が少なくともオキサゾリン化合物またはエポキシ化合物を含有する請求項1又は2に記載の塗布フィルム。 The coated film according to claim 1 or 2, wherein the two or more types of crosslinking agents (B) contain at least an oxazoline compound or an epoxy compound.
  4.  2種類以上の架橋剤(B)が少なくともオキサゾリン化合物及びエポキシ化合物を含有する請求項1又は2に記載の塗布フィルム。 The coated film according to claim 1 or 2, wherein the two or more kinds of crosslinking agents (B) contain at least an oxazoline compound and an epoxy compound.
  5.  紫外線吸収剤がベンゾオキサジノン系である請求項1~4の何れかに記載の塗布フィルム。 The coated film according to any one of claims 1 to 4, wherein the ultraviolet absorber is a benzoxazinone type.
  6.  金属酸化物が酸化ジルコニウムまたは酸化チタンである請求項1~5の何れかに記載の塗布フィルム。 The coated film according to any one of claims 1 to 5, wherein the metal oxide is zirconium oxide or titanium oxide.
  7.  塗布液が更に縮合多環式芳香族化合物を含有する請求項1~6のいずれかに記載の塗布フィルム。 The coated film according to any one of claims 1 to 6, wherein the coating solution further contains a condensed polycyclic aromatic compound.
  8.  全不揮発成分に対する割合として、塗布液中の縮合多環式芳香族化合物の含有量が80重量%以下である請求項7に記載の塗布フィルム。 The coated film according to claim 7, wherein the content of the condensed polycyclic aromatic compound in the coating solution is 80% by weight or less as a ratio to the total nonvolatile components.
PCT/JP2012/060872 2011-05-07 2012-04-23 Coated film WO2012153625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011103885A JP5355620B2 (en) 2011-05-07 2011-05-07 Laminated polyester film
JP2011-103885 2011-05-07

Publications (1)

Publication Number Publication Date
WO2012153625A1 true WO2012153625A1 (en) 2012-11-15

Family

ID=47139111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060872 WO2012153625A1 (en) 2011-05-07 2012-04-23 Coated film

Country Status (2)

Country Link
JP (1) JP5355620B2 (en)
WO (1) WO2012153625A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118530A (en) * 1999-10-19 2001-04-27 Mitsubishi Polyester Film Copp Polyester film layer for protecting cathode-ray tube
JP2003082127A (en) * 2001-09-07 2003-03-19 Teijin Dupont Films Japan Ltd Biaxially oriented optical polyester film and its laminate
JP2003311907A (en) * 2002-04-26 2003-11-06 Mitsubishi Polyester Film Copp Polyester film for displaying
JP2008023718A (en) * 2006-07-18 2008-02-07 Mitsubishi Polyester Film Copp Laminated polyester film for antireflection films
JP2009190217A (en) * 2008-02-13 2009-08-27 Mitsubishi Plastics Inc Laminated polyester film for optical use
JP2009269176A (en) * 2008-04-30 2009-11-19 Toyobo Co Ltd Substrate film having modified adhesiveness and hard coat film
JP2010254772A (en) * 2009-04-23 2010-11-11 Mitsubishi Plastics Inc Laminated polyester film
JP2010253741A (en) * 2009-04-23 2010-11-11 Mitsubishi Plastics Inc Laminated polyester film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118530A (en) * 1999-10-19 2001-04-27 Mitsubishi Polyester Film Copp Polyester film layer for protecting cathode-ray tube
JP2003082127A (en) * 2001-09-07 2003-03-19 Teijin Dupont Films Japan Ltd Biaxially oriented optical polyester film and its laminate
JP2003311907A (en) * 2002-04-26 2003-11-06 Mitsubishi Polyester Film Copp Polyester film for displaying
JP2008023718A (en) * 2006-07-18 2008-02-07 Mitsubishi Polyester Film Copp Laminated polyester film for antireflection films
JP2009190217A (en) * 2008-02-13 2009-08-27 Mitsubishi Plastics Inc Laminated polyester film for optical use
JP2009269176A (en) * 2008-04-30 2009-11-19 Toyobo Co Ltd Substrate film having modified adhesiveness and hard coat film
JP2010254772A (en) * 2009-04-23 2010-11-11 Mitsubishi Plastics Inc Laminated polyester film
JP2010253741A (en) * 2009-04-23 2010-11-11 Mitsubishi Plastics Inc Laminated polyester film

Also Published As

Publication number Publication date
JP5355620B2 (en) 2013-11-27
JP2012232534A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5570289B2 (en) Laminated polyester film
WO2010143551A1 (en) Laminated polyester film
JP5449071B2 (en) Laminated polyester film
JP5520138B2 (en) Laminated polyester film
JP5424987B2 (en) Laminated polyester film
JP5529095B2 (en) Laminated polyester film
WO2013035629A1 (en) Coated film
JP5686873B2 (en) Laminated polyester film
JP5679946B2 (en) Laminated polyester film
JP5743846B2 (en) Laminated polyester film
WO2012011319A1 (en) Laminated polyester film
JP5536717B2 (en) Laminated polyester film
JP5355620B2 (en) Laminated polyester film
WO2012081438A1 (en) Layered polyester film
WO2012169309A1 (en) Coated film
JP5536718B2 (en) Laminated polyester film
WO2011132541A1 (en) Laminated polyester film
WO2012011333A1 (en) Laminated polyester film
JP5755768B2 (en) Laminated polyester film
JP5570337B2 (en) Laminated polyester film
JP5822636B2 (en) Laminated polyester film
JP2013082808A (en) Laminate polyester film
WO2013001946A1 (en) Coating film
JP2013010279A (en) Laminated polyester film
JP2013095122A (en) Laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782749

Country of ref document: EP

Kind code of ref document: A1