WO2012081438A1 - Layered polyester film - Google Patents

Layered polyester film Download PDF

Info

Publication number
WO2012081438A1
WO2012081438A1 PCT/JP2011/078075 JP2011078075W WO2012081438A1 WO 2012081438 A1 WO2012081438 A1 WO 2012081438A1 JP 2011078075 W JP2011078075 W JP 2011078075W WO 2012081438 A1 WO2012081438 A1 WO 2012081438A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester film
coating layer
coating
acid
polyester
Prior art date
Application number
PCT/JP2011/078075
Other languages
French (fr)
Japanese (ja)
Inventor
加藤雄三
川崎泰史
藤田真人
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010278881A external-priority patent/JP5489972B2/en
Priority claimed from JP2010278880A external-priority patent/JP5489971B2/en
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2012081438A1 publication Critical patent/WO2012081438A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a laminated polyester film, for example, a laminated polyester film that needs to reduce interference unevenness due to reflection of external light, such as a liquid crystal display, a plasma display panel, and organic electroluminescence.
  • polyester films have been used for touch panels, antireflection films, prism sheets, light diffusion sheets, electromagnetic wave shielding films, and the like, which are members of liquid crystal displays and plasma display panels.
  • the base film used for these members is required to have excellent transparency and visibility.
  • the polyester film excellent in transparency and a mechanical characteristic is generally used as a base material.
  • an easy-adhesion coating layer is generally provided as an intermediate layer, but the reflected light at the interface between the hard coat layer and the coating layer, and the coating layer When the reflected light at the interface between the polyester film and the polyester film interferes, rainbow pattern unevenness (interference unevenness) may occur.
  • the refractive index of the coating layer for reducing the interference unevenness is considered to be around the geometric mean of the refractive index of the biaxially stretched polyester film of the base material and the refractive index of the hard coat layer, and the refractive index around this can be adjusted. Ideal. Since the refractive index of the polyester film is high, it is generally necessary to design the coating layer with a high refractive index.
  • An example of improving interference unevenness by increasing the refractive index of the coating layer includes, for example, a method of blending a metal chelate compound or metal fine particles having a high refractive index in the coating layer.
  • the stability of the coating solution may not be sufficient depending on the combination due to the instability of the metal chelate in the aqueous solution, and there is a possibility of increasing the liquid replacement work when producing for a long time.
  • Patent Document 1 an example in which the refractive index is increased by a combination of a polyester resin and metal fine particles is also known, but in this case, there is a case where it is not possible to sufficiently exhibit the strict moist heat-resistant adhesion demanded in recent years (Patent Document). 2, 3).
  • the present case has been made in view of the above circumstances, and the problem to be solved is to reduce interference unevenness when various surface functional layers such as a hard coat are provided, and to have good visibility and surface function. It is providing the laminated polyester film excellent in adhesiveness with a layer.
  • the gist of the present invention is a laminated polyester film having a coating layer formed from a coating solution containing a polyester resin, titanium oxide particles, and an epoxy compound or an isocyanate compound on at least one surface of the polyester film.
  • the laminated polyester film of the present invention when various surface functional layers such as a hard coat are laminated, visibility is hardly impaired due to interference unevenness and the like, and a film having excellent adhesion to various surface functional layers is provided. And its industrial value is high.
  • the polyester film constituting the laminated polyester film in the present invention may have a single layer structure or a multilayer structure, and may have four or more layers as long as it does not exceed the gist of the present invention other than a two-layer or three-layer structure. It may be a multilayer, and is not particularly limited.
  • the polyester used in the present invention may be a homopolyester or a copolyester.
  • a homopolyester those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
  • the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid
  • examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
  • Typical polyester includes polyethylene terephthalate and the like.
  • examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (for example, p-oxybenzoic acid).
  • 1 type or 2 types or more are mentioned,
  • a glycol component 1 type or 2 types or more, such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexane dimethanol, neopentyl glycol, is mentioned.
  • the polyester polymerization catalyst is not particularly limited, and a conventionally known compound can be used. Examples thereof include an antimony compound, a titanium compound, a germanium compound, a manganese compound, an aluminum compound, a magnesium compound, and a calcium compound. Among these, a titanium compound is particularly preferable from the viewpoint of increasing the brightness of the film.
  • an ultraviolet absorber can be contained in order to improve the weather resistance of the film and prevent deterioration of the liquid crystal.
  • the ultraviolet absorber is not particularly limited as long as it is a compound that absorbs ultraviolet rays and can withstand the heat applied in the production process of the polyester film.
  • an organic ultraviolet absorber there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • an organic type ultraviolet absorber For example, a cyclic imino ester type, a benzotriazole type, a benzophenone type etc. are mentioned. From the viewpoint of durability, a cyclic imino ester type and a benzotriazole type are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
  • particles can be blended mainly for the purpose of imparting slipperiness and preventing the occurrence of scratches in each step.
  • the kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness.
  • Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid.
  • examples include inorganic particles such as magnesium, kaolin, aluminum oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin.
  • precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
  • the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction
  • the average particle size of the particles used is usually in the range of 0.01 to 3 ⁇ m. If the average particle size is less than 0.01 ⁇ m, the slipperiness may not be sufficiently imparted, or the particles may be aggregated to make the dispersibility insufficient, thereby reducing the transparency of the film. On the other hand, when the thickness exceeds 5 ⁇ m, the surface roughness of the film becomes too rough, which may cause problems when various surface functional layers such as a hard coat layer are formed in a subsequent process.
  • the particle content in the polyester layer is less than 5% by weight, preferably in the range of 0.0005 to 3% by weight.
  • the transparency of the film becomes high and the film becomes a good film, but the slipperiness may be insufficient. There are cases where improvement is required. Further, when the particle content exceeds 5% by weight, the transparency of the film may be insufficient.
  • the method for adding particles to the polyester layer is not particularly limited, and a conventionally known method can be adopted.
  • it can be added at any stage for producing the polyester constituting each layer, but it is preferably added after completion of esterification or transesterification.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder is done by methods.
  • antioxidants In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments, and the like can be added to the polyester film in the present invention as necessary. .
  • the thickness of the polyester film in the present invention is not particularly limited as long as it can be formed as a film, but is usually in the range of 10 to 350 ⁇ m, preferably 25 to 250 ⁇ m.
  • a production example of the polyester film in the present invention will be specifically described, but is not limited to the following production examples. That is, a method of using the polyester raw material described above and cooling and solidifying a molten sheet extruded from a die with a cooling roll to obtain an unstretched sheet is preferable. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine.
  • the stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times.
  • the film is stretched in the direction perpendicular to the first stretching direction.
  • the stretching temperature is usually 70 to 170 ° C.
  • the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there.
  • heat treatment is performed at a temperature of 180 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film.
  • a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
  • the simultaneous biaxial stretching method can be adopted for the production of the polyester film constituting the laminated polyester film.
  • the simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is usually controlled at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film.
  • a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
  • the coating layer constituting the laminated polyester film in the present invention
  • it may be provided by in-line coating which treats the film surface during the process of forming a polyester film, or offline coating which is applied outside the system on a once produced film may be adopted. Since the coating can be performed simultaneously with the film formation, the production can be handled at a low cost, and therefore in-line coating is preferably used.
  • the in-line coating is not limited to the following, for example, in the sequential biaxial stretching, a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished.
  • a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished.
  • the coating layer is provided on the polyester film by in-line coating, it is possible to apply at the same time as the film formation, and the coating layer can be processed at a high temperature in the heat treatment process of the polyester film after stretching. Performances such as adhesion to various surface functional layers that can be formed on the layer and heat-and-moisture resistance can be improved.
  • the thickness of an application layer can also be changed with a draw ratio, and compared with offline coating, thin film coating can be performed more easily. That is, a film suitable as a polyester film can be produced by in-line coating, particularly coating before stretching.
  • a coating layer formed of a coating solution containing a polyester resin, titanium oxide particles, and an epoxy compound or an isocyanate compound on at least one surface of the polyester film.
  • the coating layer of the present invention is obtained by setting the refractive index of the surface functional layer such as the hard coat layer and the refractive index of the coating layer to the biaxially stretched polyester. It is designed to be close to the refractive index of the film. When these refractive indexes are in the vicinity of the same, reflection at each interface can be suppressed, so that interference unevenness is extremely reduced.
  • the polyester resin used for forming the coating layer of the present invention includes, for example, the following polyvalent carboxylic acid and polyvalent hydroxy compound as main components. That is, as the polyvalent carboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 4,4′-diphenyldicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and 2,6 -Naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2-potassium sulfoterephthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, glutar Acid, succinic acid, trimellitic acid, trimesic acid, pyromellitic acid, trimellitic anhydride,
  • the coating layer has a higher refractive index and hard coating.
  • Surface functional layer such as a layer, and since the interference unevenness can highly inhibited by adjusting the near equivalent polyester film substrate preferably has a naphthalene structure.
  • the polyvalent hydroxy compound include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 2- Methyl-1,5-pentanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, p-xylylene glycol, ethylene glycol modified bisphenol A, diethylene glycol modified bisphenol A, diethylene glycol, triethylene glycol, polyethylene Glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene oxide glycol, dimethylolpropionic acid, glycerin, trimethylol
  • a polymer other than the above-described polyester resin is used in order to improve the adhesion with the surface functional layer, the coated surface, and the visibility and transparency when the surface functional layer is formed. It can also be used in combination.
  • polymer examples include acrylic resin, urethane resin, polyvinyl (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymer, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starches and the like. It is done.
  • Titanium oxide has a high refractive index and can increase the refractive index of the coating layer without impairing the transparency of the film.
  • the refractive index of the resin used in the coating layer is low, it is preferable to use titanium oxide particles having a high refractive index, and in order to obtain a coating layer having a refractive index close to that of the polyester film, refraction is required. It is preferable to use a rate of 1.7 or more. If necessary, two or more types of titanium oxide particles may be used in combination.
  • the average particle size of the titanium oxide particles used for forming the coating layer of the present invention is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 25 nm or less, and particularly preferably 15 nm or less.
  • particles other than titanium oxide particles may be used in combination for forming the coating layer.
  • the epoxy compound used for the formation of the coating layer of the present invention is a compound having an epoxy group in the molecule.
  • epichlorohydrin and ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A and other hydroxyl groups such as Examples include condensates with amino groups, such as polyepoxy compounds, diepoxy compounds, monoepoxy compounds, and glycidylamine compounds.
  • polyepoxy compound examples include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane.
  • polyglycidyl ether and diepoxy compound examples include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether.
  • Polypropylene glycol diglycidyl ether polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N ′,-tetraglycidyl-m-. Examples include xylylenediamine, 1,3-bis (N, N-diglycidylamino) cyclohexane, and the reactants thereof. These may be used alone or in combination of two or more.
  • the isocyanate compound used for forming the coating layer of the present invention is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate.
  • isocyanates include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate.
  • Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate
  • Alicyclic isocyanates such as bets are exemplified.
  • polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination.
  • isocyanates aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
  • the blocking agent When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol.
  • active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ⁇ -caprolactam and ⁇ -valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetal Examples include oxime compounds such as dooxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
  • the isocyanate compound in the present invention may be used alone or as a mixture or combination with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
  • cross-linking agents other than the epoxy compound and the isocyanate compound can be used in combination in forming the coating layer of the present invention within a range not impairing the gist of the invention.
  • a crosslinking agent other than the epoxy compound and the isocyanate compound a known crosslinking agent can be used, and examples thereof include oxazoline compounds, melamine compounds, carbodiimide compounds, and silane coupling compounds.
  • the oxazoline compound used in the formation of the coating layer of the present invention is a compound having an oxazoline group in the molecule, and a polymer containing an oxazoline group is particularly preferred, and an addition-polymerizable oxazoline group-containing monomer alone or another monomer Can be made by polymerization with.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer.
  • alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene
  • Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alky
  • the melamine compound used for forming the coating layer of the present invention is a compound having a melamine structure in the compound.
  • an alcohol is reacted with an alkylolated melamine derivative or an alkylolated melamine derivative to partially Alternatively, fully etherified compounds and mixtures thereof can be used.
  • alcohol used for etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used.
  • a melamine compound either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used.
  • a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
  • the carbodiimide compound used for the formation of the coating layer of the present invention is a compound having a carbodiimide structure, and is a compound having one or more carbodiimide structures in the molecule, for better adhesion and the like. Further, a polycarbodiimide compound having two or more in the molecule is more preferable.
  • the carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used.
  • the diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used.
  • tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.
  • cross-linking agents are used in a design that improves the performance of the coating layer by reacting in the drying process or film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.
  • the coating layer has an antifoaming agent, a coating property improving agent, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, an antioxidant, foaming as necessary. Agents, dyes, pigments and the like may be contained.
  • the ratio of the polyester resin is usually in the range of 10 to 90% by weight, more preferably in the range of 40 to 85% by weight, based on the total amount of non-volatile components in the coating solution forming the coating layer constituting the laminated polyester film in the present invention. .
  • the refractive index of the coating layer can be easily adjusted, and interference unevenness can be easily suppressed when a surface functional layer such as a hard coat layer is provided.
  • adhesiveness with a surface functional layer may fall.
  • the content of titanium oxide particles is usually 5 to 60% by weight, preferably 8 to 50% by weight, and more preferably, as a ratio to the total nonvolatile components in the coating solution forming the coating layer constituting the laminated polyester film. It is in the range of 20 to 40% by weight.
  • the content of the titanium oxide particles is less than 5% by weight, the refractive index of the coating layer does not increase, so that interference unevenness may not be reduced, and when it exceeds 60% by weight, the haze of the coating layer may deteriorate.
  • the content of the epoxy compound is usually in the range of 1 to 50% by weight, preferably in the range of 5 to 30% by weight. More preferably, it is in the range of 10 to 20% by weight.
  • the amount is less than 1% by weight, there is a concern that the adhesion to a surface functional layer such as a hard coat layer may be lowered.
  • the amount exceeds 50% by weight, the haze of the coating layer may be deteriorated.
  • the content of the compound derived from the isocyanate compound is usually in the range of 1 to 50% by weight, preferably 5 to 30% by weight, based on the total amount of non-volatile components in the coating solution forming the coating layer constituting the laminated polyester film. More preferably, it is in the range of 10 to 20% by weight.
  • the amount is less than 1% by weight, there is a concern that the adhesion to a surface functional layer such as a hard coat layer may be lowered.
  • the amount exceeds 50% by weight the haze of the coating layer may be deteriorated.
  • the analysis of various components in the coating layer can be performed by analysis of TOF-SIMS, ESCA, fluorescent X-rays, and the like.
  • a coating layer When providing a coating layer by in-line coating, apply the above-mentioned series of compounds as an aqueous solution or water dispersion on a polyester film with a coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight. It is preferable to produce a laminated polyester film. Moreover, in the range which does not impair the main point of this invention, a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.
  • the thickness of the coating layer provided on the polyester film is in the range of 0.01 to 0.20 ⁇ m, more preferably 0.02 to 0.10 ⁇ m. If the coating amount is less than 0.01 ⁇ m, sufficient adhesion may not be obtained, and if it exceeds 0.20 ⁇ m, the appearance, transparency, and film blocking properties may be deteriorated.
  • a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating or the like can be used.
  • the drying and curing conditions for forming the coating layer on the polyester film are not particularly limited.
  • the coating layer is provided by off-line coating, usually at 80 to 200 ° C. for 3 to 40 seconds.
  • the heat treatment is preferably performed at 100 to 180 ° C. for 3 to 40 seconds as a guide.
  • the coating layer is provided by in-line coating, it is usually preferable to perform heat treatment at 70 to 280 ° C. for 3 to 200 seconds as a guide.
  • polyester film constituting the laminated polyester film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
  • the coating layer in the present invention has a refractive index adjusted to be around the same as that of the base polyester film in order to suppress interference unevenness to a higher degree.
  • the absolute reflectance of the coating layer is in the range of 5.5 to 6.5%, preferably in the range of 5.6 to 6.4%, more preferably 5.7 at an arbitrary wavelength of 400 to 800 nm. It is in the range of ⁇ 6.3%. When the reflectance is out of this range, interference unevenness is increased when a surface functional layer such as a hard coat is provided on the coating layer, and the visibility may be lowered.
  • the polyester film of the present invention is generally provided with a surface functional layer such as a hard coat layer on the coating layer.
  • a surface functional layer such as a hard coat layer on the coating layer.
  • cured materials such as reactive silicon compounds, such as monofunctional (meth) acrylate, polyfunctional (meth) acrylate, and tetraethoxysilane.
  • reactive silicon compounds such as monofunctional (meth) acrylate, polyfunctional (meth) acrylate, and tetraethoxysilane.
  • a polymerization cured product of a composition containing an ultraviolet curable polyfunctional (meth) acrylate is particularly preferable.
  • composition containing an ultraviolet curable polyfunctional (meth) acrylate is not particularly limited.
  • the UV-curable polyfunctional (meth) acrylate is not particularly limited.
  • composition containing an ultraviolet curable polyfunctional (meth) acrylate are not particularly limited. Examples thereof include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers and leveling agents. Moreover, when making it dry after film forming in the wet-coating method, arbitrary amounts of solvents can be added.
  • the hard coat layer when an organic material is used, a general wet coat method such as a roll coat method or a die coat method is employed.
  • the formed hard coat layer can be subjected to a curing reaction by heating, irradiation with active energy rays such as ultraviolet rays and electron beams as necessary.
  • the obtained film is visually observed under the three-wavelength type fluorescent lamp for interference unevenness on the coating layer side, ⁇ when the interference unevenness cannot be confirmed, ⁇ when thin and sparse interference unevenness is confirmed ⁇ , thin Indicates that a linear interference unevenness can be confirmed, and ⁇ indicates that a clear interference unevenness is confirmed.
  • the obtained film was subjected to 10 ⁇ 10 cross-cut after 100 hours in an environment of 60 ° C. and 90% RH, and a 18 mm wide tape (Cello Tape (registered trademark) CT-18 manufactured by Nichiban Co., Ltd.) was used.
  • a 18 mm wide tape (Cello Tape (registered trademark) CT-18 manufactured by Nichiban Co., Ltd.) was used.
  • the polyester used in the examples and comparative examples was prepared as follows.
  • polyester (A) 100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 30 ppm of ethyl acid phosphate with respect to the produced polyester, and 100 ppm with respect to the produced polyester of magnesium acetate tetrahydrate as the catalyst at 260 ° C. in a nitrogen atmosphere. The reaction was allowed to proceed. Subsequently, 50 ppm of tetrabutyl titanate was added to the resulting polyester, the temperature was raised to 280 ° C. over 2 hours and 30 minutes, the pressure was reduced to an absolute pressure of 0.3 kPa, and melt polycondensation was further carried out for 80 minutes. 0.63 polyester (A) was obtained.
  • the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.63 due to a change in stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure.
  • the obtained chip was preliminarily crystallized at 160 ° C., and then solid-phase polymerized in a nitrogen atmosphere at a temperature of 220 ° C. to obtain a polyester (C) having an intrinsic viscosity of 0.85.
  • polyester (D) is obtained using the same method as the production method of polyester (A) except that 0.3 part by weight of silica particles having an average particle diameter of 2 ⁇ m is added before melt polymerization. It was.
  • Isocyanate compounds Obtained by blocking 200 parts of a polyester having an average molecular weight of 1000 consisting of an ethylene oxide 2 mol adduct of bisphenol A and maleic acid, and 84 parts of sodium bisulfite with a polyisocyanate consisting of 33.6 parts of hexamethylene diisocyanate, Polyester resin-containing blocked isocyanate compound.
  • Isocyanate compounds (C2B) A blocked isocyanate obtained by blocking an isocyanate group of polyisocyanate comprising 158 parts of hexamethylene diisocyanate trimer and 26 parts of methoxypolyethylene glycol having a number average molecular weight of 1400 with 66 parts of methyl ethyl ketone oxime, 1,6-hexanediol and diethyl carbonate A urethane obtained by neutralizing a prepolymer comprising 115 parts of a polycarbonate polyol having a number average molecular weight of 2000, 1 part of trimethylolpropane, 40 parts of isophorone diisocyanate and 8 parts of dimethylolpropionic acid with triethylamine and extending the chain with diethylenetriamine. An aqueous blocked isocyanate compound containing a resin.
  • Oxazoline compounds (C3) Acrylic polymer having oxazoline group and polyalkylene oxide chain, Epocros WS-500 (manufactured by Nippon Shokubai Co., Ltd., containing about 38% 1-methoxy-2-propanol solvent)
  • the film was stretched 3.4 times in the longitudinal direction at a film temperature of 85 ° C. using the difference in peripheral speed of the roll, and then the coating liquid 1 shown in Table 1 below was applied to both sides of the longitudinally stretched film, and led to a tenter. Thickness having a coating layer in which the film is stretched 4.0 times at 120 ° C. in the transverse direction and heat-treated at 225 ° C. and then relaxed by 2% in the transverse direction and the coating layer thickness (after drying) is 0.10 ⁇ m. A 125 ⁇ m polyester film was obtained.
  • the minimum reflectance at an arbitrary wavelength of 400 to 800 nm of the coating layer was 5.5%. Clear interference unevenness was observed on the film after laminating the hard coat layer. The adhesion was also good. Also, the haze was low and the transparency was good. The properties of this film are shown in Table 2 below.
  • Example 1 In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film.
  • the finished polyester film had a high reflectance as shown in Table 2, and had good interference unevenness and adhesion.
  • Comparative Examples 1-7 In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition of an application layer into the coating agent composition shown in Table 1, and obtained the polyester film. As shown in Table 3, the finished laminated polyester film had poor interference unevenness and poor adhesion to the hard coat.
  • Comparative Example 8 In Example 1, it manufactured similarly to Example 1 except having not provided the application layer, and obtained the polyester film. The finished laminated polyester film was inferior in adhesion to the hard coat as shown in Table 3.
  • the film of the present invention can be suitably used for, for example, various optical films that are members of liquid crystals, plasma displays, and the like, and applications that place importance on adhesion and visibility with a surface functional layer such as a hard coat layer. .

Abstract

Provided is a layered polyester film which, when various functional surface layers including, for example, a hardcoat, are superposed thereon, diminishes unevenness due to interference or the like to attain satisfactory visibility and has excellent adhesion to the functional surface layers. The layered polyester film comprises a polyester film and a coating layer formed on at least one surface thereof from a coating fluid which comprises a polyester resin, titanium oxide particles, and an epoxy compound or isocyanate compound.

Description

積層ポリエステルフィルムLaminated polyester film
 本発明は、積層ポリエステルフィルムに関するものであり、例えば、液晶ディスプレイ、プラズマディスプレイパネル、有機エレクトロルミネッセンス等、外光反射による干渉ムラの軽減が必要な積層ポリエステルフィルムに関するものである。 The present invention relates to a laminated polyester film, for example, a laminated polyester film that needs to reduce interference unevenness due to reflection of external light, such as a liquid crystal display, a plasma display panel, and organic electroluminescence.
 近年、ポリエステルフィルムは、液晶ディスプレイやプラズマディスプレイパネルの部材であるタッチパネル、反射防止フィルム、プリズムシート、光拡散シート、電磁波シールドフィルムなどに用いられている。これらの部材に用いられるベースフィルムには、優れた透明性、視認性が要求される。 In recent years, polyester films have been used for touch panels, antireflection films, prism sheets, light diffusion sheets, electromagnetic wave shielding films, and the like, which are members of liquid crystal displays and plasma display panels. The base film used for these members is required to have excellent transparency and visibility.
 これらのフィルムにはカール防止や耐擦傷性の向上、表面硬度等の性能を向上させるために、ハードコート加工されることが多い。また、基材としては、透明性と機械特性に優れたポリエステルフィルムが一般的に使用される。ポリエステルフィルムとハードコート層の密着性を向上させるために、中間層として易接着の塗布層が設けられる場合が一般的であるが、ハードコート層と塗布層の界面での反射光と、塗布層とポリエステルフィルムの界面での反射光が干渉することで、虹模様のムラ(干渉ムラ)が発生することがある。 These films are often hard-coated to prevent curling, improve scratch resistance, and improve surface hardness. Moreover, as a base material, the polyester film excellent in transparency and a mechanical characteristic is generally used. In order to improve the adhesion between the polyester film and the hard coat layer, an easy-adhesion coating layer is generally provided as an intermediate layer, but the reflected light at the interface between the hard coat layer and the coating layer, and the coating layer When the reflected light at the interface between the polyester film and the polyester film interferes, rainbow pattern unevenness (interference unevenness) may occur.
 干渉ムラのあるフィルムをタッチパネル等のディスプレイ部材に使用すると、視認性が悪く、使用しづらいものとなってしまう。このため、干渉ムラを軽減したフィルムを製造することが求められている。干渉ムラを軽減させるための塗布層の屈折率は、基材の二軸延伸ポリエステルフィルムの屈折率とハードコート層の屈折率の相乗平均付近と考えられ、この辺りの屈折率に調整することが理想的である。ポリエステルフィルムの屈折率が高いため、一般的には塗布層の屈折率を高く設計する必要がある。 If a film with uneven interference is used for a display member such as a touch panel, the visibility is poor and it is difficult to use. For this reason, it is required to produce a film with reduced interference unevenness. The refractive index of the coating layer for reducing the interference unevenness is considered to be around the geometric mean of the refractive index of the biaxially stretched polyester film of the base material and the refractive index of the hard coat layer, and the refractive index around this can be adjusted. Ideal. Since the refractive index of the polyester film is high, it is generally necessary to design the coating layer with a high refractive index.
 塗布層の屈折率を高くして、干渉ムラを改善した例としては、例えば、塗布層中に屈折率の高い金属キレート化合物や金属微粒子を配合する方法がある。キレート化合物の場合、水溶液中での金属キレートの不安定さから、組み合わせによっては塗布液の安定性が十分でない場合があり、長時間の生産を行う場合、液交換作業の増加を招く可能性がある(特許文献1)。また、ポリエステル樹脂と金属微粒子の組み合わせで屈折率を高くした例も知られているが、この場合は近年要求されている、厳しい耐湿熱密着性を十分に出すことができない場合がある(特許文献2、3)。 An example of improving interference unevenness by increasing the refractive index of the coating layer includes, for example, a method of blending a metal chelate compound or metal fine particles having a high refractive index in the coating layer. In the case of chelate compounds, the stability of the coating solution may not be sufficient depending on the combination due to the instability of the metal chelate in the aqueous solution, and there is a possibility of increasing the liquid replacement work when producing for a long time. Yes (Patent Document 1). In addition, an example in which the refractive index is increased by a combination of a polyester resin and metal fine particles is also known, but in this case, there is a case where it is not possible to sufficiently exhibit the strict moist heat-resistant adhesion demanded in recent years (Patent Document). 2, 3).
 さらに、干渉ムラの抑制の他にも、ディスプレイの視認性を向上させるために高屈折率化された塗布層の必要性が高まっている。例えば、近年ではスマートフォン等の増加によって、タッチパネルの中でも透明電極をパターニングした静電容量方式が主流となりつつあり、ディスプレイの視認性をより向上させる目的で、ディスプレイの各層の屈折率差を小さくして透明電極のパターニングを不可視化する加工も必要となってきている(特許文献4、5)。 Furthermore, in addition to the suppression of interference unevenness, there is an increasing need for a coating layer having a high refractive index in order to improve the visibility of the display. For example, in recent years, due to the increase in smartphones and the like, capacitive methods with patterned transparent electrodes are becoming mainstream among touch panels, and the refractive index difference of each layer of the display is reduced for the purpose of further improving the visibility of the display. Processing to make the patterning of the transparent electrode invisible is also required (Patent Documents 4 and 5).
特開2005-97571号公報JP 2005-97571 A 特開2004-54161号公報JP 2004-54161 A 特開2008-169277号公報JP 2008-169277 A 特開2011-134464号公報JP 2011-134464 A 特開2011-136562号公報JP 2011-136562 A
 本件は、上記実情に鑑みなされたものであって、その解決課題は、ハードコート等の各種の表面機能層を設けた場合の干渉ムラ等を軽減し、良好な視認性を有するとともに、表面機能層との密着性に優れた積層ポリエステルフィルムを提供することにある。 The present case has been made in view of the above circumstances, and the problem to be solved is to reduce interference unevenness when various surface functional layers such as a hard coat are provided, and to have good visibility and surface function. It is providing the laminated polyester film excellent in adhesiveness with a layer.
 本発明者らは、上記実情に鑑み、鋭意検討した結果、特定の構成からなる積層ポリエステルフィルムを用いれば、上記の課題を容易に解決できることを知見し、本発明を完成させるに至った。 As a result of intensive studies in view of the above circumstances, the present inventors have found that the use of a laminated polyester film having a specific configuration can easily solve the above-described problems, and have completed the present invention.
 すなわち本発明の要旨は、ポリエステルフィルムの少なくとも片面に、ポリエステル樹脂、酸化チタン粒子、およびエポキシ化合物またはイソシアネート系化合物を含有する塗布液から形成された塗布層を有することを特徴とする積層ポリエステルフィルムに存する。 That is, the gist of the present invention is a laminated polyester film having a coating layer formed from a coating solution containing a polyester resin, titanium oxide particles, and an epoxy compound or an isocyanate compound on at least one surface of the polyester film. Exist.
 本発明の積層ポリエステルフィルムによれば、ハードコート等の種々の表面機能層を積層した際に干渉ムラ等によって視認性が損なわれにくく、種々の表面機能層との密着性に優れたフィルムを提供することができ、その工業的価値は高い。 According to the laminated polyester film of the present invention, when various surface functional layers such as a hard coat are laminated, visibility is hardly impaired due to interference unevenness and the like, and a film having excellent adhesion to various surface functional layers is provided. And its industrial value is high.
 以下、本発明をさらに詳細に説明する。
 本発明における積層ポリエステルフィルムを構成するポリエステルフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を超えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。
Hereinafter, the present invention will be described in more detail.
The polyester film constituting the laminated polyester film in the present invention may have a single layer structure or a multilayer structure, and may have four or more layers as long as it does not exceed the gist of the present invention other than a two-layer or three-layer structure. It may be a multilayer, and is not particularly limited.
 本発明において使用するポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、p-オキシ安息香酸など)等の1種または2種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4-シクロヘキサンジメタノール、ネオペンチルグリコール等の1種または2種以上が挙げられる。 The polyester used in the present invention may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Typical polyester includes polyethylene terephthalate and the like. On the other hand, examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (for example, p-oxybenzoic acid). 1 type or 2 types or more are mentioned, As a glycol component, 1 type or 2 types or more, such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexane dimethanol, neopentyl glycol, is mentioned.
 ポリエステルの重合触媒としては、特に制限は無く、従来公知の化合物を使用することができ、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。この中でも特にフィルムの輝度が高くなるという観点から、チタン化合物が好ましい。 The polyester polymerization catalyst is not particularly limited, and a conventionally known compound can be used. Examples thereof include an antimony compound, a titanium compound, a germanium compound, a manganese compound, an aluminum compound, a magnesium compound, and a calcium compound. Among these, a titanium compound is particularly preferable from the viewpoint of increasing the brightness of the film.
 本発明のポリエステルフィルム中にはフィルムの耐候性の向上、液晶などの劣化防止のために、紫外線吸収剤を含有させることも可能である。紫外線吸収剤は、紫外線を吸収する化合物で、ポリエステルフィルムの製造工程で付加される熱に耐えうるものであれば特に限定されない。 In the polyester film of the present invention, an ultraviolet absorber can be contained in order to improve the weather resistance of the film and prevent deterioration of the liquid crystal. The ultraviolet absorber is not particularly limited as long as it is a compound that absorbs ultraviolet rays and can withstand the heat applied in the production process of the polyester film.
 紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤があるが、透明性の観点から有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、特に限定されないが、例えば、環状イミノエステル系、ベンゾトリアゾール系、ベンゾフェノン系などが挙げられる。耐久性の観点からは環状イミノエステル系、ベンゾトリアゾール系がより好ましい。また、紫外線吸収剤を2種類以上併用して用いることも可能である。 As the ultraviolet absorber, there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency. Although it does not specifically limit as an organic type ultraviolet absorber, For example, a cyclic imino ester type, a benzotriazole type, a benzophenone type etc. are mentioned. From the viewpoint of durability, a cyclic imino ester type and a benzotriazole type are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
 本発明のフィルムのポリエステル層中には、易滑性の付与および各工程での傷発生防止を主たる目的として、粒子を配合することも可能である。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。 In the polyester layer of the film of the present invention, particles can be blended mainly for the purpose of imparting slipperiness and preventing the occurrence of scratches in each step. The kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness. Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid. Examples include inorganic particles such as magnesium, kaolin, aluminum oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
 一方、使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。 On the other hand, the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color, etc. These series of particles may be used in combination of two or more as required.
 また、用いる粒子の平均粒径は、通常0.01~3μmの範囲である。平均粒径が0.01μm未満の場合には、易滑性を十分に付与できなかったり、粒子が凝集して、分散性が不十分となり、フィルムの透明性を低下させたりする場合がある。一方、5μmを超える場合には、フィルムの表面粗度が粗くなりすぎて、後工程においてハードコート層等の各種の表面機能層を形成させる場合等に不具合が生じる場合がある。 The average particle size of the particles used is usually in the range of 0.01 to 3 μm. If the average particle size is less than 0.01 μm, the slipperiness may not be sufficiently imparted, or the particles may be aggregated to make the dispersibility insufficient, thereby reducing the transparency of the film. On the other hand, when the thickness exceeds 5 μm, the surface roughness of the film becomes too rough, which may cause problems when various surface functional layers such as a hard coat layer are formed in a subsequent process.
 さらにポリエステル層中の粒子含有量は、5重量%未満、好ましくは0.0005~3重量%の範囲である。粒子が無い場合、あるいは少ない場合は、フィルムの透明性が高くなり、良好なフィルムとなるが、滑り性が不十分となる場合があるため、塗布層中に粒子を入れることにより、滑り性を向上させる等の工夫が必要な場合がある。また、粒子含有量が5重量%を超えて添加する場合にはフィルムの透明性が不十分な場合がある。 Further, the particle content in the polyester layer is less than 5% by weight, preferably in the range of 0.0005 to 3% by weight. When there are no or few particles, the transparency of the film becomes high and the film becomes a good film, but the slipperiness may be insufficient. There are cases where improvement is required. Further, when the particle content exceeds 5% by weight, the transparency of the film may be insufficient.
 ポリエステル層中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化もしくはエステル交換反応終了後、添加するのが良い。 The method for adding particles to the polyester layer is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester constituting each layer, but it is preferably added after completion of esterification or transesterification.
 また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。 Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. It is done by methods.
 なお、本発明におけるポリエステルフィルム中には、上述の粒子以外に、必要に応じて、従来公知の酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。 In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments, and the like can be added to the polyester film in the present invention as necessary. .
 本発明におけるポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常10~350μm、好ましくは25~250μmの範囲である。 The thickness of the polyester film in the present invention is not particularly limited as long as it can be formed as a film, but is usually in the range of 10 to 350 μm, preferably 25 to 250 μm.
 次に本発明におけるポリエステルフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。すなわち、先に述べたポリエステル原料を使用し、ダイから押し出された溶融シートを冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法および/または液体塗布密着法が好ましく採用される。次に得られた未延伸シートは二軸方向に延伸される。その場合、まず、前記の未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70~120℃、好ましくは80~110℃であり、延伸倍率は通常2.5~7倍、好ましくは3.0~6倍である。次いで、一段目の延伸方向と直交する方向に延伸するが、その場合、延伸温度は通常70~170℃であり、延伸倍率は通常3.0~7倍、好ましくは3.5~6倍である。そして、引き続き180~270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。 Next, a production example of the polyester film in the present invention will be specifically described, but is not limited to the following production examples. That is, a method of using the polyester raw material described above and cooling and solidifying a molten sheet extruded from a die with a cooling roll to obtain an unstretched sheet is preferable. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the film is stretched in the direction perpendicular to the first stretching direction. In this case, the stretching temperature is usually 70 to 170 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there. Subsequently, heat treatment is performed at a temperature of 180 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
 また、本発明においては積層ポリエステルフィルムを構成するポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70~120℃、好ましくは80~110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法であり、延伸倍率としては、面積倍率で4~50倍、好ましくは7~35倍、さらに好ましくは10~25倍である。そして、引き続き、170~250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。 In the present invention, the simultaneous biaxial stretching method can be adopted for the production of the polyester film constituting the laminated polyester film. The simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is usually controlled at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
 次に本発明における積層ポリエステルフィルムを構成する塗布層の形成について説明する。塗布層に関しては、ポリエステルフィルムの製膜工程中にフィルム表面を処理する、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよい。製膜と同時に塗布が可能であるため、製造が安価に対応可能であることから、インラインコーティングが好ましく用いられる。 Next, formation of the coating layer constituting the laminated polyester film in the present invention will be described. Regarding the coating layer, it may be provided by in-line coating which treats the film surface during the process of forming a polyester film, or offline coating which is applied outside the system on a once produced film may be adopted. Since the coating can be performed simultaneously with the film formation, the production can be handled at a low cost, and therefore in-line coating is preferably used.
 インラインコーティングについては、以下に限定するものではないが、例えば、逐次二軸延伸においては、特に縦延伸が終了した横延伸前にコーティング処理を施すことができる。インラインコーティングによりポリエステルフィルム上に塗布層が設けられる場合には、製膜と同時に塗布が可能になると共に、延伸後のポリエステルフィルムの熱処理工程で、塗布層を高温で処理することができるため、塗布層上に形成され得る各種の表面機能層との密着性や耐湿熱性等の性能を向上させることができる。また、延伸前にコーティングを行う場合は、塗布層の厚みを延伸倍率により変化させることもでき、オフラインコーティングに比べ、薄膜コーティングをより容易に行うことができる。すなわち、インラインコーティング、特に延伸前のコーティングにより、ポリエステルフィルムとして好適なフィルムを製造することができる。 Although the in-line coating is not limited to the following, for example, in the sequential biaxial stretching, a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished. When the coating layer is provided on the polyester film by in-line coating, it is possible to apply at the same time as the film formation, and the coating layer can be processed at a high temperature in the heat treatment process of the polyester film after stretching. Performances such as adhesion to various surface functional layers that can be formed on the layer and heat-and-moisture resistance can be improved. Moreover, when coating before extending | stretching, the thickness of an application layer can also be changed with a draw ratio, and compared with offline coating, thin film coating can be performed more easily. That is, a film suitable as a polyester film can be produced by in-line coating, particularly coating before stretching.
 本発明においては、ポリエステルフィルムの少なくとも片面に、ポリエステル樹脂、酸化チタン粒子、およびエポキシ化合物またはイソシアネート系化合物を含有する塗布液から形成された塗布層を有することを必須の要件とするものである。 In the present invention, it is an essential requirement to have a coating layer formed of a coating solution containing a polyester resin, titanium oxide particles, and an epoxy compound or an isocyanate compound on at least one surface of the polyester film.
 本発明の塗布層は、ハードコート層等の表面機能層を設けた場合に視認性を向上させるため、ハードコート層等の表面機能層の屈折率と塗布層の屈折率を、二軸延伸ポリエステルフィルムの屈折率と同等付近になるよう設計したものである。これらの屈折率が同等付近になることで、それぞれの界面での反射が抑えられるため、干渉ムラが非常に高度に軽減される。 In order to improve the visibility when the surface functional layer such as a hard coat layer is provided, the coating layer of the present invention is obtained by setting the refractive index of the surface functional layer such as the hard coat layer and the refractive index of the coating layer to the biaxially stretched polyester. It is designed to be close to the refractive index of the film. When these refractive indexes are in the vicinity of the same, reflection at each interface can be suppressed, so that interference unevenness is extremely reduced.
 さらに近年では、スマートフォン等の増加により、タッチパネルの中でも透明電極をパターニングした静電容量方式のタッチパネルが主流となりつつあり、画面の視認性をより向上させるために、干渉ムラ軽減とともに透明電極のパターニングを不可視化する加工の必要性が高まってきている。本発明者らは、塗布層の屈折率を、ハードコート層等の表面機能層、および基材の二軸延伸ポリエステルフィルムの屈折率と同等付近にすることで、干渉ムラを軽減するとともに、透明電極のパターニングを不可視化する加工にも有効に使用できると考えた。 Furthermore, in recent years, due to the increase in smartphones and the like, capacitive touch panels with patterned transparent electrodes are becoming mainstream among touch panels, and in order to further improve the visibility of screens, patterning of transparent electrodes has been performed in addition to reducing interference unevenness. The need for invisible processing is increasing. By reducing the refractive index of the coating layer to approximately the same as the refractive index of the surface functional layer such as a hard coat layer and the biaxially stretched polyester film of the base material, interference unevenness is reduced and transparent We thought that it can be used effectively for processing that makes electrode patterning invisible.
 本発明の塗布層の形成に使用されるポリエステル樹脂とは、主な構成成分として例えば、下記のような多価カルボン酸および多価ヒドロキシ化合物からなる。すなわち、多価カルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、フタル酸、4,4’-ジフェニルジカルボン酸、2,5-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸および、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2-カリウムスルホテレフタル酸、5-ソジウムスルホイソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、ピロメリット酸、無水トリメリット酸、無水フタル酸、p-ヒドロキシ安息香酸、トリメリット酸モノカリウム塩およびそれらのエステル形成性誘導体などを用いることができ、中でも塗布層を高屈折率化し、ハードコート層などの表面機能層、および基材のポリエステルフィルムと同等付近に調整することで干渉ムラを高度に抑制できるため、ナフタレン構造を有することが好ましい。多価ヒドロキシ化合物としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-プロパンジオ-ル、1,4-ブタンジオール、1,6-ヘキサンジオ-ル、2-メチル-1,5-ペンタンジオ-ル、ネオペンチルグリコール、1,4-シクロヘキサンジメタノ-ル、p-キシリレングリコ-ル、エチレングリコール変性ビスフェノールA、ジエチレングリコール変性ビスフェノールA、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコ-ル、ポリプロピレングリコ-ル、ポリテトラメチレングリコ-ル、ポリテトラメチレンオキシドグリコ-ル、ジメチロ-ルプロピオン酸、グリセリン、トリメチロ-ルプロパン、ジメチロ-ルエチルスルホン酸ナトリウム、ジメチロ-ルプロピオン酸カリウムなどを用いることができる。これらの多価カルボン酸と多価ヒドロキシ化合物の中からそれぞれ適宜1つ以上を選択し、常法の重縮合反応によりポリエステル樹脂を合成すればよい。 The polyester resin used for forming the coating layer of the present invention includes, for example, the following polyvalent carboxylic acid and polyvalent hydroxy compound as main components. That is, as the polyvalent carboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 4,4′-diphenyldicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and 2,6 -Naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2-potassium sulfoterephthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, glutar Acid, succinic acid, trimellitic acid, trimesic acid, pyromellitic acid, trimellitic anhydride, phthalic anhydride, p-hydroxybenzoic acid, trimellitic acid monopotassium salt and ester-forming derivatives thereof can be used. In particular, the coating layer has a higher refractive index and hard coating. Surface functional layer such as a layer, and since the interference unevenness can highly inhibited by adjusting the near equivalent polyester film substrate preferably has a naphthalene structure. Examples of the polyvalent hydroxy compound include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 2- Methyl-1,5-pentanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, p-xylylene glycol, ethylene glycol modified bisphenol A, diethylene glycol modified bisphenol A, diethylene glycol, triethylene glycol, polyethylene Glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene oxide glycol, dimethylolpropionic acid, glycerin, trimethylolpropane, sodium dimethylolethylsulfonate, dimethylo Or the like can be used potassium Rupuropion acid. One or more of these polyvalent carboxylic acids and polyvalent hydroxy compounds may be appropriately selected, and a polyester resin may be synthesized by a conventional polycondensation reaction.
 本発明における塗布層の形成には、表面機能層との密着性や、塗布面状、表面機能層を形成したときの視認性や透明性を向上させるために、上述したポリエステル樹脂以外のポリマーを併用することも可能である。 In the formation of the coating layer in the present invention, a polymer other than the above-described polyester resin is used in order to improve the adhesion with the surface functional layer, the coated surface, and the visibility and transparency when the surface functional layer is formed. It can also be used in combination.
 ポリマーの具体例としては、アクリル樹脂、ウレタン樹脂、ポリビニル(ポリビニルアルコール、ポリ塩化ビニル、塩化ビニル酢酸ビニル共重合体等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。 Specific examples of the polymer include acrylic resin, urethane resin, polyvinyl (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymer, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starches and the like. It is done.
 本発明の塗布層の形成に使用される酸化チタン粒子は、主に塗布層の屈折率調整のために使用するものである。酸化チタンは高い屈折率をもち、フィルムの透明性を損なうことなく塗布層の屈折率を上げることができる。特に塗布層中に使用する樹脂の屈折率が低いために、高い屈折率を有する酸化チタン粒子を使用することが好ましく、ポリエステルフィルムと同等付近の屈折率を有する塗布層を得るためには、屈折率として1.7以上のものを使用することが好ましい。必要に応じて、2種類以上の酸化チタン粒子を併用しても良い。 The titanium oxide particles used for forming the coating layer of the present invention are mainly used for adjusting the refractive index of the coating layer. Titanium oxide has a high refractive index and can increase the refractive index of the coating layer without impairing the transparency of the film. In particular, since the refractive index of the resin used in the coating layer is low, it is preferable to use titanium oxide particles having a high refractive index, and in order to obtain a coating layer having a refractive index close to that of the polyester film, refraction is required. It is preferable to use a rate of 1.7 or more. If necessary, two or more types of titanium oxide particles may be used in combination.
 本発明の塗布層の形成に使用する酸化チタン粒子の平均粒径は透明性の観点から、好ましくは100nm以下、より好ましくは50nm以下、更に好ましくは25nm以下、特に好ましくは15nm以下である。 From the viewpoint of transparency, the average particle size of the titanium oxide particles used for forming the coating layer of the present invention is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 25 nm or less, and particularly preferably 15 nm or less.
 また、滑り性やブロッキングを改良するために、塗布層の形成に酸化チタン粒子以外の粒子を併用してもよい。 Further, in order to improve slipperiness and blocking, particles other than titanium oxide particles may be used in combination for forming the coating layer.
 本発明の塗布層の形成に使用されるエポキシ化合物は、分子内にエポキシ基を有する化合物であり、例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’,-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等、およびこれらの反応物が挙げられる。これらは単独でも2種以上の併用であってもよい。 The epoxy compound used for the formation of the coating layer of the present invention is a compound having an epoxy group in the molecule. For example, epichlorohydrin and ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A and other hydroxyl groups such as Examples include condensates with amino groups, such as polyepoxy compounds, diepoxy compounds, monoepoxy compounds, and glycidylamine compounds. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Examples of the polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N ′,-tetraglycidyl-m-. Examples include xylylenediamine, 1,3-bis (N, N-diglycidylamino) cyclohexane, and the reactants thereof. These may be used alone or in combination of two or more.
 本発明の塗布層の形成に使用されるイソシアネート系化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。 The isocyanate compound used for forming the coating layer of the present invention is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate. Examples of isocyanates include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate Ne Alicyclic isocyanates such as bets are exemplified. Further, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
 ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。 When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol. Compounds, active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ε-caprolactam and δ-valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetal Examples include oxime compounds such as dooxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
 また、本発明におけるイソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することが好ましい。 In addition, the isocyanate compound in the present invention may be used alone or as a mixture or combination with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
 更に、発明の趣旨を損なわない範囲において、本発明の塗布層の形成にエポキシ化合物及びイソシアネート系化合物以外の各種の架橋剤を併用することも可能である。エポキシ化合物とイソシアネート系化合物以外の架橋剤としては公知の架橋剤が使用でき、オキサゾリン化合物やメラミン化合物、カルボジイミド系化合物等、シランカップリング化合物等が挙げられる。 Furthermore, various cross-linking agents other than the epoxy compound and the isocyanate compound can be used in combination in forming the coating layer of the present invention within a range not impairing the gist of the invention. As a crosslinking agent other than the epoxy compound and the isocyanate compound, a known crosslinking agent can be used, and examples thereof include oxazoline compounds, melamine compounds, carbodiimide compounds, and silane coupling compounds.
 本発明の塗布層の形成に使用されるオキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。 The oxazoline compound used in the formation of the coating layer of the present invention is a compound having an oxazoline group in the molecule, and a polymer containing an oxazoline group is particularly preferred, and an addition-polymerizable oxazoline group-containing monomer alone or another monomer Can be made by polymerization with. Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide, Examples of the alkyl group include unsaturated amides such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc .; vinyl acetate Vinyl esters such as vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α, β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride And α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene, and the like, and one or more of these monomers can be used.
 本発明の塗布層の形成に使用されるメラミン化合物とは、化合物中にメラミン構造を有する化合物のことであり、例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。 The melamine compound used for forming the coating layer of the present invention is a compound having a melamine structure in the compound. For example, an alcohol is reacted with an alkylolated melamine derivative or an alkylolated melamine derivative to partially Alternatively, fully etherified compounds and mixtures thereof can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Moreover, as a melamine compound, either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used. Further, a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
 本発明の塗布層の形成に使用されるカルボジイミド系化合物とは、カルボジイミド構造を有する化合物のことであり、分子内にカルボジイミド構造を1つ以上有する化合物であるが、より良好な密着性等のために、分子内に2つ以上有するポリカルボジイミド系化合物がより好ましい。 The carbodiimide compound used for the formation of the coating layer of the present invention is a compound having a carbodiimide structure, and is a compound having one or more carbodiimide structures in the molecule, for better adhesion and the like. Further, a polycarbodiimide compound having two or more in the molecule is more preferable.
 カルボジイミド系化合物は従来公知の技術で合成することができ、一般的には、ジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが挙げられる。 The carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used. The diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used. Specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa Examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.
 さらに本発明の効果を消失させない範囲において、ポリカルボジイミド系化合物の水溶性や水分散性を向上するために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。 Furthermore, in order not to lose the effect of the present invention, in order to improve the water solubility and water dispersibility of the polycarbodiimide compound, adding a surfactant, polyalkylene oxide, quaternary ammonium salt of dialkylamino alcohol, You may add and use hydrophilic monomers, such as a hydroxyalkyl sulfonate.
 なお、これら架橋剤は、乾燥過程や、製膜過程において、反応させて塗布層の性能を向上させる設計で用いている。できあがった塗布層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。 These cross-linking agents are used in a design that improves the performance of the coating layer by reacting in the drying process or film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.
 さらに本発明の主旨を損なわない範囲において、塗布層には必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等が含有されてもよい。 Furthermore, as long as it does not impair the gist of the present invention, the coating layer has an antifoaming agent, a coating property improving agent, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, an antioxidant, foaming as necessary. Agents, dyes, pigments and the like may be contained.
 本発明における積層ポリエステルフィルムを構成する塗布層を形成する塗布液中の全不揮発成分に対する割合として、ポリエステル樹脂は、通常10~90重量%の範囲、より好ましくは40~85重量%の範囲である。この範囲で使用することにより、塗布層の屈折率の調整が容易になり、ハードコート層など表面機能層を設けた場合に干渉ムラを抑制しやすくなる。また、この範囲以外で使用した場合、表面機能層との密着性が低下する場合がある。 The ratio of the polyester resin is usually in the range of 10 to 90% by weight, more preferably in the range of 40 to 85% by weight, based on the total amount of non-volatile components in the coating solution forming the coating layer constituting the laminated polyester film in the present invention. . By using in this range, the refractive index of the coating layer can be easily adjusted, and interference unevenness can be easily suppressed when a surface functional layer such as a hard coat layer is provided. Moreover, when it uses outside this range, adhesiveness with a surface functional layer may fall.
 本発明における積層ポリエステルフィルムを構成する塗布層を形成する塗布液中の全不揮発成分に対する割合として、酸化チタン粒子の含量は、通常5~60重量%、好ましくは8~50重量%、更に好ましくは20~40重量%の範囲である。酸化チタン粒子の含量が5重量%未満の場合は塗布層の屈折率が高くならないことで干渉ムラが軽減できない場合があり、60重量%を超える場合は塗布層のヘーズが悪化する場合がある。 In the present invention, the content of titanium oxide particles is usually 5 to 60% by weight, preferably 8 to 50% by weight, and more preferably, as a ratio to the total nonvolatile components in the coating solution forming the coating layer constituting the laminated polyester film. It is in the range of 20 to 40% by weight. When the content of the titanium oxide particles is less than 5% by weight, the refractive index of the coating layer does not increase, so that interference unevenness may not be reduced, and when it exceeds 60% by weight, the haze of the coating layer may deteriorate.
 本発明における積層ポリエステルフィルムを構成する塗布層を形成する塗布液中の全不揮発成分に対する割合として、エポキシ化合物の含量は、通常1~50重量%の範囲、好ましくは5~30重量%の範囲、更に好ましくは10~20重量%の範囲である。1重量%未満の場合はハードコート層等の表面機能層との密着性が低下する可能性が懸念され、50重量%を超える場合は塗布層のヘーズが悪化する場合がある。 As a ratio with respect to all nonvolatile components in the coating solution for forming the coating layer constituting the laminated polyester film in the present invention, the content of the epoxy compound is usually in the range of 1 to 50% by weight, preferably in the range of 5 to 30% by weight. More preferably, it is in the range of 10 to 20% by weight. When the amount is less than 1% by weight, there is a concern that the adhesion to a surface functional layer such as a hard coat layer may be lowered. When the amount exceeds 50% by weight, the haze of the coating layer may be deteriorated.
 本発明における積層ポリエステルフィルムを構成する塗布層を形成する塗布液中の全不揮発成分に対する割合として、イソシアネート化合物由来の化合物の含量は、通常1~50重量%の範囲、好ましくは5~30重量%の範囲、更に好ましくは10~20重量%の範囲である。1重量%未満の場合はハードコート層等の表面機能層との密着性が低下する可能性が懸念され、50重量%を超える場合は塗布層のヘーズが悪化する場合がある。 In the present invention, the content of the compound derived from the isocyanate compound is usually in the range of 1 to 50% by weight, preferably 5 to 30% by weight, based on the total amount of non-volatile components in the coating solution forming the coating layer constituting the laminated polyester film. More preferably, it is in the range of 10 to 20% by weight. When the amount is less than 1% by weight, there is a concern that the adhesion to a surface functional layer such as a hard coat layer may be lowered. When the amount exceeds 50% by weight, the haze of the coating layer may be deteriorated.
 塗布層中の各種成分の分析は、例えば、TOF-SIMS、ESCA、蛍光X線等の分析によって行うことができる。 The analysis of various components in the coating layer can be performed by analysis of TOF-SIMS, ESCA, fluorescent X-rays, and the like.
 インラインコーティングによって塗布層を設ける場合は、上述の一連の化合物を水溶液または水分散体として、固形分濃度が0.1~50重量%程度を目安に調整した塗布液をポリエステルフィルム上に塗布する要領にて積層ポリエステルフィルムを製造するのが好ましい。また、本発明の主旨を損なわない範囲において、水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。有機溶剤は1種類のみでもよく、適宜、2種類以上を使用してもよい。 When providing a coating layer by in-line coating, apply the above-mentioned series of compounds as an aqueous solution or water dispersion on a polyester film with a coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight. It is preferable to produce a laminated polyester film. Moreover, in the range which does not impair the main point of this invention, a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.
 本発明における積層ポリエステルフィルムに関して、ポリエステルフィルム上に設けられる塗布層の膜厚は、0.01~0.20μm、より好ましくは0.02~0.10μmの範囲である。塗布量が0.01μm未満の場合は十分な密着性が得られない可能性があり、0.20μmを超える場合は、外観や透明性、フィルムのブロッキング性が悪化する可能性がある。 Regarding the laminated polyester film in the present invention, the thickness of the coating layer provided on the polyester film is in the range of 0.01 to 0.20 μm, more preferably 0.02 to 0.10 μm. If the coating amount is less than 0.01 μm, sufficient adhesion may not be obtained, and if it exceeds 0.20 μm, the appearance, transparency, and film blocking properties may be deteriorated.
 本発明において、塗布層を設ける方法はリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。 In the present invention, as a method of providing the coating layer, a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating or the like can be used.
 本発明において、ポリエステルフィルム上に塗布層を形成する際の乾燥および硬化条件に関しては特に限定されるわけではなく、例えば、オフラインコーティングにより塗布層を設ける場合、通常80~200℃で3~40秒間、好ましくは100~180℃で3~40秒間を目安として熱処理を行うのが良い。 In the present invention, the drying and curing conditions for forming the coating layer on the polyester film are not particularly limited. For example, when the coating layer is provided by off-line coating, usually at 80 to 200 ° C. for 3 to 40 seconds. The heat treatment is preferably performed at 100 to 180 ° C. for 3 to 40 seconds as a guide.
 一方、インラインコーティングにより塗布層を設ける場合、通常、70~280℃で3~200秒間を目安として熱処理を行うのが良い。 On the other hand, when the coating layer is provided by in-line coating, it is usually preferable to perform heat treatment at 70 to 280 ° C. for 3 to 200 seconds as a guide.
 また、オフラインコーティングあるいはインラインコーティングに係わらず、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。本発明における積層ポリエステルフィルムを構成するポリエステルフィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。 In addition, regardless of off-line coating or in-line coating, heat treatment and active energy ray irradiation such as ultraviolet irradiation may be used in combination as necessary. The polyester film constituting the laminated polyester film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
 本発明における塗布層は干渉ムラ等をより高度に抑制するために、屈折率を基材のポリエステルフィルムと同等付近に調整したものである。塗布層の絶対反射率は、その最小値が400~800nmの任意の波長において5.5~6.5%の範囲、好ましくは5.6~6.4%の範囲、さらに好ましくは5.7~6.3%の範囲である。反射率がこの範囲から外れた場合、塗布層上にハードコート等の表面機能層を設けた際に干渉ムラが強くなり、視認性が低下する場合がある。 The coating layer in the present invention has a refractive index adjusted to be around the same as that of the base polyester film in order to suppress interference unevenness to a higher degree. The absolute reflectance of the coating layer is in the range of 5.5 to 6.5%, preferably in the range of 5.6 to 6.4%, more preferably 5.7 at an arbitrary wavelength of 400 to 800 nm. It is in the range of ˜6.3%. When the reflectance is out of this range, interference unevenness is increased when a surface functional layer such as a hard coat is provided on the coating layer, and the visibility may be lowered.
 本発明のポリエステルフィルムには、塗布層の上にハードコート層等の表面機能層を設けるのが一般的である。ハードコート層に使用される材料としては、特に限定されないが、例えば、単官能(メタ)アクリレート、多官能(メタ)アクリレート、テトラエトキシシラン等の反応性珪素化合物等の硬化物が挙げられる。これらのうち生産性及び硬度の両立の観点より、紫外線硬化性の多官能(メタ)アクリレートを含む組成物の重合硬化物であることが特に好ましい。 The polyester film of the present invention is generally provided with a surface functional layer such as a hard coat layer on the coating layer. Although it does not specifically limit as a material used for a hard-coat layer, For example, hardened | cured materials, such as reactive silicon compounds, such as monofunctional (meth) acrylate, polyfunctional (meth) acrylate, and tetraethoxysilane, are mentioned. Among these, from the viewpoint of achieving both productivity and hardness, a polymerization cured product of a composition containing an ultraviolet curable polyfunctional (meth) acrylate is particularly preferable.
 紫外線硬化性の多官能(メタ)アクリレートを含む組成物としては特に限定されるものではない。例えば、公知の紫外線硬化性の多官能(メタ)アクリレートを1種類以上混合したもの、紫外線硬化性ハードコート剤として市販されているもの、あるいはこれら以外に本実施形態の目的を損なわない範囲において、その他の成分を更に添加したものを用いることができる。 The composition containing an ultraviolet curable polyfunctional (meth) acrylate is not particularly limited. For example, a mixture of one or more known ultraviolet curable polyfunctional (meth) acrylates, a commercially available UV curable hard coating agent, or other than these, in the range not impairing the purpose of the present embodiment, What added the other component further can be used.
 紫外線硬化性の多官能(メタ)アクリレートとしては、特に限定されるものではないが、例えばジペンタエリスリトールヘキサ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,6-ビス(3-アクリロイルオキシ-2-ヒドロキシプロピルオキシ)ヘキサン等の多官能アルコールの(メタ)アクリル誘導体や、ポリエチレングリコールジ(メタ)アクリレート、そしてポリウレタン(メタ)アクリレート等が挙げられる。 The UV-curable polyfunctional (meth) acrylate is not particularly limited. For example, dipentaerythritol hexa (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, tetramethylolmethanetri (meth) acrylate, (Meth) acryl derivatives of polyfunctional alcohols such as trimethylolpropane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,6-bis (3-acryloyloxy-2-hydroxypropyloxy) hexane And polyethylene glycol di (meth) acrylate and polyurethane (meth) acrylate.
 紫外線硬化性の多官能(メタ)アクリレートを含む組成物に含まれるその他の成分は特に限定されるものではない。例えば、無機または有機の微粒子、重合開始剤、重合禁止剤、酸化防止剤、帯電防止剤、分散剤、界面活性剤、光安定剤及びレベリング剤等が挙げられる。また、ウェットコーティング法において製膜後乾燥させる場合には、任意の量の溶媒を添加することができる。 Other components contained in the composition containing an ultraviolet curable polyfunctional (meth) acrylate are not particularly limited. Examples thereof include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers and leveling agents. Moreover, when making it dry after film forming in the wet-coating method, arbitrary amounts of solvents can be added.
 ハードコート層の形成方法は、有機材料を用いた場合にはロールコート法、ダイコート法等の一般的なウェットコート法が採用される。形成されたハードコート層には必要に応じて加熱や紫外線、電子線等の活性エネルギー線照射を施し、硬化反応を行うことができる。 As a method for forming the hard coat layer, when an organic material is used, a general wet coat method such as a roll coat method or a die coat method is employed. The formed hard coat layer can be subjected to a curing reaction by heating, irradiation with active energy rays such as ultraviolet rays and electron beams as necessary.
 以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない範囲において、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次の通りである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples without departing from the scope of the present invention. The measurement method and evaluation method used in the present invention are as follows.
(1)ポリエステルの固有粘度の測定:
 ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measurement of intrinsic viscosity of polyester:
1 g of polyester from which other polymer components and pigments incompatible with polyester were removed was precisely weighed, 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) was added and dissolved, and measurement was performed at 30 ° C.
(2)平均粒径の測定:
 TEM(Hitachi社製 H-7650、加速電圧100V)を使用して塗布層を観察し、粒子10個の粒径の平均値を平均粒径とした。
(2) Measurement of average particle size:
The coating layer was observed using TEM (Hitachi H-7650, acceleration voltage 100 V), and the average value of the particle diameter of 10 particles was defined as the average particle diameter.
(3)塗布層の膜厚測定:
 塗布層の表面をRuOで染色し、エポキシ樹脂中に包埋した。その後、超薄切片法により作成した切片をRuO染色し、塗布層断面をTEM(Hitachi社製 H-7650、加速電圧100V)を用いて測定した。
(3) Measurement of coating layer thickness:
The surface of the coating layer was dyed with RuO 4 and embedded in an epoxy resin. Thereafter, the section prepared by the ultrathin section method was stained with RuO 4, and the cross section of the coating layer was measured using TEM (H-7650 manufactured by Hitachi, accelerating voltage 100 V).
(4)ヘーズの測定:
 村上色彩技術研究所製ヘーズメーターHM-150を使用して、JIS K 7136で測定した。
(4) Haze measurement:
Measurement was performed according to JIS K 7136 using a haze meter HM-150 manufactured by Murakami Color Research Laboratory.
(5)ポリエステルフィルムにおける一方の塗布層表面からの絶対反射率の測定:
 あらかじめ、ポリエステルフィルムの測定裏面に黒テープ(ニチバン株式会社製、ビニールテープVT-50)を貼り、分光光度計(日本分光株式会社製、紫外可視分光光度計V-570、および自動絶対反射測定装置ARM-500N)を使用して同期モード、入射角5°、N偏光、レスポンスFast、データ取区間隔1.0nm、バンド幅10nm、走査速度1000nm/minで塗布層面を波長範囲400~800nmの絶対反射率を測定した。
(5) Measurement of absolute reflectance from one coating layer surface in polyester film:
In advance, a black tape (vinyl tape VT-50, manufactured by Nichiban Co., Ltd.) is pasted on the measurement back surface of the polyester film. ARM-500N) using synchronous mode, incident angle 5 °, N polarization, response Fast, data collection interval 1.0 nm, bandwidth 10 nm, scanning speed 1000 nm / min. The reflectance was measured.
(6)塗布層の干渉ムラの評価:
 ポリエステルフィルムの塗布層側に、ジペンタエリスリトールアクリレート60重量部、1,6-ヘキサンジオールアクリレート15重量部、五酸化アンチモン25重量部、光重合開始剤(商品名:イルガキュア184、チバスペシャリティケミカル製)1重量部、メチルエチルケトン200重量部の混合塗液を乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させ、ポリエステルフィルムと同等の屈折率を有するハードコート層を形成した。得られたフィルムを3波長域型蛍光灯下にて、目視で塗布層側の干渉ムラを観察し、干渉ムラが確認できないものを◎、薄くまばらな干渉ムラが確認されるものを○、薄いが線状の干渉ムラが確認できるものを△、明瞭な干渉ムラが確認されるものを×とした。
(6) Evaluation of interference unevenness of coating layer:
On the coating layer side of the polyester film, 60 parts by weight of dipentaerythritol acrylate, 15 parts by weight of 1,6-hexanediol acrylate, 25 parts by weight of antimony pentoxide, photopolymerization initiator (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals) A mixed coating solution of 1 part by weight and 200 parts by weight of methyl ethyl ketone was applied so as to have a dry film thickness of 5 μm and cured by irradiating with ultraviolet rays to form a hard coat layer having a refractive index equivalent to that of a polyester film. The obtained film is visually observed under the three-wavelength type fluorescent lamp for interference unevenness on the coating layer side, ◎ when the interference unevenness cannot be confirmed, ◎ when thin and sparse interference unevenness is confirmed ○, thin Indicates that a linear interference unevenness can be confirmed, and Δ indicates that a clear interference unevenness is confirmed.
(7)塗布層の密着性の評価:
 密着性の評価を行うために、上記(6)の評価で使用したハードコート液から五酸化アンチモンを除いた材料で検討した。すなわち、ジペンタエリスリトールアクリレート80重量部、1,6-ヘキサンジオールアクリレート20重量部、光重合開始剤(商品名:イルガキュア184、チバスペシャリティケミカル製)5重量部、メチルエチルケトン200重量部の混合塗液を乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させハードコート層を形成した。得られたフィルムに対して、60℃、90%RHの環境下で100時間後、10×10のクロスカットをして、18mm幅のテープ(ニチバン株式会社製セロテープ(登録商標)CT-18を貼り付け、180°の剥離角度で急激に剥がした後の剥離面を観察し、剥離面積が3%未満ならば◎、3%以上10%未満なら○、10%以上50%未満なら△、50%以上なら×とした。)
(7) Evaluation of adhesion of coating layer:
In order to evaluate the adhesion, examination was made on materials obtained by removing antimony pentoxide from the hard coat solution used in the evaluation of (6) above. That is, a mixed coating solution of 80 parts by weight of dipentaerythritol acrylate, 20 parts by weight of 1,6-hexanediol acrylate, 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals), and 200 parts by weight of methyl ethyl ketone. It was applied so that the dry film thickness was 5 μm, and cured by irradiation with ultraviolet rays to form a hard coat layer. The obtained film was subjected to 10 × 10 cross-cut after 100 hours in an environment of 60 ° C. and 90% RH, and a 18 mm wide tape (Cello Tape (registered trademark) CT-18 manufactured by Nichiban Co., Ltd.) was used. When the peeled area is less than 3%, ◎ if the peeled area is less than 3%, ◯ if it is 3% or more but less than 10%, Δ if the peeled area is less than 3%, 50 If it is more than%, it was marked as x.
 実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。 The polyester used in the examples and comparative examples was prepared as follows.
 実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
<ポリエステル(A)の製造方法>
 テレフタル酸ジメチル100重量部、エチレングリコール60重量部、エチルアシッドフォスフェートを生成ポリエステルに対して30ppm、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して100ppmを窒素雰囲気下、260℃でエステル化反応をさせた。引き続いて、テトラブチルチタネートを生成ポリエステルに対して50ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.3kPaまで減圧し、さらに80分、溶融重縮合させ、極限粘度0.63のポリエステル(A)を得た。
The polyester used in the examples and comparative examples was prepared as follows.
<Method for producing polyester (A)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 30 ppm of ethyl acid phosphate with respect to the produced polyester, and 100 ppm with respect to the produced polyester of magnesium acetate tetrahydrate as the catalyst at 260 ° C. in a nitrogen atmosphere. The reaction was allowed to proceed. Subsequently, 50 ppm of tetrabutyl titanate was added to the resulting polyester, the temperature was raised to 280 ° C. over 2 hours and 30 minutes, the pressure was reduced to an absolute pressure of 0.3 kPa, and melt polycondensation was further carried out for 80 minutes. 0.63 polyester (A) was obtained.
<ポリエステル(B)の製造方法>
 テレフタル酸ジメチル100重量部、エチレングリコール60重量部、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して900ppmを窒素雰囲気下、225℃でエステル化反応をさせた。引き続いて、正リン酸を生成ポリエステルに対して3500ppm、二酸化ゲルマニウムを生成ポリエステルに対して70ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.4kPaまで減圧し、さらに85分、溶融重縮合させ、極限粘度0.64のポリエステル(B)を得た。
<Method for producing polyester (B)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and magnesium acetate tetrahydrate as a catalyst were subjected to an esterification reaction at 225 ° C. in a nitrogen atmosphere at 900 ppm with respect to the produced polyester. Subsequently, 3500 ppm of orthophosphoric acid was added to the produced polyester, and 70 ppm of germanium dioxide was added to the produced polyester. The temperature was raised to 280 ° C. over 2 hours and 30 minutes, and the pressure was reduced to an absolute pressure of 0.4 kPa. After 85 minutes of melt polycondensation, polyester (B) having an intrinsic viscosity of 0.64 was obtained.
<ポリエステル(C)の製造方法>
 テレフタル酸ジメチル100重量部とエチレングリコール60重量部とジエチレングリコール2重量部とを出発原料とし、触媒として三酸化アンチモンを反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた後、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.63に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたチップをあらかじめ160℃で予備結晶化させた後、温度220℃の窒素雰囲気下で固相重合し、極限粘度0.85のポリエステル(C)を得た。
<Method for producing polyester (C)>
Using 100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol and 2 parts by weight of diethylene glycol as starting materials, antimony trioxide as a catalyst is taken into the reactor, the reaction start temperature is 150 ° C., and the reaction temperature is gradually increased with the distillation of methanol. Was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially completed, and then a polycondensation reaction was performed for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.63 due to a change in stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure. The obtained chip was preliminarily crystallized at 160 ° C., and then solid-phase polymerized in a nitrogen atmosphere at a temperature of 220 ° C. to obtain a polyester (C) having an intrinsic viscosity of 0.85.
<ポリエステル(D)の製造方法>
 ポリエステル(A)の製造方法において、溶融重合前に平均粒径2μmのシリカ粒子を0.3重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(D)を得た。
<Method for producing polyester (D)>
In the production method of polyester (A), polyester (D) is obtained using the same method as the production method of polyester (A) except that 0.3 part by weight of silica particles having an average particle diameter of 2 μm is added before melt polymerization. It was.
 塗布層を構成する化合物例は以下の通りである。
(化合物例)
・ポリエステル樹脂(E1)
 下記の組成で共重合したポリエステル樹脂の水分散体
 モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5-ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4-ブタンジオール/ジエチレングリコール=56/40/4//70/20/10(mol%)
Examples of compounds constituting the coating layer are as follows.
(Compound example)
・ Polyester resin (E1)
Water dispersion of polyester resin copolymerized with the following composition: Monomer composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / 1,4-butanediol / diethylene glycol = 56/40/4 // 70/20/10 (mol%)
・縮合多環式芳香族を有するポリエステル樹脂(E2)
 下記の組成で共重合したポリエステル樹脂の水分散体
 モノマー組成:(酸成分)2,6-ナフタレンジカルボン酸/5-ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/ジエチレングリコール=92/8//80/20(mol%)
・ Polyester resin having condensed polycyclic aromatic (E2)
Water dispersion of polyester resin copolymerized with the following composition: Monomer composition: (acid component) 2,6-naphthalenedicarboxylic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / diethylene glycol = 92/8 / / 80/20 (mol%)
・エポキシ化合物(C1A)
 ポリグリセロールポリグリシジルエーテルである、デナコールEX-521(ナガセケムテックス株式会社製)
・エポキシ化合物(C1B)
 エポキシ樹脂である、デナコールEX-1410(ナガセケムテックス株式会社製)
・エポキシ化合物(C1C)
 エポキシ樹脂である、デナコールEX-1610(ナガセケムテックス株式会社製)
・ Epoxy compounds (C1A)
Denacol EX-521 (manufactured by Nagase ChemteX Corporation), a polyglycerol polyglycidyl ether
・ Epoxy compounds (C1B)
Denacol EX-1410 (manufactured by Nagase ChemteX Corporation), an epoxy resin
・ Epoxy compounds (C1C)
Denacol EX-1610 (manufactured by Nagase ChemteX Corporation), an epoxy resin
・イソシアネート化合物(C2A)
 ビスフェノールAのエチレンオキサイド2モル付加物とマレイン酸からなる平均分子量1000のポリエステル200部と、ヘキサメチレンジイソシアネート33.6部からなるポリイソシアネートのイソシアネート基を重亜硫酸ナトリウム84部でブロックして得られる、ポリエステル樹脂含有ブロックイソシアネート系化合物。
・ Isocyanate compounds (C2A)
Obtained by blocking 200 parts of a polyester having an average molecular weight of 1000 consisting of an ethylene oxide 2 mol adduct of bisphenol A and maleic acid, and 84 parts of sodium bisulfite with a polyisocyanate consisting of 33.6 parts of hexamethylene diisocyanate, Polyester resin-containing blocked isocyanate compound.
・イソシアネート化合物(C2B)
 ヘキサメチレンジイソシアネートトリマー158部、数平均分子量が1400のメトキシポリエチレングリコール26部からなるポリイソシアネートのイソシアネート基を、メチルエチルケトンオキシム66部でブロックして得られるブロックイソシアネートと、1,6-ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオール115部、トリメチロールプロパン1部、イソホロンジイソシアネート40部、ジメチロールプロピオン酸8部からなるプレポリマーをトリエチルアミンで中和し、ジエチレントリアミンで鎖延長して得られるウレタン樹脂を含有する、水性ブロックイソシアネート系化合物。
・ Isocyanate compounds (C2B)
A blocked isocyanate obtained by blocking an isocyanate group of polyisocyanate comprising 158 parts of hexamethylene diisocyanate trimer and 26 parts of methoxypolyethylene glycol having a number average molecular weight of 1400 with 66 parts of methyl ethyl ketone oxime, 1,6-hexanediol and diethyl carbonate A urethane obtained by neutralizing a prepolymer comprising 115 parts of a polycarbonate polyol having a number average molecular weight of 2000, 1 part of trimethylolpropane, 40 parts of isophorone diisocyanate and 8 parts of dimethylolpropionic acid with triethylamine and extending the chain with diethylenetriamine. An aqueous blocked isocyanate compound containing a resin.
・オキサゾリン化合物(C3)
 オキサゾリン基およびポリアルキレンオキシド鎖を有するアクリルポリマー、エポクロスWS-500(株式会社日本触媒製、1-メトキシ-2-プロパノール溶剤約38%を含有するタイプ)
・ Oxazoline compounds (C3)
Acrylic polymer having oxazoline group and polyalkylene oxide chain, Epocros WS-500 (manufactured by Nippon Shokubai Co., Ltd., containing about 38% 1-methoxy-2-propanol solvent)
・ヘキサメトキシメチルメラミン(C4) ・ Hexamethoxymethylmelamine (C4)
・平均粒径15nmの酸化チタン粒子(F1) -Titanium oxide particles (F1) with an average particle size of 15 nm
 実施例1:
 ポリエステル(A)、(B)をそれぞれ95%、5%の割合で混合した混合原料を中間層の原料とし、ポリエステル(C)、(D)をそれぞれ90%、10%の割合で混合した混合原料を最外層(表層)の原料として、2台の押出機に各々を供給し、各々290℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=1/38/1の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.4倍延伸した後、この縦延伸フィルムの両面に、下記表1に示す塗布液1を塗布し、テンターに導き、横方向に120℃で4.0倍延伸し、225℃で熱処理を行った後、横方向に2%弛緩し、塗布層の膜厚(乾燥後)が0.10μmの塗布層を有する厚さ125μmのポリエステルフィルムを得た。
Example 1:
A mixed raw material in which the polyesters (A) and (B) are mixed at a ratio of 95% and 5%, respectively, is used as a raw material for the intermediate layer, and the polyester (C) and (D) are mixed at a ratio of 90% and 10%, respectively Using the raw material as the raw material for the outermost layer (surface layer), each was supplied to two extruders, melted at 290 ° C., respectively, and then on the cooling roll set at 40 ° C., two types and three layers (surface layer / intermediate layer / A non-stretched sheet was obtained by coextrusion and cooling and solidification with a layer structure of (surface layer = 1/38/1 discharge amount). Next, the film was stretched 3.4 times in the longitudinal direction at a film temperature of 85 ° C. using the difference in peripheral speed of the roll, and then the coating liquid 1 shown in Table 1 below was applied to both sides of the longitudinally stretched film, and led to a tenter. Thickness having a coating layer in which the film is stretched 4.0 times at 120 ° C. in the transverse direction and heat-treated at 225 ° C. and then relaxed by 2% in the transverse direction and the coating layer thickness (after drying) is 0.10 μm. A 125 μm polyester film was obtained.
 得られたポリエステルフィルムの絶対反射率を測定したところ、塗布層の400~800nmの任意の波長における最低反射率は5.5%であり、ハードコート層を積層後のフィルムには明瞭な干渉ムラは無く、密着性も良好であった。またヘーズも低く、透明性も良好であった。このフィルムの特性を下記表2に示す。 When the absolute reflectance of the obtained polyester film was measured, the minimum reflectance at an arbitrary wavelength of 400 to 800 nm of the coating layer was 5.5%. Clear interference unevenness was observed on the film after laminating the hard coat layer. The adhesion was also good. Also, the haze was low and the transparency was good. The properties of this film are shown in Table 2 below.
 実施例2~26:
 実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは表2に示すとおり高い反射率を有し、干渉ムラ、密着性とも良好なものであった。
Examples 2 to 26:
In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition into the coating agent composition shown in Table 1, and obtained the polyester film. The finished polyester film had a high reflectance as shown in Table 2, and had good interference unevenness and adhesion.
 比較例1~7:
 実施例1において、塗布層の塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がった積層ポリエステルフィルムは表3に示すとおり、干渉ムラが悪いものや、ハードコートに対する密着性が劣るものであった。
Comparative Examples 1-7:
In Example 1, it manufactured similarly to Example 1 except having changed the coating agent composition of an application layer into the coating agent composition shown in Table 1, and obtained the polyester film. As shown in Table 3, the finished laminated polyester film had poor interference unevenness and poor adhesion to the hard coat.
 比較例8:
 実施例1において、塗布層を設けなかったこと以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がった積層ポリエステルフィルムは表3に示すとおり、ハードコートに対する密着性が劣るものであった。
Comparative Example 8:
In Example 1, it manufactured similarly to Example 1 except having not provided the application layer, and obtained the polyester film. The finished laminated polyester film was inferior in adhesion to the hard coat as shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明のフィルムは、例えば、液晶やプラズマディスプレイ等の部材である各種の光学用フィルムや、ハードコート層などの表面機能層との密着性および視認性を重視する用途に好適に用いることができる。 The film of the present invention can be suitably used for, for example, various optical films that are members of liquid crystals, plasma displays, and the like, and applications that place importance on adhesion and visibility with a surface functional layer such as a hard coat layer. .

Claims (5)

  1.  ポリエステルフィルムの少なくとも片面に、ポリエステル樹脂、酸化チタン粒子、およびエポキシ化合物またはイソシアネート系化合物を含有する塗布液から形成された塗布層を有することを特徴とする積層ポリエステルフィルム。 A laminated polyester film comprising a coating layer formed of a coating solution containing a polyester resin, titanium oxide particles, and an epoxy compound or an isocyanate compound on at least one side of the polyester film.
  2.  塗布層を形成する塗布液中の全不揮発成分に対する割合として、ポリエステル樹脂の含量が10~90重量%、酸化チタン粒子の含量が5~60重量%、エポキシ化合物またはイソシアネート系化合物の含量が1~50重量%である請求項1に記載の積層ポリエステルフィルム。 The ratio of the polyester resin content is 10 to 90% by weight, the titanium oxide particle content is 5 to 60% by weight, the epoxy compound or isocyanate compound content is 1 to The laminated polyester film according to claim 1, which is 50% by weight.
  3.  塗布層の膜厚が0.01~0.20μmである請求項1又は2に記載の積層ポリエステルフィルム。 The laminated polyester film according to claim 1 or 2, wherein the coating layer has a thickness of 0.01 to 0.20 µm.
  4.  塗布層の絶対反射率の最小値が400から800nmの任意の波長において5.5~6.5%の範囲にある請求項1~3の何れかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 3, wherein the minimum absolute reflectance of the coating layer is in the range of 5.5 to 6.5% at an arbitrary wavelength of 400 to 800 nm.
  5.  塗布層の少なくとも片面に、紫外線硬化性の樹脂層が形成される態様で用いられる請求項1~4の何れかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 4, which is used in a mode in which an ultraviolet curable resin layer is formed on at least one surface of the coating layer.
PCT/JP2011/078075 2010-12-15 2011-12-05 Layered polyester film WO2012081438A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-278881 2010-12-15
JP2010-278880 2010-12-15
JP2010278881A JP5489972B2 (en) 2010-12-15 2010-12-15 Laminated polyester film
JP2010278880A JP5489971B2 (en) 2010-12-15 2010-12-15 Laminated polyester film

Publications (1)

Publication Number Publication Date
WO2012081438A1 true WO2012081438A1 (en) 2012-06-21

Family

ID=46244546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078075 WO2012081438A1 (en) 2010-12-15 2011-12-05 Layered polyester film

Country Status (1)

Country Link
WO (1) WO2012081438A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024896A (en) * 2012-07-25 2014-02-06 Mitsubishi Plastics Inc Laminated polyester film
CN110128915A (en) * 2019-05-29 2019-08-16 无锡卡秀堡辉涂料有限公司 A kind of coating and preparation method thereof of fingerprint recognition material EMC material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054161A (en) * 2002-07-24 2004-02-19 Teijin Dupont Films Japan Ltd Optical easily adhesive polyester film
JP2006123498A (en) * 2004-09-30 2006-05-18 Dainippon Printing Co Ltd Optical laminated body
JP2007203712A (en) * 2006-02-06 2007-08-16 Fujifilm Corp Laminated film, its manufacturing method, optical sheet using laminated film, and display device
JP2007237720A (en) * 2006-03-13 2007-09-20 Mitsubishi Polyester Film Copp Optical laminated polyester film
JP2008170490A (en) * 2007-01-09 2008-07-24 Konica Minolta Opto Inc Antireflection film, display apparatus using the same, front plate filter for plasma display and plasma display
JP2008169277A (en) * 2007-01-10 2008-07-24 Teijin Dupont Films Japan Ltd Easily adhesive polyester film for optical use
JP2008183760A (en) * 2007-01-29 2008-08-14 Teijin Dupont Films Japan Ltd Easily adhesive polyester film for optics
JP2008183882A (en) * 2007-01-31 2008-08-14 Fujifilm Corp Laminate film for optical use and its production method and anti-reflection film and image display device
JP2009143226A (en) * 2007-11-22 2009-07-02 Toyobo Co Ltd Readily bondable polyester film for optical use and laminated polyester film for optical use
WO2010134416A1 (en) * 2009-05-22 2010-11-25 東洋紡績株式会社 Highly adhesive polyester film for optical use
WO2011145405A1 (en) * 2010-05-15 2011-11-24 三菱樹脂株式会社 Laminated polyester film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054161A (en) * 2002-07-24 2004-02-19 Teijin Dupont Films Japan Ltd Optical easily adhesive polyester film
JP2006123498A (en) * 2004-09-30 2006-05-18 Dainippon Printing Co Ltd Optical laminated body
JP2007203712A (en) * 2006-02-06 2007-08-16 Fujifilm Corp Laminated film, its manufacturing method, optical sheet using laminated film, and display device
JP2007237720A (en) * 2006-03-13 2007-09-20 Mitsubishi Polyester Film Copp Optical laminated polyester film
JP2008170490A (en) * 2007-01-09 2008-07-24 Konica Minolta Opto Inc Antireflection film, display apparatus using the same, front plate filter for plasma display and plasma display
JP2008169277A (en) * 2007-01-10 2008-07-24 Teijin Dupont Films Japan Ltd Easily adhesive polyester film for optical use
JP2008183760A (en) * 2007-01-29 2008-08-14 Teijin Dupont Films Japan Ltd Easily adhesive polyester film for optics
JP2008183882A (en) * 2007-01-31 2008-08-14 Fujifilm Corp Laminate film for optical use and its production method and anti-reflection film and image display device
JP2009143226A (en) * 2007-11-22 2009-07-02 Toyobo Co Ltd Readily bondable polyester film for optical use and laminated polyester film for optical use
WO2010134416A1 (en) * 2009-05-22 2010-11-25 東洋紡績株式会社 Highly adhesive polyester film for optical use
WO2011145405A1 (en) * 2010-05-15 2011-11-24 三菱樹脂株式会社 Laminated polyester film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024896A (en) * 2012-07-25 2014-02-06 Mitsubishi Plastics Inc Laminated polyester film
CN110128915A (en) * 2019-05-29 2019-08-16 无锡卡秀堡辉涂料有限公司 A kind of coating and preparation method thereof of fingerprint recognition material EMC material

Similar Documents

Publication Publication Date Title
JP5570289B2 (en) Laminated polyester film
WO2010143551A1 (en) Laminated polyester film
WO2011152173A1 (en) Layered polyester film
JP5520138B2 (en) Laminated polyester film
WO2011001759A1 (en) Multilayer polyester film
JP5424987B2 (en) Laminated polyester film
JP5529095B2 (en) Laminated polyester film
JP5921629B2 (en) Laminated polyester film
JP5871982B2 (en) Laminated polyester film
JP2011246663A (en) Laminated polyester film
WO2011152172A1 (en) Multilayer polyester film
WO2013035629A1 (en) Coated film
JP5679946B2 (en) Laminated polyester film
JP5743846B2 (en) Laminated polyester film
JP5489971B2 (en) Laminated polyester film
JP5536717B2 (en) Laminated polyester film
WO2012081438A1 (en) Layered polyester film
JP2011245808A (en) Laminated polyester film
JP5726925B2 (en) Laminated polyester film
JP5536716B2 (en) Laminated polyester film
JP5489972B2 (en) Laminated polyester film
JP5655029B2 (en) Laminated polyester film
JP5943849B2 (en) Laminated polyester film
JP5536718B2 (en) Laminated polyester film
WO2011132541A1 (en) Laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849185

Country of ref document: EP

Kind code of ref document: A1