WO2012150739A1 - Fuel gas supply system for high-pressure gas injection engine - Google Patents

Fuel gas supply system for high-pressure gas injection engine Download PDF

Info

Publication number
WO2012150739A1
WO2012150739A1 PCT/KR2011/005350 KR2011005350W WO2012150739A1 WO 2012150739 A1 WO2012150739 A1 WO 2012150739A1 KR 2011005350 W KR2011005350 W KR 2011005350W WO 2012150739 A1 WO2012150739 A1 WO 2012150739A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection engine
high pressure
fuel
fuel gas
pressure gas
Prior art date
Application number
PCT/KR2011/005350
Other languages
French (fr)
Korean (ko)
Inventor
류승각
안재완
김동찬
손수정
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Publication of WO2012150739A1 publication Critical patent/WO2012150739A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas
    • F17D1/05Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • F02M21/0224Secondary gaseous fuel storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/065Arrangements for producing propulsion of gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/20Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel gas supply system for supplying LNG or boil-off gas discharged from an LNG fuel tank to a high-pressure gas injection engine as a fuel, and a load of a high-pressure gas injection engine that is rapidly changed by installing a buffer tank in the middle of a fuel supply line.
  • the present invention relates to a fuel gas supply system capable of smoothly following.
  • Such a ME-GI engine is an offshore structure such as an LNG carrier for storing and transporting LNG (Liquefied Natural Gas) in a cryogenic storage tank (in the present specification, the offshore structure is a vessel such as an LNG carrier, an LNG RV, or a commercial vessel). , LNG FPSO, LNG FSRU, and even offshore plants.)
  • LNG Liquefied Natural Gas
  • the offshore structure is a vessel such as an LNG carrier, an LNG RV, or a commercial vessel.
  • LNG FPSO LNG FPSO
  • LNG FSRU and even offshore plants.
  • natural gas is used as fuel
  • the load is approximately 150 to 300 bara (absolute pressure). High pressure gas supply pressure is required.
  • the ME-GI engine will use Boil Off Gas (BOG) as a fuel if additional liquefaction equipment is installed if necessary, depending on changes in gas and fuel oil prices and the degree of regulation of emissions.
  • BOG Boil Off Gas
  • HFO heavy fuel oil
  • LNG can be easily vaporized when passing through a sea area subject to specific regulations related to environmental pollution. It can be used as a next-generation environmentally friendly engine, which is nearly 50% efficient and can be used as the main engine of LNG carriers in the future.
  • a fuel gas supply system In order to supply LNG (or evaporated gas) contained in the LNG storage tank (or LNG fuel tank) to the ME-GI engine as fuel, a fuel gas supply system must be provided.
  • WO 2009/136793 discloses that LNG discharged from an LNG storage tank is compressed by a high pressure pump and then evaporated in an evaporator to be supplied to a gas engine such as a ME-GI engine, and at the same time evaporated from the LNG storage tank.
  • a fuel gas supply system is disclosed in which a gas is compressed in an evaporative gas compressor and then liquefied in a cryogenic heat exchanger, mixed with LNG supplied to a high pressure pump, and supplied to a gas engine.
  • Such a fuel gas supply system is essential for supplying fuel gas in a state required by the engine, that is, a temperature and pressure required by the engine.
  • the load is changed according to the output required by the engine, and the specifications of the various components constituting the fuel gas supply system are determined so as to smoothly follow the engine load over time. That is, in order to smoothly follow the engine load, the size and capacity of various components need to be increased, and accordingly, there is a problem in that the cost of constructing the fuel gas supply system increases.
  • the fuel gas supply system is generally provided with a transfer means such as a reciprocating pump as a means for transfer of LNG.
  • a transfer means such as a reciprocating pump as a means for transfer of LNG. Since the liquefaction temperature of LNG is cryogenic at about -163 ° C at ambient pressure, the pump used in the fuel gas supply system must be able to operate in cryogenic conditions.
  • the cryogenic reciprocating pump for ships is configured to suck the liquid, that is, LNG, by the piston or plunger reciprocating in the cylinder, and discharge at the required pressure.
  • reciprocating pumps have advantages such as relatively high pressure gain, good flow rate, and no need for a separate flow control device.
  • the continuous reciprocating motion to obtain high pressure causes the temperature rise of the lubricating oil injected into the pump for the purpose of lubrication between the connecting rod and the crankshaft, which can be a problem during long time driving.
  • the present invention is to solve the conventional problems as described above, it is possible to store a predetermined amount of high-pressure gas upstream of the ME-GI engine to smoothly follow the engine load during operation of the ME-GI engine. It is intended to provide a fuel gas supply system for a high pressure gas injection engine that supplies a high pressure gas in a butter tank to an engine when an engine load is increased by installing a buffer tank.
  • a fuel gas supply system for a high-pressure gas injection engine for vaporizing the LNG stored in the LNG storage tank to supply as a fuel gas to the high-pressure gas injection engine increasing the load of the high-pressure gas injection engine High-pressure gas injection, characterized in that the fuel gas can be supplied to the high-pressure gas injection engine from a buffer tank that receives the fuel gas from the vaporizer in advance and can keep track of the load variation of the high-pressure gas injection engine.
  • a fuel gas supply system for an engine is provided.
  • opening and closing means such as the buffer tank and the control valve upstream of the high pressure gas injection engine of the fuel gas supply system, a system having a buffer tank filling mode, a direct gas supply mode, a buffer tank using mode, etc. is rapidly changed.
  • Opening and closing means such as the buffer tank and the control valve upstream of the high pressure gas injection engine of the fuel gas supply system
  • the buffer tank is not insulated so that the fuel gas contained inside the buffer tank can be heated by heat from the outside.
  • the gas heater is installed downstream of the buffer tank and the fuel gas is discharged from the buffer tank, the fuel gas can be heated to an appropriate temperature required by the engine when a temperature drop accompanied with the decompression occurs.
  • the buffer tank is preferably arranged in parallel with the fuel supply line for supplying fuel gas to the high-pressure gas injection engine.
  • the buffer tank is branched from a fuel supply line for supplying fuel gas to the high pressure gas injection engine and connected to the buffer tank, and through a use line extending from the buffer tank and joined to the fuel supply line. It can be arranged in parallel with the fuel supply line.
  • the filling line may be provided with a check valve that opens when the fuel gas is supplied to the buffer tank, and the bypass line may be installed in the use line when the fuel gas stored in the buffer tank is supplied to the high pressure gas injection engine.
  • the fuel supply line may be provided with a control valve for adjusting the flow rate to control the amount of fuel meeting the engine conditions, and an on / off valve as a master valve having a shut off function.
  • a fuel gas supply system for a high-pressure gas injection engine for vaporizing the LNG stored in the LNG storage tank to supply as a fuel gas to the high-pressure gas injection engine, the LNG discharged from the LNG storage tank
  • a high pressure pump compressing the pressure required by the gas injection engine
  • a vaporizer for vaporizing the LNG compressed by the high pressure pump
  • a buffer tank storing LNG vaporized in the vaporizer from the vaporizer;
  • a fuel gas supply method for a high-pressure gas injection engine for vaporizing the LNG stored in the LNG storage tank to supply as a fuel gas to the high-pressure gas injection engine, when increasing the load of the high-pressure gas injection engine,
  • a fuel gas supplying method for a high pressure gas injection engine is provided, wherein the fuel gas is supplied from the buffer tank storing the fuel gas to the high pressure gas injection engine so as to follow the load variation of the high pressure gas injection engine.
  • the fuel gas supply method may include supplying vaporized LNG to the buffer tank and filling the buffer tank with vaporized LNG as fuel gas.
  • the vaporized LNG as fuel gas is supplied to the high pressure gas injection engine in the vaporizer. It may include the step of supplying.
  • the fuel gas supply method when the load required by the high pressure gas injection engine fluctuates beyond the capacity of the pump or the vaporizer installed in the fuel supply line, vaporization of the fuel gas from the buffer tank as the fuel gas from the buffer tank is performed. It may include the step of supplying the LNG.
  • a fuel gas supply system for a high pressure gas injection engine for supplying a high pressure gas in a butter tank to an engine may be provided.
  • the fuel gas supply system of the present invention it is possible to provide ease of use, efficiency, and an optimal operating environment with only a configuration of a buffer tank, a control valve, a heater, and the like, without much facility investment cost, and also has excellent load followability. .
  • FIG. 1 is a schematic configuration diagram from a high pressure pump to an engine of a fuel gas supply system for a high pressure gas injection engine according to the present invention.
  • FIG. 2 is a view for explaining the buffer tank filling mode of the fuel gas supply system for a high-pressure gas injection engine according to the present invention.
  • FIG 3 is a view for explaining a direct gas supply mode of the fuel gas supply system for a high-pressure gas injection engine according to the present invention.
  • FIG. 4 is a view for explaining a buffer tank use mode of the fuel gas supply system for a high-pressure gas injection engine according to the present invention.
  • 5 to 8 are views for explaining a cooling apparatus according to various embodiments of the reciprocating pump of the fuel gas supply system for a high-pressure gas injection engine according to the present invention.
  • 9 to 12 is a schematic configuration diagram from a storage tank to a high pressure pump of a fuel gas supply system for a high pressure gas injection engine according to the present invention, illustrating a process of cooling down the system for smooth supply of LNG. .
  • FIG. 13 is a view showing an LNG carrier having a fuel gas supply system for a high pressure gas injection engine according to the present invention.
  • 14A and 14B are views for explaining an arrangement position of a fuel gas supply system in an LNG carrier.
  • the fuel gas supply system (ie, natural gas) for the high pressure gas injection engine of the present invention can use all kinds of offshore structures, ie, LNG carriers, LNG RVs, container ships, and general vessels, in which liquefied natural gas can be used as a fuel of the high pressure gas injection engine. It can be applied to marine plants such as LNG FPSO, LNG FSRU, as well as ships such as merchant ships.
  • the LNG in the LNG storage tank is supplied as a fuel to the high-pressure gas injection engine.
  • LNG is discharged from the LNG fuel tank that stores LNG as fuel and supplied to the high-pressure gas injection engine. do.
  • the LNG storage tank should be understood as a concept including an LNG fuel tank.
  • the high-pressure gas injection engine 1 such as ME-GI engine.
  • the boil-off gas may be mixed with the LNG to be liquefied and then transported to the high-pressure gas injection engine.
  • carburetor 5 is provided with the pulsation damper 3 for absorbing and reducing pulsation on a liquid surface as cryogenic equipment.
  • the pump 20 is preferably a reciprocating pump capable of pressurizing LNG by applying to cryogenic temperatures.
  • the pump 20 is a high pressure pump capable of compressing LNG to a high pressure of about 150 to 300 bara.
  • high pressure means a pressure range of a fuel gas required by a gas engine such as a ME-GI engine, for example, a pressure in the range of about 150 to 300 bara.
  • carburetor 5 is a high pressure vaporizer, and heats and vaporizes liquid LNG by heat-exchanging with a heat medium.
  • the fuel supply line L1 may be injected with liquid nitrogen (ie, liquid nitrogen; LN2) for cooling the system, and the liquid nitrogen injected into the fuel supply line L1 is downstream of the vaporizer 5. From the liquid nitrogen discharge line (L2) can be discharged to the outside. Liquid nitrogen discharge line (L2) may be provided with a silencer (not shown).
  • a buffer tank (11) capable of receiving a predetermined amount of fuel gas at a high pressure.
  • the buffer tank 11 is not insulated and may be affected by the external environment. When the external temperature of the buffer tank 11 is higher than the temperature of the fuel gas contained in the buffer tank 11, the fuel gas contained in the buffer tank 11 may be heated by heat supplied from the outside.
  • the buffer tank 11 has a structure capable of withstanding a pressure of approximately 300 bar, and may have a structure such as a storage tank for CNG.
  • the buffer tank 11 is connected in parallel with the fuel supply line L1 through the filling line L3 and the use line L4.
  • the check valve 12 is installed in the filling line L3, and the bypass valve 13 is installed in the use line L4.
  • a control valve 14 for adjusting the flow rate to control the amount of fuel corresponding to the engine condition, an on / off valve 15 as a master valve having a shut off function, and the engine condition Gas heaters 16 for adjusting the temperature of the fuel in accordance with are sequentially installed from the upstream side to the downstream side.
  • the control valve 14 is installed downstream of the point where the filling line L3 branches in the fuel supply line L1 and upstream of the point where the use line L4 is connected.
  • the on-off valve 15 and the gas heater 16 are installed in the downstream side of the point where the use line L4 is connected in the fuel supply line L1.
  • the fuel gas supply system having a buffer tank can be operated in a buffer tank filling mode, a direct gas supply mode, a buffer tank use mode, and the like, as necessary. Each mode will be described in detail with reference to FIGS. 2 to 4. 2 to 4, hatching the inside of the valve means that the valve is open, and no hatching inside the valve means that the valve is closed.
  • the buffer tank filling mode will be described with reference to FIG. 2.
  • the check valve 12 is opened, and the bypass valve 13, the control valve 14, and the open / close valve 15 are closed.
  • the check valve 12 is opened, the fuel gas (that is, natural gas) compressed to a high pressure of about 300 bar is supplied to the buffer tank 11 through the filling line L3.
  • the check valve 12 is closed.
  • a direct gas supply mode will be described with reference to FIG. 3.
  • the fuel gas is supplied from the vaporizer 5 through the fuel supply line L1.
  • the check valve 12 and the bypass valve 13 are closed, and the control valve 14 and the open / close valve 15 are opened.
  • the filling of the buffer tank 11 can proceed simultaneously.
  • a buffer tank use mode will be described with reference to FIG. 4.
  • the high pressure gas injection engine 1 When the high pressure gas injection engine 1 is operated, when the required load suddenly changes, such as during initial start-up or output sudden increase, sufficient fuel is supplied to the high pressure gas injection engine 1 only by supplying fuel from the vaporizer 5. Can't supply At this time, the check valve 12 and the control valve 14 are closed, the bypass valve 13 and the opening / closing valve 15 are opened, and the fuel gas stored in the buffer tank 11 is supplied to the high pressure gas injection engine 1. do.
  • the term "when the load of the high pressure gas injection engine 1 fluctuates rapidly” means that the pump 20 or the carburetor in which the load required by the high pressure gas injection engine 1 is installed in the fuel supply line L1. (5) It means the case of fluctuating beyond the capacity of equipment.
  • the buffer tank 11 It is possible to cope with a suddenly changing load. Accordingly, it is not necessary to satisfy the load maximum value of the high-pressure gas injection engine 1 in which the size and capacity of the various components change rapidly, and the size and capacity of the various components do not need to be excessively large, and to configure the fuel gas supply system. To reduce the cost.
  • the temperature of the discharged fuel gas may decrease.
  • the fuel gas may be heated by the gas heater 16 and then supplied to the engine.
  • the reciprocating pump 20 includes a drive unit 21 driven by a motor 22 and a discharge unit 25 that operates by the drive unit 21 and sucks fluid, that is, LNG, compresses and discharges the fluid to a predetermined pressure. ).
  • the rotational force of the motor 22 may be transmitted to the driver 21 through the pulley 23.
  • the piston or plunger of the discharge unit 25 compresses and discharges the fluid while reciprocating in the cylinder through a connecting unit such as a connecting rod.
  • a flexible hose 60 may be installed between the inlet of the pump 20 and the fuel supply line L1, so that the pipe constituting the fuel supply line L1 and the inlet of the pump 20 are not aligned correctly. If not, the connection can be easily performed.
  • Lubricating oil is injected into the driving unit 21 to lubricate the operation of the crankshaft and the connecting rod. As the operation of the pump 20 continues, the temperature of the lubricating oil rises, so it is necessary to cool the lubricating oil.
  • the cryogenic reciprocating pump for ships is a pump in which a piston or a plunger reciprocates in a cylinder to inhale liquid and discharge the liquid at a required pressure.
  • a reciprocating pump has characteristics such that high pressure can be obtained relatively simply, the flow rate is good, and there is no need to install another flow control device.
  • the pump using the cryogenic fluid is easily vaporized due to the heat inflow at room temperature, the suction is not properly due to the generated vapor (Vapor).
  • there are limitations in terms of layout compared to onshore so it is necessary to examine the suction and discharge areas when installing the pump.
  • the cryogenic flexible hose 60 in the suction device of the reciprocating pump for cryogenic ultra-high pressure natural gas supply device for ships, the cryogenic flexible hose 60, rather than using a pipe that does not allow a relatively margin to the suction line (60)
  • the movement is relatively free and is not restricted by the arrangement, and the suction tube of the pump can be efficiently suctioned by applying a sufficiently large size, that is, a large diameter flexible hose, to the suction line of the pump.
  • the diameter of the flexible hose needs to be large enough to facilitate suction by the pump, and is preferably equal to or larger than the diameter of the conveying pipe.
  • the flexible hose 60 As the flexible hose 60, a product such as JEIL F-A to F-R of Jeil Industrial Co., Ltd., or a product such as DS 01 to 08 of Dae Sung Engineering Co. can be used.
  • the flexible hose 60 needs to be made of a material capable of maintaining rigidity even if the liquefied natural gas in a cryogenic state passes inside, for example, SUS material, and can be wrapped by an insulation material if necessary.
  • a SUS material having flanges integrally formed at both ends can be used, and the flexible hose can be installed by fastening the flanges at both ends to the flange at the pipe end and the suction port of the pump, respectively.
  • the flexible hose 60 is installed only between the natural gas transfer pipe upstream of the pump and the suction port of the pump, the flexible hose may be installed between the discharge port of the pump and the natural gas transfer pipe downstream of the pump, if necessary. Can be.
  • the discharge port of the pump may be connected to the pipe bent to have a Hangul dejaja or a consonant form as the impact mitigating means, and thus the vibration of the pump may not be transmitted to the discharge side pipe by the impact mitigating means.
  • the shock mitigating means 65 is by a pipe bent to prevent the vibration and shock generated by the fluid discharged during the operation of the pump 20 to be transmitted to the pump downstream of the fuel supply line (L1). Is done.
  • the pipe is bent a plurality of times, and may preferably have a number of bends of about 3 to 5 times.
  • the impact mitigating means may be bent three times in the case of a depressed type, and five times in the case of a treble form.
  • an impact mitigating means 65 is provided on the discharge side of the pump 20 used in the fuel (natural gas) supply system.
  • the impact mitigating means 65 disclosed in FIG. 5 is illustrated as being made by a pipe bent in a roughly amic shape, the form of the impact mitigating means is not limited to that shown in FIG.
  • Fig. 5 discloses a two-dimensional bent, i.e., an impact mitigating means extending in a plane, according to the present invention, a three-dimensional bent impact mitigating means may be provided.
  • the present invention by applying a banding to the discharge side of the pump 20 in the fuel supply line L1 in the same direction as the driving direction of the pump, shock mitigation that can cushion vibration and shock generated when the pump is driven.
  • the means 65 As the means 65 is installed, vibration and shock generated when the pump is driven can be buffered.
  • the impact mitigating means 65 has a considerable advantage that the connection work can be easily performed even when the connection portion is fastened as long as the bending is free.
  • Typical methods for transmitting power to the pump include belts, gears, and chain drives.
  • the V-belt driving method transmits the rotating power by friction between the belt and the belt pulley (Pulley). If there is no constant tension of the belt between the pump pulley and the motor pulley, the belt slippage occurs. When the slip of the belt occurs, the efficiency of the pump is lowered, noise is generated, and the belt is damaged due to heat generated by friction.
  • a belt slip monitoring apparatus and method of a pump for measuring whether the pump slips using the belt.
  • the pump 20 of the natural gas supply system includes a motor 22 providing a driving force, the driving force of the motor 22 being transmitted to the driving unit 21 of the pump 20. Is passed through.
  • the transmission means includes a motor side pulley 22a installed on the rotating shaft of the motor 22 and rotating, a pump side pulley 23 provided on the drive unit 21 of the pump 20, and these two. And a belt 24 connecting the pulleys 22a and 23.
  • Each pulley 22a, 23 is fitted with a sensor, for example a proximity sensor, to calculate the rotational speed.
  • the proximity sensor can detect the rotational speed of the pulley, and in the controller (not shown), the motor-side pulley 22a and the pump-side pulley (through the rotational speed of each pulley calculated from information transmitted from the proximity sensor) Calculate the actual rotation ratio between 23).
  • the monitoring method using the belt slip monitoring apparatus of the pump according to the present invention calculates the ratio of the diameter between the pulley 22a of the motor and the pulley 23 of the pump, and the pump side pulley when the motor pulley 22a rotates once.
  • the slippage of the belt can be determined by comparing the theoretical rotational ratio calculated by how much the 23 rotates and the actual rotational ratio calculated using the information obtained through the proximity sensor as described above.
  • a sensor for example, a proximity sensor (not shown) is attached to the pulley of the pump and the pulley of the motor (and, if necessary, the driving part and the motor of the pump), respectively. Compare with. If the belt slips while the pump is running, the ratio of the rotational speed (rpm) measured by the proximity sensor causes an error in the diameter ratio between the pulleys, that is, the actual rotational ratio produces an error with respect to the theoretical rotational ratio. It is possible to determine whether the belt slip due to the occurrence of the error.
  • Proximity sensor is a device for measuring the rotational speed of each pulley of the pump and motor, any sensor of any configuration can be used if the rotational speed of the pulley can be measured.
  • the cooling apparatus of the first embodiment shown in FIG. 5 includes a lubricating oil circulation line L5 for circulating lubricating oil into and out of the pump 20, and a radiator 31 installed in the lubricating oil circulation line L5 to cool the lubricating oil. And a lubricating oil pump 33 for circulating the lubricating oil.
  • a plurality of valves 35, 36, and 37 may be installed in the lubricating oil circulation line L5.
  • Lubricating oil circulation line (L5) constitutes a closed loop.
  • the cooling device of the second embodiment shown in FIG. 6 differs in that it uses a heat exchanger 41 instead of a radiator as compared to the cooling device of the first embodiment shown in FIG.
  • the LNG which is compressed and discharged from the pump 20, is partially bypassed and supplied to the heat exchanger 41 through the bypass line L6. Since the temperature of the LNG is relatively low compared to the lubricant, it is possible to cool the lubricant.
  • the cooling device of the third embodiment shown in FIG. 7 is different in that it uses a heat exchanger 45 instead of a radiator as compared to the cooling device of the first embodiment shown in FIG.
  • the heat exchanger 45 may be supplied with sea water (or fresh water) or air for heat exchange with the lubricating oil.
  • the cooling device of the fourth embodiment shown in FIG. 8 is different from the cooling devices of the above-described first to third embodiments forming a closed loop in that the cooling device of the fourth embodiment is an open loop.
  • the cooling apparatus of the fourth embodiment cools the drive unit 21 of the pump 20 by nitrogen supplied from the liquid nitrogen tank 51 through the nitrogen supply line L7.
  • the supply amount of the liquid nitrogen can be adjusted by the on-off valve 52, the liquid nitrogen is preferably heated by the heater 53 is vaporized and then supplied to the pump 20.
  • connection portion 27 of the pump It is supplied to the pump 20 to cool the driving unit 21 of the pump and the heated nitrogen itself is discharged to the outside of the pump 20 may be supplied to the connection portion 27 of the pump again.
  • the amount of nitrogen supplied to the connection 27 can be controlled by the valve 55.
  • the connection part 27 is positioned between the discharge part 25 and the drive part 21 to transmit the driving force of the drive part to the discharge part by the connecting rod 28 or the like.
  • the connecting portion 27 of the pump in which the connecting rod 28 or the like is disposed is cooled by continuously receiving cold heat from the discharge portion 25, and freezing may occur.
  • the temperature of the connection portion 27 can be increased by supplying nitrogen heated in the drive portion 21 to the connection portion 27.
  • the nitrogen gas supplied to the connecting portion 27 functions as a seal gas that isolates the discharge portion 25 and the driving portion 21 from each other.
  • Nitrogen discharged from the connection portion 27 may be discharged to the atmosphere as it is, or may be stored and reused in the nitrogen storage tank 57 through the nitrogen supply line (L7) if necessary.
  • FIGS. 9 to 12 show a schematic configuration from a storage tank to a high pressure pump of a fuel gas supply system for a high pressure gas injection engine according to the present invention.
  • a suction drum In the high-pressure pump and high-pressure carburetor system, which is a method of supplying fuel in the most optimal way for an engine fueled by LNG, a suction drum is required to smoothly supply LNG to the high-pressure pump without interruption.
  • a low pressure pump ie a transfer pump
  • fuel ie LNG
  • These low pressure pumps, suction drums, and high pressure pumps require cool down, or pre-cooling, before operation, with a suction drum and a line bypassing the low pressure pump to quickly and smoothly perform this cool down operation. Make sure to supply liquefied nitrogen (LN2) well when cooling down high pressure pumps.
  • LN2 liquefied nitrogen
  • a pump is added to the vent valve and a storage tank to send evaporation gas to the low pressure pump discharge line. If present, the valve of the vapor return line is opened to maintain the cool down continuously. Before operation, the vent valve is opened to perform additional cool down work if necessary.
  • liquid nitrogen (LN2) is used in the initial cool down.
  • liquid nitrogen (LN2) is poured into a vent line or suction drum to cool down the low pressure pump, and after the low pressure pump cools down, a bypass valve is used. Cool down the suction drum and high pressure pump in earnest.
  • the LNG is supplied to the suction drum using LNG, and when the supply is completed, the boil-off valve is opened to maintain the low pressure pump cool down state.
  • LN2 Liquefied Nitrogen
  • LNG Liquefied Natural Gas
  • FIG. 1 is a schematic configuration diagram of a high pressure pump downstream side of a fuel gas supply system for a high pressure gas injection engine according to the present invention
  • FIG. 9 is a high pressure pump upstream of a fuel gas supply system for a high pressure gas injection engine according to the present invention.
  • a schematic configuration diagram of the side is shown.
  • the high pressure pump 107 of FIGS. 9 to 12 has the same configuration as the reciprocating pump 20 of FIG. 1, but has been given a member number separately for convenience.
  • FIG. 10 schematically illustrates a cool down process using LN2.
  • the LN2 from the LN2 tank 109 flows along the line indicated by the dashed line in the drawing, and various valves 111, 112, 115, 119, 120, a low pressure pump 103, a suction drum 105, and the like. Cool equipment and piping.
  • the liquid nitrogen flows through the vent line in which the vent valve 117 is installed, and the low pressure pump (ie, the transfer pump) 103 is cooled while flowing the liquid nitrogen to the suction drum 105.
  • the liquid nitrogen contained in the LN2 tank 109 flows toward the low pressure pump 103 through the LN2 supply line in which the valves 111 and 112 are installed, and then the evaporation gas vent in which the vent valve 117 is installed. It flows toward the suction drum 105 through some sections of the LNG supply line, that is, the fuel gas supply line, which is vented through the line or installed with the valves 119 and 120.
  • the liquid nitrogen is directly supplied to the suction drum 105 through the low pressure pump bypass line where the valve 115 is installed to more efficiently cool the suction drum 105. Also good.
  • the liquefied nitrogen supplied to the suction drum 105 is supplied toward the high pressure pump 107 through the valve 120 if necessary to cool and vent the high pressure pump 107, and thus the high pressure vaporizer 5 (see FIG. 1). Can be.
  • FIG. 11 schematically illustrates a cool down process performed using LNG as necessary after the initial cool down operation using the LN 2 is completed or during operation of the system.
  • the LNG from the LNG storage tank 101 cools various equipment and pipes such as the valves 114, 116, 119, the low pressure pump 103, the suction drum 105, and flows along the line indicated by the dotted line in the figure. Meanwhile, the liquid nitrogen accumulated in the pipe between the valve 111 and the valve 112 may be vented through the valve 113 after being vaporized.
  • the boil-off gas may be returned to the LNG storage tank 101 through the valve 116 and the boil-off gas return line.
  • valves 111 and 112 installed in the LN2 supply line are closed and the nitrogen gas vaporized in the pipe between these valves 111 and 112 opens the vent valve 113 to open the LN2. Can be discharged through the vent line.
  • the low pressure pump 103 of which cool down is completed can continue to maintain a low temperature, supplying LNG as fuel contained in the LNG tank 101 toward suction drum 105.
  • the valve 115 may be closed to restrict the flow of LNG through the low pressure pump bypass line.
  • the valve 116 is opened and the boil-off gas is passed through the boil-off gas return line where the valve 116 is installed.
  • the cooling state of the low pressure pump 103 can be maintained continuously.
  • FIG. 12 schematically shows a method of utilizing a low pressure pump, ie a feed pump 103 as a booster pump.
  • the LNG of the LNG tank 101 stored at a pressure of about 2.5 bar or less is pressurized by about 5 to 10 bar by the low pressure pump 103 and then supplied to the high pressure pump 107.
  • the suction drum 105 is a container for smoothly supplying LNG to the high pressure pump 107, and the low pressure pump 103 may be used for supplying and filling LNG to the suction drum.
  • the suction drum 105 may not be used.
  • the valve 115 provided in the low pressure pump bypass line and the valves 119 and 120 provided in the LNG supply line are closed and installed in the suction drum bypass line.
  • the valve 121 is opened to allow LNG from the LNG tank 101 to be supplied directly to the high pressure pump 107 through the low pressure pump 103.
  • valve 118 when necessary, can be opened to return the LNG in the liquid state to the LNG tank 101 through the liquid return line provided with the valve 118.
  • the LNG used as fuel is the second to the third (tank 4) from the bow for reasons of ballast. Dogs), or from the second to fourth tanks (five tanks).
  • the LNG to be used as fuel is discharged from only one LNG storage tank, it may cause a problem that can not supply the fuel when fixing the valves, pumps, etc. of the pipe, it is possible to discharge the LNG from at least two LNG storage tanks It is desirable to configure the system for use as fuel.
  • LNG is discharged from an LNG storage tank located at the third to fourth (tank 3 and 4) from the bow, and the LNG storage tank is 5
  • the LNG storage tank located in the fourth to fifth (tanks 4 and 5) from the bow as shown in FIG.
  • the fuel gas supply system (FGS) S includes a high pressure pump 20 or 107 for compressing LNG discharged from the LNG storage tank 101 to a pressure required by the engine, and the high pressure pump.
  • the high pressure vaporizer 5 which vaporizes the compressed LNG by the gas supply and supplies it to the high pressure gas injection engine 1, and various piping and valves from the LNG storage tank 101 to the engine 1, etc. are included.
  • the fuel gas supply system S of the present invention receives fuel gas from the vaporizer 5 in advance, and stores the fuel gas in advance of the high pressure gas injection engine 1. It may further include a buffer tank 11 for supplying the stored fuel gas to the high pressure gas injection engine 1 when the load increases, to follow the load variation of the high pressure gas injection engine 1.
  • a part of piping from the LNG storage tank 101 to the engine 1 and a fuel discharge pump 101a located inside the LNG storage tank 101 are located outside the fuel gas supply system S.
  • the fuel gas supply system in a broad range includes all of a series of equipment for supplying LNG as fuel to the engine, and all the pipes from the fuel discharge pump 101a or the LNG storage tank 101 to the engine 1 are used.
  • the negotiated fuel gas supply system S may be considered not to include some of the pipes from the fuel discharge pump 101a or the LNG storage tank 101 to the engine 1,
  • the fuel gas supply system S should be considered to mean the fuel gas supply system in the above-described discussion.
  • the fuel gas supply system S thus constructed is preferably disposed at a position as close to the high pressure gas injection engine 1 and the LNG storage tank 101 as possible. Since the high pressure gas injection engine 1 is located in the engine chamber 150 of the ship, the fuel gas supply system S is preferably disposed adjacent to the engine chamber 150 and the LNG storage tank 101. Since the engine chamber 150 has a high internal temperature, it may not be preferable that the fuel gas supply system S in which the cryogenic fluid flows is installed inside the engine chamber 150.
  • the fuel gas supply system (S), as shown in Figure 14a, in the longitudinal direction of the hull, in the position closest to the engine chamber 150 disposed on the stern side and the engine chamber It may be disposed between the LNG storage tank 101 disposed.
  • the fuel gas supply system S may be disposed up and down between the engine chamber 150 and the living space 160.
  • the residential space 160 is a space required for sailors to live or adjust vessels and control various equipment and systems, the residential space 160 needs to be isolated from the fuel gas supply system S in which LNG, which is explosive fluid, is transferred.
  • at least one of protection means such as A60 bulkhead, trunk space, etc. is installed between the fuel gas supply system S and the living space 160.
  • the fuel gas supply system and method of the present invention has been described as an example applied to an offshore structure such as an LNG carrier, but the fuel gas supply system and method of the present invention is used to supply fuel to a high-pressure gas injection engine on land. Of course, it can be applied.

Abstract

The present invention relates to a fuel gas supply system for supplying to a high-pressure injection engine LNG, which is discharged from an LNG fuel tank, or boil-off gas as a fuel. According to the present invention, provided is the fuel gas supply system for the high-pressure injection engine in a vessel, comprising: the LNG fuel tank; a high-pressure pump; a vaporizer, and the high-pressure gas engine, wherein when a load on the high-pressure injection engine increases, the fuel gas is additionally supplied to the high-pressure gas injection engine from a buffer thank, which stores the fuel gas that has been received in advance from the vaporizer, so as to track the change of load on the high-pressure gas injection engine.

Description

고압가스 분사엔진용 연료가스 공급 시스템Fuel gas supply system for high pressure gas injection engine
본 발명은 LNG 연료탱크에서 배출된 LNG 또는 증발가스를 연료로서 고압가스 분사엔진에 공급하는 연료가스 공급 시스템에 관한 것으로서, 연료 공급라인의 도중에 버퍼 탱크를 장착하여 급변하는 고압가스 분사엔진의 부하를 원활하게 추종할 수 있도록 하는 연료가스 공급 시스템에 관한 것이다.The present invention relates to a fuel gas supply system for supplying LNG or boil-off gas discharged from an LNG fuel tank to a high-pressure gas injection engine as a fuel, and a load of a high-pressure gas injection engine that is rapidly changed by installing a buffer tank in the middle of a fuel supply line. The present invention relates to a fuel gas supply system capable of smoothly following.
일반적으로, 선박에서 배출되는 폐기가스 중 국제 해사 기구(International Maritime Organization)의 규제를 받고 있는 것은 질소산화물(NOx)과 황산화물(SOx)이며, 이산화탄소(CO2)의 배출도 규제하려 하고 있다. 특히, 질소산화물(NOx)과 황산화물(SOx)의 경우, 1997년 해상오염 방지협약(MARPOL; The Prevention of Marine Pollution from Ships) 의정서를 통하여 제기되고, 8년이라는 긴 시간이 소요된 후 2005년 5월에 발효요건을 만족하여 현재 강제규정으로 이행되고 있다.In general, that of the waste gas discharged from the vessel under the regulations of the International Maritime Organization (International Maritime Organization) and try to FIG regulated emissions of nitrogen oxides (NOx) and a sulfur oxide (SOx), carbon dioxide (CO 2). In particular, nitrogen oxides (NOx) and sulfur oxides (SOx) were raised through the 1997 Protocol of Prevention of Marine Pollution from Ships (MARPOL), and in 2005 after a long period of eight years. In May, it met the entry into force requirements and is now implementing mandatory regulations.
따라서, 이러한 규정을 충족시키기 위하여 질소산화물(NOx) 배출량을 저감하기 위하여 다양한 방법들이 소개되고 있는데, 이러한 방법 중에서 LNG 운반선을 위하여 고압 천연가스 분사 엔진, 예를 들어 ME-GI 엔진이 개발되어 사용되고 있다.Therefore, in order to meet these regulations, various methods have been introduced to reduce NOx emissions. Among these methods, a high pressure natural gas injection engine, for example, a ME-GI engine, has been developed and used for LNG carriers. .
이와 같은 ME-GI 엔진은 LNG(Liquefied Natural Gas)를 극저온에 견디는 저장탱크에 저장하여 운반하도록 하는 LNG 운반선 등과 같은 해상 구조물(본 명세서에서 해상 구조물이란, LNG 운반선, LNG RV, 일반상선 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 해상 플랜트까지도 모두 포함하는 개념이다.)에 설치될 수 있으며, 이 경우 천연가스를 연료로 사용하게 되며, 그 부하에 따라 대략 150 ∼ 300 bara(절대압력) 정도의 고압의 가스 공급 압력이 요구된다.Such a ME-GI engine is an offshore structure such as an LNG carrier for storing and transporting LNG (Liquefied Natural Gas) in a cryogenic storage tank (in the present specification, the offshore structure is a vessel such as an LNG carrier, an LNG RV, or a commercial vessel). , LNG FPSO, LNG FSRU, and even offshore plants.) In this case, natural gas is used as fuel, and the load is approximately 150 to 300 bara (absolute pressure). High pressure gas supply pressure is required.
LNG 저장탱크가 설치되지 않은 일반상선 등에 ME-GI 엔진을 적용하기 위해서는 연료로서의 LNG를 수용할 수 있는 LNG 연료탱크가 설치된다.In order to apply ME-GI engines to commercial ships without LNG storage tanks, LNG fuel tanks that can accommodate LNG as fuel are installed.
ME-GI 엔진은 필요시 재액화(liquefaction) 장치가 추가로 설치될 경우, 가스와 연료유 가격의 변화와 배출가스의 규제 정도에 따라 증발가스(Boil Off Gas; BOG)를 연료로 사용할 것인지, 아니면 증발가스를 재액화하여 저장탱크로 보내고 중유(Heavy Fuel Oil; HFO)를 사용할 것인지 선택할 수 있는 장점이 있으며, 특히, 환경오염과 관련한 특정규제를 받는 해역을 통과시 간편하게 LNG를 기화시켜서 연료로 사용할 수 있으며, 차세대 친환경적인 엔진으로서 효율이 50%에 육박하여 향후에는 LNG 운반선의 메인 엔진으로서 사용될 수 있다.The ME-GI engine will use Boil Off Gas (BOG) as a fuel if additional liquefaction equipment is installed if necessary, depending on changes in gas and fuel oil prices and the degree of regulation of emissions. Alternatively, it is possible to re-liquefy the boil-off gas to the storage tank and use heavy fuel oil (HFO) .In particular, LNG can be easily vaporized when passing through a sea area subject to specific regulations related to environmental pollution. It can be used as a next-generation environmentally friendly engine, which is nearly 50% efficient and can be used as the main engine of LNG carriers in the future.
LNG 저장탱크(혹은 LNG 연료탱크)에 수용되어 있는 LNG(혹은 증발가스)를 연료로서 ME-GI 엔진에 공급하기 위해, 연료가스 공급 시스템(fuel gas supply system)이 구비되어야 한다.In order to supply LNG (or evaporated gas) contained in the LNG storage tank (or LNG fuel tank) to the ME-GI engine as fuel, a fuel gas supply system must be provided.
국제특허공개공보 제 WO 2009/011497 호 및 제 WO 2009/136793 호 등에는 이러한 연료가스 공급 시스템의 예가 개시되어 있다.Examples of such fuel gas supply systems are disclosed in WO 2009/011497, WO 2009/136793, and the like.
국제특허공개공보 제 WO 2009/011497 호에는, LNG 저장탱크로부터 배출되는 LNG를 기화기에서 기화시킨 후 ME-GI 엔진과 같은 고압가스 분사엔진에 공급하는 동시에, LNG 저장탱크로부터 배출되는 증발가스를 상기 기화기에서 LNG와 열교환하여 액화시키는 연료가스 공급 시스템이 개시되어 있다.International Patent Publication No. WO 2009/011497 discloses that vaporized LNG discharged from an LNG storage tank is vaporized in a vaporizer and then supplied to a high-pressure gas injection engine such as an ME-GI engine, and the boil-off gas discharged from the LNG storage tank is described above. A fuel gas supply system for liquefying heat exchange with LNG in a vaporizer is disclosed.
국제특허공개공보 제 WO 2009/136793 호에는, LNG 저장탱크로부터 배출되는 LNG를 고압 펌프에서 압축한 후 증발기에서 증발시켜 ME-GI 엔진과 같은 가스 엔진에 공급하는 동시에, LNG 저장탱크로부터 배출되는 증발가스를 증발가스 압축기에서 압축한 후 극저온 열교환기에서 재액화하여 고압 펌프에 공급되는 LNG와 혼합해서 가스 엔진에 공급하는 연료가스 공급 시스템이 개시되어 있다.International Patent Publication No. WO 2009/136793 discloses that LNG discharged from an LNG storage tank is compressed by a high pressure pump and then evaporated in an evaporator to be supplied to a gas engine such as a ME-GI engine, and at the same time evaporated from the LNG storage tank. A fuel gas supply system is disclosed in which a gas is compressed in an evaporative gas compressor and then liquefied in a cryogenic heat exchanger, mixed with LNG supplied to a high pressure pump, and supplied to a gas engine.
이와 같은 연료가스 공급 시스템은 엔진에서 요구하는 상태, 즉 엔진에서 요구하는 온도 및 압력의 연료가스를 공급하기 위하여 필수적인 요소이다. ME-GI 엔진의 운전시, 엔진에 요구되는 출력에 따라 부하를 변화시키기 되는데, 시간에 따라 엔진 부하를 원활하게 추종할 수 있도록 연료가스 공급 시스템을 구성하는 각종 구성품들의 사양이 정해진다. 즉, 엔진 부하를 원활하게 추종하기 위해서는 각종 구성품들의 크기 및 용량이 커질 필요가 있고, 그에 따라 연료가스 공급 시스템을 구성하기 위해 소요되는 비용이 증가하는 문제가 있었다.Such a fuel gas supply system is essential for supplying fuel gas in a state required by the engine, that is, a temperature and pressure required by the engine. During the operation of the ME-GI engine, the load is changed according to the output required by the engine, and the specifications of the various components constituting the fuel gas supply system are determined so as to smoothly follow the engine load over time. That is, in order to smoothly follow the engine load, the size and capacity of various components need to be increased, and accordingly, there is a problem in that the cost of constructing the fuel gas supply system increases.
한편, 연료가스 공급 시스템에는 LNG의 이송을 위한 수단으로서 일반적으로 왕복동식 펌프와 같은 이송수단이 구비된다. LNG의 액화온도는 상압에서 약 -163℃의 극저온이므로, 연료가스 공급 시스템에 사용되는 펌프는 극저온 조건에서 작동할 수 있어야 한다. 이러한 선박용 극저온 왕복동식 펌프는 피스톤 또는 플런저가 실린더 내에서 왕복운동 함으로써 액체, 즉 LNG를 흡입하여 소요의 압력으로 토출하도록 구성된다. 다른 종류의 펌프에 비해 왕복동식 펌프는 높은 압력을 비교적 간단하게 얻을 수 있고, 유량 정도가 좋으며, 별도의 유량제어 장치를 설치하지 않아도 되는 등의 이점이 있다. 그러나 높은 압력을 얻기 위한 계속적인 왕복운동은 커넥팅 로드와 크랭크 샤프트 사이의 윤활을 목적으로 펌프 내에 주입되어 있는 윤활유의 온도 상승을 초래하게 되며, 이러한 현상은 장시간 구동시 문제가 될 수 있다.On the other hand, the fuel gas supply system is generally provided with a transfer means such as a reciprocating pump as a means for transfer of LNG. Since the liquefaction temperature of LNG is cryogenic at about -163 ° C at ambient pressure, the pump used in the fuel gas supply system must be able to operate in cryogenic conditions. The cryogenic reciprocating pump for ships is configured to suck the liquid, that is, LNG, by the piston or plunger reciprocating in the cylinder, and discharge at the required pressure. Compared with other types of pumps, reciprocating pumps have advantages such as relatively high pressure gain, good flow rate, and no need for a separate flow control device. However, the continuous reciprocating motion to obtain high pressure causes the temperature rise of the lubricating oil injected into the pump for the purpose of lubrication between the connecting rod and the crankshaft, which can be a problem during long time driving.
이와 같이 왕복동식 펌프의 구동부 측에서는 윤활유의 온도 상승으로 인한 문제가 야기될 수 있는 반면에, LNG를 흡입하여 토출하는 토출부와 이 토출부를 구동시키는 구동부 사이의 연결부 측에는 결빙(icing) 현상이 발생하는 문제가 있다. 즉, LNG는 상압에서 대략 -163℃의 극저온 상태의 유체이므로 토출부가 LNG에 의해 냉각되며, 이 냉열이 연결부에 전달되면서 시간이 흐름에 따라 연결부에 결빙이 생성된다. 그에 따라 펌프의 효율이 저하될 수 있을 뿐만 아니라 펌프 내부 부품이 파손될 우려가 있다.As described above, a problem due to a rise in the temperature of the lubricating oil may be caused on the driving side of the reciprocating pump, whereas an icing phenomenon occurs on the connection side between the discharge unit for sucking and discharging LNG and the driving unit for driving the discharge unit. there is a problem. That is, since LNG is a cryogenic fluid at about -163 ° C. at atmospheric pressure, the discharge part is cooled by the LNG. As the cooling heat is transferred to the connection part, freezing is generated in the connection part as time passes. As a result, not only the efficiency of the pump may be lowered but also the internal parts of the pump may be damaged.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, ME-GI 엔진의 운전시 엔진 부하를 원활하게 추종할 수 있도록, ME-GI 엔진의 상류측에 소정량의 고압가스를 저장할 수 있는 버퍼 탱크를 설치하여 엔진 부하가 증가할 경우 버터 탱크 내의 고압가스를 엔진에 공급하는 고압가스 분사엔진용 연료가스 공급 시스템을 제공하고자 하는 것이다.The present invention is to solve the conventional problems as described above, it is possible to store a predetermined amount of high-pressure gas upstream of the ME-GI engine to smoothly follow the engine load during operation of the ME-GI engine. It is intended to provide a fuel gas supply system for a high pressure gas injection engine that supplies a high pressure gas in a butter tank to an engine when an engine load is increased by installing a buffer tank.
상기 목적을 달성하기 위한 본 발명에 따르면, LNG 저장탱크에 저장된 LNG를 기화시켜 고압가스 분사엔진에 연료가스로서 공급하기 위한 고압가스 분사엔진용 연료가스 공급 시스템으로서, 상기 고압가스 분사엔진의 부하 증가시, 사전에 연료가스를 상기 기화기로부터 공급받아 저장하고 있는 버퍼 탱크로부터 상기 고압가스 분사엔진에 연료가스를 공급하여, 상기 고압가스 분사엔진의 부하 변동에 추종할 수 있는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템이 제공된다.According to the present invention for achieving the above object, as a fuel gas supply system for a high-pressure gas injection engine for vaporizing the LNG stored in the LNG storage tank to supply as a fuel gas to the high-pressure gas injection engine, increasing the load of the high-pressure gas injection engine High-pressure gas injection, characterized in that the fuel gas can be supplied to the high-pressure gas injection engine from a buffer tank that receives the fuel gas from the vaporizer in advance and can keep track of the load variation of the high-pressure gas injection engine. A fuel gas supply system for an engine is provided.
연료가스 공급 시스템의 고압가스 분사엔진 상류측에 상기 버퍼 탱크와 컨트롤 밸브 등의 개폐수단을 설치함으로써, 버퍼 탱크 충전 모드, 직접 가스 공급 모드, 버퍼 탱크 사용 모드 등을 갖는 시스템을 구성하여 급격하게 변화하는 부하에 추종한다.By providing opening and closing means such as the buffer tank and the control valve upstream of the high pressure gas injection engine of the fuel gas supply system, a system having a buffer tank filling mode, a direct gas supply mode, a buffer tank using mode, etc. is rapidly changed. Follow the load.
버퍼 탱크는 단열되지 않아 이 버퍼 탱크의 내부에 수용된 연료가스는 외부로부터의 열에 의해 가열될 수 있다. 버퍼 탱크의 하류측에는 가스 히터가 설치되어 버퍼 탱크로부터 연료가스가 배출됨에 따라서 감압에 동반한 온도 하강이 발생할 경우 연료가스를 엔진에서 요구하는 적정 온도까지 가열할 수 있다.The buffer tank is not insulated so that the fuel gas contained inside the buffer tank can be heated by heat from the outside. As the gas heater is installed downstream of the buffer tank and the fuel gas is discharged from the buffer tank, the fuel gas can be heated to an appropriate temperature required by the engine when a temperature drop accompanied with the decompression occurs.
상기 버퍼 탱크는 상기 고압가스 분사엔진에 연료가스를 공급하는 연료 공급라인과 병렬적으로 배치되는 것이 바람직하다.The buffer tank is preferably arranged in parallel with the fuel supply line for supplying fuel gas to the high-pressure gas injection engine.
상기 버퍼 탱크는, 상기 고압가스 분사엔진에 연료가스를 공급하는 연료 공급라인으로부터 분기되어 상기 버퍼 탱크에 연결되는 충전라인과, 상기 버퍼 탱크로부터 연장되어 상기 연료 공급라인에 합류되는 사용라인을 통해 상기 연료 공급라인과 병렬적으로 배치될 수 있다.The buffer tank is branched from a fuel supply line for supplying fuel gas to the high pressure gas injection engine and connected to the buffer tank, and through a use line extending from the buffer tank and joined to the fuel supply line. It can be arranged in parallel with the fuel supply line.
상기 충전라인에는 연료가스를 상기 버퍼 탱크에 공급할 때 개방되는 체크밸브가 설치되고, 상기 사용라인에는 상기 버퍼 탱크에 저장된 연료가스를 상기 고압가스 분사엔진에 공급할 때 개방되는 바이패스 밸브가 설치될 수 있다. 상기 연료 공급라인에는, 엔진 조건에 부합하는 연료의 양을 제어하도록 유량조절을 위한 컨트롤 밸브와, 셧 오프(shut off) 기능을 갖는 마스터 밸브로서의 개폐 밸브가 설치될 수 있다.The filling line may be provided with a check valve that opens when the fuel gas is supplied to the buffer tank, and the bypass line may be installed in the use line when the fuel gas stored in the buffer tank is supplied to the high pressure gas injection engine. have. The fuel supply line may be provided with a control valve for adjusting the flow rate to control the amount of fuel meeting the engine conditions, and an on / off valve as a master valve having a shut off function.
본 발명의 다른 측면에 따르면, LNG 저장탱크에 저장된 LNG를 기화시켜 고압가스 분사엔진에 연료가스로서 공급하기 위한 고압가스 분사엔진용 연료가스 공급 시스템으로서, 상기 LNG 저장탱크에서 배출된 LNG를 상기 고압가스 분사엔진에서 요구하는 압력으로 압축하는 고압 펌프와; 상기 고압 펌프에서 압축된 LNG를 기화시키는 기화기와; 상기 기화기에서 기화된 LNG를 상기 기화기로부터 공급받아 저장하고 있는 버퍼 탱크; 를 포함하며, 상기 고압가스 분사엔진의 부하가 증가하여 상기 고압 펌프 또는 상기 기화기의 용량을 넘어 변동하는 경우에는 상기 버퍼 탱크 내에 저장되어 있던 기화된 LNG를 상기 고압가스 분사엔진에 공급하는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템이 제공된다.According to another aspect of the present invention, a fuel gas supply system for a high-pressure gas injection engine for vaporizing the LNG stored in the LNG storage tank to supply as a fuel gas to the high-pressure gas injection engine, the LNG discharged from the LNG storage tank A high pressure pump compressing the pressure required by the gas injection engine; A vaporizer for vaporizing the LNG compressed by the high pressure pump; A buffer tank storing LNG vaporized in the vaporizer from the vaporizer; Includes, when the load of the high-pressure gas injection engine is increased to fluctuate beyond the capacity of the high-pressure pump or the carburetor, characterized in that for supplying the vaporized LNG stored in the buffer tank to the high-pressure gas injection engine A fuel gas supply system for a high pressure gas injection engine is provided.
본 발명의 또 다른 측면에 따르면, LNG 저장탱크에 저장된 LNG를 기화시켜 고압가스 분사엔진에 연료가스로서 공급하기 위한 고압가스 분사엔진용 연료가스 공급 방법으로서, 상기 고압가스 분사엔진의 부하 증가시, 연료가스를 저장하고 있는 버퍼 탱크로부터 상기 고압가스 분사엔진에 연료가스를 공급하여, 상기 고압가스 분사엔진의 부하 변동에 추종할 수 있는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 방법이 제공된다.According to another aspect of the present invention, a fuel gas supply method for a high-pressure gas injection engine for vaporizing the LNG stored in the LNG storage tank to supply as a fuel gas to the high-pressure gas injection engine, when increasing the load of the high-pressure gas injection engine, A fuel gas supplying method for a high pressure gas injection engine is provided, wherein the fuel gas is supplied from the buffer tank storing the fuel gas to the high pressure gas injection engine so as to follow the load variation of the high pressure gas injection engine. .
상기 연료가스 공급 방법은, 기화된 LNG를 상기 버퍼 탱크에 공급하여 상기 버퍼 탱크를 연료가스로서의 기화된 LNG로 충전하는 단계를 포함할 수 있다.The fuel gas supply method may include supplying vaporized LNG to the buffer tank and filling the buffer tank with vaporized LNG as fuel gas.
상기 연료가스 공급 방법은, 상기 고압가스 분사엔진에서 요구하는 부하가 연료 공급라인에 설치되어 있는 펌프 및 기화기의 용량을 넘지 않는 경우에는, 상기 기화기에서 상기 고압가스 분사엔진에 연료가스로서의 기화된 LNG를 공급하는 단계를 포함할 수 있다.In the fuel gas supply method, when the load required by the high pressure gas injection engine does not exceed the capacity of the pump and the vaporizer installed in the fuel supply line, the vaporized LNG as fuel gas is supplied to the high pressure gas injection engine in the vaporizer. It may include the step of supplying.
상기 연료가스 공급 방법은, 상기 고압가스 분사엔진에서 요구하는 부하가 연료 공급라인에 설치되어 있는 펌프 또는 기화기의 용량을 넘어 변동하는 경우에는, 상기 버퍼 탱크로부터 상기 고압가스 분사엔진에 연료가스로서의 기화된 LNG를 공급하는 단계를 포함할 수 있다.In the fuel gas supply method, when the load required by the high pressure gas injection engine fluctuates beyond the capacity of the pump or the vaporizer installed in the fuel supply line, vaporization of the fuel gas from the buffer tank as the fuel gas from the buffer tank is performed. It may include the step of supplying the LNG.
본 발명에 따르면, ME-GI 엔진의 운전시 엔진 부하를 원활하게 추종할 수 있도록, ME-GI 엔진의 상류측에 소정량의 고압가스를 저장할 수 있는 버퍼 탱크를 설치하여 엔진 부하가 증가할 경우 버터 탱크 내의 고압가스를 엔진에 공급하는 고압가스 분사엔진용 연료가스 공급 시스템이 제공될 수 있다.According to the present invention, when the engine load increases by installing a buffer tank capable of storing a predetermined amount of high pressure gas upstream of the ME-GI engine so as to smoothly follow the engine load during operation of the ME-GI engine. A fuel gas supply system for a high pressure gas injection engine for supplying a high pressure gas in a butter tank to an engine may be provided.
본 발명의 연료가스 공급 시스템에 의하면, 많은 시설 투자비용 없이 단지 버퍼 탱크와 컨트롤 밸브, 히터 등의 구성만으로 사용의 편리성, 효율성 및 최적의 운전 환경을 제공할 수 있으며, 부하 추종성 역시 매우 우수하다.According to the fuel gas supply system of the present invention, it is possible to provide ease of use, efficiency, and an optimal operating environment with only a configuration of a buffer tank, a control valve, a heater, and the like, without much facility investment cost, and also has excellent load followability. .
도 1은 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 고압펌프에서 엔진까지의 개략 구성도이다.1 is a schematic configuration diagram from a high pressure pump to an engine of a fuel gas supply system for a high pressure gas injection engine according to the present invention.
도 2는 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 버퍼 탱크 충전 모드를 설명하기 위한 도면이다.2 is a view for explaining the buffer tank filling mode of the fuel gas supply system for a high-pressure gas injection engine according to the present invention.
도 3은 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 직접 가스 공급 모드를 설명하기 위한 도면이다.3 is a view for explaining a direct gas supply mode of the fuel gas supply system for a high-pressure gas injection engine according to the present invention.
도 4는 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 버퍼 탱크 사용 모드를 설명하기 위한 도면이다.4 is a view for explaining a buffer tank use mode of the fuel gas supply system for a high-pressure gas injection engine according to the present invention.
도 5 내지 도 8은 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 왕복동식 펌프의 다양한 실시형태에 따른 냉각장치를 설명하기 위한 도면이다.5 to 8 are views for explaining a cooling apparatus according to various embodiments of the reciprocating pump of the fuel gas supply system for a high-pressure gas injection engine according to the present invention.
도 9 내지 도 12는 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 저장탱크에서 고압펌프까지의 개략 구성도로서, LNG의 원활한 공급을 위해 시스템을 쿨 다운시키는 과정을 설명하기 위한 도면이다.9 to 12 is a schematic configuration diagram from a storage tank to a high pressure pump of a fuel gas supply system for a high pressure gas injection engine according to the present invention, illustrating a process of cooling down the system for smooth supply of LNG. .
도 13은 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템을 구비한 LNG 운반선을 나타낸 도면이다.13 is a view showing an LNG carrier having a fuel gas supply system for a high pressure gas injection engine according to the present invention.
도 14a 및 도 14b는 LNG 운반선에서의 연료가스 공급 시스템의 배치 위치를 설명하기 위한 도면이다.14A and 14B are views for explaining an arrangement position of a fuel gas supply system in an LNG carrier.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, the following examples may be modified in many different forms, and the scope of the present invention is not limited to the following examples.
도 1은 본 발명에 따른 고압가스 분사엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물의 연료가스 공급 시스템을 도시한 구성도이다. 본 발명의 고압가스 분사엔진용 연료가스(즉, 천연가스) 공급 시스템은 액화천연가스를 고압가스 분사엔진의 연료로 사용할 수 있는 모든 종류의 해상 구조물, 즉 LNG 운반선, LNG RV, 컨테이너선, 일반상선과 같은 선박을 비롯하여, LNG FPSO, LNG FSRU와 같은 해상 플랜트에 적용될 수 있다.1 is a block diagram showing a fuel gas supply system of an offshore structure having a high-pressure gas injection engine, for example, a ME-GI engine according to the present invention. The fuel gas supply system (ie, natural gas) for the high pressure gas injection engine of the present invention can use all kinds of offshore structures, ie, LNG carriers, LNG RVs, container ships, and general vessels, in which liquefied natural gas can be used as a fuel of the high pressure gas injection engine. It can be applied to marine plants such as LNG FPSO, LNG FSRU, as well as ships such as merchant ships.
LNG 운반선 등과 같이 LNG의 저장 또는 운반을 위한 LNG 저장탱크가 구비되어 있는 해상 구조물의 경우에는 이 LNG 저장탱크 내의 LNG를 고압가스 분사엔진에 연료로서 공급한다. 또한, 컨테이너선이나 일반상선 등과 같이 LNG의 저장 또는 운반을 위한 LNG 저장탱크가 별도로 구비되어 있지 않은 해상 구조물의 경우에는 연료로서의 LNG를 저장하는 LNG 연료탱크로부터 LNG를 배출시켜 고압가스 분사엔진에 공급한다. 다만, 본 명세서에 있어서, LNG 저장탱크는 LNG 연료탱크를 포함하는 개념으로 이해되어야 한다.In the case of an offshore structure equipped with an LNG storage tank for storing or transporting LNG, such as an LNG carrier, the LNG in the LNG storage tank is supplied as a fuel to the high-pressure gas injection engine. In the case of offshore structures that do not have a separate LNG storage tank for storing or transporting LNG, such as container ships or commercial ships, LNG is discharged from the LNG fuel tank that stores LNG as fuel and supplied to the high-pressure gas injection engine. do. However, in the present specification, the LNG storage tank should be understood as a concept including an LNG fuel tank.
본 발명에 따른 고압가스 분사엔진을 갖는 해상 구조물의 연료가스 공급 시스템에 따르면, LNG 저장탱크(또는 LNG 연료탱크)(도시생략)에서 배출된 LNG(또는 증발가스)는, 연료 공급 라인(L1)을 통하여 이송되면서 펌프(20)에서 고압으로 압축되고 기화기(5)에서 기화된 후 ME-GI 엔진 등의 고압가스 분사엔진(1)에 연료로서 공급된다. 증발가스의 경우에는 재액화된 후 이송되는 LNG와 혼합되어 함께 고압가스 분사엔진을 향하여 이송될 수 있다.According to the fuel gas supply system of the offshore structure having the high-pressure gas injection engine according to the present invention, the LNG (or boil-off gas) discharged from the LNG storage tank (or LNG fuel tank) (not shown), the fuel supply line (L1) While being conveyed through the pump 20 is compressed to high pressure and vaporized in the carburetor 5 is supplied as fuel to the high-pressure gas injection engine 1, such as ME-GI engine. In the case of the boil-off gas may be mixed with the LNG to be liquefied and then transported to the high-pressure gas injection engine.
기화기(5)의 상류측에는, 극저온 장비로서 액면상의 맥동을 흡수 및 감소시키기 위한 맥동 댐퍼(3)가 설치된다. 펌프(20)는 극저온에 적용하여 LNG를 가압할 수 있는 왕복동식 펌프인 것이 바람직하다. 펌프(20)는 LNG를 대략 150 내지 300 bara 정도의 고압으로 압축할 수 있는 고압펌프이다. 본 명세서에서 "고압" 이라는 용어는, ME-GI 엔진과 같은 가스 엔진에서 요구하는 연료가스의 압력범위, 예를 들어 대략 150 내지 300 bara 정도의 범위의 압력을 의미한다.The upstream side of the vaporizer | carburetor 5 is provided with the pulsation damper 3 for absorbing and reducing pulsation on a liquid surface as cryogenic equipment. The pump 20 is preferably a reciprocating pump capable of pressurizing LNG by applying to cryogenic temperatures. The pump 20 is a high pressure pump capable of compressing LNG to a high pressure of about 150 to 300 bara. As used herein, the term "high pressure" means a pressure range of a fuel gas required by a gas engine such as a ME-GI engine, for example, a pressure in the range of about 150 to 300 bara.
기화기(5)는 고압 기화기로서 액체 상태의 LNG를 열매체와 열교환시킴으로써 가열하여 기화시킨다.The vaporizer | carburetor 5 is a high pressure vaporizer, and heats and vaporizes liquid LNG by heat-exchanging with a heat medium.
초기 시동시, 연료 공급라인(L1)에는 시스템 냉각을 위해 액체질소(즉, 액화질소; LN2)가 주입될 수 있으며, 연료 공급라인(L1)에 주입된 액체질소는 기화기(5)의 하류측에서 액체질소 배출라인(L2)을 통해 외부로 배출될 수 있다. 액체질소 배출라인(L2)에는 소음기(도시생략)가 설치될 수 있다.At initial start-up, the fuel supply line L1 may be injected with liquid nitrogen (ie, liquid nitrogen; LN2) for cooling the system, and the liquid nitrogen injected into the fuel supply line L1 is downstream of the vaporizer 5. From the liquid nitrogen discharge line (L2) can be discharged to the outside. Liquid nitrogen discharge line (L2) may be provided with a silencer (not shown).
본 발명에 따르면, 연료 공급라인(L1)의 기화기(5)와 고압가스 분사엔진(1) 사이에 일정량의 연료가스를 고압 상태로 수용할 수 있는 버퍼 탱크(11)가 설치된다. 버퍼 탱크(11)는 단열되지 않아 외부 환경에 영향을 받을 수 있다. 버퍼 탱크(11)의 외부 온도가 버퍼 탱크(11) 내에 수용된 연료가스의 온도보다 높을 경우, 버퍼 탱크(11)에 수용된 연료가스는 외부로부터 공급되는 열에 의해 가열될 수 있다. 버퍼 탱크(11)는 대략 300바의 압력에 견딜 수 있는 구조를 가지며, CNG용 저장탱크와 같은 구조를 가질 수 있다.According to the present invention, between the vaporizer 5 and the high-pressure gas injection engine 1 of the fuel supply line (L1) is provided a buffer tank (11) capable of receiving a predetermined amount of fuel gas at a high pressure. The buffer tank 11 is not insulated and may be affected by the external environment. When the external temperature of the buffer tank 11 is higher than the temperature of the fuel gas contained in the buffer tank 11, the fuel gas contained in the buffer tank 11 may be heated by heat supplied from the outside. The buffer tank 11 has a structure capable of withstanding a pressure of approximately 300 bar, and may have a structure such as a storage tank for CNG.
버퍼 탱크(11)는 충전라인(L3) 및 사용라인(L4)을 통해 연료 공급라인(L1)과 병렬적으로 연결된다. 충전라인(L3)에는 체크밸브(12)가 설치되고, 사용라인(L4)에는 바이패스 밸브(13)가 설치된다. 연료 공급라인(L1)에는, 엔진 조건에 부합하는 연료의 양을 제어하도록 유량조절을 위한 컨트롤 밸브(14), 셧 오프(shut off) 기능을 갖는 마스터 밸브로서의 개폐 밸브(15), 그리고 엔진 조건에 부합하는 연료의 온도를 맞춰주기 위한 가스 히터(16)가 상류측에서 하류측 방향으로 순차 설치된다. 컨트롤 밸브(14)는 연료 공급라인(L1)에서 충전라인(L3)이 분기되는 지점의 하류측, 그리고 사용라인(L4)이 연결되는 지점의 상류측에 설치된다. 개폐 밸브(15) 및 가스 히터(16)는 연료 공급라인(L1)에서 사용라인(L4)이 연결되는 지점의 하류측에 순서대로 설치된다.The buffer tank 11 is connected in parallel with the fuel supply line L1 through the filling line L3 and the use line L4. The check valve 12 is installed in the filling line L3, and the bypass valve 13 is installed in the use line L4. In the fuel supply line L1, a control valve 14 for adjusting the flow rate to control the amount of fuel corresponding to the engine condition, an on / off valve 15 as a master valve having a shut off function, and the engine condition Gas heaters 16 for adjusting the temperature of the fuel in accordance with are sequentially installed from the upstream side to the downstream side. The control valve 14 is installed downstream of the point where the filling line L3 branches in the fuel supply line L1 and upstream of the point where the use line L4 is connected. The on-off valve 15 and the gas heater 16 are installed in the downstream side of the point where the use line L4 is connected in the fuel supply line L1.
버퍼 탱크를 가지는 연료가스 공급 시스템은, 필요에 따라 버퍼 탱크 충전 모드, 직접 가스 공급 모드, 그리고 버퍼 탱크 사용 모드 등으로 운전될 수 있다. 도 2 내지 도 4를 참조하여 각 모드를 상세하게 설명한다. 도 2 내지 도 4에서, 밸브의 내부에 빗금을 그은 것은 밸브가 개방된 상태임을 의미하며, 밸브의 내부에 빗금이 없는 것은 밸브가 폐쇄된 상태임을 의미한다.The fuel gas supply system having a buffer tank can be operated in a buffer tank filling mode, a direct gas supply mode, a buffer tank use mode, and the like, as necessary. Each mode will be described in detail with reference to FIGS. 2 to 4. 2 to 4, hatching the inside of the valve means that the valve is open, and no hatching inside the valve means that the valve is closed.
도 2를 참조하여 버퍼 탱크 충전 모드를 설명한다. 버퍼 탱크(11)에 연료가스를 충전하기 위해서는 체크 밸브(12)를 열고, 바이패스 밸브(13), 컨트롤 밸브(14) 및 개폐 밸브(15)를 닫는다. 체크 밸브(12)가 개방되면 충전라인(L3)을 통해 대략 300바 정도의 고압으로 압축된 연료가스(즉, 천연가스)가 버퍼 탱크(11)에 공급된다. 버퍼 탱크(11)에 대한 가스연료의 충전이 완료되면, 체크 밸브(12)를 닫는다.The buffer tank filling mode will be described with reference to FIG. 2. In order to fill the fuel tank 11 with fuel gas, the check valve 12 is opened, and the bypass valve 13, the control valve 14, and the open / close valve 15 are closed. When the check valve 12 is opened, the fuel gas (that is, natural gas) compressed to a high pressure of about 300 bar is supplied to the buffer tank 11 through the filling line L3. When filling of the gas fuel to the buffer tank 11 is completed, the check valve 12 is closed.
도 3을 참조하여 직접 가스 공급 모드를 설명한다. 고압가스 분사엔진(1)이 운전될 때, 요구되는 부하가 급격하게 변동하지 않는 경우에는 기화기(5)로부터 연료 공급라인(L1)을 통하여 연료가스를 공급받는다. 이때에는 체크 밸브(12) 및 바이패스 밸브(13)를 닫고, 컨트롤 밸브(14) 및 개폐 밸브(15)를 연다. 직접 가스 공급 모드에 있을 때, 체크 밸브(12)의 개방정도를 조절하면 버퍼 탱크(11)의 충전을 동시에 진행할 수 있다.A direct gas supply mode will be described with reference to FIG. 3. When the high-pressure gas injection engine 1 is operated, when the required load does not fluctuate rapidly, the fuel gas is supplied from the vaporizer 5 through the fuel supply line L1. At this time, the check valve 12 and the bypass valve 13 are closed, and the control valve 14 and the open / close valve 15 are opened. When in the direct gas supply mode, by adjusting the opening degree of the check valve 12, the filling of the buffer tank 11 can proceed simultaneously.
도 4를 참조하여 버퍼 탱크 사용 모드를 설명한다. 고압가스 분사엔진(1)이 운전될 때, 초기 시동시나 출력 급상승시와 같이 요구되는 부하가 급격하게 변동하는 경우에는 기화기(5)로부터의 연료 공급만으로는 고압가스 분사엔진(1)에 충분한 연료를 공급할 수 없다. 이때에는 체크 밸브(12) 및 컨트롤 밸브(14)를 닫고, 바이패스 밸브(13) 및 개폐 밸브(15)를 열어, 버퍼 탱크(11) 내에 저장된 연료가스를 고압가스 분사엔진(1)에 공급한다.A buffer tank use mode will be described with reference to FIG. 4. When the high pressure gas injection engine 1 is operated, when the required load suddenly changes, such as during initial start-up or output sudden increase, sufficient fuel is supplied to the high pressure gas injection engine 1 only by supplying fuel from the vaporizer 5. Can't supply At this time, the check valve 12 and the control valve 14 are closed, the bypass valve 13 and the opening / closing valve 15 are opened, and the fuel gas stored in the buffer tank 11 is supplied to the high pressure gas injection engine 1. do.
이와 같이 고압가스 분사엔진(1)의 부하가 급격하게 변동하는 경우에는 버퍼 탱크에 저장되어 있던 연료가스를 사용하여 부하 변동에 대응한다. 본 명세서에서 "고압가스 분사엔진(1)의 부하가 급격하게 변동하는 경우" 란, 고압가스 분사엔진(1)에서 요구하는 부하가 연료 공급라인(L1)에 설치되어 있는 펌프(20) 또는 기화기(5) 등의 장비의 용량을 넘어 변동하는 경우를 의미한다.In this way, when the load of the high-pressure gas injection engine 1 fluctuates rapidly, the fuel gas stored in the buffer tank is used to cope with the load fluctuation. In the present specification, the term "when the load of the high pressure gas injection engine 1 fluctuates rapidly" means that the pump 20 or the carburetor in which the load required by the high pressure gas injection engine 1 is installed in the fuel supply line L1. (5) It means the case of fluctuating beyond the capacity of equipment.
본 발명에 따르면, 고압가스 분사엔진(1)에서 요구하는 부하가 연료 공급라인(L1)에 설치되어 있는 펌프(20) 또는 기화기(5) 등의 장비의 용량을 넘어 변동하더라도, 버퍼 탱크(11)에 의해 급격하게 변동하는 부하에 대처할 수 있게 된다. 그에 따라 각종 구성품들의 크기 및 용량이 급격하게 변동하는 고압가스 분사엔진(1)의 부하 최대치를 만족시킬 필요가 없어, 각종 구성품들의 크기 및 용량이 지나치게 커질 필요가 없고, 연료가스 공급 시스템을 구성하기 위해 소요되는 비용을 절감할 수 있다.According to the present invention, even if the load required by the high-pressure gas injection engine 1 fluctuates beyond the capacity of equipment such as the pump 20 or the vaporizer 5 installed in the fuel supply line L1, the buffer tank 11 It is possible to cope with a suddenly changing load. Accordingly, it is not necessary to satisfy the load maximum value of the high-pressure gas injection engine 1 in which the size and capacity of the various components change rapidly, and the size and capacity of the various components do not need to be excessively large, and to configure the fuel gas supply system. To reduce the cost.
버퍼 탱크(11)에서 연료가스가 배출됨에 따라 버퍼 탱크의 내부압력이 감압되면 배출되는 연료가스의 온도가 하강할 수 있다. 이때 연료가스의 온도가 엔진에서 요구하는 온도 이하로 하강할 경우, 가스 히터(16)에 의해 연료가스를 가열한 후 엔진에 공급할 수 있다.As the fuel gas is discharged from the buffer tank 11, when the internal pressure of the buffer tank is reduced, the temperature of the discharged fuel gas may decrease. In this case, when the temperature of the fuel gas falls below the temperature required by the engine, the fuel gas may be heated by the gas heater 16 and then supplied to the engine.
이하, 도 5 내지 도 8을 참조하여, 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 왕복동식 펌프의 다양한 실시형태에 따른 냉각장치를 설명한다.5 to 8, a cooling apparatus according to various embodiments of a reciprocating pump of a fuel gas supply system for a high pressure gas injection engine according to the present invention will be described.
왕복동식 펌프(20)는, 모터(22)에 의해 구동하는 구동부(21)와, 이 구동부(21)에 의해 동작하면서 유체, 즉 LNG를 흡입하여 소정의 압력으로 압축하여 배출하는 토출부(25)를 포함한다. 모터(22)의 회전력은 풀리(23)를 통해 구동부(21)에 전달될 수 있다. 구동부(21)의 크랭크 샤프트가 회전함에 따라 커넥팅 로드 등의 연결부를 통하여 토출부(25)의 피스톤 또는 플런저가 실린더 내에서 왕복운동하면서 유체를 압축하여 배출한다.The reciprocating pump 20 includes a drive unit 21 driven by a motor 22 and a discharge unit 25 that operates by the drive unit 21 and sucks fluid, that is, LNG, compresses and discharges the fluid to a predetermined pressure. ). The rotational force of the motor 22 may be transmitted to the driver 21 through the pulley 23. As the crankshaft of the drive unit 21 rotates, the piston or plunger of the discharge unit 25 compresses and discharges the fluid while reciprocating in the cylinder through a connecting unit such as a connecting rod.
펌프(20)의 유입구와 연료 공급라인(L1) 사이에는 가요성 호스(60)가 설치될 수 있으며, 그에 따라 연료 공급라인(L1)을 구성하는 파이프와 펌프(20)의 유입구가 정확하게 정렬되지 않더라도 그 연결작업을 용이하게 수행할 수 있다.A flexible hose 60 may be installed between the inlet of the pump 20 and the fuel supply line L1, so that the pipe constituting the fuel supply line L1 and the inlet of the pump 20 are not aligned correctly. If not, the connection can be easily performed.
구동부(21)에는 크랭크 샤프트와 커넥팅 로드의 동작을 윤활하기 위한 윤활유가 주입되어 있는데, 펌프(20)의 동작이 계속됨에 따라 윤활유의 온도가 상승하므로 윤활유를 냉각시킬 필요가 있다.Lubricating oil is injected into the driving unit 21 to lubricate the operation of the crankshaft and the connecting rod. As the operation of the pump 20 continues, the temperature of the lubricating oil rises, so it is necessary to cool the lubricating oil.
선박용 극저온 왕복동식 펌프는 피스톤(Piston) 또는 플린저(Plunge)가 실린더 내를 왕복운동 함으로써 액체를 흡입하여 소요의 압력으로 토출하는 펌프이다. 이러한 왕복동 펌프는 높은 압력을 비교적 간단하게 얻을 수 있고, 유량 정도가 좋으며 다른 유량제어 장치를 설치하지 않아도 되는 등의 특징이 있다. 그러나 극저온 유체를 사용하는 펌프는 상온에 의한 열 유입으로 인해 쉽게 기화되고, 발생하는 증기(Vapor)로 인해 제대로 흡입(Suction)이 되지 않는 현상이 발생하게 된다. 또한 선박의 경우 육상과 비교하여 배치에 따른 제약 사항이 있기 때문에 펌프설치 시에 흡입 및 배출 영역에 따른 검토가 필수적이다.The cryogenic reciprocating pump for ships is a pump in which a piston or a plunger reciprocates in a cylinder to inhale liquid and discharge the liquid at a required pressure. Such a reciprocating pump has characteristics such that high pressure can be obtained relatively simply, the flow rate is good, and there is no need to install another flow control device. However, the pump using the cryogenic fluid is easily vaporized due to the heat inflow at room temperature, the suction is not properly due to the generated vapor (Vapor). In addition, in the case of ships, there are limitations in terms of layout compared to onshore, so it is necessary to examine the suction and discharge areas when installing the pump.
본 발명의 다른 측면에 따르면, 선박용 극저온 초고압 천연가스 공급 장치용 왕복동식 펌프의 흡입 장치에 있어서, 흡입(Suction) 라인에 비교적 여유를 허용하지 않는 배관을 사용하는 것이 아니라 극저온 가요성 호스(60)를 사용함으로써 움직임이 상대적으로 자유로워 배치에 따른 제약을 받지 않게 되며 펌프의 흡입(Suction) 라인에 충분히 큰 사이즈, 즉 대직경의 가요성 호스를 적용하여 효율적인 흡입이 가능하게 할 수 있다.According to another aspect of the present invention, in the suction device of the reciprocating pump for cryogenic ultra-high pressure natural gas supply device for ships, the cryogenic flexible hose 60, rather than using a pipe that does not allow a relatively margin to the suction line (60) By using, the movement is relatively free and is not restricted by the arrangement, and the suction tube of the pump can be efficiently suctioned by applying a sufficiently large size, that is, a large diameter flexible hose, to the suction line of the pump.
일반적인 배관(Pipe)을 사용하여 연료 공급라인(L1), 즉 천연가스 이송 파이프와 펌프의 흡입구 사이를 연결하게 되면, 배관은 여유를 허용하지 않기 때문에 이송 파이프와 펌프의 흡입구가 정확하게 일직선상에 정렬되어야 한다. 그런데, 이송 파이프와 펌프의 흡입구 사이를 가요성 호스(60)에 의해 연결할 경우, 약간의 오차가 발생하여도 이 오차를 가요성 호스(60)에 의해 상쇄할 수 있어 이송 파이프 및 펌프의 배치 작업이 용이해 질 수 있다.If a normal pipe is used to connect the fuel supply line (L1), ie the natural gas transfer pipe and the inlet of the pump, the inlet of the transfer pipe and the pump is aligned exactly in line because the pipe does not allow a margin. Should be. By the way, when the connection between the transfer pipe and the suction port of the pump by the flexible hose 60, even if a slight error occurs, this error can be offset by the flexible hose 60, the arrangement of the transfer pipe and pump This can be facilitated.
또한, 펌프에 의한 흡입이 용이하도록 가요성 호스의 직경은 충분히 클 필요가 있으며, 이송 파이프의 직경보다 크거나 같은 것이 바람직하다.In addition, the diameter of the flexible hose needs to be large enough to facilitate suction by the pump, and is preferably equal to or larger than the diameter of the conveying pipe.
가요성 호스(60)로서는 제일산업(Jeil Industrial co., ltd.)의 JEIL F-A 내지 F-R과 같은 제품이나, 대성이엔지(Dae Sung Engineering co.)의 DS 01 내지 08과 같은 제품을 사용할 수 있다. 가요성 호스(60)는 극저온 상태의 액화천연가스가 내부로 통과하더라도 강성을 유지할 수 있는 소재, 예컨대 SUS 소재로 만들어질 필요가 있으며, 필요시 외부를 단열재에 의해 감쌀 수 있다.As the flexible hose 60, a product such as JEIL F-A to F-R of Jeil Industrial Co., Ltd., or a product such as DS 01 to 08 of Dae Sung Engineering Co. can be used. The flexible hose 60 needs to be made of a material capable of maintaining rigidity even if the liquefied natural gas in a cryogenic state passes inside, for example, SUS material, and can be wrapped by an insulation material if necessary.
가요성 호스(60)로서는 양단에 플랜지가 일체로 형성된 SUS 소재의 것을 사용할 수 있으며, 양단의 플랜지를 각각 배관 말단의 플랜지 및 펌프의 흡입구에 체결함으로써 가요성 호스를 설치할 수 있다.As the flexible hose 60, a SUS material having flanges integrally formed at both ends can be used, and the flexible hose can be installed by fastening the flanges at both ends to the flange at the pipe end and the suction port of the pump, respectively.
도면에는 펌프 상류측의 천연가스 이송 파이프와 펌프의 흡입구 사이에만 가요성 호스(60)가 설치된 것으로 도시하였지만, 필요시 펌프의 토출구와 펌프 하류측의 천연가스 이송 파이프 사이에도 가요성 호스가 설치될 수 있다.Although the drawing shows that the flexible hose 60 is installed only between the natural gas transfer pipe upstream of the pump and the suction port of the pump, the flexible hose may be installed between the discharge port of the pump and the natural gas transfer pipe downstream of the pump, if necessary. Can be.
한편, 펌프의 토출구에는 충격완화수단으로서 한글 디귿자 혹은 미음자 형태를 가지도록 굴곡된 파이프가 연결될 수 있으며, 그에 따라 펌프의 진동을 이 충격완화수단에 의해 토출측 배관에 전달하지 않을 수 있다.On the other hand, the discharge port of the pump may be connected to the pipe bent to have a Hangul dejaja or a consonant form as the impact mitigating means, and thus the vibration of the pump may not be transmitted to the discharge side pipe by the impact mitigating means.
즉, 충격완화수단(65)은, 펌프(20)의 작동시 토출되는 유체에 의해 발생하는 진동과 충격이 연료 공급라인(L1)의 펌프 하류측으로 전달되는 것을 방지할 수 있도록 굴곡된 파이프에 의해 이루어진다. 파이프는 복수회 굴곡되며, 바람직하게는 3 내지 5회 정도의 굴곡 횟수를 가질 수 있다. 예컨대, 충격완화수단이 디귿자 형태의 경우 3회, 미음자 형태의 경우 5회 굴곡이 이루어질 수 있다.That is, the shock mitigating means 65 is by a pipe bent to prevent the vibration and shock generated by the fluid discharged during the operation of the pump 20 to be transmitted to the pump downstream of the fuel supply line (L1). Is done. The pipe is bent a plurality of times, and may preferably have a number of bends of about 3 to 5 times. For example, the impact mitigating means may be bent three times in the case of a depressed type, and five times in the case of a treble form.
도 5에 도시된 바와 같이, 연료(천연가스) 공급 시스템에서 사용되고 있는 펌프(20)의 토출측에는 충격완화수단(65)이 설치되어 있다. 도 5에 개시된 충격완화수단(65)은 대략 미음자 형태로 굴곡된 파이프에 의해 이루어진 것으로 도시되어 있지만, 충격완화수단의 형태가 도 5에 도시된 것만으로 한정되는 것은 아니다.As shown in Fig. 5, an impact mitigating means 65 is provided on the discharge side of the pump 20 used in the fuel (natural gas) supply system. Although the impact mitigating means 65 disclosed in FIG. 5 is illustrated as being made by a pipe bent in a roughly amic shape, the form of the impact mitigating means is not limited to that shown in FIG.
또한, 도 5에는 2차원적으로 굴곡된, 즉 평면상에서 연장되는 충격완화수단이 개시되어 있지만, 본 발명에 따르면 3차원적으로 굴곡된 충격완화수단이 제공될 수 있다.In addition, although Fig. 5 discloses a two-dimensional bent, i.e., an impact mitigating means extending in a plane, according to the present invention, a three-dimensional bent impact mitigating means may be provided.
이와 같이 본 발명에 따르면, 연료 공급라인(L1)에 있어서 펌프(20)의 토출측에, 펌프의 구동 방향과 동일한 방향에 밴딩을 줌으로써 펌프의 구동시에 발생하는 진동 및 충격을 완충할 수 있는 충격완화수단(65)이 설치됨에 따라, 펌프의 구동시에 발생하는 진동 및 충격을 완충할 수 있다. 또한 충격완화수단(65)은 구부러짐이 자유로운 만큼 연결 부위를 체결할 때에도 연결 작업을 용이하게 수행할 수 있다는 상당한 이점을 가진다.As described above, according to the present invention, by applying a banding to the discharge side of the pump 20 in the fuel supply line L1 in the same direction as the driving direction of the pump, shock mitigation that can cushion vibration and shock generated when the pump is driven. As the means 65 is installed, vibration and shock generated when the pump is driven can be buffered. In addition, the impact mitigating means 65 has a considerable advantage that the connection work can be easily performed even when the connection portion is fastened as long as the bending is free.
펌프에 동력을 전달하기 위한 대표적인 방법으로는 벨트, 기어, 체인 구동 방식 등이 있다. 이 중 V-벨트 구동 방식은 벨트와 벨트 풀리(Pulley)와의 마찰에 의해 회전하는 동력을 전달하게 되는데, 펌프쪽 풀리와 모터쪽 풀리간 벨트의 일정한 장력이 없으면 벨트의 슬립 현상이 발생하게 된다. 벨트의 슬립이 발생하게 되면 펌프의 효율이 저하되며 소음이 발생하고, 마찰에 의한 발열로 인하여 벨트의 손상 위험이 따르게 된다.Typical methods for transmitting power to the pump include belts, gears, and chain drives. Among these, the V-belt driving method transmits the rotating power by friction between the belt and the belt pulley (Pulley). If there is no constant tension of the belt between the pump pulley and the motor pulley, the belt slippage occurs. When the slip of the belt occurs, the efficiency of the pump is lowered, noise is generated, and the belt is damaged due to heat generated by friction.
본 발명의 또 다른 측면에 따르면, 벨트를 이용하는 펌프의 슬립 여부를 측정하기 위한 펌프의 벨트 슬립 감시장치 및 방법이 제공된다.According to another aspect of the present invention, there is provided a belt slip monitoring apparatus and method of a pump for measuring whether the pump slips using the belt.
도 5에 도시된 바와 같이, 천연가스 공급 시스템의 펌프(20)는 구동력을 제공하는 모터(22)를 포함하며, 이 모터(22)의 구동력은 펌프(20)의 구동부(21)에 전동수단을 통해 전달된다. 본 실시형태에서 전동수단은, 모터(22)의 회전축에 설치되어 회전하는 모터측 풀리(22a)와, 펌프(20)의 구동부(21)에 설치되는 펌프측 풀리(23)와, 이들 2개의 풀리(22a, 23) 사이를 연결하는 벨트(24)를 포함한다.As shown in FIG. 5, the pump 20 of the natural gas supply system includes a motor 22 providing a driving force, the driving force of the motor 22 being transmitted to the driving unit 21 of the pump 20. Is passed through. In the present embodiment, the transmission means includes a motor side pulley 22a installed on the rotating shaft of the motor 22 and rotating, a pump side pulley 23 provided on the drive unit 21 of the pump 20, and these two. And a belt 24 connecting the pulleys 22a and 23.
각각의 풀리(22a, 23)에는 회전속도를 산출하기 위하여 센서, 예컨대 근접 센서를 부착시킨다. 풀리가 회전함에 따라 근접 센서는 풀리의 회전수를 검출할 수 있으며, 도시하지 않은 컨트롤러에서는 근접 센서로부터 전달되는 정보로부터 산출된 각 풀리의 회전수를 통해 모터측 풀리(22a)와 펌프측 풀리(23) 사이의 실제 회전비를 계산해 낼 수 있다.Each pulley 22a, 23 is fitted with a sensor, for example a proximity sensor, to calculate the rotational speed. As the pulley rotates, the proximity sensor can detect the rotational speed of the pulley, and in the controller (not shown), the motor-side pulley 22a and the pump-side pulley (through the rotational speed of each pulley calculated from information transmitted from the proximity sensor) Calculate the actual rotation ratio between 23).
본 발명에 따른 펌프의 벨트 슬립 감시장치를 이용한 감시방법은, 모터의 풀리(22a)와 펌프의 풀리(23) 사이의 직경비를 계산하여 모터의 풀리(22a)가 1회전할 때 펌프측 풀리(23)가 얼마나 회전하는지를 계산한 이론 회전비와, 상술한 바와 같이 근접 센서를 통해 얻어진 정보를 이용하여 계산한 실제 회전비를 비교함으로써 벨트의 슬립 여부를 판단할 수 있다.The monitoring method using the belt slip monitoring apparatus of the pump according to the present invention calculates the ratio of the diameter between the pulley 22a of the motor and the pulley 23 of the pump, and the pump side pulley when the motor pulley 22a rotates once. The slippage of the belt can be determined by comparing the theoretical rotational ratio calculated by how much the 23 rotates and the actual rotational ratio calculated using the information obtained through the proximity sensor as described above.
즉, 우선 벨트로 연결되는 펌프의 풀리(23)와 모터의 풀리(22a)의 지름(Diameter = D1 : d1)을 비교하여 이 비율(ratio)을 기준으로 설정한다. 그리고 펌프의 풀리 및 모터의 풀리(그리고, 필요시 펌프의 구동부 및 모터)에 각각 센서, 예컨대 근접 센서(Proximity sensor)(도시 생략)를 장착하여 회전 속도(rpm)에 대한 비율을 풀리간의 지름 비율과 상호 비교한다. 만약 펌프 구동 중 벨트에 슬립이 발생하게 되면, 근접 센서로 측정된 회전 속도(rpm)에 대한 비율(ratio)이 풀리간의 지름 비율에 대하여 오차를 발생, 즉 실제 회전비가 이론 회전비에 대하여 오차를 발생하게 될 것이며 그 오차의 발생 여부로 인하여 벨트의 슬립 여부를 판단할 수 있다.That is, first, the diameter (Diameter = D1: d1) of the pulley 23 of the pump connected to the belt and the pulley 22a of the motor is compared and set based on this ratio. In addition, a sensor, for example, a proximity sensor (not shown) is attached to the pulley of the pump and the pulley of the motor (and, if necessary, the driving part and the motor of the pump), respectively. Compare with. If the belt slips while the pump is running, the ratio of the rotational speed (rpm) measured by the proximity sensor causes an error in the diameter ratio between the pulleys, that is, the actual rotational ratio produces an error with respect to the theoretical rotational ratio. It is possible to determine whether the belt slip due to the occurrence of the error.
근접 센서는 펌프 및 모터의 각 풀리의 회전속도를 측정하기 위한 장치로서, 풀리의 회전속도를 측정할 수 있다면 어떠한 구성의 센서라도 사용할 수 있다.Proximity sensor is a device for measuring the rotational speed of each pulley of the pump and motor, any sensor of any configuration can be used if the rotational speed of the pulley can be measured.
도 5에 도시된 제1 실시예의 냉각장치는 윤활유를 펌프(20)의 내외로 순환시키는 윤활유 순환라인(L5)과, 이 윤활유 순환라인(L5)에 설치되어 윤활유를 냉각시키는 라디에이터(31)와, 윤활유를 순환시키기 위한 윤활유 펌프(33)를 포함한다. 윤활유 순환라인(L5)에는 복수의 밸브(35, 36, 37)가 설치될 수 있다. 윤활유 순환라인(L5)은 폐루프를 구성한다.The cooling apparatus of the first embodiment shown in FIG. 5 includes a lubricating oil circulation line L5 for circulating lubricating oil into and out of the pump 20, and a radiator 31 installed in the lubricating oil circulation line L5 to cool the lubricating oil. And a lubricating oil pump 33 for circulating the lubricating oil. A plurality of valves 35, 36, and 37 may be installed in the lubricating oil circulation line L5. Lubricating oil circulation line (L5) constitutes a closed loop.
도 6에 도시된 제2 실시예의 냉각장치는 도 5에 도시된 제1 실시예의 냉각장치에 비해 라디에이터 대신 열교환기(41)를 사용한다는 점에서 상이하다. 열교환기(41)에는 펌프(20)에서 압축되어 배출되는 LNG가 우회라인(L6)을 통해 부분적으로 우회되어 공급된다. LNG의 온도는 윤활유에 비해 상대적으로 저온이므로 윤활유를 냉각시킬 수 있다.The cooling device of the second embodiment shown in FIG. 6 differs in that it uses a heat exchanger 41 instead of a radiator as compared to the cooling device of the first embodiment shown in FIG. The LNG, which is compressed and discharged from the pump 20, is partially bypassed and supplied to the heat exchanger 41 through the bypass line L6. Since the temperature of the LNG is relatively low compared to the lubricant, it is possible to cool the lubricant.
도 7에 도시된 제3 실시예의 냉각장치는 도 5에 도시된 제1 실시예의 냉각장치에 비해 라디에이터 대신 열교환기(45)를 사용한다는 점에서 상이하다. 열교환기(45)에는 해수(또는 청수) 혹은 공기가 윤활유와의 열교환을 위해 공급될 수 있다.The cooling device of the third embodiment shown in FIG. 7 is different in that it uses a heat exchanger 45 instead of a radiator as compared to the cooling device of the first embodiment shown in FIG. The heat exchanger 45 may be supplied with sea water (or fresh water) or air for heat exchange with the lubricating oil.
도 8에 도시된 제4 실시예의 냉각장치는 개방형 루프를 이룬다는 점에서 폐쇄형 루프를 이루는 상술한 제1 내지 제3 실시예의 냉각장치와 상이하다. 제4 실시예의 냉각장치는 액체질소 탱크(51)로부터 질소 공급라인(L7)을 통해 공급되는 질소에 의해 펌프(20)의 구동부(21)를 냉각한다. 액체질소의 공급량은 개폐 밸브(52)에 의해 조절될 수 있으며, 액체질소는 히터(53)에 의해 가열되어 기화된 후 펌프(20)에 공급되는 것이 바람직하다.The cooling device of the fourth embodiment shown in FIG. 8 is different from the cooling devices of the above-described first to third embodiments forming a closed loop in that the cooling device of the fourth embodiment is an open loop. The cooling apparatus of the fourth embodiment cools the drive unit 21 of the pump 20 by nitrogen supplied from the liquid nitrogen tank 51 through the nitrogen supply line L7. The supply amount of the liquid nitrogen can be adjusted by the on-off valve 52, the liquid nitrogen is preferably heated by the heater 53 is vaporized and then supplied to the pump 20.
펌프(20)에 공급되어 펌프의 구동부(21)를 냉각시키고 자신은 가열된 질소는 펌프(20)의 외부로 배출된 후 다시 펌프의 연결부(27)에 공급될 수 있다. 연결부(27)에 공급되는 질소의 양은 밸브(55)에 의해 조절될 수 있다. 연결부(27)는 토출부(25)와 구동부(21) 사이에 위치되어 구동부의 구동력을 커넥팅 로드(28) 등에 의해 토출부에 전달한다.It is supplied to the pump 20 to cool the driving unit 21 of the pump and the heated nitrogen itself is discharged to the outside of the pump 20 may be supplied to the connection portion 27 of the pump again. The amount of nitrogen supplied to the connection 27 can be controlled by the valve 55. The connection part 27 is positioned between the discharge part 25 and the drive part 21 to transmit the driving force of the drive part to the discharge part by the connecting rod 28 or the like.
커넥팅 로드(28) 등이 배치되는 펌프의 연결부(27)는 토출부(25)로부터 지속적으로 냉열을 공급받아 냉각되며, 결빙이 발생할 수 있다. 그러나, 구동부(21)에서 가열된 질소를 연결부(27)에 공급함으로써 연결부(27)의 온도를 상승시킬 수 있다.The connecting portion 27 of the pump in which the connecting rod 28 or the like is disposed is cooled by continuously receiving cold heat from the discharge portion 25, and freezing may occur. However, the temperature of the connection portion 27 can be increased by supplying nitrogen heated in the drive portion 21 to the connection portion 27.
또한, 토출부(25)에서 LNG의 누출이 발생하더라도, 연결부(27)를 통과하는 질소에 의해 누출된 가스가 구동부(21) 측으로 전달되지 않아 폭발 사고를 미연에 방지할 수 있다. 이때 연결부(27)에 공급되는 질소 가스는 토출부(25)와 구동부(21) 사이를 서로 격리시키는 실 가스(seal gas)로서 기능한다.In addition, even if leakage of LNG occurs in the discharge part 25, the gas leaked by nitrogen passing through the connection part 27 is not transferred to the driving part 21, so that an explosion accident can be prevented in advance. At this time, the nitrogen gas supplied to the connecting portion 27 functions as a seal gas that isolates the discharge portion 25 and the driving portion 21 from each other.
연결부(27)에서 배출되는 질소는, 그대로 대기중에 배출될 수도 있고, 필요시 질소 공급라인(L7)을 통해 질소 저장탱크(57)에 저장되어 재사용될 수도 있다.Nitrogen discharged from the connection portion 27 may be discharged to the atmosphere as it is, or may be stored and reused in the nitrogen storage tank 57 through the nitrogen supply line (L7) if necessary.
이하, 도 9 내지 도 12를 참조하여, LNG의 원활한 공급을 위해 연료가스(천연가스) 공급 시스템을 쿨 다운시키는 과정을 설명한다. 도 9 내지 도 12에는 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 저장탱크에서 고압펌프까지의 개략 구성도가 도시되어 있다.Hereinafter, a process of cooling down a fuel gas (natural gas) supply system for smooth supply of LNG will be described with reference to FIGS. 9 to 12. 9 to 12 show a schematic configuration from a storage tank to a high pressure pump of a fuel gas supply system for a high pressure gas injection engine according to the present invention.
LNG을 연료로 하는 엔진에 있어서 가장 최적의 방법으로 연료를 공급하는 방법인 고압펌프와 고압 기화기 시스템에 있어서 고압펌프에 LNG를 중단없이 원활하게 공급하기 위해 석션 드럼(Suction drum)이 필요하고, 석션 드럼에 연료(즉, LNG)를 공급하기 위해 저압펌프(즉, 이송 펌프)가 필요하게 된다. 이 저압펌프, 석션 드럼, 및 고압펌프는 운전하기 전에 쿨 다운(Cool down), 즉 사전 냉각이 필요한데, 이러한 쿨 다운 작업을 신속하고 원활하게 하기 위해 저압펌프를 바이패스하는 라인을 두어 석션 드럼 및 고압펌프에 대한 쿨 다운 작업시 액화질소(LN2)를 잘 공급할 수 있도록 한다.In the high-pressure pump and high-pressure carburetor system, which is a method of supplying fuel in the most optimal way for an engine fueled by LNG, a suction drum is required to smoothly supply LNG to the high-pressure pump without interruption. A low pressure pump (ie a transfer pump) is needed to supply fuel (ie LNG) to the drum. These low pressure pumps, suction drums, and high pressure pumps require cool down, or pre-cooling, before operation, with a suction drum and a line bypassing the low pressure pump to quickly and smoothly perform this cool down operation. Make sure to supply liquefied nitrogen (LN2) well when cooling down high pressure pumps.
또한, 저압펌프의 쿨 다운 작업을 양호하게 실시하기 위해 저압펌프 배출라인(Discharge line) 상에 벤트 밸브(vent valve) 및 저장탱크로 증발가스(vapor)을 보내는 라인을 추가하여, 펌프가 정지되어 있을 때에는 증발가스 복귀 라인(vapor return line)의 밸브를 개방하여 연속적으로 쿨 다운 상태를 유지할 수 있도록 하며, 운전 전에는 필요시 벤트 밸브를 개방하여 추가의 쿨 다운 작업을 실시한 후에 운전한다.In addition, in order to perform a good cooling down operation of the low pressure pump, a pump is added to the vent valve and a storage tank to send evaporation gas to the low pressure pump discharge line. If present, the valve of the vapor return line is opened to maintain the cool down continuously. Before operation, the vent valve is opened to perform additional cool down work if necessary.
초기 쿨 다운은 액화질소(LN2)를 이용하고, 이 경우에는 벤트 라인, 석션 드럼 등에 액화질소(LN2)를 흘려 저압펌프의 쿨 다운을 실시하고, 저압펌프 쿨 다운 후에는 바이패스 밸브를 이용하여 본격적으로 석션 드럼 및 고압펌프의 쿨 다운을 실시한다.In the initial cool down, liquid nitrogen (LN2) is used.In this case, liquid nitrogen (LN2) is poured into a vent line or suction drum to cool down the low pressure pump, and after the low pressure pump cools down, a bypass valve is used. Cool down the suction drum and high pressure pump in earnest.
쿨 다운이 완료된 후에는 LNG을 이용하여 석션 드럼에 LNG를 공급하고, 공급이 완료되면 증발가스 복귀 밸브를 개방하여 저압펌프 쿨 다운 상태를 지속시켜 준다.After the cool down is completed, the LNG is supplied to the suction drum using LNG, and when the supply is completed, the boil-off valve is opened to maintain the low pressure pump cool down state.
본 발명의 일 실시형태에 따르면, 극저온 유체 중에서도 LNG(Liquefied Natural Gas)를 사용하는데 있어서 연료인 LNG를 사용하기 이전에 LN2(액화질소; Liquefied Nitrogen) 및 상호 밸브(Remote valves)들 간의 최적화된 내부 로직을 구성함으로써 효율적이면서도 안전하게 쿨 다운을 실시하고 LNG을 원활하게 공급하기 위한 시스템 및 방법이 제공된다.According to one embodiment of the present invention, optimized use between LN2 (Liquefied Nitrogen) and remote valves prior to using LNG as a fuel in the use of LNG (Liquefied Natural Gas) even in cryogenic fluids By configuring the logic, a system and method are provided for efficient and safe cool down and smooth supply of LNG.
도 1에는 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 고압펌프 하류측의 개략 구성도가 도시되어 있으며, 도 9에는 본 발명에 따른 고압가스 분사엔진용 연료가스 공급 시스템의 고압펌프 상류측의 개략 구성도가 도시되어 있다. 도 9 내지 도 12의 고압펌프(107)는 도 1의 왕복동식 펌프(20)와 동일한 구성이나, 편의상 부재번호를 따로 부여하였다.1 is a schematic configuration diagram of a high pressure pump downstream side of a fuel gas supply system for a high pressure gas injection engine according to the present invention, and FIG. 9 is a high pressure pump upstream of a fuel gas supply system for a high pressure gas injection engine according to the present invention. A schematic configuration diagram of the side is shown. The high pressure pump 107 of FIGS. 9 to 12 has the same configuration as the reciprocating pump 20 of FIG. 1, but has been given a member number separately for convenience.
도 10에는 LN2를 이용한 쿨 다운 작업과정이 개략적으로 도시되어 있다. LN2 탱크(109)로부터의 LN2는 도면에서 점선으로 표시된 라인을 따라 유동하면서 밸브(111, 112, 115, 119, 120), 저압펌프(feed pump)(103), 석션 드럼(105) 등의 각종 장비 및 배관을 냉각시킨다.10 schematically illustrates a cool down process using LN2. The LN2 from the LN2 tank 109 flows along the line indicated by the dashed line in the drawing, and various valves 111, 112, 115, 119, 120, a low pressure pump 103, a suction drum 105, and the like. Cool equipment and piping.
쿨 다운 초기에는 벤트 밸브(117)가 설치된 벤트 라인을 통해 액화질소를 유동시키는 동시에 석션 드럼(105)에 액화질소를 유동시키면서 저압펌프(즉, 이송 펌프)(103)를 냉각시킨다. 이때 LN2 탱크(109)에 수용된 액화질소는, 밸브(111, 112)가 설치되어 있는 LN2 공급라인을 통해 저압펌프(103) 쪽으로 유동하며, 그 다음 벤트 밸브(117)가 설치되어 있는 증발가스 벤트 라인을 통해 벤트되거나 밸브(119, 120)가 설치되어 있는 LNG 공급라인, 즉 연료가스 공급라인 중 일부 구간을 통해 석션 드럼(105) 쪽으로 유동한다.In the initial stage of cool down, the liquid nitrogen flows through the vent line in which the vent valve 117 is installed, and the low pressure pump (ie, the transfer pump) 103 is cooled while flowing the liquid nitrogen to the suction drum 105. At this time, the liquid nitrogen contained in the LN2 tank 109 flows toward the low pressure pump 103 through the LN2 supply line in which the valves 111 and 112 are installed, and then the evaporation gas vent in which the vent valve 117 is installed. It flows toward the suction drum 105 through some sections of the LNG supply line, that is, the fuel gas supply line, which is vented through the line or installed with the valves 119 and 120.
저압펌프(103)의 냉각이 완료되면 밸브(115)가 설치되어 있는 저압펌프 바이패스 라인을 통해 액화질소를 석션 드럼(105) 쪽으로 직접 공급하여 석션 드럼(105)의 냉각을 더욱 효율적으로 실시하여도 좋다. 석션 드럼(105)에 공급된 액화질소는 필요시 밸브(120)를 통해 고압펌프(107) 쪽으로 공급되어 고압펌프(107), 나아가서는 고압 기화기(5)(도 1 참조)를 냉각시키고 벤트될 수 있다.When the cooling of the low pressure pump 103 is completed, the liquid nitrogen is directly supplied to the suction drum 105 through the low pressure pump bypass line where the valve 115 is installed to more efficiently cool the suction drum 105. Also good. The liquefied nitrogen supplied to the suction drum 105 is supplied toward the high pressure pump 107 through the valve 120 if necessary to cool and vent the high pressure pump 107, and thus the high pressure vaporizer 5 (see FIG. 1). Can be.
도 11에는 LN2를 이용한 초기 쿨 다운 작업이 완료된 후 혹은 시스템의 작동 중에, 필요에 따라 LNG를 이용하여 실시되는 쿨 다운 작업과정이 개략적으로 도시되어 있다. LNG 저장탱크(101)로부터의 LNG는 도면에서 점선으로 표시된 라인을 따라 유동하면서 밸브(114, 116, 119), 저압펌프(103), 석션 드럼(105) 등의 각종 장비 및 배관을 냉각시킨다. 한편, 밸브(111)와 밸브(112) 사이의 배관에 고여 있는 액화질소는 기화된 후 밸브(113)를 통해 벤트될 수 있다. 증발가스는 밸브(116) 및 증발가스 복귀라인을 통해 LNG 저장탱크(101)에 복귀될 수 있다.11 schematically illustrates a cool down process performed using LNG as necessary after the initial cool down operation using the LN 2 is completed or during operation of the system. The LNG from the LNG storage tank 101 cools various equipment and pipes such as the valves 114, 116, 119, the low pressure pump 103, the suction drum 105, and flows along the line indicated by the dotted line in the figure. Meanwhile, the liquid nitrogen accumulated in the pipe between the valve 111 and the valve 112 may be vented through the valve 113 after being vaporized. The boil-off gas may be returned to the LNG storage tank 101 through the valve 116 and the boil-off gas return line.
액화질소를 이용한 쿨 다운이 완료된 후, LN2 공급라인에 설치된 밸브(111, 112)는 폐쇄되고 이들 밸브(111, 112) 사이의 배관 내에서 기화되는 질소가스는 벤트 밸브(113)를 개방하여 LN2 벤트 라인을 통하여 배출시킬 수 있다.After the cool down using liquefied nitrogen is completed, the valves 111 and 112 installed in the LN2 supply line are closed and the nitrogen gas vaporized in the pipe between these valves 111 and 112 opens the vent valve 113 to open the LN2. Can be discharged through the vent line.
한편, 쿨 다운이 완료된 저압펌프(103)는 LNG 탱크(101)에 수용된 연료로서의 LNG를 석션 드럼(105) 쪽으로 공급하면서 저온 상태를 계속해서 유지할 수 있다. 이때 밸브(115)는 폐쇄되어 저압펌프 바이패스 라인을 통한 LNG의 유동이 제한될 수 있다.On the other hand, the low pressure pump 103 of which cool down is completed can continue to maintain a low temperature, supplying LNG as fuel contained in the LNG tank 101 toward suction drum 105. As shown in FIG. In this case, the valve 115 may be closed to restrict the flow of LNG through the low pressure pump bypass line.
저압펌프(103)에 의한 석션 드럼(105) 쪽으로의 LNG의 공급이 완료되면, 밸브(116)를 개방하여 이 밸브(116)가 설치되어 있는 증발가스 복귀라인을 통해 증발가스를 LNG 탱크(101) 쪽으로 복귀시키면서 LNG를 순환시킴으로써 저압펌프(103)의 냉각 상태를 계속해서 유지시킬 수 있다.When the supply of LNG to the suction drum 105 by the low pressure pump 103 is completed, the valve 116 is opened and the boil-off gas is passed through the boil-off gas return line where the valve 116 is installed. By circulating the LNG while returning to), the cooling state of the low pressure pump 103 can be maintained continuously.
도 12에는 저압펌프, 즉 이송펌프(feed pump)(103)를 부스터 펌프로서 활용하는 방법이 개략적으로 도시되어 있다. 대략 2.5bar 이하의 압력으로 저장된 LNG 탱크(101)의 LNG는 저압펌프(103)에 의해 대략 5 내지 10bar 정도로 가압된 후 고압펌프(107)에 공급된다.12 schematically shows a method of utilizing a low pressure pump, ie a feed pump 103 as a booster pump. The LNG of the LNG tank 101 stored at a pressure of about 2.5 bar or less is pressurized by about 5 to 10 bar by the low pressure pump 103 and then supplied to the high pressure pump 107.
석션 드럼(105)은 고압펌프(107)에 LNG를 원활하게 공급하기 위한 용기이고, 저압펌프(103)는 이 석션 드럼에 LNG를 공급하여 채우기 위한 용도로 사용될 수 있다. 그런데, 저압펌프(103)를 부스터 펌프로서 활용할 경우, 고압펌프(107)에 대한 LNG의 공급이 원활하게 이루어질 수 있기 때문에, 석션 드럼(105)은 사용하지 않을 수 있다.The suction drum 105 is a container for smoothly supplying LNG to the high pressure pump 107, and the low pressure pump 103 may be used for supplying and filling LNG to the suction drum. By the way, when the low pressure pump 103 is used as a booster pump, since the supply of LNG to the high pressure pump 107 can be made smoothly, the suction drum 105 may not be used.
저압펌프(103)를 부스터 펌프로서 활용할 때에는, 저압펌프 바이패스 라인에 설치되어 있는 밸브(115)와 LNG 공급라인에 설치되어 있는 밸브(119, 120)를 폐쇄하고 석션 드럼 바이패스 라인에 설치되어 있는 밸브(121)를 개방하여, LNG 탱크(101)로부터의 LNG가 저압펌프(103)를 통해 직접 고압펌프(107) 쪽으로 공급되도록 한다.When the low pressure pump 103 is utilized as a booster pump, the valve 115 provided in the low pressure pump bypass line and the valves 119 and 120 provided in the LNG supply line are closed and installed in the suction drum bypass line. The valve 121 is opened to allow LNG from the LNG tank 101 to be supplied directly to the high pressure pump 107 through the low pressure pump 103.
또한, 본 시스템에 의하면, 필요시 밸브(118)를 개방하여 이 밸브(118)가 설치되어 있는 액체 복귀라인을 통해 액체상태의 LNG를 LNG 탱크(101)에 복귀시킬 수 있다.In addition, according to the present system, when necessary, the valve 118 can be opened to return the LNG in the liquid state to the LNG tank 101 through the liquid return line provided with the valve 118.
본 발명의 연료가스 공급 시스템이 LNG 저장탱크가 다수개, 즉 4개 혹은 5개 구비된 LNG 운반선에 적용될 경우, 연료로서 사용되는 LNG는 밸러스트 등의 이유로, 선수로부터 2번째 내지 3번째(탱크 4개의 경우), 혹은 2번째 내지 4번째(탱크 5개의 경우) 탱크에서 배출될 수 있다.When the fuel gas supply system of the present invention is applied to an LNG carrier having a plurality of LNG storage tanks, that is, four or five, the LNG used as fuel is the second to the third (tank 4) from the bow for reasons of ballast. Dogs), or from the second to fourth tanks (five tanks).
다만, LNG의 이송 경로가 길어질수록 증발가스의 발생량이 많아질 수 있으며 전체 시스템의 효율을 감안할 때, 엔진에서 가장 가까운 곳에 위치하는 LNG 저장탱크로부터 LNG를 배출시켜 연료로서 사용하는 것이 바람직하다. 또한, 연료로서 사용할 LNG를 하나의 LNG 저장탱크로부터만 배출시켜 사용할 경우, 배관의 밸브나 펌프 등의 고정시 연료를 공급하지 못하는 문제가 발생할 수 있으므로, 적어도 2개의 LNG 저장탱크로부터 LNG를 배출시켜 연료로서 사용할 수 있도록 시스템을 구성하는 것이 바람직하다.However, the longer the transport path of the LNG, the greater the amount of generated evaporated gas, and considering the efficiency of the entire system, it is preferable to discharge the LNG from the LNG storage tank located closest to the engine to use as fuel. In addition, if the LNG to be used as fuel is discharged from only one LNG storage tank, it may cause a problem that can not supply the fuel when fixing the valves, pumps, etc. of the pipe, it is possible to discharge the LNG from at least two LNG storage tanks It is desirable to configure the system for use as fuel.
예를 들어, LNG 저장탱크가 4개 설치된 LNG 운반선의 경우에는 선수로부터 3번째 내지 4번째(3번 및 4번 탱크)에 위치된 LNG 저장탱크로부터 LNG를 배출시켜 사용하고, LNG 저장탱크가 5개 설치된 LNG 운반선의 경우에는 도 13에 도시된 바와 같이 선수로부터 4번째 내지 5번째(4번 및 5번 탱크)에 위치된 LNG 저장탱크로부터 LNG를 배출시켜 사용하는 것이 바람직하다.For example, in the case of an LNG carrier in which four LNG storage tanks are installed, LNG is discharged from an LNG storage tank located at the third to fourth (tank 3 and 4) from the bow, and the LNG storage tank is 5 In the case of the LNG carrier is installed, it is preferable to discharge the LNG from the LNG storage tank located in the fourth to fifth (tanks 4 and 5) from the bow as shown in FIG.
이하, 도 13, 도 14a 및 도 14b를 참조하여, 5개의 LNG 저장탱크(101)를 구비한 LNG 운반선에 본 발명의 연료가스 공급 시스템(S)이 설치된 실시예를 설명한다.Hereinafter, an embodiment in which the fuel gas supply system S of the present invention is installed in an LNG carrier having five LNG storage tanks 101 will be described with reference to FIGS. 13, 14A, and 14B.
연료가스 공급 시스템(Fuel Gas Supply system; FGS)(S)은, LNG 저장탱크(101)에서 배출된 LNG를 엔진에서 요구하는 정도의 압력으로 압축시키는 고압펌프(20 또는 107)와, 이 고압펌프에서 압축된 LNG를 기화시켜 고압가스 분사엔진(1)에 공급하는 고압 기화기(5)와, LNG 저장탱크(101)로부터 엔진(1)에 이르는 각종 배관 및 밸브 등을 포함한다.The fuel gas supply system (FGS) S includes a high pressure pump 20 or 107 for compressing LNG discharged from the LNG storage tank 101 to a pressure required by the engine, and the high pressure pump. The high pressure vaporizer 5 which vaporizes the compressed LNG by the gas supply and supplies it to the high pressure gas injection engine 1, and various piping and valves from the LNG storage tank 101 to the engine 1, etc. are included.
또한, 본 발명의 연료가스 공급 시스템(S)은, 도 1 내지 도 4를 참조하여 설명한 바와 같이, 사전에 연료가스를 기화기(5)로부터 공급받아 저장하고 있다가 고압가스 분사엔진(1)의 부하 증가시 저장된 연료가스를 고압가스 분사엔진(1)에 공급하여, 고압가스 분사엔진(1)의 부하 변동에 추종할 수 있도록 하는 버퍼 탱크(11)를 더 포함할 수 있다.In addition, as described with reference to FIGS. 1 to 4, the fuel gas supply system S of the present invention receives fuel gas from the vaporizer 5 in advance, and stores the fuel gas in advance of the high pressure gas injection engine 1. It may further include a buffer tank 11 for supplying the stored fuel gas to the high pressure gas injection engine 1 when the load increases, to follow the load variation of the high pressure gas injection engine 1.
도 13에는, LNG 저장탱크(101)로부터 엔진(1)에 이르는 배관 중 일부와, LNG 저장탱크(101)의 내부에 위치된 연료 배출 펌프(101a)가 연료가스 공급 시스템(S)의 외부에 도시되어, 연료가스 공급 시스템에 포함되지 않는 것처럼 도시되었지만, 이는 도시의 편의를 위한 것이다. 즉, 광의의 연료가스 공급 시스템은 연료로서의 LNG를 엔진에 공급하는 일련의 장비들을 모두 포함하는 것으로서 상기한 연료 배출 펌프(101a)나 LNG 저장탱크(101)로부터 엔진(1)에 이르는 배관을 모두 포함한다. 다만 협의의 연료가스 공급 시스템(S)은 상기한 연료 배출 펌프(101a)나 LNG 저장탱크(101)로부터 엔진(1)에 이르는 배관 중 일부를 포함하지 않는 것으로 생각될 수 있으며, 본 명세서에서의 설명 중 도 13 내지 도 14b를 참조하여 이루어진 설명에 있어서 연료가스 공급 시스템(S)이란 상술한 협의의 연료가스 공급 시스템을 의미하는 것으로 고려되어야 한다.In FIG. 13, a part of piping from the LNG storage tank 101 to the engine 1 and a fuel discharge pump 101a located inside the LNG storage tank 101 are located outside the fuel gas supply system S. In FIG. Although shown and shown as not included in the fuel gas supply system, this is for convenience of the city. In other words, the fuel gas supply system in a broad range includes all of a series of equipment for supplying LNG as fuel to the engine, and all the pipes from the fuel discharge pump 101a or the LNG storage tank 101 to the engine 1 are used. Include. However, the negotiated fuel gas supply system S may be considered not to include some of the pipes from the fuel discharge pump 101a or the LNG storage tank 101 to the engine 1, In the description made with reference to FIG. 13 to FIG. 14B, the fuel gas supply system S should be considered to mean the fuel gas supply system in the above-described discussion.
이와 같이 이루어진 연료가스 공급 시스템(S)은 가능한 한 고압가스 분사엔진(1)과 LNG 저장탱크(101)에 인접한 위치에 배치되는 것이 바람직하다. 고압가스 분사엔진(1)은 선박의 엔진실(150) 내에 위치되므로, 결국, 연료가스 공급 시스템(S)은 엔진실(150)과 LNG 저장탱크(101)에 인접하게 배치되는 것이 바람직하다. 엔진실(150)은 내부온도가 높기 때문에 극저온 유체가 유동하는 연료가스 공급 시스템(S)이 엔진실(150)의 내부에 설치되는 것은 바람직하지 않을 수 있다.The fuel gas supply system S thus constructed is preferably disposed at a position as close to the high pressure gas injection engine 1 and the LNG storage tank 101 as possible. Since the high pressure gas injection engine 1 is located in the engine chamber 150 of the ship, the fuel gas supply system S is preferably disposed adjacent to the engine chamber 150 and the LNG storage tank 101. Since the engine chamber 150 has a high internal temperature, it may not be preferable that the fuel gas supply system S in which the cryogenic fluid flows is installed inside the engine chamber 150.
이를 위해 본 발명에 따르면, 연료가스 공급 시스템(S)은, 도 14a에 도시된 바와 같이, 선체의 길이방향에 있어서, 선미측에 배치되는 엔진실(150)과 이 엔진실에서 가장 가까운 위치에 배치된 LNG 저장탱크(101)와의 사이에 배치될 수 있다.To this end, according to the present invention, the fuel gas supply system (S), as shown in Figure 14a, in the longitudinal direction of the hull, in the position closest to the engine chamber 150 disposed on the stern side and the engine chamber It may be disposed between the LNG storage tank 101 disposed.
또는, 도 14b에 도시된 바와 같이, 연료가스 공급 시스템(S)은 엔진실(150)과 주거공간(160) 사이에 상하로 배치될 수 있다. 주거공간(160)은 선원들이 생활하거나 선박을 조정하고 각종 장비, 시스템 등을 제어하기 위해 필요한 공간이므로, 폭발성 유체인 LNG가 이송되는 연료가스 공급 시스템(S)과는 격리될 필요가 있다. 주거공간(160)의 안전성을 확보하기 위해서, 연료가스 공급 시스템(S)과 주거공간(160) 사이에는 A60 격벽, 트렁크 스페이스 등과 같은 보호 수단 중 하나 이상이 설치되는 것이 바람직하다.Alternatively, as shown in FIG. 14B, the fuel gas supply system S may be disposed up and down between the engine chamber 150 and the living space 160. Since the residential space 160 is a space required for sailors to live or adjust vessels and control various equipment and systems, the residential space 160 needs to be isolated from the fuel gas supply system S in which LNG, which is explosive fluid, is transferred. In order to secure the safety of the living space 160, it is preferable that at least one of protection means such as A60 bulkhead, trunk space, etc. is installed between the fuel gas supply system S and the living space 160.
이상에서는 본 발명의 연료가스 공급 시스템 및 방법이 LNG 운반선 등의 해상 구조물에 적용된 것을 예로 들어 설명이 이루어졌지만, 본 발명의 연료가스 공급 시스템 및 방법은 육상에서의 고압가스 분사 엔진에 대한 연료 공급에 적용될 수 있음은 물론이다.In the above description, the fuel gas supply system and method of the present invention has been described as an example applied to an offshore structure such as an LNG carrier, but the fuel gas supply system and method of the present invention is used to supply fuel to a high-pressure gas injection engine on land. Of course, it can be applied.

Claims (13)

  1. LNG 저장탱크에 저장된 LNG를 기화시켜 고압가스 분사엔진에 연료가스로서 공급하기 위한 고압가스 분사엔진용 연료가스 공급 시스템으로서, A fuel gas supply system for a high pressure gas injection engine for vaporizing LNG stored in an LNG storage tank and supplying the high pressure gas injection engine as fuel gas,
    상기 고압가스 분사엔진의 부하 증가시, 사전에 연료가스를 상기 기화기로부터 공급받아 저장하고 있는 버퍼 탱크로부터 상기 고압가스 분사엔진에 연료가스를 공급하여, 상기 고압가스 분사엔진의 부하 변동에 추종할 수 있는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.When the load of the high pressure gas injection engine is increased, the fuel gas may be supplied to the high pressure gas injection engine from a buffer tank in which fuel gas is received from the vaporizer and stored in advance to follow the load variation of the high pressure gas injection engine. A fuel gas supply system for a high pressure gas injection engine, characterized in that there is.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 버퍼 탱크는 단열되지 않아 외부 환경의 온도에 의해 영향을 받을 수 있는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.The buffer tank is not insulated, the fuel gas supply system for a high-pressure gas injection engine, characterized in that it can be affected by the temperature of the external environment.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 버퍼 탱크에서 배출되는 연료가스의 온도가 엔진에서 요구하는 온도 이하인 경우, 연료가스를 가열한 후 엔진에 공급할 수 있도록 상기 버퍼 탱크의 하류측에 설치되는 가스 히터를 포함하는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.When the temperature of the fuel gas discharged from the buffer tank is less than the temperature required by the engine, the high-pressure gas comprising a gas heater installed on the downstream side of the buffer tank so as to supply the engine after heating the fuel gas Fuel gas supply system for injection engines.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 버퍼 탱크는 상기 고압가스 분사엔진에 연료가스를 공급하는 연료 공급라인과 병렬적으로 배치되는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.The buffer tank is a fuel gas supply system for a high pressure gas injection engine, characterized in that disposed in parallel with the fuel supply line for supplying fuel gas to the high pressure gas injection engine.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 버퍼 탱크는, 상기 고압가스 분사엔진에 연료가스를 공급하는 연료 공급라인으로부터 분기되어 상기 버퍼 탱크에 연결되는 충전라인과, 상기 버퍼 탱크로부터 연장되어 상기 연료 공급라인에 합류되는 사용라인을 통해 상기 연료 공급라인과 병렬적으로 배치되는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.The buffer tank is branched from a fuel supply line for supplying fuel gas to the high pressure gas injection engine and connected to the buffer tank, and through a use line extending from the buffer tank and joined to the fuel supply line. A fuel gas supply system for a high pressure gas injection engine, characterized in that arranged in parallel with the fuel supply line.
  6. 청구항 5에 있어서, The method according to claim 5,
    상기 충전라인에는 연료가스를 상기 버퍼 탱크에 공급할 때 개방되는 체크밸브가 설치되는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.The filling line is a fuel gas supply system for a high-pressure gas injection engine, characterized in that the check valve which is opened when supplying the fuel gas to the buffer tank is installed.
  7. 청구항 5에 있어서, The method according to claim 5,
    상기 사용라인에는 상기 버퍼 탱크에 저장된 연료가스를 상기 고압가스 분사엔진에 공급할 때 개방되는 바이패스 밸브가 설치되는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.The use line is a fuel gas supply system for a high-pressure gas injection engine, characterized in that the bypass valve which is opened when the fuel gas stored in the buffer tank is supplied to the high-pressure gas injection engine is installed.
  8. 청구항 5에 있어서, The method according to claim 5,
    상기 연료 공급라인에는, 엔진 조건에 부합하는 연료의 양을 제어하도록 유량조절을 위한 컨트롤 밸브와, 셧 오프(shut off) 기능을 갖는 마스터 밸브로서의 개폐 밸브가 설치되는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.The fuel supply line, the high-pressure gas injection engine, characterized in that the control valve for adjusting the flow rate to control the amount of fuel in accordance with the engine conditions, and the on-off valve as a master valve having a shut off function is installed Fuel gas supply system.
  9. LNG 저장탱크에 저장된 LNG를 기화시켜 고압가스 분사엔진에 연료가스로서 공급하기 위한 고압가스 분사엔진용 연료가스 공급 시스템으로서, A fuel gas supply system for a high pressure gas injection engine for vaporizing LNG stored in an LNG storage tank and supplying the high pressure gas injection engine as fuel gas,
    상기 LNG 저장탱크에서 배출된 LNG를 상기 고압가스 분사엔진에서 요구하는 압력으로 압축하는 고압 펌프와; A high pressure pump for compressing LNG discharged from the LNG storage tank to a pressure required by the high pressure gas injection engine;
    상기 고압 펌프에서 압축된 LNG를 기화시키는 기화기와; A vaporizer for vaporizing the LNG compressed by the high pressure pump;
    상기 기화기에서 기화된 LNG를 상기 기화기로부터 공급받아 저장하고 있는 버퍼 탱크; 를 포함하며, A buffer tank storing LNG vaporized in the vaporizer from the vaporizer; Including;
    상기 고압가스 분사엔진의 부하가 증가하여 상기 고압 펌프 또는 상기 기화기의 용량을 넘어 변동하는 경우에는 상기 버퍼 탱크 내에 저장되어 있던 기화된 LNG를 상기 고압가스 분사엔진에 공급하는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 시스템.When the load of the high pressure gas injection engine increases and fluctuates beyond the capacity of the high pressure pump or the carburetor, the high pressure gas injection engine supplies vaporized LNG stored in the buffer tank to the high pressure gas injection engine. Fuel gas supply system for engines.
  10. LNG 저장탱크에 저장된 LNG를 기화시켜 고압가스 분사엔진에 연료가스로서 공급하기 위한 고압가스 분사엔진용 연료가스 공급 방법으로서, A fuel gas supply method for a high pressure gas injection engine for vaporizing LNG stored in an LNG storage tank and supplying the high pressure gas injection engine as fuel gas,
    상기 고압가스 분사엔진의 부하 증가시, 연료가스를 저장하고 있는 버퍼 탱크로부터 상기 고압가스 분사엔진에 연료가스를 공급하여, 상기 고압가스 분사엔진의 부하 변동에 추종할 수 있는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 방법.When the load of the high pressure gas injection engine is increased, the fuel gas is supplied from the buffer tank storing the fuel gas to the high pressure gas injection engine, so that the high pressure gas can follow the load variation of the high pressure gas injection engine. Fuel gas supply method for injection engine.
  11. 청구항 10에 있어서, The method according to claim 10,
    기화된 LNG를 상기 버퍼 탱크에 공급하여 상기 버퍼 탱크를 연료가스로서의 기화된 LNG로 충전하는 단계를 포함하는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 방법.And supplying vaporized LNG to the buffer tank to fill the buffer tank with vaporized LNG as fuel gas.
  12. 청구항 10에 있어서, The method according to claim 10,
    상기 고압가스 분사엔진에서 요구하는 부하가 연료 공급라인에 설치되어 있는 펌프 및 기화기의 용량을 넘지 않는 경우에는, 상기 기화기에서 상기 고압가스 분사엔진에 연료가스로서의 기화된 LNG를 공급하는 단계를 포함하는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 방법.If the load required by the high pressure gas injection engine does not exceed the capacity of the pump and the vaporizer installed in the fuel supply line, supplying the vaporized LNG as fuel gas to the high pressure gas injection engine in the vaporizer; A fuel gas supply method for a high pressure gas injection engine, characterized in that.
  13. 청구항 11에 있어서, The method according to claim 11,
    상기 고압가스 분사엔진에서 요구하는 부하가 연료 공급라인에 설치되어 있는 펌프 또는 기화기의 용량을 넘어 변동하는 경우에는, 상기 버퍼 탱크로부터 상기 고압가스 분사엔진에 연료가스로서의 기화된 LNG를 공급하는 단계를 포함하는 것을 특징으로 하는 고압가스 분사엔진용 연료가스 공급 방법.If the load required by the high pressure gas injection engine is changed beyond the capacity of the pump or vaporizer installed in the fuel supply line, supplying the vaporized LNG as fuel gas to the high pressure gas injection engine from the buffer tank. Fuel gas supply method for a high-pressure gas injection engine comprising a.
PCT/KR2011/005350 2011-05-04 2011-07-20 Fuel gas supply system for high-pressure gas injection engine WO2012150739A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110042553 2011-05-04
KR10-2011-0042553 2011-05-04
KR20110046541 2011-05-17
KR10-2011-0046541 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012150739A1 true WO2012150739A1 (en) 2012-11-08

Family

ID=47107918

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2011/005350 WO2012150739A1 (en) 2011-05-04 2011-07-20 Fuel gas supply system for high-pressure gas injection engine
PCT/KR2011/005354 WO2012150741A1 (en) 2011-05-04 2011-07-20 System for supplying fuel gas to high-pressure gas injection engine and method for supplying same
PCT/KR2011/005351 WO2012150740A1 (en) 2011-05-04 2011-07-20 Apparatus for cooling pump in natural gas supply system

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/005354 WO2012150741A1 (en) 2011-05-04 2011-07-20 System for supplying fuel gas to high-pressure gas injection engine and method for supplying same
PCT/KR2011/005351 WO2012150740A1 (en) 2011-05-04 2011-07-20 Apparatus for cooling pump in natural gas supply system

Country Status (2)

Country Link
KR (5) KR101245644B1 (en)
WO (3) WO2012150739A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671274A (en) * 2013-12-20 2014-03-26 首钢水城钢铁(集团)有限责任公司 Nitrogen-sealed cooling oil consumption reducing method for purging system of large-sized compressor
CN104948303A (en) * 2015-05-25 2015-09-30 沈阳航空航天大学 Fuel supply system applied to aircraft engine taking LNG (Liquefied Natural Gas) as fuel
CN106715997A (en) * 2014-09-30 2017-05-24 川崎重工业株式会社 Liquefied hydrogen transport system
CN108204245A (en) * 2018-01-23 2018-06-26 深圳市燃气集团股份有限公司 A kind of gas distributing system pressure recovery method and device
CN108317399A (en) * 2018-04-02 2018-07-24 胡琴 A kind of petrochemical industry production pressure surge tank

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424928B1 (en) * 2013-03-28 2014-08-04 현대중공업 주식회사 A Fuel Gas Supply System of Liquefied Natural Gas
KR101277844B1 (en) * 2013-03-28 2013-06-21 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas and driving method thereof
KR101290430B1 (en) 2013-04-24 2013-07-26 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas
KR101441241B1 (en) * 2013-04-24 2014-09-17 현대중공업 주식회사 A Treatment System of Liquefied Natural Gas and Method for Treating Liquefied Natural Gas
KR101590800B1 (en) * 2014-03-24 2016-02-03 삼성중공업 주식회사 Fuel supply system and ship including the same
KR20150131860A (en) * 2014-05-16 2015-11-25 대우조선해양 주식회사 Fuel Supply System and Method for Supplying Fuel of LPG Carrier
KR101902798B1 (en) * 2014-08-29 2018-10-01 현대중공업 주식회사 Combined vapor recovery apparatus
KR101717932B1 (en) * 2014-09-01 2017-03-21 현대중공업 주식회사 A Fuel Gas Supply System of Liquefied Natural Gas
JP5953363B2 (en) * 2014-12-25 2016-07-20 三井造船株式会社 Floating structure with liquefied gas storage facility
KR102179196B1 (en) * 2015-06-09 2020-11-16 현대중공업 주식회사 Vessel having Gas Treatment System
KR102136169B1 (en) * 2018-08-09 2020-07-21 재단법인한국조선해양기자재연구원 A Test Method for the Safety and Performance of Fuel Delivery Equipment used in Ship Fuel propulsion
KR20210000549U (en) 2019-08-28 2021-03-10 주식회사 한국가스기술공사 Tool for dismembering bush of pump
CN116447518B (en) * 2023-04-03 2023-11-10 广东港能新能源科技有限公司 Natural gas conveying pipeline pressure regulating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351133A (en) * 2004-06-09 2005-12-22 Tokyo Gas Co Ltd Fuel supply system
KR20080031708A (en) * 2007-05-08 2008-04-10 대우조선해양 주식회사 System and method for supplying fuel gas in ships
KR20100044420A (en) * 2008-10-22 2010-04-30 대우조선해양 주식회사 Apparatus and mthod for supplying fuel gas in lng carrier
KR101009920B1 (en) * 2008-08-18 2011-01-20 에스티엑스조선해양 주식회사 Apparatus and method for supplying fuel gas in ships, floating vessels or floating facilities

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088298A (en) * 1983-10-21 1985-05-18 Niigata Eng Co Ltd Fluid loading method
JP2875335B2 (en) * 1990-04-06 1999-03-31 株式会社日立製作所 Vacuum pump
JPH0666285A (en) * 1992-08-11 1994-03-08 Mitsubishi Heavy Ind Ltd Compressor
JPH06219374A (en) * 1993-01-21 1994-08-09 Shinkurushima Dock:Kk Gas free method for small oil tanker
KR200182738Y1 (en) 1997-11-04 2000-06-01 노종호 Flexible vacuum tube
JPH11294678A (en) * 1998-04-10 1999-10-29 Denso Corp Piping structure for heat exchanger
KR20000017203U (en) * 1999-02-19 2000-09-25 구자홍 structure for reduction vibration of loop-pipe in compressor
US6257840B1 (en) * 1999-11-08 2001-07-10 Copeland Corporation Scroll compressor for natural gas
US6616415B1 (en) * 2002-03-26 2003-09-09 Copeland Corporation Fuel gas compression system
KR100655013B1 (en) * 2004-01-29 2006-12-06 엘지전자 주식회사 The structure for pipe arrangement of air-conditioner
KR20050080657A (en) * 2004-02-10 2005-08-17 엘지전자 주식회사 Vibration reduction structure of reciprocating compressor
KR100676615B1 (en) * 2006-06-21 2007-01-30 대우조선해양 주식회사 Lng regasification system and method using offshore floating structure
US8006724B2 (en) * 2006-12-20 2011-08-30 Chevron U.S.A. Inc. Apparatus for transferring a cryogenic fluid
FI122608B (en) * 2007-11-12 2012-04-13 Waertsilae Finland Oy Procedure for operating a LNG-powered watercraft and a drive system for an LNG-powered watercraft
KR200446279Y1 (en) * 2008-02-19 2009-10-14 김동훈 Fountain Filtering System
NO330187B1 (en) * 2008-05-08 2011-03-07 Hamworthy Gas Systems As Gas supply system for gas engines
KR20100008566U (en) * 2009-02-20 2010-08-30 대우조선해양 주식회사 Nitrogen Gas Supply Means of Liquefied Gas Carrier
KR20100136691A (en) * 2009-06-19 2010-12-29 삼성중공업 주식회사 Apparatus and method for supplying fuel gas in ships
KR101191240B1 (en) * 2009-09-17 2012-10-16 대우조선해양 주식회사 Fuel gas supplying system
KR101042073B1 (en) * 2009-10-16 2011-06-16 에스티엑스조선해양 주식회사 Oil supplying system for ships

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351133A (en) * 2004-06-09 2005-12-22 Tokyo Gas Co Ltd Fuel supply system
KR20080031708A (en) * 2007-05-08 2008-04-10 대우조선해양 주식회사 System and method for supplying fuel gas in ships
KR101009920B1 (en) * 2008-08-18 2011-01-20 에스티엑스조선해양 주식회사 Apparatus and method for supplying fuel gas in ships, floating vessels or floating facilities
KR20100044420A (en) * 2008-10-22 2010-04-30 대우조선해양 주식회사 Apparatus and mthod for supplying fuel gas in lng carrier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671274A (en) * 2013-12-20 2014-03-26 首钢水城钢铁(集团)有限责任公司 Nitrogen-sealed cooling oil consumption reducing method for purging system of large-sized compressor
CN106715997A (en) * 2014-09-30 2017-05-24 川崎重工业株式会社 Liquefied hydrogen transport system
CN104948303A (en) * 2015-05-25 2015-09-30 沈阳航空航天大学 Fuel supply system applied to aircraft engine taking LNG (Liquefied Natural Gas) as fuel
CN108204245A (en) * 2018-01-23 2018-06-26 深圳市燃气集团股份有限公司 A kind of gas distributing system pressure recovery method and device
CN108317399A (en) * 2018-04-02 2018-07-24 胡琴 A kind of petrochemical industry production pressure surge tank

Also Published As

Publication number Publication date
KR20130010034A (en) 2013-01-24
KR101245643B1 (en) 2013-03-20
WO2012150741A1 (en) 2012-11-08
KR20120125138A (en) 2012-11-14
KR20130010033A (en) 2013-01-24
WO2012150740A1 (en) 2012-11-08
KR20120125136A (en) 2012-11-14
KR20120125132A (en) 2012-11-14
KR101245645B1 (en) 2013-03-20
KR101245644B1 (en) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2012150739A1 (en) Fuel gas supply system for high-pressure gas injection engine
KR101245642B1 (en) Pump isolating apparatus of liquifyed natural gas supply system
WO2015130122A1 (en) Boil-off gas treatment system
JP5737894B2 (en) Boil-off gas reliquefaction equipment
WO2014065620A1 (en) Method for processing liquefied gas in ship
JP6262268B2 (en) Fuel gas supply system for internal combustion engines
US6360793B1 (en) Fast fill method and apparatus
WO2012132931A1 (en) Gas-fired engine
KR20070007715A (en) System and method for use of a gas
US9751606B2 (en) Apparatus and method for transferring inflammable material on marine structure
KR20120125129A (en) Lng carrier having a fuel gas supply system for high pressure gas injection engine
KR20210008452A (en) Fuel gas treating system in ships
KR20120125135A (en) Pump for a natural gas supply system
JP2020514649A (en) Fuel gas supply system
KR102516615B1 (en) Fuel gas treating system in ships
JP2021011869A (en) Gas fuel supply system and method of operating gas fuel supply system
JP5908056B2 (en) Gas fired engine
KR102548334B1 (en) Fuel gas treating system in ships
KR102528496B1 (en) Fuel gas treating system in ships
KR102548335B1 (en) Fuel gas treating system in ships
JP6038225B2 (en) Gas fired engine
CN105041454A (en) A large slow running turbocharged two-stroke internal combustion engine with exhaust gas recirculation system
KR20210010967A (en) Fuel gas treating system in ships

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.02.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11864774

Country of ref document: EP

Kind code of ref document: A1