WO2012148576A1 - Can decorator machine, ink station assembly therefor, and can decorating method employing same - Google Patents
Can decorator machine, ink station assembly therefor, and can decorating method employing same Download PDFInfo
- Publication number
- WO2012148576A1 WO2012148576A1 PCT/US2012/028391 US2012028391W WO2012148576A1 WO 2012148576 A1 WO2012148576 A1 WO 2012148576A1 US 2012028391 W US2012028391 W US 2012028391W WO 2012148576 A1 WO2012148576 A1 WO 2012148576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roll
- ink
- oscillator
- printing plate
- transfer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F17/00—Printing apparatus or machines of special types or for particular purposes, not otherwise provided for
- B41F17/08—Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces
- B41F17/14—Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of finite length
- B41F17/20—Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of finite length on articles of uniform cross-section, e.g. pencils, rulers, resistors
- B41F17/22—Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of finite length on articles of uniform cross-section, e.g. pencils, rulers, resistors by rolling contact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F31/00—Inking arrangements or devices
- B41F31/02—Ducts, containers, supply or metering devices
- B41F31/025—Ducts formed between two rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F31/00—Inking arrangements or devices
- B41F31/004—Driving means for ink rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41P—INDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
- B41P2231/00—Inking devices; Recovering printing ink
Definitions
- the disclosed concept relates generally to machinery and, more particularly, to can decorator machines and methods for decorating cans used in the food and beverage packaging industries.
- the disclosed concept also relates to ink station assemblies for can decorator machines.
- can decorator machines High speed continuous motion machines for decorating cans, commonly referred to as can decorator machines or simply can decorators, are generally well known.
- FIG. 1 shows a can decorator 2 of the type disclosed , for example, in commonly assigned U.S. Patent No. 5,337,659, which is incorporated herein by reference.
- the can decorator 2 includes an infeed conveyor 15, which receives cans 16 from a can supply (not shown) and directs them to arcuate cradles or pockets 17 along the periphery of spaced parallel rings secured to a pocket wheel 12.
- the pocket wheel 12 is fixedly secured to a continuously rotating mandrel carrier wheel 18, which in turn is keyed to a continuously rotating horizontal drive shaft 19.
- Horizontal spindles or mandrels (not shown), each being pivotable about its own axis, are mounted to the mandrel earlier wheel 18 adjacent its periphery.
- each spindle or mandrel Downstream from the infeed conveyor 15, each spindle or mandrel is in closely spaced axial alignment with an individual pocket 17, and undecorated cans 16 are transferred from the pockets 17 to the mandrels by wiping against a stationary arm 42, which is angled inwardly in the downstream direction so as to function as a cam that drives the can 16 toward the corresponding mandrel. Suction applied through an axial passage of the mandrel draws the can 16 to a final seated position on the mandrel.
- the cans 16 While mounted on the mandrels, the cans 16 are decorated by being brought into engagement with a blanket (e.g., without limitation, a replaceable adhesive-backed piece of rubber) that is adhered to a blanket segment 21 of the multicolor printing unit indicated generally by reference numeral 22. Thereafter, and while still mounted on the mandrels, the outside of each decorated can 16 is coated with a protective film of varnish applied by engagement with the periphery of an applicating roil (not shown) rotating on a shaft 23 in the overvarnish unit indicated generally by reference numeral 24.
- a blanket e.g., without limitation, a replaceable adhesive-backed piece of rubber
- Cans 16 with decorations and protective coatings thereon are then transferred from the mandrels to suction cups (not shown) mounted adjacent the periphery of a transfer wheel (not shown) rotating on a shaft 28 of a transfer unit 27. From the transfer unit 27 the cans 16 are deposited on generally horizontal pins 29 carried by a chain-type output conveyor 30, which carries the cans 16 through a curing oven (not shown).
- each ink station assembly 32 includes a plurality of form rolls 33, 34 and other rolls (e.g., without limitation, roll 35 shown in simplified form in hidden line drawing in Figure 1; see also Figure 5) that produce a controlled film of ink, which is applied to a printing cylinder 31 .
- each assembly 32 provides a different color ink and each printing cylinder 31 applies a different image segment to the blanket. All of these image segments combine to produce the same main image. This main image is then transferred to undecorated cans 16.
- the printing cylinder 31 When decorating metal, it is important to supply the printing cylinder 31 with as consistent of an ink film thickness, as possible, in order for the printing plate to impart a clear and consistent image to the printing blanket 21 and ultimately to the final printed substrate (e.g., can 16). Inconsistencies in the ink film can result in variable color density across the printed image, as well as present the possibility of "starvation ghosting" of the image, wherein a lighter duplicate version or copy of the image is undesirably applied to the can 16 in addition to the main image.
- the ink station assembly and method employ a single form roll to address ink inconsistencies and issues (e.g., without limitation, ink starvation; ink film thickness; variation of ink film thickness; image ghosting).
- ink inconsistencies and issues e.g., without limitation, ink starvation; ink film thickness; variation of ink film thickness; image ghosting.
- an ink station assembly for a can decorator machine structured to decorate a plurality of cans.
- the ink station assembly comprises: an ink fountain structured to provide a supply of ink; a fountain roll structured to receive the ink from the ink fountain; a distributor roll; a ductor roil being cooperable with the fountain roll and the distributor roll to transfer the ink from the fountain roll to the distributor roll; a number of oscillator rolls each having a longitudinal axis and being structured to oscillate back and forth along the longitudinal axis; a number of transfer rolls each cooperating with at least one of the oscillator rolls; a printing plate cylinder including a printing plate; and a single form roil cooperating with the printing plate cylinder to apply the ink to the printing plate.
- the single form roll may have a first diameter
- the printing plate cylinder may have a second diameter, wherein the first diameter of the single form roll is greater than the second diameter of the printing plate cylinder.
- the printing plate cylinder may make a complete revolution before the single form roll makes a complete revolution, in order that no portion of the single form roll contacts the printing plate more than once per revolution.
- the ink station assembly may further comprise a first side plate, a second side plate disposed opposite and distal from the first side plate, a drive assembly, and a housing at least partially enclosing the drive assembly.
- the first side plate may have a first side and a second side.
- the fountain roll, the distributor roll, the ductor roll, the oscillator rolls, the transfer rolls, and the single form roll, may be pivotably disposed on the first side of the first plate between the first side plate and the second side plate.
- the drive assembly may be disposed on the second side of the first side plate, may drive at least the fountain roll, the distributor roll, and the oscillator rolls, and may oscillate the oscillator rolls.
- a can decorator machine and method of decorating cans are also disclosed. BRIEF DESCRIPTION OF THE DRAWINGS
- Figure 1 is a side elevation view of a can decorator machine
- Figure 2 is an isometric view of a portion of a can decorator machine and ink station assembly therefor, in accordance with an embodiment of the disclosed concept;
- Figure 3 is an isometric view of one of the ink station assemblies of Figure 2;
- Figure 4 is a side elevation view of the ink station assembly of Figure 3 with one of the side plates removed to show hidden structures;
- Figure 5 is a side elevation view of one of the ink station assemblies of Figure 1, with one of the side plates removed to show hidden structures;
- Figure 6 is a simplified view of the ink station assembly of Figure 4, showing the ink train in accordance with an embodiment of the di sclosed concept.
- can refers to any known or suitable container, which is structured to contain a substance (e.g., without limitation, liquid; food; any other suitable substance), and expressly includes, but is not limited to, food cans, as well as beverage cans, such as beer and soda cans.
- a substance e.g., without limitation, liquid; food; any other suitable substance
- beverage cans such as beer and soda cans.
- ink train refers to the pathway by which ink is transferred through the ink station assembly and, in particular, from the ink fountain, through the various rolls of the ink station assembly to the printing plate cy linder.
- the statement that two or more parts are “coupled” together shall mean that the parts are joined together either directly or joined through one or more intermediate parts.
- the term “number” shall mean one or an integer greater than one (i.e., a plurality).
- Figure 2 shows a portion of a can decorator machine 100 including a plurality of ink station assemblies 200 (eight are shown) in accordance with the disclosed concept.
- the can decorator machine 100 is structured to decorate (e.g., apply a desired ink-based image to the exterior of) a plurality of cans 300 (one can 300 is shown in simplified form in phantom line drawing in Figure 2 for simplicity of illustration).
- the can decorator machine 100 also sometimes referred to simply as a can decorator, includes a blanket 102 and a plurality of image transfer segments 104 (also shown in phantom line drawing in Figure 4).
- the blanket 102 is structured to transfer an image associated with each image transfer segment 104 to a corresponding one of the cans 300.
- the can decorator 100 further includes a plurality of ink station assemblies 200, It wi ll be appreciated that, while the can decorator 100 in the example shown and described herein includes eight ink station assemblies 200, that it could alternatively contain any known or suitable alternative number and/or configuration of ink station assemblies (not shown), without departing from the scope of the disclosed concept. It will further be appreciated that, for economy of disclosure and simplicity of illustration, only one of the ink station assemblies 200 will be shown and described in detail herein.
- Figures 3 and 4 show one non- limiting example embodiment of the ink station assembly 200 in greater detail.
- the ink station assembly 200 includes an ink fountain 202 structured to provide a supply of ink 400 (shown in phantom line drawing in simplified form in Figure 3; see also Figure 6).
- a fountain roll 204 receives the ink 400 from the ink fountain 202.
- the ink station assembly 200 further includes a distributor roll 206 and a ductor roll 208 that is cooperable with both the fountam roll 204 and the distributor roll 206 to transfer the ink 400 from the fountam roll 204 to the distributor roll 206.
- A. number of oscillator rolls 210,212 each include a longitudinal axis 214,216, respectively.
- the oscillator rolls 210,212 are structured to oscillate back and forth along such longitudinal axis 214,216, respectively.
- oscillator roil 212 in the example of Figure 3 oscillates back and forth along axis 216 in the directions generally indicated by arrow 217.
- Oscillator roll 210 (partially shown in Figure 3; see also Figures 4 and 6) oscillates back and forth along longitudinal axis 214 in a similar manner.
- any known or suitable alternative number and/or configuration of oscillator rolls could be employed in accordance with the disclosed concept.
- the example ink station assembly 200 also includes two transfer rolls 218,220, each of which cooperates with at least one of the oscillator rol ls 210,212. It will be appreciated, however, that any known or suitable alternative number and/or configuration of transfer roils (not shown) other than that which is shown and described herein, could be employed without departing from the scope of the disclosed concept.
- a printing plate cylinder 222 includes a printing plate (generally indicated by reference number 224), and cooperates with a single form roll 230 to apply the ink 400 to the printing plate 224, as will be described in greater detail hereinbelow. Accordingly, it will be appreciated that the roll configuration of the disclosed ink station assembly 200 is improved compared to prior art ink station assemblies (see, for example, ink station assembly 32 of Figures 1 and 5).
- the exemplar ⁇ ' ink station assembly 200 includes a total of nine rolls (e.g., fountain roll 204, distributor roil 206, ductor roll 208, first and second oscillator rolls 210,212, first and second transfer roils 218,220, single form roll 230, and rider roll 240).
- This is one less roil than the prior art ink station assembly 32, which as shown in Figure 5 includes at least 10 rolls (e.g., first and second form rolls 33,34, first and second, oscillator rolls 35,36, first, second and third transfer rolls 37,38,39,40, ductor roll 41 and fountain roll 51).
- prior art ink station assembly 32 includes two form rolls 33,34, both of which have a smaller diameter than the diameter of the printing plate cylinder 31, as shown in Figure 5.
- this can result in ink inconsistencies such as, for example and without limitation, "starvation ghosting" of the desired image.
- the disclosed ink station assembly 200 includes only one single form roll 230, which has a first diameter 232, and the printing plate cylinder 222 has a second diameter 234.
- the first diameter 232 of the single form roll 230 is greater than the second diameter 234 of the printing plate cylinder 222.
- the disclosed ink station assembly 200 and, in particular, the single form roll 230 thereof addresses and overcomes the aforementioned ink inconsistencies and associated problems (e.g., without limitation, "starvation ghosting") by virtue of the fact that the printing plate cylinder 222 will make a complete revolution (e.g., rotate clockwise in the direction of arrow 420 of Figure 6 one complete revolution) before the single form roll 230 makes a complete revolution (e.g., rotate counterclockwise in the direction of arrow 418 of Figure 6 one complete revolution). In other words, no portion of the single form roll 230 will contact the printing plate 224 of the printing plate cylinder 222 more than once, per revolution.
- starvation ghosting e.g., without limitation, "starvation ghosting
- the first diameter 232 of the single form roll 230 is greater than 5 inches. It will, however, be appreciated that the single form roll 230 could have any known or suitable alternative diameter that is preferably larger than the diameter 234 of the printing plate cylinder 222.
- the example ink station assembly 200 further includes first and second transfer rolls 218,220.
- the first transfer roil 218 cooperates with the distributor roll 206 and the first oscillator roll 210.
- the second transfer roll 220 cooperates with the first oscillator roll 210 and the second oscillator roll 212.
- the first oscillator 210 and the second oscillator roll 212 in the example shown and described herein, both cooperate with the single form roll 230,
- the ink station assembly 200 preferably further includes a rider roll 240, which cooperates with a single form roll 230 to smooth and redistribute any remaining ink 400 to areas where the ink 400 may have been removed by the printing plate 224 during a prior revolution of a single form roll 230 and printing plate cylinder 222.
- a rider roll 240 which cooperates with a single form roll 230 to smooth and redistribute any remaining ink 400 to areas where the ink 400 may have been removed by the printing plate 224 during a prior revolution of a single form roll 230 and printing plate cylinder 222.
- the rider roll 240 helps to further address and overcome ink inconsistencies, depletion and/or starvation issues known to exist in the prior art.
- the ink 400 forms an ink train 402 as it is transferred from the ink fountain 202 to the printing plate cylinder 222.
- the ink train 402 is defined by the fountain roll 204 revolving clockwise in the direction indicated by arrow 404, the ductor roll 208 revolving counterclockwise in the direction of arrow 406, the distributor roll 206 revolving clockwise in the direction of arrow 408, the first transfer roll.
- ink 400 in the ink train 402 is illustrated in Figure 6 by the relatively thick, dark line surrounding the aforementioned rolls to show the transfer pathway of the ink from the ink fountain 200 to the printing plate cylinder 222, this is provided as a simplified visual aid for purposes of illustration. That is, it will be appreciated that in operation, when the machine 100 is running, the ink train 402 reaches equilibrium with a progressively thinner ink film following each roll pair contact (commonly referred to as a nip), with the thinnest film ending up on the plate 224. This is because the ink essentially splits in half at each nip.
- each of the rolls may be independently driven (e.g., revolved) by the drive assembly 264 ( Figure 3) (e.g., without limitation, a gear assembly), or by engagement and interaction with one or more adjacent rolls.
- the ductor roll 208, transfer rolls 218,220 and form roll 230 are driven (e.g., revolved; rotated) by engagement and interaction with an adjacent roll, whereas all other roils in the ink station assembly 200 are gear driven by the drive assembly 264 ( Figure 3).
- the ink station assembly 200 further includes first and second opposing side plates 260,262, a drive assembly 264 (shown in simplified form in hidden line drawing), and a housing 266 at least partially enclosing the drive assembly 264.
- the first side plate 260 has first and second opposing sides 268,270.
- the fountain roll 204, the distributor roll 206, the ductor roll 208, the oscillator rolls 210,212, the transfer rolls 218,220, and the single form roll 230 are all preferably pivotably disposed on the first side 268 of the first side plate 260, between the first and second side plates 260,262, as shown.
- the drive assembly 264 is disposed on the second side 270 of the first side plate 260, and is structured to drive at least the fountain roll 204, distributor roll 206, and oscillator rolls 210,212, in a general ly well known manner.
- the drive assembly 264 also oscillates the oscillator rolls 210,212 on axis 214,216, respectively, as previously described hereinabove.
- the method of decorating cans using the can decorator 100 includes the steps of: (a) providing a number of the aforementioned ink station assembli es 200, (b) operating t he drive assembly 264 ( Figure 3) to move at least one of the fountain roil 204, the distributor roll 206, and the oscillator rolls 210,212 to transfer the ink 400 from the ink fountain 202 to the single form roll 230, (c) coating the printing plate 224 of the printing plate cylinder 222 with ink 400 from the single form roll 230, (d) rotating the blanket 102 ( Figure 2; also partially shown in phantom line drawing in Figure 4) to bring the printing plate 224 into contact with the blanket 102 at or about a corresponding one of the image transfer segments 104 ( Figure 2; also shown in phantom line drawing in Figure 4), (e) creating an image on the blanket 102, (f) engaging the image blanket 102 with a corresponding one
- the ductor roll 208 of the example ink station assembly 200 is preferably pivotably coupled to the first side 268 of the first side plate 260 by a suitable pivot member 242, Specifically, the ductor roll 208 is pivotable (e.g., clockwise and counterclockwise, by way of pivot member 242, in the direction of arrow 250 from the perspective of Figure 4) between a first position (shown in solid line drawing in Figure 4) corresponding to the ductor roll 208 cooperating with the fountain roll 204, and a second position (shown in phantom line drawing in Figure 4) corresponding to the ductor roll 208 cooperating with the distributor roll 206,
- the improved ink consistency e.g., without limitation, sufficient ink volume; consistent ink fi lm thickness; absence of "starvation ghosting" and associated improved image quality afforded by the disclosed ink station assembly 200 will be further appreciated by reference to the following EXAMPLE, which is provided solely for purposes of illustration and is not intended to limit the scope of the disclosed concept in anyway.
- the printing surface e.g., exterior surface of can 300 (Figure 2)
- the printing surface was divided into segments 0.100 inches wide along the entire length of the printed area.
- the analysis was performed for a 20 can run. Tables 1 and 2, below, clearly illustrate the improvement in maximum film, variation around the entire can 300 and film variation between adjacent segments, respectively, that the exemplary ink station assembly 200 and associated ink train 402 ( Figure 6) afford.
- the disclosed concept provides a can decorator 100, ink station assembly 200, and associated method of decorating cans 300 (Figure 2), which improve the quality and consistency of the ink transfer, and thus the overall image quality, on cans 300 being decorated thereby.
- the ink station assembly 200 includes an improved roll configuration, which effectively transfers ink 400 from the ink fountain 202, addresses ink deprivation and inconsistency issues (e.g., without limitation,
- starvation ghosting is relatively easier to service (e.g., repair; maintain) and retrofit to existing can decorators than prior art designs.
- service e.g., repair; maintain
- retrofit to existing can decorators than prior art designs.
- the ink station assembly 200 efficiently and effectively transfers ink 400 using a minimal number of rolls and an enhanced configuration.
Landscapes
- Printing Methods (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
- Coating Apparatus (AREA)
Abstract
An ink station assembly is provided for a can decorator machine. The ink station assembly includes an ink fountain providing a supply of ink, a fountain roll, a distributor roll, a ductor roll cooperable with the fountain roll and the distributor roll, a number of oscillator rolls having longitudinal axis and oscillating back and forth along such axis, a number of transfer rolls cooperating with the oscillator rolls, a printing plate cylinder including a printing plate, and a single form roll cooperating with the printing plate cylinder to apply the ink to the printing plate. The diameter of the single form roll is greater than the diameter of the printing plate cylinder such that the printing plate cylinder makes a complete revolution before the single form roll makes a complete revolution. Accordingly, no portion of the single form roll contacts the printing plate more than once per revolution.
Description
BACKGROUND
Field
The disclosed concept relates generally to machinery and, more particularly, to can decorator machines and methods for decorating cans used in the food and beverage packaging industries. The disclosed concept also relates to ink station assemblies for can decorator machines.
Background Information
High speed continuous motion machines for decorating cans, commonly referred to as can decorator machines or simply can decorators, are generally well known.
Figure 1 shows a can decorator 2 of the type disclosed , for example, in commonly assigned U.S. Patent No. 5,337,659, which is incorporated herein by reference. The can decorator 2 includes an infeed conveyor 15, which receives cans 16 from a can supply (not shown) and directs them to arcuate cradles or pockets 17 along the periphery of spaced parallel rings secured to a pocket wheel 12. The pocket wheel 12 is fixedly secured to a continuously rotating mandrel carrier wheel 18, which in turn is keyed to a continuously rotating horizontal drive shaft 19. Horizontal spindles or mandrels (not shown), each being pivotable about its own axis, are mounted to the mandrel earlier wheel 18 adjacent its periphery. Downstream from the infeed conveyor 15, each spindle or mandrel is in closely spaced axial alignment with an individual pocket 17, and undecorated cans 16 are transferred from the pockets 17 to the mandrels by wiping against a stationary arm 42, which is angled inwardly in the downstream direction so as to function as a cam that drives the can 16 toward the corresponding mandrel. Suction applied through an axial passage of the mandrel draws the can 16 to a final seated position on the mandrel.
While mounted on the mandrels, the cans 16 are decorated by being brought into engagement with a blanket (e.g., without limitation, a replaceable adhesive-backed piece of rubber) that is adhered to a blanket segment 21 of the multicolor printing unit indicated generally by reference numeral 22. Thereafter, and while still mounted on the mandrels, the outside of each decorated can 16 is coated with a protective film of varnish applied by engagement with the
periphery of an applicating roil (not shown) rotating on a shaft 23 in the overvarnish unit indicated generally by reference numeral 24. Cans 16 with decorations and protective coatings thereon are then transferred from the mandrels to suction cups (not shown) mounted adjacent the periphery of a transfer wheel (not shown) rotating on a shaft 28 of a transfer unit 27. From the transfer unit 27 the cans 16 are deposited on generally horizontal pins 29 carried by a chain-type output conveyor 30, which carries the cans 16 through a curing oven (not shown).
While moving toward engagement with an undecorated can 16, the blanket engages a plurality of printing cylinders 31, each of which is associated with an individual ink station assembly 32 (six ink station assemblies 32 are shown in the example of Figure 1). Each ink station assembly 32 includes a plurality of form rolls 33, 34 and other rolls (e.g., without limitation, roll 35 shown in simplified form in hidden line drawing in Figure 1; see also Figure 5) that produce a controlled film of ink, which is applied to a printing cylinder 31 , Typically, each assembly 32 provides a different color ink and each printing cylinder 31 applies a different image segment to the blanket. All of these image segments combine to produce the same main image. This main image is then transferred to undecorated cans 16.
When decorating metal, it is important to supply the printing cylinder 31 with as consistent of an ink film thickness, as possible, in order for the printing plate to impart a clear and consistent image to the printing blanket 21 and ultimately to the final printed substrate (e.g., can 16). Inconsistencies in the ink film can result in variable color density across the printed image, as well as present the possibility of "starvation ghosting" of the image, wherein a lighter duplicate version or copy of the image is undesirably applied to the can 16 in addition to the main image. Prior proposals for solving the problem of ink film consistency and related issues such as starvation ghosting, have included such approaches as adding more form rolls, changing form roil diameters, each of the form rolls having a different diameter ail of which are less than the diameter of the printing cylinder, adding a number of rider rolls and/or oscillating rider rolls on one or more of the form roils, and/or variation of the axial cycle rates of the oscillating roil(s).
There is, therefore, room for improvement in can decorating machines and methods, and in ink station assemblies.
SUMMARY
These needs and others are met by embodiments of the disclosed concept, which are directed to an ink station assembly for a can decorator machine and an associated method of decorating cans. Among other benefits, the ink station assembly and method employ a single form roll to address ink inconsistencies and issues (e.g., without limitation, ink starvation; ink film thickness; variation of ink film thickness; image ghosting).
As one aspect of the disclosed concept, an ink station assembly is provided for a can decorator machine structured to decorate a plurality of cans. The ink station assembly comprises: an ink fountain structured to provide a supply of ink; a fountain roll structured to receive the ink from the ink fountain; a distributor roll; a ductor roil being cooperable with the fountain roll and the distributor roll to transfer the ink from the fountain roll to the distributor roll; a number of oscillator rolls each having a longitudinal axis and being structured to oscillate back and forth along the longitudinal axis; a number of transfer rolls each cooperating with at least one of the oscillator rolls; a printing plate cylinder including a printing plate; and a single form roil cooperating with the printing plate cylinder to apply the ink to the printing plate.
The single form roll may have a first diameter, and the printing plate cylinder may have a second diameter, wherein the first diameter of the single form roll is greater than the second diameter of the printing plate cylinder. The printing plate cylinder may make a complete revolution before the single form roll makes a complete revolution, in order that no portion of the single form roll contacts the printing plate more than once per revolution.
The ink station assembly may further comprise a first side plate, a second side plate disposed opposite and distal from the first side plate, a drive assembly, and a housing at least partially enclosing the drive assembly. The first side plate may have a first side and a second side. The fountain roll, the distributor roll, the ductor roll, the oscillator rolls, the transfer rolls, and the single form roll, may be pivotably disposed on the first side of the first plate between the first side plate and the second side plate. The drive assembly may be disposed on the second side of the first side plate, may drive at least the fountain roll, the distributor roll, and the oscillator rolls, and may oscillate the oscillator rolls.
A can decorator machine and method of decorating cans are also disclosed.
BRIEF DESCRIPTION OF THE DRAWINGS
A full understanding of the disclosed concept can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
Figure 1 is a side elevation view of a can decorator machine;
Figure 2 is an isometric view of a portion of a can decorator machine and ink station assembly therefor, in accordance with an embodiment of the disclosed concept;
Figure 3 is an isometric view of one of the ink station assemblies of Figure 2;
Figure 4 is a side elevation view of the ink station assembly of Figure 3 with one of the side plates removed to show hidden structures;
Figure 5 is a side elevation view of one of the ink station assemblies of Figure 1, with one of the side plates removed to show hidden structures; and
Figure 6 is a simplified view of the ink station assembly of Figure 4, showing the ink train in accordance with an embodiment of the di sclosed concept.
DESCRIPTION OF TFIE PREFERRED EMBODIMENTS
The specific elements illustrated in the drawings and described herein are simply exemplary embodiments of the disclosed concept. Accordingly, specific dimensions, orientations and other physical characteristics related to the embodiments disclosed herein are not to be considered limiting on the scope of the disclosed concept.
As employed herein, the term "can" refers to any known or suitable container, which is structured to contain a substance (e.g., without limitation, liquid; food; any other suitable substance), and expressly includes, but is not limited to, food cans, as well as beverage cans, such as beer and soda cans.
As employed herein, the term "ink train" refers to the pathway by which ink is transferred through the ink station assembly and, in particular, from the ink fountain, through the various rolls of the ink station assembly to the printing plate cy linder.
As employed herein, the statement that two or more parts are "coupled" together shall mean that the parts are joined together either directly or joined through one or more intermediate parts.
As employed herein, the term "number" shall mean one or an integer greater than one (i.e., a plurality).
Figure 2 shows a portion of a can decorator machine 100 including a plurality of ink station assemblies 200 (eight are shown) in accordance with the disclosed concept. The can decorator machine 100 is structured to decorate (e.g., apply a desired ink-based image to the exterior of) a plurality of cans 300 (one can 300 is shown in simplified form in phantom line drawing in Figure 2 for simplicity of illustration). Among other components, the can decorator machine 100, also sometimes referred to simply as a can decorator, includes a blanket 102 and a plurality of image transfer segments 104 (also shown in phantom line drawing in Figure 4). Preferably, the blanket 102 is structured to transfer an image associated with each image transfer segment 104 to a corresponding one of the cans 300. As previously noted, the can decorator 100 further includes a plurality of ink station assemblies 200, It wi ll be appreciated that, while the can decorator 100 in the example shown and described herein includes eight ink station assemblies 200, that it could alternatively contain any known or suitable alternative number and/or configuration of ink station assemblies (not shown), without departing from the scope of the disclosed concept. It will further be appreciated that, for economy of disclosure and simplicity of illustration, only one of the ink station assemblies 200 will be shown and described in detail herein.
Figures 3 and 4 show one non- limiting example embodiment of the ink station assembly 200 in greater detail. Specifically, the ink station assembly 200 includes an ink fountain 202 structured to provide a supply of ink 400 (shown in phantom line drawing in simplified form in Figure 3; see also Figure 6). A fountain roll 204 receives the ink 400 from the ink fountain 202. The ink station assembly 200 further includes a distributor roll 206 and a ductor roll 208 that is cooperable with both the fountam roll 204 and the distributor roll 206 to transfer the ink 400 from the fountam roll 204 to the distributor roll 206. A. number of oscillator rolls 210,212 (two are shown) each include a longitudinal axis 214,216, respectively. The oscillator rolls 210,212 are structured to oscillate back and forth along such longitudinal axis 214,216, respectively. By way of example, and without limitation, it will be appreciated that oscillator roil 212 in the example of Figure 3 oscillates back and forth along axis 216 in the directions generally indicated by arrow 217. Oscillator roll 210 (partially shown in Figure 3; see also Figures 4 and 6) oscillates back and forth along longitudinal axis 214 in a similar manner. It
will further be appreciated that, although the example shown and described herein includes two oscillator rolls 210,212, that any known or suitable alternative number and/or configuration of oscillator rolls (not shown) could be employed in accordance with the disclosed concept. The example ink station assembly 200 also includes two transfer rolls 218,220, each of which cooperates with at least one of the oscillator rol ls 210,212. It will be appreciated, however, that any known or suitable alternative number and/or configuration of transfer roils (not shown) other than that which is shown and described herein, could be employed without departing from the scope of the disclosed concept.
A printing plate cylinder 222 includes a printing plate (generally indicated by reference number 224), and cooperates with a single form roll 230 to apply the ink 400 to the printing plate 224, as will be described in greater detail hereinbelow. Accordingly, it will be appreciated that the roll configuration of the disclosed ink station assembly 200 is improved compared to prior art ink station assemblies (see, for example, ink station assembly 32 of Figures 1 and 5). More specifically, among other benefits, the exemplar}' ink station assembly 200 includes a total of nine rolls (e.g., fountain roll 204, distributor roil 206, ductor roll 208, first and second oscillator rolls 210,212, first and second transfer roils 218,220, single form roll 230, and rider roll 240). This is one less roil than the prior art ink station assembly 32, which as shown in Figure 5 includes at least 10 rolls (e.g., first and second form rolls 33,34, first and second, oscillator rolls 35,36, first, second and third transfer rolls 37,38,39,40, ductor roll 41 and fountain roll 51). Furthermore, prior art ink station assembly 32 includes two form rolls 33,34, both of which have a smaller diameter than the diameter of the printing plate cylinder 31, as shown in Figure 5. Among other disadvantages, this can result in ink inconsistencies such as, for example and without limitation, "starvation ghosting" of the desired image.
As shown in Figure 6, the disclosed ink station assembly 200 includes only one single form roll 230, which has a first diameter 232, and the printing plate cylinder 222 has a second diameter 234. The first diameter 232 of the single form roll 230 is greater than the second diameter 234 of the printing plate cylinder 222. Accordingly, the disclosed ink station assembly 200 and, in particular, the single form roll 230 thereof, addresses and overcomes the aforementioned ink inconsistencies and associated problems (e.g., without limitation, "starvation ghosting") by virtue of the fact that the printing plate cylinder 222 will make a complete revolution (e.g., rotate clockwise in the direction of arrow 420 of Figure 6 one complete
revolution) before the single form roll 230 makes a complete revolution (e.g., rotate counterclockwise in the direction of arrow 418 of Figure 6 one complete revolution). In other words, no portion of the single form roll 230 will contact the printing plate 224 of the printing plate cylinder 222 more than once, per revolution.
In accordance with one non-limiting embodiment, the first diameter 232 of the single form roll 230 is greater than 5 inches. It will, however, be appreciated that the single form roll 230 could have any known or suitable alternative diameter that is preferably larger than the diameter 234 of the printing plate cylinder 222.
Continuing to refer to Figure 6, as well as Figures 3 and 4, the example ink station assembly 200 further includes first and second transfer rolls 218,220. The first transfer roil 218 cooperates with the distributor roll 206 and the first oscillator roll 210. The second transfer roll 220 cooperates with the first oscillator roll 210 and the second oscillator roll 212. The first oscillator 210 and the second oscillator roll 212, in the example shown and described herein, both cooperate with the single form roll 230,
As best shown in Figures 4 and 6, the ink station assembly 200 preferably further includes a rider roll 240, which cooperates with a single form roll 230 to smooth and redistribute any remaining ink 400 to areas where the ink 400 may have been removed by the printing plate 224 during a prior revolution of a single form roll 230 and printing plate cylinder 222.
Accordingly, the rider roll 240 helps to further address and overcome ink inconsistencies, depletion and/or starvation issues known to exist in the prior art.
In operation, the ink 400 forms an ink train 402 as it is transferred from the ink fountain 202 to the printing plate cylinder 222. As shown in Figure 6, the ink train 402 is defined by the fountain roll 204 revolving clockwise in the direction indicated by arrow 404, the ductor roll 208 revolving counterclockwise in the direction of arrow 406, the distributor roll 206 revolving clockwise in the direction of arrow 408, the first transfer roll. 218 revolving counterclockwise in the direction of arrow 410, the first oscillator roll 210 revolving clockwise in the direction of arrow 412, the second transfer roll 220 revolving counterclockwise in the direction of arrow 414, the second oscillator roll 212 revolving clockwise in the direction of arrow 416, the single form roll 230 revolving counterclockwise in the direction of arrow 418, the printing plate cylinder 222 revolving clockwise in the direction of arrow 420, and the rider roll 240 revolving clockwise in the direction of arrow 422. It will be appreciated that while the flow
of ink 400 in the ink train 402 is illustrated in Figure 6 by the relatively thick, dark line surrounding the aforementioned rolls to show the transfer pathway of the ink from the ink fountain 200 to the printing plate cylinder 222, this is provided as a simplified visual aid for purposes of illustration. That is, it will be appreciated that in operation, when the machine 100 is running, the ink train 402 reaches equilibrium with a progressively thinner ink film following each roll pair contact (commonly referred to as a nip), with the thinnest film ending up on the plate 224. This is because the ink essentially splits in half at each nip. It will also be appreciated that each of the rolls may be independently driven (e.g., revolved) by the drive assembly 264 (Figure 3) (e.g., without limitation, a gear assembly), or by engagement and interaction with one or more adjacent rolls. For example and without limitation, in accordance with one non-limiting embodiment of the disclosed concept, the ductor roll 208, transfer rolls 218,220 and form roll 230 are driven (e.g., revolved; rotated) by engagement and interaction with an adjacent roll, whereas all other roils in the ink station assembly 200 are gear driven by the drive assembly 264 (Figure 3).
Referring again to Figure 3, the ink station assembly 200 further includes first and second opposing side plates 260,262, a drive assembly 264 (shown in simplified form in hidden line drawing), and a housing 266 at least partially enclosing the drive assembly 264. The first side plate 260 has first and second opposing sides 268,270. The fountain roll 204, the distributor roll 206, the ductor roll 208, the oscillator rolls 210,212, the transfer rolls 218,220, and the single form roll 230 are all preferably pivotably disposed on the first side 268 of the first side plate 260, between the first and second side plates 260,262, as shown. The drive assembly 264 is disposed on the second side 270 of the first side plate 260, and is structured to drive at least the fountain roll 204, distributor roll 206, and oscillator rolls 210,212, in a general ly well known manner. The drive assembly 264 also oscillates the oscillator rolls 210,212 on axis 214,216, respectively, as previously described hereinabove.
Accordingly, the method of decorating cans using the can decorator 100 (partially shown in Figure 2) in accordance with the disclosed concept includes the steps of: (a) providing a number of the aforementioned ink station assembli es 200, (b) operating t he drive assembly 264 (Figure 3) to move at least one of the fountain roil 204, the distributor roll 206, and the oscillator rolls 210,212 to transfer the ink 400 from the ink fountain 202 to the single form roll 230, (c) coating the printing plate 224 of the printing plate cylinder 222 with ink 400 from the single
form roll 230, (d) rotating the blanket 102 (Figure 2; also partially shown in phantom line drawing in Figure 4) to bring the printing plate 224 into contact with the blanket 102 at or about a corresponding one of the image transfer segments 104 (Figure 2; also shown in phantom line drawing in Figure 4), (e) creating an image on the blanket 102, (f) engaging the image blanket 102 with a corresponding one of the cans 300 (shown in simplified form in phantom line drawing in Figure 2), and (g) transferring the desired image to the can 300 (Figure 2).
Referring again to Figure 4, it will be appreciated that the ductor roll 208 of the example ink station assembly 200 is preferably pivotably coupled to the first side 268 of the first side plate 260 by a suitable pivot member 242, Specifically, the ductor roll 208 is pivotable (e.g., clockwise and counterclockwise, by way of pivot member 242, in the direction of arrow 250 from the perspective of Figure 4) between a first position (shown in solid line drawing in Figure 4) corresponding to the ductor roll 208 cooperating with the fountain roll 204, and a second position (shown in phantom line drawing in Figure 4) corresponding to the ductor roll 208 cooperating with the distributor roll 206,
The improved ink consistency (e.g., without limitation, sufficient ink volume; consistent ink fi lm thickness; absence of "starvation ghosting") and associated improved image quality afforded by the disclosed ink station assembly 200 will be further appreciated by reference to the following EXAMPLE, which is provided solely for purposes of illustration and is not intended to limit the scope of the disclosed concept in anyway.
EXAMPLE
In the following EXAMPLE, an analysis of the new ink train 402 (Figure 6) provided by the disclosed ink station assembly 200 was evaluated and compared to the ink transfer occurring in existing Rutherford** and Concord® ink station assemblies. Rutherford1* and Concord** are registered trademarks of the Stolle Machinery Company LLC, which has a place of business at 6949 South Potomac Street, Centennial, Colorado, and which sel ls
Rutherford and Concord® can decorators.
Specifically, for the test, the printing surface (e.g., exterior surface of can 300 (Figure 2)) was divided into segments 0.100 inches wide along the entire length of the printed area. The ink film thickness and the variation of that thickness between two adjoining segments as well as the maximum variation that occurs around the entire printed area, were calculated and
evaluated. The analysis was performed for a 20 can run. Tables 1 and 2, below, clearly illustrate the improvement in maximum film, variation around the entire can 300 and film variation between adjacent segments, respectively, that the exemplary ink station assembly 200 and associated ink train 402 (Figure 6) afford.
Table 1 Table 2
Max Film Variation Around Entire Can
Accordingly, it will be appreciated that the disclosed concept provides a can decorator 100, ink station assembly 200, and associated method of decorating cans 300 (Figure 2), which improve the quality and consistency of the ink transfer, and thus the overall image quality, on cans 300 being decorated thereby. Additionally, the ink station assembly 200 includes an improved roll configuration, which effectively transfers ink 400 from the ink fountain 202, addresses ink deprivation and inconsistency issues (e.g., without limitation,
"starvation ghosting"), and is relatively easier to service (e.g., repair; maintain) and retrofit to existing can decorators than prior art designs. Among other reasons for this, is the fact that the ink station assembly 200 efficiently and effectively transfers ink 400 using a minimal number of rolls and an enhanced configuration.
While specific embodiments of the disclosed concept have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure.
Accordingly, the particular arrangements disclosed are meant to be illustrative only and not
limiting as to the scope of the disclosed concept which is to be given the full breadth of the claims appended and any and ail equivalents thereof.
Claims
1. An ink station assembly for a can decorator machine structured to decorate a plurality of cans, the ink station assembly comprising:
an ink fountain structured to provide a supply of ink;
a fountain roll structured to receive said ink from the ink fountain; a distributor roll;
a ductor roll, being cooperable with the fountain roll, and the distributor rol l to transfer said ink from the fountain roll to the distributor roll;
a number of oscillator rolls each having a longitudinal axis and being structured to oscillate back and forth along said longitudinal axis;
a number of transfer rolls each cooperating with at least one of the oscillator roils; a printing plate cylinder including a printing plate; and
a single form roll cooperating with the printing plate cylinder to apply said ink to the printing plate.
2. The ink station assembly of claim 1 wherein the single form roll has a first diameter; wherein the printing plate cylinder has a second diameter; and wherein the first diameter of the single form roll is greater than the second diameter of the printing plate cylinder.
3. The ink station assembly of claim 2 wherein the printing plate cylinder makes a complete revolution before the single form roil makes a complete revolution, in order that no portion of the single form roil contacts the printing plate more than once per revolution.
4. The ink station assembly of claim 2 wherem the first diameter of the single form roll is greater than 5 inches.
5. The ink station assembly of claim 1 wherem the number of oscillator rol ls is a first oscillator roll and a second oscillator roll; wherein the number of transfer rolls is a first transfer roll and a second transfer roll; wherein the first transfer roll cooperates with the distributor roll and the first oscillator roll; and wherein the second transfer roll cooperates with the first oscillator roll and the second oscillator roll.
6. The ink station assembly of claim 5 wherein the first oscill ator roll and the second oscillator roil cooperate with the single form roll.
7. The ink station assembly of claim 5 further comprising a rider roll; and wherem the rider roll cooperates with the single form roll to smooth and redistribute remaining ink to areas where ink was removed by the printing plate.
8. The ink station assembly of claim 7 wherem said ink forms an ink train as it is transferred from the ink fountain to the printing plate cylinder; and wherein said ink train is defined by the fountain roil revolving clockwise, the ductor roll revolving counterclockwise, the distributor roll revolving clockwise, the first transfer roll revolving counterclockwise, the first oscillator roll revolving clockwise, the second transfer roll revolving counterclockwise, the second oscillator roll, revolving clockwise, the single form roll revolving counterclockwise, the printing plate cylinder revolving clockwise, and the rider roll revolving clockwise.
9. The ink station assembly of claim 1 wherein the ductor roil is pivotable between a first position corresponding to the ductor roll cooperating with the fountain roll, and a second position corresponding to the ductor roil cooperating with the distributor roll.
10. The ink station assembly of claim I further comprising a first side plate, a second side plate disposed opposite and distal from the first side plate, a drive assembly, and a housing at least partially enclosing the drive assembly; wherein the first side plate has a first side and a second side; wherein the fountain roll, the distributor roil, the ductor roll, the oscillator rolls, the transfer rolls, and the single form roll, are pivotably disposed on the first side of the first side plate between the first side plate and the second side plate; wherein the drive assembly is disposed on the second side of the first side plate; wherem the drive assembly drives at least the fountain roll, the distributor roll, and the oscillator rolls; and wherein the drive assembly oscillates the oscillator rolls.
1 1 . A can decorator machine for decorating cans, the can decorator machine comprising:
a blanket wheel including a plurality of image transfer segments and a blanket disposed on the image transfer segments, the blanket being structured to transfer an image to a corresponding one of the cans; and
a plurality of ink station assemblies, each of said ink station assemblies comprising:
an ink fountain provi ding a supply of ink,
a fountain roll receiving said ink from the ink fountain, a distributor roll,
a ductor roll being cooperable with the fountain roll and the distributor roll to transfer said ink from the fountain roll to the distributor roll,
a number of oscillator rolls each having a longitudinal axis and being structured to oscillate back and forth along said longitudinal axis,
a number of transfer roils each cooperating with at least one of the oscillator rolls,
a printing plate cylinder including a printing plate, the printing plate being cooperable with a corresponding one of the image transfer segments of the blanket, and
a single form roll cooperating with the printing plate cylinder to apply said ink to the printing plate,
12. The can decorator machine of claim 1 1 wherein the single form roll has a first diameter; wherein the printing plate cylinder has a second diameter; and wherein the first diameter of the single form roll is greater than the second diameter of the printing plate cylinder.
13. The can decorator machine of claim 11 wherein the number of oscillator rolls is a first oscillator roll and a second oscillator roll; wherein the number of transfer rolls is a first transfer roll and a second transfer roll; wherein the first transfer roll cooperates with the distributor roll and the first oscillator roll; wherein the second transfer roll cooperates with the first oscillator roll and the second oscillator roll; and wherein the first oscillator roll and the second oscillator roil cooperate with the single form roll.
14. The can decorator machine of claim 13 further comprising a rider rol l; and wherein the rider roil cooperates with the single form roll to smooth and redistribute remaining ink to areas where ink was removed by the printing plate.
15. The can decorator machine of claim 14 wherein said ink forms an ink train as it is transferred from the ink fountain to the printing plate cylinder; and wherein said ink train is defined by the fountam roll revolving clockwise, the ductor roll revolving counterclockwise, the distributor roll revolving clockwise, the first transfer roll revolving counterclockwise, the first oscillator roll revolving clockwise, the second transfer roll revolving counterclockwise, the second oscillator roil revolving clockwise, the single form roll revolving counterclockwise, the printing plate cylinder revolving clockwise, and the rider roll revolving clockwise.
16. The can decorator machine of claim 11 wherem the plurality of ink station assemblies is eight ink station assemblies; wherein each of the ink station assemblies further comprises a first side plate, a second side plate disposed opposite and distal from the first side plate, a drive assembly, and a housing at least partially enclosing the drive assembly; wherein the first side plate has a first side and a second side; wherein the fountain roll, the distributor roll, the ductor roll, the oscillator rolls, the transfer rolls, and the single form roil are pivotably disposed on the first side of the first plate between the first side plate and the second side plate; wherem the drive assembly is disposed on the second side of the first side plate; wherein the drive assembly drives at least the fountain roll, the distributor roll, and the oscil lator rol ls; and wherem the drive assembly oscillates the oscillator rolls.
17. A method of decorating cans using a can decorator machine, the can decorator machine comprising a blanket and a plurality of image transfer segments, the method
comprising:
(a) providing an ink station assembly, the ink station assembly comprising:
a drive assembly,
an ink fountain for supplying ink,
a fountain roll for receiving said ink from the ink fountain,
a distributor roll,
a ductor roll being cooperable with the fountain roll and the distributor roil to transfer said ink from the fountain roll to the distributor roll,
a number of oscillator rolls each having a longitudinal axis and being structured to oscillate back and forth along said longitudinal axis,
a number of transfer roll s each cooperating wit h at least one of the oscillator rolls,
a printing plate cylinder including a printing plate, and a single form roll cooperating with the printing plate cylinder,
(b) operating the drive assembly to move at least one of the fountain roll, the distributor roll, and the oscillator rolls to transfer ink from the ink fountain to the single form roll
(c) coating the printing plate of the printing plate cylinder with ink from the single form roll, (d) rotating the blanket to bring the printing plate into contact with the blanket at or about a corresponding one of the image transfer segments,
(e) creating an image on the blanket,
(f) engaging the blanket with a corresponding one of the cans, and
(g) transferring the image to the can.
18. The method of claim 17, further comprising the printing plate cylinder making a complete revolution before the single form roll makes a complete revolution, in order that no portion of the form roll contacts the printing plate more than once per revolution.
19. The method of claim 17, further comprising:
providing the ink station assembly with a first oscillator roil, a second oscillator roll, a first transfer roll, a second transfer roll, and a rider roll,
revolving the fountain roll clockwise,
revolving the ductor roll counterclockwise,
revolving the distributor roll clockwise,
revolving the first transfer roll counterclockwise,
revolving the first oscillator roll clockwise,
revolving the second transfer roll counterclockwise,
revolving the second oscillator roll clockwise,
revolving the single form roll counterclockwise,
revolving the printing plate cylinder clockwise, and
revolving the rider roll clockwise.
20. The method of claim 17, further comprising the can decorator machine including eight ink station assemblies.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18170928.8A EP3392041B1 (en) | 2011-04-27 | 2012-03-09 | Can decorator machine for decorating cans and corresponding method |
CN201280019359.2A CN103492183B (en) | 2011-04-27 | 2012-03-09 | Can decorator machine, ink station assembly therefor, and can decorating method employing same |
JP2014508350A JP6126584B2 (en) | 2011-04-27 | 2012-03-09 | Can decoration machine, ink station assembly for can decoration machine, and can decoration method using them |
EP12777141.8A EP2701912B1 (en) | 2011-04-27 | 2012-03-09 | Can decorator machine, ink station assembly therefor, and can decorating method employing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/094,965 | 2011-04-27 | ||
US13/094,965 US9475276B2 (en) | 2011-04-27 | 2011-04-27 | Can decorator machine, ink station assembly therefor, and can decorating method employing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012148576A1 true WO2012148576A1 (en) | 2012-11-01 |
Family
ID=47066887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/028391 WO2012148576A1 (en) | 2011-04-27 | 2012-03-09 | Can decorator machine, ink station assembly therefor, and can decorating method employing same |
Country Status (5)
Country | Link |
---|---|
US (3) | US9475276B2 (en) |
EP (2) | EP3392041B1 (en) |
JP (3) | JP6126584B2 (en) |
CN (2) | CN103492183B (en) |
WO (1) | WO2012148576A1 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014128200A2 (en) * | 2013-02-20 | 2014-08-28 | Crown Packaging Technology, Inc. | Container |
DE102014213812B3 (en) * | 2014-07-16 | 2014-12-18 | Kba-Metalprint Gmbh | Device for arranging a printing form cylinder and an inking unit of a printing unit |
DE102014213805B3 (en) * | 2014-07-16 | 2014-12-31 | Kba-Metalprint Gmbh | Inking unit of a printing unit |
DE102014213807A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Inking unit of a printing unit |
DE102014213811A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Printing unit with a printing forme cylinder |
WO2016008701A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Inking unit of a printing unit |
DE102014213804A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Inking unit of a printing unit |
DE102014213813A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Device for printing in each case a lateral surface of hollow bodies |
WO2016008703A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Printing unit having a plate cylinder and plate changer |
WO2016008702A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Device for printing on hollow bodies |
JP2016537223A (en) * | 2013-11-13 | 2016-12-01 | ストール マシーナリ カンパニー, エルエルシーStolle Machinery Company, LLC | Fountain blade assembly for ink station assembly of can decoration machine |
DE102016201137A1 (en) | 2016-01-27 | 2017-07-27 | Kba-Metalprint Gmbh | Device for printing hollow bodies |
DE102016201139A1 (en) | 2016-01-27 | 2017-07-27 | Kba-Metalprint Gmbh | Device for printing hollow bodies |
DE102016201140A1 (en) | 2016-01-27 | 2017-07-27 | Kba-Metalprint Gmbh | Method for operating a device having a segment wheel for printing hollow bodies |
US9833989B2 (en) | 2014-07-16 | 2017-12-05 | Kba-Metalprint Gmbh | Device for printing on hollow bodies |
US9895876B2 (en) | 2014-07-16 | 2018-02-20 | Kba-Metalprint Gmbh | Apparatus comprising a plurality of printing units for printing hollow elements |
DE102017201921A1 (en) | 2017-02-08 | 2018-08-09 | Koenig & Bauer Ag | Device for printing hollow bodies |
DE102017202382A1 (en) | 2017-02-15 | 2018-08-16 | Kba-Metalprint Gmbh | Method for operating a device for printing hollow bodies |
DE102017202381A1 (en) | 2017-02-15 | 2018-08-16 | Kba-Metalprint Gmbh | Method for printing hollow bodies |
WO2018149654A1 (en) | 2017-02-15 | 2018-08-23 | Kba-Metalprint Gmbh | Method for printing on hollow articles |
US10086602B2 (en) | 2014-11-10 | 2018-10-02 | Rexam Beverage Can South America | Method and apparatus for printing metallic beverage container bodies |
WO2018188830A1 (en) | 2017-04-13 | 2018-10-18 | Koenig & Bauer Ag | Segment wheel for a device for printing on hollow bodies |
DE102018201033B3 (en) | 2018-01-24 | 2018-10-31 | Koenig & Bauer Ag | Device for printing hollow bodies |
US10195842B2 (en) | 2013-06-11 | 2019-02-05 | Ball Corporation | Apparatus for forming high definition lithographic images on containers |
US10315411B2 (en) | 2012-07-02 | 2019-06-11 | Ball Beverage Can South America S.A. | Device for printing cans, a process for printing cans, a printed can and a transfer blanket |
US10549921B2 (en) | 2016-05-19 | 2020-02-04 | Rexam Beverage Can Company | Beverage container body decorator inspection apparatus |
DE102018121540A1 (en) * | 2018-09-04 | 2020-03-05 | Koenig & Bauer Ag | Device for printing on hollow bodies |
DE102018121542A1 (en) * | 2018-09-04 | 2020-03-05 | Koenig & Bauer Ag | Device for printing on hollow bodies |
US10675861B2 (en) | 2014-12-04 | 2020-06-09 | Ball Beverage Packaging Europe Limited | Method and apparatus for printing cylindrical structures |
DE102019123631A1 (en) * | 2019-09-04 | 2021-03-04 | Koenig & Bauer Ag | Inking unit of a printing press |
DE102019123632A1 (en) * | 2019-09-04 | 2021-03-04 | Koenig & Bauer Ag | Container for providing printing ink in an inking unit of a printing machine |
DE102019123633A1 (en) * | 2019-09-04 | 2021-03-04 | Koenig & Bauer Ag | Inking unit of a printing press |
DE102019123634A1 (en) * | 2019-09-04 | 2021-03-04 | Koenig & Bauer Ag | Ink stirrer for circulating printing ink in an ink pan arranged in an inking unit of a printing machine and inking unit of a printing machine with this ink stirrer |
DE102019125130A1 (en) * | 2019-09-18 | 2021-03-18 | Koenig & Bauer Ag | Device for printing the respective outer surface of hollow bodies |
DE102019129926A1 (en) * | 2019-11-06 | 2021-05-06 | Koenig & Bauer Ag | Method and device for printing the respective outer surface of hollow bodies |
EP4223535A1 (en) | 2016-12-08 | 2023-08-09 | Crown Packaging Technology, Inc. | Forming a texture in a can surface decoration |
DE102022114616A1 (en) | 2022-06-10 | 2023-12-21 | Koenig & Bauer Ag | Inking unit of a device for printing hollow bodies |
US11999178B2 (en) | 2019-01-11 | 2024-06-04 | Ball Coporation | Closed-loop feedback printing system |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10813630B2 (en) | 2011-08-09 | 2020-10-27 | Corquest Medical, Inc. | Closure system for atrial wall |
US10314594B2 (en) | 2012-12-14 | 2019-06-11 | Corquest Medical, Inc. | Assembly and method for left atrial appendage occlusion |
US10307167B2 (en) | 2012-12-14 | 2019-06-04 | Corquest Medical, Inc. | Assembly and method for left atrial appendage occlusion |
US8850976B2 (en) * | 2012-01-11 | 2014-10-07 | James M. Jeter | Inker assembly for cylindrical can decorators |
US20140142689A1 (en) | 2012-11-21 | 2014-05-22 | Didier De Canniere | Device and method of treating heart valve malfunction |
WO2014201005A1 (en) | 2013-06-11 | 2014-12-18 | Ball Corporation | Printing process using soft photopolymer plates |
JP6255212B2 (en) * | 2013-10-25 | 2017-12-27 | 昭和アルミニウム缶株式会社 | Can body manufacturing method, printing apparatus, and beverage can |
US20150128819A1 (en) * | 2013-11-13 | 2015-05-14 | Stolle Machinery Company, Llc | Can decorator machine ink station assembly |
US9566443B2 (en) | 2013-11-26 | 2017-02-14 | Corquest Medical, Inc. | System for treating heart valve malfunction including mitral regurgitation |
JP6307267B2 (en) * | 2013-12-25 | 2018-04-04 | アイマー・プランニング株式会社 | Printer |
US10842626B2 (en) | 2014-12-09 | 2020-11-24 | Didier De Canniere | Intracardiac device to correct mitral regurgitation |
WO2018013677A1 (en) * | 2016-07-13 | 2018-01-18 | Ball Corporation | Apparatus and method of screen decorating metallic containers |
US10976263B2 (en) | 2016-07-20 | 2021-04-13 | Ball Corporation | System and method for aligning an inker of a decorator |
US11034145B2 (en) | 2016-07-20 | 2021-06-15 | Ball Corporation | System and method for monitoring and adjusting a decorator for containers |
US10739705B2 (en) | 2016-08-10 | 2020-08-11 | Ball Corporation | Method and apparatus of decorating a metallic container by digital printing to a transfer blanket |
BR112019002542A2 (en) | 2016-08-10 | 2019-05-21 | Ball Corporation | Method and apparatus for fingerprinting a metal container in a transfer duplicator |
MX2019003038A (en) * | 2016-09-23 | 2019-07-18 | Crown Packaging Technology Inc | Can imprinting device and associated methods. |
PL3684626T3 (en) | 2017-09-19 | 2024-06-17 | Ball Corporation | Container decoration apparatus and method |
CA3088534C (en) | 2018-01-19 | 2023-03-14 | Ball Corporation | System and method for monitoring and adjusting a decorator for containers |
EP3749522B1 (en) | 2018-02-09 | 2024-10-02 | Ball Corporation | Method and apparatus for decorating a metallic container by digital printing to a transfer blanket |
GB2577086B (en) * | 2018-09-13 | 2022-02-23 | Landa Labs 2012 Ltd | Printing on cylindrical objects |
WO2020092843A1 (en) | 2018-10-31 | 2020-05-07 | Crown Packaging Technology, Inc. | Print registration system for can decorator |
BR112021008794B1 (en) | 2018-11-09 | 2023-01-31 | Ball Corporation | A DECORATOR'S INK SET AND METHOD OF DECORATING AN OUTSIDE SURFACE OF A VESSEL WITH A DECORATOR'S INK SET |
US11338566B2 (en) * | 2019-12-10 | 2022-05-24 | Stolle Machinery Company, Llc | Image control system and can decorator employing same |
US11820147B2 (en) * | 2021-11-30 | 2023-11-21 | Stolle Machinery Company, Llc | Ink replenishing system and method for can decorator |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2326850A (en) * | 1940-06-26 | 1943-08-17 | Crown Cork & Seal Co | Printing machine |
US2753795A (en) * | 1950-04-05 | 1956-07-10 | Ditto Inc | Rotary offset duplicating machine |
US4223603A (en) | 1979-01-10 | 1980-09-23 | Didde-Glaser, Inc. | Planetary inker for offset printing press |
EP0088129A1 (en) | 1981-09-17 | 1983-09-14 | Fuji Kikai Kogyo Co., Ltd. | Color head for offset printing machine |
US4432282A (en) * | 1982-04-05 | 1984-02-21 | Apollo Label Company | Printing press |
US4445433A (en) * | 1982-04-02 | 1984-05-01 | Menashe Navi | Method and apparatus for variable density inking |
US4721266A (en) * | 1985-09-17 | 1988-01-26 | Oy Wartsila Ab | Continuously running rewinder with pressure roller |
EP0263422A2 (en) | 1986-10-08 | 1988-04-13 | Coors Brewing Company | Can decorating apparatus |
US5005476A (en) * | 1988-01-09 | 1991-04-09 | Albert-Frankenthal Ag | Inking unit |
US5148742A (en) * | 1991-01-10 | 1992-09-22 | Belgium Tool And Die Company | Can coater with improved deactivator responsive to absence of a workpiece |
US5233922A (en) * | 1991-01-10 | 1993-08-10 | Belgium Tool And Die Company | Ink fountain for a can coater |
US5337659A (en) | 1993-02-22 | 1994-08-16 | Sequa Corporation | Apparatus and method utilizing continuous motion offset and direct printing techniques for decorating cylindrical containers |
US5553541A (en) * | 1989-10-05 | 1996-09-10 | Heidelberg Harris Inc | Gapless tubular printing blanket |
US5908505A (en) * | 1996-09-10 | 1999-06-01 | Questech, Inc. | High volume, textured liquid transfer surface |
US20020096066A1 (en) * | 2001-01-24 | 2002-07-25 | Callahan Martin John | Shaftless motor drive for a printing press with an anilox inker |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3683799A (en) * | 1965-10-22 | 1972-08-15 | Continental Can Co | High speed can printing machine |
SE442968B (en) | 1981-03-20 | 1986-02-10 | Polytype Ag | PRESSURE MACHINE |
US4921093A (en) | 1988-05-09 | 1990-05-01 | Sequa Corporation | Infeed means for high speed continuous motion can decorator |
US5111742A (en) | 1990-08-13 | 1992-05-12 | Sequa Corporation | Mandrel trip subassembly for continuous motion can decorators |
US5372067A (en) * | 1991-04-25 | 1994-12-13 | Rockwell International Corporation | Keyless lithography with single printing fluid |
US5231926A (en) | 1991-10-11 | 1993-08-03 | Sequa Corporation | Apparatus and method for substantially reducing can spacing and speed to match chain pins |
US5183145A (en) | 1991-10-11 | 1993-02-02 | Sequa Corporation | Apparatus and method for automatically positioning valve means controlling the application of pressurized air to mandrels on a rotating carrier |
US5363763A (en) | 1993-09-13 | 1994-11-15 | Fury, Ltd. | Inker mechanism |
JPH08238756A (en) | 1995-03-06 | 1996-09-17 | Mitsubishi Materials Corp | Can printer |
US5609100A (en) | 1995-06-07 | 1997-03-11 | Sequa Corporation | Face valve apparatus for continuous motion can decorator |
US5572927A (en) | 1995-08-31 | 1996-11-12 | Sequa Corporation | Vertical track for mandrel assembly of continuous motion can decorators |
ES2156403T3 (en) * | 1996-10-25 | 2001-06-16 | Koenig & Bauer Ag | INK BOX |
US5799574A (en) | 1997-06-16 | 1998-09-01 | Sequa Corporation | Spindle disc for high speed can decorators |
US6167805B1 (en) | 1999-02-10 | 2001-01-02 | Sequa Corporation | Mandrel carrier for high speed can decorators |
US6672211B2 (en) * | 1999-03-03 | 2004-01-06 | James F. Price | Inking systems for printing presses |
JP2003519058A (en) | 1999-05-07 | 2003-06-17 | セクア・コーポレイション | Rotating plate system for can transport |
US6178886B1 (en) | 1999-08-31 | 2001-01-30 | Sequa Corporation | Replaceable inking arrangement in a can decorator |
JP4412447B2 (en) | 2001-05-29 | 2010-02-10 | 東洋製罐株式会社 | Temperature control method and apparatus for printing press |
US6651552B1 (en) | 2002-07-22 | 2003-11-25 | Sequa Can Machinery, Inc. | Automated can decorating apparatus having mechanical mandrel trip |
US6920822B2 (en) * | 2003-09-03 | 2005-07-26 | Stolle Machinery Company, Llc | Digital can decorating apparatus |
JP4135103B2 (en) * | 2004-07-14 | 2008-08-20 | 村田機械株式会社 | Image forming apparatus |
DE102006030290B3 (en) | 2006-03-03 | 2007-10-18 | Koenig & Bauer Aktiengesellschaft | printing unit |
EP1958769A1 (en) * | 2007-02-15 | 2008-08-20 | Kba-Giori S.A. | Method and apparatus for forming an ink pattern exhibiting a two-dimensional ink gradient |
DE102008010803A1 (en) * | 2008-02-23 | 2009-08-27 | Manroland Ag | Process for coloring a printing form in a processing machine |
JP2011017765A (en) * | 2009-07-07 | 2011-01-27 | Seiko Epson Corp | Image forming apparatus and image forming method |
JP2011062964A (en) * | 2009-09-18 | 2011-03-31 | Iwasaki Tekko Corp | Ink supply device for rotary relief printing machine |
US8850976B2 (en) * | 2012-01-11 | 2014-10-07 | James M. Jeter | Inker assembly for cylindrical can decorators |
-
2011
- 2011-04-27 US US13/094,965 patent/US9475276B2/en active Active
-
2012
- 2012-03-09 WO PCT/US2012/028391 patent/WO2012148576A1/en unknown
- 2012-03-09 EP EP18170928.8A patent/EP3392041B1/en active Active
- 2012-03-09 EP EP12777141.8A patent/EP2701912B1/en active Active
- 2012-03-09 JP JP2014508350A patent/JP6126584B2/en active Active
- 2012-03-09 CN CN201280019359.2A patent/CN103492183B/en active Active
- 2012-03-09 CN CN201710255477.8A patent/CN107009732B/en active Active
-
2016
- 2016-09-23 US US15/274,252 patent/US9884478B2/en active Active
-
2017
- 2017-04-06 JP JP2017075718A patent/JP6392402B2/en active Active
- 2017-12-21 US US15/850,840 patent/US20180126724A1/en not_active Abandoned
-
2018
- 2018-08-22 JP JP2018155316A patent/JP6824937B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2326850A (en) * | 1940-06-26 | 1943-08-17 | Crown Cork & Seal Co | Printing machine |
US2753795A (en) * | 1950-04-05 | 1956-07-10 | Ditto Inc | Rotary offset duplicating machine |
US4223603A (en) | 1979-01-10 | 1980-09-23 | Didde-Glaser, Inc. | Planetary inker for offset printing press |
EP0088129A1 (en) | 1981-09-17 | 1983-09-14 | Fuji Kikai Kogyo Co., Ltd. | Color head for offset printing machine |
US4445433A (en) * | 1982-04-02 | 1984-05-01 | Menashe Navi | Method and apparatus for variable density inking |
US4432282A (en) * | 1982-04-05 | 1984-02-21 | Apollo Label Company | Printing press |
US4721266A (en) * | 1985-09-17 | 1988-01-26 | Oy Wartsila Ab | Continuously running rewinder with pressure roller |
EP0263422A2 (en) | 1986-10-08 | 1988-04-13 | Coors Brewing Company | Can decorating apparatus |
US5005476A (en) * | 1988-01-09 | 1991-04-09 | Albert-Frankenthal Ag | Inking unit |
US5553541A (en) * | 1989-10-05 | 1996-09-10 | Heidelberg Harris Inc | Gapless tubular printing blanket |
US5148742A (en) * | 1991-01-10 | 1992-09-22 | Belgium Tool And Die Company | Can coater with improved deactivator responsive to absence of a workpiece |
US5233922A (en) * | 1991-01-10 | 1993-08-10 | Belgium Tool And Die Company | Ink fountain for a can coater |
US5337659A (en) | 1993-02-22 | 1994-08-16 | Sequa Corporation | Apparatus and method utilizing continuous motion offset and direct printing techniques for decorating cylindrical containers |
US5908505A (en) * | 1996-09-10 | 1999-06-01 | Questech, Inc. | High volume, textured liquid transfer surface |
US20020096066A1 (en) * | 2001-01-24 | 2002-07-25 | Callahan Martin John | Shaftless motor drive for a printing press with an anilox inker |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10315411B2 (en) | 2012-07-02 | 2019-06-11 | Ball Beverage Can South America S.A. | Device for printing cans, a process for printing cans, a printed can and a transfer blanket |
WO2014128200A3 (en) * | 2013-02-20 | 2014-11-27 | Crown Packaging Technology, Inc. | Can decorator apparatus and method |
CN105073424A (en) * | 2013-02-20 | 2015-11-18 | 皇冠包装技术公司 | Can decorator apparatus and method |
WO2014128200A2 (en) * | 2013-02-20 | 2014-08-28 | Crown Packaging Technology, Inc. | Container |
US10022953B2 (en) | 2013-02-20 | 2018-07-17 | Crown Packaging Technology, Inc. | Can decorator apparatus and method |
US10850497B2 (en) | 2013-06-11 | 2020-12-01 | Ball Corporation | Apparatus and method for forming high definition lithographic images on containers |
US10195842B2 (en) | 2013-06-11 | 2019-02-05 | Ball Corporation | Apparatus for forming high definition lithographic images on containers |
JP2016537223A (en) * | 2013-11-13 | 2016-12-01 | ストール マシーナリ カンパニー, エルエルシーStolle Machinery Company, LLC | Fountain blade assembly for ink station assembly of can decoration machine |
EP3068624A4 (en) * | 2013-11-13 | 2017-12-13 | Stolle Machinery Company, LLC | Fountain blade assembly for can decorator machine ink station assembly |
US9895876B2 (en) | 2014-07-16 | 2018-02-20 | Kba-Metalprint Gmbh | Apparatus comprising a plurality of printing units for printing hollow elements |
US9833989B2 (en) | 2014-07-16 | 2017-12-05 | Kba-Metalprint Gmbh | Device for printing on hollow bodies |
WO2016008702A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Device for printing on hollow bodies |
DE102014213813A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Device for printing in each case a lateral surface of hollow bodies |
WO2016008701A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Inking unit of a printing unit |
DE102014213812B3 (en) * | 2014-07-16 | 2014-12-18 | Kba-Metalprint Gmbh | Device for arranging a printing form cylinder and an inking unit of a printing unit |
DE102014213805B3 (en) * | 2014-07-16 | 2014-12-31 | Kba-Metalprint Gmbh | Inking unit of a printing unit |
DE102014213807A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Inking unit of a printing unit |
US9796173B2 (en) | 2014-07-16 | 2017-10-24 | Kba-Metalpring Gmbh | Device for printing on hollow bodies |
DE102014213811A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Printing unit with a printing forme cylinder |
DE102014213804A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Inking unit of a printing unit |
DE102014213807B4 (en) * | 2014-07-16 | 2017-12-21 | Kba-Metalprint Gmbh | Apparatus for printing on each of a lateral surface having hollow bodies |
DE102014213813B4 (en) * | 2014-07-16 | 2018-01-04 | Kba-Metalprint Gmbh | Device for printing in each case a lateral surface of hollow bodies |
WO2016008703A1 (en) | 2014-07-16 | 2016-01-21 | Kba-Metalprint Gmbh | Printing unit having a plate cylinder and plate changer |
US9895875B2 (en) | 2014-07-16 | 2018-02-20 | Kba-Metalprint Gmbh | Printing unit having a plate cylinder and plate changer |
US10086602B2 (en) | 2014-11-10 | 2018-10-02 | Rexam Beverage Can South America | Method and apparatus for printing metallic beverage container bodies |
US10675861B2 (en) | 2014-12-04 | 2020-06-09 | Ball Beverage Packaging Europe Limited | Method and apparatus for printing cylindrical structures |
DE102016201139B4 (en) | 2016-01-27 | 2019-01-10 | Kba-Metalprint Gmbh | Device for printing hollow bodies |
DE102016201137B4 (en) | 2016-01-27 | 2018-12-27 | Kba-Metalprint Gmbh | Device for printing hollow bodies |
DE102016201137A1 (en) | 2016-01-27 | 2017-07-27 | Kba-Metalprint Gmbh | Device for printing hollow bodies |
DE102016201139A1 (en) | 2016-01-27 | 2017-07-27 | Kba-Metalprint Gmbh | Device for printing hollow bodies |
DE102016201140A1 (en) | 2016-01-27 | 2017-07-27 | Kba-Metalprint Gmbh | Method for operating a device having a segment wheel for printing hollow bodies |
US10308008B2 (en) | 2016-01-27 | 2019-06-04 | Kba-Metalprint Gmbh | Device for printing hollow bodies, and method for operating said device |
WO2017129438A1 (en) | 2016-01-27 | 2017-08-03 | Kba-Metalprint Gmbh | Device for printing hollow bodies, and method for operating said device |
DE102016201140B4 (en) | 2016-01-27 | 2018-05-03 | Kba-Metalprint Gmbh | Method for operating a device having a segment wheel for printing hollow bodies |
US10549921B2 (en) | 2016-05-19 | 2020-02-04 | Rexam Beverage Can Company | Beverage container body decorator inspection apparatus |
EP4223535A1 (en) | 2016-12-08 | 2023-08-09 | Crown Packaging Technology, Inc. | Forming a texture in a can surface decoration |
US11884056B2 (en) | 2016-12-08 | 2024-01-30 | Crown Packaging Technology, Inc. | Forming a texture in a can surface decoration |
DE102017201921A1 (en) | 2017-02-08 | 2018-08-09 | Koenig & Bauer Ag | Device for printing hollow bodies |
DE102017201921B4 (en) | 2017-02-08 | 2022-02-17 | Koenig & Bauer Ag | Device for printing hollow bodies |
DE102017202382A1 (en) | 2017-02-15 | 2018-08-16 | Kba-Metalprint Gmbh | Method for operating a device for printing hollow bodies |
US10661590B2 (en) | 2017-02-15 | 2020-05-26 | Koenig & Bauer Metalprint Gmbh | Method for printing on hollow bodies |
WO2018149653A1 (en) | 2017-02-15 | 2018-08-23 | Kba-Metalprint Gmbh | Method for operating a device for printing hollow bodies |
WO2018149652A1 (en) | 2017-02-15 | 2018-08-23 | Kba-Metalprint Gmbh | Device for printing on hollow bodies |
WO2018149654A1 (en) | 2017-02-15 | 2018-08-23 | Kba-Metalprint Gmbh | Method for printing on hollow articles |
US10773514B2 (en) | 2017-02-15 | 2020-09-15 | Koenig & Bauer Metalprint Gmbh | Method for operating a device for printing hollow bodies |
DE102017202381A1 (en) | 2017-02-15 | 2018-08-16 | Kba-Metalprint Gmbh | Method for printing hollow bodies |
DE102017206392A1 (en) | 2017-04-13 | 2018-10-18 | Koenig & Bauer Ag | Segmented wheel of a device for printing hollow bodies |
WO2018188830A1 (en) | 2017-04-13 | 2018-10-18 | Koenig & Bauer Ag | Segment wheel for a device for printing on hollow bodies |
US10786984B2 (en) | 2017-04-13 | 2020-09-29 | Koenig & Bauer Ag | Segment wheel for a device for printing on hollow bodies |
WO2019145213A1 (en) | 2018-01-24 | 2019-08-01 | Koenig & Bauer Ag | Device for printing on hollow bodies |
DE102018201033B3 (en) | 2018-01-24 | 2018-10-31 | Koenig & Bauer Ag | Device for printing hollow bodies |
US11400700B2 (en) | 2018-01-24 | 2022-08-02 | Koenig & Bauer Ag | Device for printing on hollow bodies |
US11479033B2 (en) | 2018-09-04 | 2022-10-25 | Koenig & Bauer Ag | Device for printing on hollow bodies |
WO2020048738A1 (en) | 2018-09-04 | 2020-03-12 | Koenig & Bauer Ag | Device for printing on hollow bodies |
WO2020048739A1 (en) | 2018-09-04 | 2020-03-12 | Koenig & Bauer Ag | Device for printing on hollow articles |
DE102018121542A1 (en) * | 2018-09-04 | 2020-03-05 | Koenig & Bauer Ag | Device for printing on hollow bodies |
DE102018121540A1 (en) * | 2018-09-04 | 2020-03-05 | Koenig & Bauer Ag | Device for printing on hollow bodies |
DE102018121542B4 (en) | 2018-09-04 | 2022-03-17 | Koenig & Bauer Ag | Device for printing hollow bodies |
US11123976B2 (en) | 2018-09-04 | 2021-09-21 | Koenig & Bauer Ag | Device for printing on hollow articles |
US11999178B2 (en) | 2019-01-11 | 2024-06-04 | Ball Coporation | Closed-loop feedback printing system |
DE102019123631A1 (en) * | 2019-09-04 | 2021-03-04 | Koenig & Bauer Ag | Inking unit of a printing press |
DE102019123632A1 (en) * | 2019-09-04 | 2021-03-04 | Koenig & Bauer Ag | Container for providing printing ink in an inking unit of a printing machine |
DE102019123634A1 (en) * | 2019-09-04 | 2021-03-04 | Koenig & Bauer Ag | Ink stirrer for circulating printing ink in an ink pan arranged in an inking unit of a printing machine and inking unit of a printing machine with this ink stirrer |
DE102019123633A1 (en) * | 2019-09-04 | 2021-03-04 | Koenig & Bauer Ag | Inking unit of a printing press |
DE102019125130B4 (en) | 2019-09-18 | 2022-07-14 | Koenig & Bauer Ag | Device for printing the respective outer surface of hollow bodies |
DE102019125130A1 (en) * | 2019-09-18 | 2021-03-18 | Koenig & Bauer Ag | Device for printing the respective outer surface of hollow bodies |
WO2021089236A1 (en) | 2019-11-06 | 2021-05-14 | Koenig & Bauer Ag | Method and device for printing the respective lateral surface of hollow bodies |
DE102019129926A1 (en) * | 2019-11-06 | 2021-05-06 | Koenig & Bauer Ag | Method and device for printing the respective outer surface of hollow bodies |
DE102019129926B4 (en) | 2019-11-06 | 2022-09-08 | Koenig & Bauer Ag | Process and device for printing the respective lateral surface of hollow bodies |
US11535027B2 (en) | 2019-11-06 | 2022-12-27 | Koenig & Bauer Ag | Method and device for printing the respective lateral surface of hollow objects |
DE102022114616A1 (en) | 2022-06-10 | 2023-12-21 | Koenig & Bauer Ag | Inking unit of a device for printing hollow bodies |
Also Published As
Publication number | Publication date |
---|---|
US20170008270A1 (en) | 2017-01-12 |
EP2701912A4 (en) | 2014-11-12 |
EP3392041B1 (en) | 2020-04-22 |
JP6824937B2 (en) | 2021-02-03 |
US9884478B2 (en) | 2018-02-06 |
CN107009732B (en) | 2019-09-27 |
JP6392402B2 (en) | 2018-09-19 |
JP2017140846A (en) | 2017-08-17 |
JP6126584B2 (en) | 2017-05-10 |
US20120272846A1 (en) | 2012-11-01 |
EP2701912A1 (en) | 2014-03-05 |
EP2701912B1 (en) | 2018-07-25 |
CN107009732A (en) | 2017-08-04 |
US9475276B2 (en) | 2016-10-25 |
JP2019001173A (en) | 2019-01-10 |
JP2014516827A (en) | 2014-07-17 |
EP3392041A1 (en) | 2018-10-24 |
CN103492183B (en) | 2017-05-03 |
US20180126724A1 (en) | 2018-05-10 |
CN103492183A (en) | 2014-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9884478B2 (en) | Can decorator machine, ink station assembly therefor, and can decorating method employing same | |
RU2433049C1 (en) | Device to apply printed image onto external surface of bottles or vessels of similar type | |
EP2809521B1 (en) | Container decoration | |
US6895861B2 (en) | Keyless inking systems and methods using subtractive and clean-up rollers | |
EP3068624B1 (en) | Fountain blade assembly for can decorator machine ink station assembly | |
JP2014516827A5 (en) | ||
CN105437730B (en) | Printing machine | |
CN108602345A (en) | Device for printing hollow body and the method for running this device | |
US20150128819A1 (en) | Can decorator machine ink station assembly | |
JP2010523380A (en) | Doctor blade system of printing device for gravure printing machine | |
US3683799A (en) | High speed can printing machine | |
US5363763A (en) | Inker mechanism | |
GB2512769A (en) | Method and device for ink transfer and feed, and printing apparatus having the device | |
CN110267814A (en) | Method for operating the device for printing hollow body | |
CN116917131A (en) | Inking roller assembly, inking station assembly and can decorator using same | |
JPH0872223A (en) | Multicolor printer for can | |
JP5791209B2 (en) | 1x version cylinder replacement method and 2x version cylinder press | |
JPH043302B2 (en) | ||
JPH08142311A (en) | Ink device for printing machine | |
JPS59162051A (en) | Varnishing system on printed matter | |
JPS59162052A (en) | Varnishing system on printed matter | |
JPH06115052A (en) | Gravure printing device and gravure coating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12777141 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014508350 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |