WO2012147948A1 - スペーサーレス入力デバイス - Google Patents
スペーサーレス入力デバイス Download PDFInfo
- Publication number
- WO2012147948A1 WO2012147948A1 PCT/JP2012/061451 JP2012061451W WO2012147948A1 WO 2012147948 A1 WO2012147948 A1 WO 2012147948A1 JP 2012061451 W JP2012061451 W JP 2012061451W WO 2012147948 A1 WO2012147948 A1 WO 2012147948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent electrode
- upper transparent
- pressure
- electrode group
- input device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0414—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
- G06F3/04146—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using pressure sensitive conductive elements delivering a boolean signal and located between crossing sensing lines, e.g. located between X and Y sensing line layers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/045—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04104—Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
Definitions
- the present invention relates to an input device applicable to a slate PC, a mobile phone, a portable game machine, an electronic dictionary, a car navigation system, a personal computer, a digital camera, a video camera, a portable MD (PMD), and other portable devices.
- a resistive touch panel is known as an input device as described above.
- the analog method which is the mainstream of resistive touch panels, is an upper electrode plate that includes an upper base material that is a transparent flexible insulating base material and a single upper electrode that is formed on the entire bottom center of the upper base material.
- a lower electrode plate including a lower base material which is a transparent insulating base material and one lower electrode formed on the entire upper surface central portion of the lower base material, one electrode being in the X-axis direction and the other electrode being
- the touch panel is made of a transparent conductive film in which bus bars are formed at both ends in the Y-axis direction, and the upper electrode plate and the lower electrode plate are superposed with a dot spacer interposed between the conductive films.
- the analog type resistive touch panel detects the pressing point from the voltage value of the point where it is conducted by pressing, but in principle, the so-called multi-touch that can press two or more points simultaneously is performed. If this is done, the individual depressing points cannot be identified.
- an upper substrate that is a transparent flexible insulating substrate
- an upper electrode plate that includes an upper electrode group formed on the lower surface of the upper substrate
- a lower substrate that is a transparent insulating substrate
- the upper electrode group includes a lower electrode plate including a lower electrode group formed on an upper surface of the material.
- the upper electrode group includes p (p is a positive integer of 2 or more) upper electrodes U1-Up, and the upper electrode is rectangular.
- the upper electrode is made of a transparent conductive film having bus bars formed at both ends in the longitudinal direction, and the lower electrode group is q pieces (q is a positive integer of 2 or more). ),
- the lower electrode is rectangular, the longitudinal direction of the lower electrode is parallel to the Y axis, and the lower electrode is made of a transparent conductive film in which bus bars are formed at both ends in the longitudinal direction.
- the upper electrode plate and the lower electrode plate are connected to each other.
- a touch panel superimposed by interposing the dot scan spacers between the membrane.
- a bus bar is a voltage application pattern provided at an end portion of an electrode with a substantially electrode width, and a lead wiring extends from the bus bar to a frame portion of the touch panel.
- matrix detection means In order to simultaneously detect multiple points using this resistive film type multi-touch panel, in addition to the touch panel as the sensor part, matrix detection means, matrix storage means, and analog detection means as the controller part are prepared, and matrix detection is performed. Means performs digital matrix detection to determine the intersection matrix of the depression points, stores the matrix in matrix storage means, and the analog detection means for the electrodes forming the intersection matrix stored in the matrix storage means; The position of the pressing point is calculated by performing an analog detection method.
- a digital method as a resistive film type multi-touch panel that can simultaneously detect multiple points while being a resistive film type (see Patent Document 2). That is, an upper substrate that is a transparent flexible insulating substrate, an upper electrode plate that includes an upper electrode group formed on the lower surface of the upper substrate, a lower substrate that is a transparent insulating substrate, and the lower substrate
- the upper electrode group includes a lower electrode plate including a lower electrode group formed on an upper surface of the material.
- the upper electrode group includes p (p is a positive integer of 2 or more) upper electrodes U1-Up, and the upper electrode is rectangular.
- the upper electrode is made of a transparent conductive film in which a bus bar is formed at one end in the longitudinal direction, and the number of the lower electrode group is q (q is a positive integer of 2 or more) ),
- the lower electrode is rectangular and the longitudinal direction of the lower electrode is parallel to the Y axis, and the lower electrode is made of a transparent conductive film in which a bus bar is formed at one end in the longitudinal direction.
- the upper electrode plate and the lower electrode plate are connected to each other.
- a touch panel superimposed by interposing the dot scan spacers between the membrane.
- a matrix detection means as a controller part is prepared, and the matrix detection means is a digital matrix detection. To determine the intersection matrix of the depression points, and calculate the position of the depression point.
- any of the resistive multi-touch panels has an interface between the surface on which the upper electrode group of the upper electrode plate is formed and the space, and a surface and space on which the lower electrode group of the lower electrode plate is formed. External light is reflected at the interface, and Newton's rings are likely to occur depending on the gap amount of the space between the upper electrode plate and the lower electrode plate, and there is a problem in visibility.
- the digital resistive film type multi-touch panel when the input is made with a soft object such as a finger, it is input with a large pressing force and the number of terminals that the upper and lower electrode groups are in contact with, and the upper and lower electrode groups are contacted with a small pressing force.
- a pseudo pressure-sensitive function was realized by detecting the difference in the number of terminals, there was a problem that the pressure-sensitive function did not work when input was performed with a solid object such as a stylus pen that does not increase or decrease the input number.
- an object of the present invention is to solve the above-mentioned problems, and can suppress reflection at the interface, prevent the generation of Newton rings, improve visibility, and cause malfunction even without a dot spacer. It is another object of the present invention to provide a spacerless input device having a pressure-sensitive function even when inputting solid matter.
- the present invention is configured as follows.
- the first aspect of the present invention there are p upper transparent electrodes U1-Up whose one surface is rectangular and whose longitudinal direction is parallel to the X axis (p is a positive integer of 2 or more),
- a thick upper transparent electrode substrate having an upper transparent electrode group in which a bus bar is formed at one end in the longitudinal direction of the transparent electrode; It consists of q lower transparent electrodes L1-Lq (q is a positive integer greater than or equal to 2) whose longitudinal direction is parallel to the Y axis and a bus bar is provided at one end in the longitudinal direction of each lower transparent electrode.
- the upper transparent electrode U1-Up is composed of p pieces (p is a positive integer equal to or larger than 2) of upper transparent electrodes whose one surface is rectangular and whose longitudinal direction is parallel to the X axis.
- a thick upper transparent electrode substrate having an upper transparent electrode group in which bus bars are formed at both ends in the longitudinal direction of the electrode; It consists of q lower transparent electrodes L1-Lq (q is a positive integer of 2 or more) whose longitudinal direction is rectangular and parallel to the Y-axis, with bus bars at both ends in the longitudinal direction of each lower transparent electrode.
- the region including the transparent electrode group on each of the surface having the upper transparent electrode group of the upper transparent electrode substrate and the surface having the lower transparent electrode group of the lower transparent electrode substrate is also possible to provide a transparent pressure-sensitive conductive layer formed thereon and to have a transparent liquid intermediate layer interposed between both pressure-sensitive conductive layers.
- the spacer-less intermediate layer according to any one of the first and second aspects, wherein the intermediate layer is an acrylic, silicone-based, fluorine-based or alcohol-based inert liquid.
- the intermediate layer is an acrylic, silicone-based, fluorine-based or alcohol-based inert liquid.
- a current flows between the pressure-sensitive particles in the pressure-sensitive conductive layer due to the acting force.
- a Z-direction detection unit that detects a change in the magnitude of the force by changing a resistance value between the upper transparent electrode and the lower transparent electrode immediately below the pressing point.
- the surface which has the said transparent electrode group of the said transparent electrode base material has the crimping
- a spacerless input device according to any one of the first to fourth aspects, wherein a liquid repellent layer is provided.
- the adhesive material for bonding the upper transparent electrode base material and the lower transparent electrode base material at a peripheral edge portion is a hardened layer of a curable resin.
- the pressure-sensitive conductive layer and the intermediate layer are filled in the gap between the surface having the upper transparent electrode group of the upper transparent electrode substrate and the lower transparent electrode group of the lower transparent electrode substrate, but between the surfaces. Therefore, the reflection of light generated at the two interfaces of the upper transparent electrode base material and the air layer, the air layer and the lower transparent electrode base material can be suppressed, and the generation of Newton rings can be prevented. Can be improved.
- the pressure-sensitive conductive layer and the intermediate layer are filled in the gap between the surface having the upper transparent electrode group of the upper transparent electrode substrate and the lower transparent electrode group of the lower transparent electrode substrate, and the upper transparent electrode substrate is transparent. Since a thick material having rigidity is used for the electrode base material, the upper transparent electrode base material does not bend too much to cause a malfunction.
- the liquid repellent layer prevents liquid leakage of the liquid material constituting the intermediate layer to the FPC crimping part, which is inferior in adhesive strength compared to the glue material that bonds the upper transparent electrode base material and the lower transparent electrode base material at the peripheral part. Can be prevented.
- the spacerless input device 15 includes an upper transparent electrode substrate 1, a lower transparent electrode substrate 2, a glue material 23, and a pressure-sensitive conductive layer 3.
- the intermediate layer 4 and the transparent substrate 9 are mainly provided.
- a square spacerless input device 15 will be described.
- the upper transparent electrode substrate 1 is rectangular as shown in FIG. 2 at a predetermined position in the transparent window 12 on one surface (for example, the lower surface of the upper transparent electrode substrate 1 in FIG. 1), and its longitudinal direction is the X axis.
- upper transparent electrodes 5 p is a positive integer greater than or equal to 2
- upper transparent electrodes U1-Up and each of the upper transparent electrodes has an upper transparent electrode group 5 in which a bus bar is formed at one end in the longitudinal direction. Consists of film. It is desirable that the upper transparent electrode substrate 1 is transparent, supports the upper transparent electrode group 5, and has the same electrical characteristics (such as linearity) as the transparent electrode substrate of a normal touch panel.
- the function which can transmit the force which acts on the other surface (for example, the upper surface of the upper transparent electrode base material 1 of FIG. 1) of the electrode base material 1 to the pressure-sensitive conductive layer 3 below is sufficient.
- the upper transparent electrode substrate 1 does not necessarily require flexibility.
- a certain degree of strength is required for the electrode base material (film) so as not to be crushed by the air layer, but in this embodiment, the air layer is filled with the pressure-sensitive conductive layer 3 and the intermediate layer 4, It is possible to employ a thinner film than before.
- the upper transparent electrode base material an engineering plastic such as polycarbonate, polyamide, or polyether ketone, a resin film 50 such as acrylic, polyethylene terephthalate, or polybutylene terephthalate can be used.
- the frame 11 having a rectangular frame shape surrounding the upper transparent electrode substrate 1 and surrounding the transparent window 12 and the one surface around the upper transparent electrode group 5 (for example, the upper transparent electrode base in FIG.
- an upper routing wire 5 a that is formed by printing with silver or the like and connected to the bus bar 20 of each upper transparent electrode U 1 -Up is disposed.
- the inside of the frame portion 11 constitutes a transparent window portion 12 that is an input portion of the input device 15.
- the upper routing wiring 5 a is covered with an insulating resist layer 8 except for a crimped portion of an FPC (Flexible Printed Circuits) 17.
- FPC Flexible Printed Circuits
- the lower transparent electrode substrate 2 is formed on the surface (for example, the upper surface of the lower transparent electrode substrate 2 in FIG. 1) facing the surface where the upper transparent electrode 5 is disposed at a predetermined position in the transparent window 12, as shown in FIG.
- a rectangular shape as shown in the figure, and the longitudinal direction thereof is composed of q lower transparent electrodes L1-Lq (q is a positive integer of 2 or more) parallel to the Y axis, and a bus bar 20 is provided at one end in the longitudinal direction of each lower transparent electrode. It is composed of a square film having the lower transparent electrode group 6 formed. It is desirable that the lower transparent electrode base material 2 is transparent, supports the lower transparent electrode group 6, and has electrical characteristics (such as linearity) equivalent to the transparent electrode base material of a normal touch panel.
- the frame portion 11 having a rectangular frame shape around the lower transparent electrode substrate 2 and the upper transparent electrode arrangement surface facing surface around the lower transparent electrode group 6 (for example, the upper surface of the lower transparent electrode substrate 2 in FIG. 1)
- a lower lead wiring 6a formed by printing or the like using silver or the like and connected to the bus bar 20 of each lower transparent electrode L1-Lq is disposed.
- the lower routing wiring 6 a is covered with an insulating resist layer 8 except for the crimped portion of the FPC 17.
- an engineering plastic such as polycarbonate, polyamide, or polyether ketone, a resin film such as acrylic, polyethylene terephthalate, or polybutylene terephthalate can be used.
- Examples of the material of the upper transparent electrode and the lower transparent electrode include tin oxide, indium oxide, antimony oxide, zinc oxide, cadmium oxide, ITO, and other metal oxides, gold, silver, copper, tin, nickel, A thin film of a metal such as aluminum or palladium or a conductive polymer can be used.
- the transparent substrate 9 On the lower surface of the lower transparent electrode base material 2, a transparent substrate 9 that supports the upper transparent electrode base material 1, the lower transparent electrode base material 2, and the like is disposed.
- the transparent substrate 9 has functions (bending rigidity, optical characteristics, etc.) equivalent to those of a normal touch panel transparent substrate, and can be composed of, for example, glass, polycarbonate, acrylic, etc., and the thickness is an example. About 0.55 to 1.1 mm.
- the transparent substrate may be omitted as long as it can be supported by another member.
- the pressure-sensitive conductive layer 3 is arranged with a uniform thickness at least on the transparent window portion 12 that is the input portion of the input device 15.
- the surface having the lower transparent electrode group 6 of the lower transparent electrode substrate 2 is formed on a region including the transparent electrode group 6.
- the surface of the upper transparent electrode substrate 1 having the upper transparent electrode group 5 may be formed on a region containing the transparent electrode group 5 (Modification 1), or the upper transparent electrode base
- Each of the surface having the upper transparent electrode group 5 of the material 1 and the surface having the lower transparent electrode group 6 of the lower transparent electrode substrate 2 may be formed on a region including the transparent electrode group (Modification 2). .
- the pressure-sensitive conductive layer 3 contains a large number of electrically conductive pressure-sensitive particles 7 dispersed in an insulating base material portion 3a.
- the material of the base part 3a of the pressure-sensitive conductive layer 3 is colorless and transparent, has an insulating property, has good adhesion to the formation surface, and does not erode the upper transparent electrode group 5 and the lower transparent electrode group 6. Is desirable.
- the thickness of the base material portion 3a of the pressure-sensitive conductive layer 3 is such that a tunnel current flows between the pressure-sensitive particles 7, and is several tens of ⁇ m (for example, 5 ⁇ m to 80 ⁇ m). Preferably formed.
- the thickness of the pressure-sensitive conductive layer 3 is 5 ⁇ m or more from the standpoint of manufacturability, and is preferably set to 80 ⁇ m from the standpoint that the tunnel current effectively flows.
- the tunneling current means that the conductive particles are not in direct contact, but the probability density of electrons between the conductive particles is zero when they are very close in the nanometer order. Therefore, it means that electrons ooze out and current flows, and this phenomenon is explained as a tunnel effect in quantum mechanics.
- the pressure-sensitive particles 7 are transparent, there is no problem in visibility. However, when the pressure-sensitive particles 7 are opaque, the particles are finely divided to the extent that the visibility is not affected, and in the base material portion 3a. It needs to be diffused. As an example of a specific material of the base portion 3a of the pressure-sensitive conductive layer 3, the material of the pressure-sensitive conductive layer 3 is not repelled on the surface having the transparent electrode group (on the surface having the transparent electrode group). When the pressure-sensitive conductive layer 3 is disposed, the wettability is poor, and even if the material of the pressure-sensitive conductive layer 3 is applied to the surface having the transparent electrode group, it does not get wet well) Colorless and transparent ink that does not erode is desirable.
- the pressure-sensitive particles 7 may be any particles that do not deform themselves, have conductivity that can be energized, and can be expected to have a quantum tunnel effect described later. .
- any particle size that can pass through the mesh without resistance may be used.
- Specific examples of the material of the pressure-sensitive particles 7 include QTC described later.
- the pressure-sensitive particles 7 are dispersed in the base material portion 3a within a range in which energization is possible without affecting the visibility.
- the pressure-sensitive conductive layer 3 includes a plurality of adjacent pressure-sensitive particles 7 between the pressure-sensitive particles 7 which are conductive particles included in the pressure-sensitive conductive layer 3 in accordance with the application of pressure.
- a tunnel current flows between the pressure particles 7 regardless of the presence or absence of direct contact, and the pressure-sensitive conductive layer 3 changes from an insulating state to an energized state.
- An example of a composition constituting such a pressure-sensitive conductive layer 3 is a quantum tunneling composite (Quantum Tunneling Composite) available under the trade name “QTC Clear” from PERATECH LTD, Darlington, UK. ).
- the intermediate layer 4 is all disposed with a uniform thickness at least in the transparent window portion 12 that is the input portion of the input device 15.
- a gap is formed between the pressure-sensitive conductive layer 3 formed on the lower transparent electrode substrate 2 and the region including the upper transparent electrode group 5 of the upper transparent electrode substrate 1.
- a transparent liquid intermediate layer 4 is interposed so as to fill all of them.
- the pressure-sensitive conductive layer 3 formed on the upper transparent electrode substrate 1 and the region including the lower transparent electrode group 6 of the lower transparent electrode substrate 1 are A transparent liquid intermediate layer 4 is interposed so as to fill all the gaps.
- a transparent liquid intermediate layer 4 is interposed between both pressure-sensitive conductive layers 3 and 3.
- the intermediate layer 4 needs to be non-conductive and liquid. This is because if the liquid is liquid, the degree of freedom of the shape is high, and therefore, when the upper transparent electrode substrate 1 is laminated (see FIG. 9), it is easy to fill the gap.
- the liquid state includes a gel form.
- the intermediate layer 4 can be moved even with a slight pressing force, so that a finger or a pen can be used from the other surface of the upper transparent electrode substrate 1 (for example, the upper surface of the upper transparent electrode substrate 1 in FIG. 1).
- a force is applied by, for example, the applied force can be transmitted almost directly to the pressure-sensitive conductive layer 3. That is, when a pressing force from a finger or a pen acts on the other surface of the upper transparent electrode substrate 1 (for example, the upper surface of the upper transparent electrode substrate 1 in FIG. 1), the acting force is changed to the upper transparent electrode substrate 1.
- a tunnel effect occurs between the plurality of pressure-sensitive particles 7 in the pressure-sensitive conductive layer 3, and a tunnel current flows between the plurality of pressure-sensitive particles 7.
- a change in pressing force acting in the thickness direction (Z direction) of the input device 15 is conducted between the upper transparent electrode and the lower transparent electrode immediately below the pressing point as a resistance value change (voltage change).
- XY direction coordinate detection unit (not shown) can detect the position coordinate (XY coordinate) where the force acts on the upper surface of the upper transparent electrode substrate 1. As described above, since the intermediate layer 4 moves even with a slight pressing force, the intermediate layer 4 immediately below the pressing point does not exist or becomes thin enough to be energized. Therefore, even if the intermediate layer 4 is non-conductive, the resistance value Change can be detected.
- the thickness of the intermediate layer 4 is about 1 ⁇ m to 1000 ⁇ m and may be formed on the pressure-sensitive conductive layer 3 by painting, ink jet, dispenser or the like (see FIG. 9).
- the thickness of the intermediate layer 4 is 1 ⁇ m or more from a manufacturable point of view, and from the point of view that the force exerted by the movement of the intermediate layer 4 with a slight pressing force can be transmitted almost directly to the pressure-sensitive conductive layer 3 to 1000 ⁇ m. It is preferable to do this.
- Examples of the intermediate layer 4 include acrylic, silicone, fluorine or alcohol inert liquids.
- acrylic, silicone, fluorine or alcohol inert liquids for example, 3M's fluorine-based inert liquids (trade names “Florinato” and “Novec”), Shin-Etsu Silicone silicone oils (trade names “KF” and “HIVAC”), alcohol-based polyethylene glycol, etc. are available on the market. It is a possible material.
- the XY direction coordinate detection unit When a force acts on the upper surface of the upper transparent electrode substrate 1, the XY direction coordinate detection unit causes a current to flow between the pressure-sensitive particles 7 in the pressure-sensitive conductive layer 3 with a force acting through the intermediate layer 4. Thus, conduction is performed between the upper transparent electrode 5 and the lower transparent electrode 6, and the position coordinates (XY position coordinates) where the force is applied along the upper surface of the upper transparent electrode substrate 1 can be detected.
- the XY direction coordinate detection unit is connected to each of the upper transparent electrode group 5 and the lower transparent electrode group 6, and the upper transparent electrode in a state where a voltage is applied from the power source to each terminal of the upper transparent electrode group 5. By detecting a change in voltage between all the terminals of the group 5 and all the terminals of the lower transparent electrode group 6, the position coordinates in the XY directions can be detected from the terminal position where the voltage has changed.
- the position coordinates in the XY direction are detected in a state where the voltage is applied to the upper transparent electrode group 5, but the present invention is not limited to this, and in a state where the voltage is applied to the lower transparent electrode group 6, You may make it detect the position coordinate of XY direction.
- position detection in the Z direction is performed by a Z direction position detection unit (not shown). That is, a pressure is applied to the pressure-sensitive conductive layer 3 that passes through the intermediate layer 4 and is interposed between the upper and lower electrodes to the terminal that has detected the XY input coordinates in the processing of the previous section, and the pressure-sensitive inside the pressure-sensitive conductive layer 3 When a current flows between the particles 7, the resistance value changes between the terminal that detects the input of the upper transparent electrode group 5 immediately below the pressing point and the terminal that detects the input of the lower transparent electrode group 6.
- the detection unit can detect a change in the magnitude of the force.
- the detection method in which the bus bar 20 is formed only at one end of each transparent electrode of the upper transparent electrode group 5 and the lower transparent electrode group 6 is shown, but the present invention is not limited to this.
- the spacerless input device 15 includes an upper transparent electrode substrate 1, a lower transparent electrode substrate 2, Although the paste material 23, the pressure-sensitive conductive layer 3, the intermediate layer 4, and the transparent substrate 9 are mainly provided, the upper transparent electrode substrate 1 has one surface (for example, the upper transparent layer in FIG. 1).
- p-shaped p is a positive integer greater than or equal to 2
- upper transparent rectangles as shown in FIG. 11 whose longitudinal direction is parallel to the X axis. It consists of electrodes U1-Up and is made of a rectangular film having an upper transparent electrode group 5 in which bus bars 20 are formed at both ends in the longitudinal direction of each upper transparent electrode.
- the lower transparent electrode substrate 2 has a surface (for example, a figure) facing the surface on which the upper transparent electrode 5 is disposed at a predetermined position in the transparent window portion 12. 1 is formed of q lower transparent electrodes L1-Lq (q is a positive integer greater than or equal to 2) whose longitudinal direction is parallel to the Y axis. It is comprised with the square film which has the lower transparent electrode group 6 in which the bus-bar 20 was formed in the both ends of the longitudinal direction (refer FIG. 11).
- the surface having the upper transparent electrode group 5 of the upper transparent electrode substrate 1 has the pressure-bonding region of the FPC 17, and the liquid repellent layer 22 is between the pressure-bonding region and the region containing the upper transparent electrode group 5. It may be provided. By providing the liquid repellent layer 22, liquid leakage of the intermediate layer 4 can be prevented (see FIG. 10).
- Examples of the material of the liquid repellent layer 2 include those coated with a silicone-based or fluorine-based water repellent.
- Examples of the method for applying the liquid repellent layer 22 include screen printing, ink jet printing, and dispenser.
- the adhesive material 23 for bonding the upper transparent electrode substrate 1 and the lower transparent electrode substrate 2 at the peripheral edge may be a cured layer of a curable resin.
- a curable resin for example, a UV curable resin or a thermosetting resin can be used.
- FIG. 3 and 4 show a touch window 19 that is configured by performing decoration (decoration layer 16) by printing on the surface layer of the spacerless input device 15.
- FIG. The spacerless input device 15 is fitted into the first recess 14a of the housing 14 so that the outer surface around the first recess 14a of the housing 14 and the outer surface of the spacerless input device 15 are flush with each other.
- a display 13 such as liquid crystal or organic EL is fixed to the second recess 14b formed on the bottom surface of the first recess 14a, and the display on the display 13 can be seen through the transparent window 12 of the spacerless input device 15.
- Reference numeral 17 denotes an FPC connected to the routing wires 5a and 6a.
- the touch window 19 to which the decoration (decoration layer 16) by printing is applied can be mounted on the surface because the circuit portion is hidden by the decoration layer 16, and the spacerless input device A thin and stylish design with no step between 15 and the housing 14 can be realized. Freed from the bezel structure, it can be made thinner than normal touch panels.
- the circuit portion is covered with the bezel 24c of the housing 4 so that the circuit portions such as the routing wirings 5a and 6a cannot be seen.
- the housing 24 is formed with one large concave portion 24a, and the display 13 such as liquid crystal or organic EL and the spacerless input device 15 are fitted into the concave portion 24a, and the wirings 5a and 6a of the spacerless input device 15 are routed.
- Such a circuit portion is covered with the bezel 24c of the housing 4.
- the pressure-sensitive conductive layer 3 and the intermediate layer 4 are filled in a gap between the surface having the upper transparent electrode group 5 of the upper transparent electrode substrate 1 and the lower transparent electrode group 6 of the lower transparent electrode substrate 2 but between the surfaces. Therefore, there is no air layer, and reflection of light generated at the interface (that is, two interfaces of the upper transparent electrode substrate 1 and the air layer and the air layer and the lower transparent electrode material 2) is suppressed, and Newton rings are generated. Can be prevented and visibility can be improved.
- a pressure-sensitive conductive layer 3 is laminated on at least one of the upper transparent electrode substrate 1 and the lower transparent electrode substrate 2, and the upper transparent electrode group 5 and the lower transparent electrode are further interposed via the pressure-sensitive conductive layer 3. Since the intermediate layer 4 is filled with the group 6, even if the spacerless input device 15 is used in a high temperature and high humidity state, since there is no air layer, the upper transparent electrode substrate 1 and the lower transparent electrode Problems such as condensation or fogging with the base material 2 do not occur.
- the thickness of the spacerless input device 15 is small and compact. be able to.
- the pressure-sensitive sensor is arranged on the inner surface side of the touch panel, the pressure-sensitive sensor 40 is laminated on the inner surface side of the touch panel 30 as shown in FIG.
- the thickness of the pressure sensor 40 is added, and the thickness of the touch panel as a whole has to be increased.
- the pressure-sensitive sensor can be arranged in the structure of the touch panel itself, and the number of parts can be reduced, so that the cost can be reduced and the structure is similar to that of a normal touch panel.
- XY coordinate detection but also a pressure-sensitive function can be provided, and a very compact and high-performance spacerless input device can be provided.
- the pressure-sensitive conductive layer 3 is not limited to a single layer, and may be composed of a plurality of layers.
- the upper transparent electrode substrate 1 may include a resin film 50 and a thick hard coat layer 60 formed on the front surface of the resin film 50.
- the hard coat layer 60 having a thickness, the thickness of the entire upper transparent electrode substrate 1 can be easily adjusted to be thick.
- FIG. 14 is a diagram showing a deflection example in which (a) a hard coat layer without a hard coat layer and (b) a hard coat layer 60 are formed thick on the front surface of the same resin film 50. Compared to FIG. 14 (a) where the deflection is extremely local and the area where the upper and lower electrodes are conductive is smaller, in FIG. 14 (b), the deflection is further extended to the periphery and the area where the upper and lower electrodes are conductive is increased.
- FIG. 12 is a graph showing an FR curve showing the relationship between the force (weight) and the resistance (resistance value), where (a) shows an ideal example, and (b) shows an example using a thin electrode. ing. Therefore, by using the hard coat layer 60 having a thickness as described above, the thickness of the entire upper transparent electrode substrate 1 can be easily adjusted to increase the sensitivity of the pressure-sensitive function.
- FIG. 13A a plurality of upper and lower electrodes used for pressure detection are driven together to change the intersection. May be detected (see FIG. 13B). By doing so, the input load is lightened, the area of the electrode that can be used for detection is increased, and the sensitivity of the pressure-sensitive function is improved.
- FIG. 15 is a graph showing the difference in the FR curve of a spacerless input device in which a device using the hard coat layer 60 with a thick thickness or a device for driving a plurality of upper and lower electrodes together is applied.
- curve B is gentler than curve A, but the input load is heavier.
- curve C becomes gentler than the curve A, and the input load becomes lighter.
- the spacerless input device can detect multi-point input, and can detect not only the XY plane coordinates but also the Z coordinate accompanying the pressing, between the upper transparent electrode substrate and the lower transparent electrode substrate.
- the gap is filled with a pressure-sensitive conductive layer and an intermediate layer, and since there is no air layer, reflection at the interface and generation of Newton rings can be prevented, visibility can be improved, and slate PC It is useful as a mobile phone, a portable game machine, an electronic dictionary, a car navigation system, a personal computer, a digital camera, a video camera, or a portable MD (PMD).
- PMD portable MD
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Position Input By Displaying (AREA)
Abstract
【課題】 界面での反射を抑制し、ニュートンリングの発生を防止し、視認性を改善でき、又ドットスペーサーが無くても誤動作を起こさず、固形物の入力に対しても感圧機能を有したスペーサーレス入力デバイスを提供する 【解決手段】 マルチタッチが可能な抵抗膜式の入力デバイスにおいて、上部透明電極基材の上部透明電極群を有する面と下部透明電極基材の下部透明電極群を有するが面との間の隙間に、感圧導電層と中間層が充填されているように構成した。
Description
本発明は、スレートPC、携帯電話、携帯ゲーム機、電子辞書、カーナビシステム、パーソナルコンピュータ、デジタルカメラ、ビデオカメラ、携帯型MD(PMD)、その他の携帯機器に適用可能な入力デバイスに関する。
上記のような入力デバイスとして、従来より抵抗膜式タッチパネルが知られている。現在、抵抗膜式タッチパネルの主流であるアナログ方式は、透明な可撓性絶縁基材である上部基材と前記上部基材の下面中央部全体に形成された1つの上部電極を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面中央部全体に形成された1つの下部電極を含む下部電極板からなり、一方の電極はX軸方向、他方の電極はY軸方向の両端にバスバーを形成した透明な導電膜からなり、前記上部電極板と前記下部電極板を前記導電膜の間にドットススペーサを介在して重ね合わせたタッチパネルである。
しかし、アナログ方式の抵抗膜式タッチパネルは、押下げにより導通した点の電圧値から押下げ点を検出しているが、原理上、2点以上の多点が同時に押下げられる、いわゆるマルチタッチを行なうと、個々の押下げ点を特定することができない。
そこで、本出願人は、抵抗膜式でありながら多点の同時検出ができる抵抗膜式マルチタッチパネルを先に提案した(特許文献1参照)。すなわち、透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、その長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスバーを形成した透明な導電膜からなり、前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスバーを形成した透明な導電膜からなっており、前記上部電極板と前記下部電極板を前記導電膜の間にドットススペーサを介在して重ね合わせたタッチパネルである。なお、タッチパネル技術において、バスバーとは、電極の端部に略電極幅に設けられた電圧印加用パターンであり、当該バスバーからタッチパネルの額縁部に引き回し配線が延びている。
この抵抗膜式マルチタッチパネルを用いて多点の同時検出を行なうには、センサ部分である当該タッチパネルの他に、コントローラー部分であるマトリックス検出手段、マトリックス記憶手段、アナログ検出手段を用意し、マトリックス検出手段がデジタルマトリックス検出を行って押下げ点の交差マトリックスを決定し、当該マトリックスをマトリックス記憶手段に記憶し、アナログ検出手段が、マトリックス記憶手段に記憶された交差マトリックスを形成する電極に対して、アナログ検出方式を行うことにより押下げ点の位置を算出するものである。
また、抵抗膜式でありながら多点の同時検出ができる抵抗膜式マルチタッチパネルとしてはデジタル方式と呼ばれる方法も存在する(特許文献2参照)。すなわち、透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、その長手方向はX軸に平行であり、前記上部電極は長手方向の片端にバスバーを形成した透明な導電膜からなり、前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の片端にバスバーを形成した透明な導電膜からなっており、前記上部電極板と前記下部電極板を前記導電膜の間にドットススペーサを介在して重ね合わせたタッチパネルである。
このデジタル方式の抵抗膜式マルチタッチパネルを用いて多点の同時検出を行なうには、センサ部分である当該タッチパネルの他に、コントローラー部分であるマトリックス検出手段を用意し、マトリックス検出手段がデジタルマトリックス検出を行って押下げ点の交差マトリックスを決定し、押下げ点の位置を算出するものである。
しかしながら、いずれの抵抗膜式マルチタッチパネルも、上部電極板の上部電極群が形成された面と空間との界面、及び、空間と下部電極板の下部部電極群が形成された面と空間との界面で外部光が反射し、さらに上部電極板と下部電極板との間にある空間のギャップ量に依ってはニュートンリングが発生しやすく、視認性に課題があった。
また、軽い入力荷重を得るためにドットスペーサーを無くしたいが、その場合、上部透明電極基材が撓みすぎて誤動作を起こす問題をクリアする必要がある。
また、デジタル方式の抵抗膜式マルチタッチパネルでは、指などの柔らかい物体による入力に対し、大きな押圧力で入力されて上下電極群が接触した端子数と小さな押圧力で入力されて上下電極群が接触した端子数の違いを検出しての擬似的な感圧機能を実現させていたが、入力枡数が増減しないスタイラスペンなどの固形物による入力では感圧機能が働かない課題があった。
したがって、本発明の目的は、前記問題を解決することにあって、界面での反射を抑制し、ニュートンリングの発生を防止し、視認性を改善でき、又ドットスペーサーが無くても誤動作を起こさず、固形物の入力に対しても感圧機能を有したスペーサーレス入力デバイスを提供することにある。
前記目的を達成するために、本発明は以下のように構成する。
本発明の第1態様によれば、一方の面に長方形でその長手方向がX軸に平行なp個(pは2以上の正の整数)の上部透明電極U1-Upからなり、当該各上部透明電極の長手方向の片端にバスバーが形成された上部透明電極群を有する厚手の上部透明電極基材と、
一方の面に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の片端にバスバーが形成された下部透明電極群を有し、前記上部透明電極基材と透明電極群を有する面どうしを対向させて周縁部にて接着された下部透明電極基材と、
前記上部透明電極基材の上部透明電極群を有する面又は前記下部透明電極基材の下部透明電極群を有する面のうちいずれか一方について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備えて、
前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力で、前記感圧導電層内に分散含有する感圧粒子間で電流が流れることにより押圧点直下の上部透明電極と前記下部透明電極との間で導通が行われ、前記上部透明電極基材の前記他方の面沿いの、前記力が作用した位置座標を検出する入力デバイスであって、
さらに一方の透明電極基材に形成された前記感圧導電層と他方の透明電極基材の前記透明電極群を内包する領域との間に透明な液状の中間層が介在していることを特徴とするスペーサーレス入力デバイスを提供する。
一方の面に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の片端にバスバーが形成された下部透明電極群を有し、前記上部透明電極基材と透明電極群を有する面どうしを対向させて周縁部にて接着された下部透明電極基材と、
前記上部透明電極基材の上部透明電極群を有する面又は前記下部透明電極基材の下部透明電極群を有する面のうちいずれか一方について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備えて、
前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力で、前記感圧導電層内に分散含有する感圧粒子間で電流が流れることにより押圧点直下の上部透明電極と前記下部透明電極との間で導通が行われ、前記上部透明電極基材の前記他方の面沿いの、前記力が作用した位置座標を検出する入力デバイスであって、
さらに一方の透明電極基材に形成された前記感圧導電層と他方の透明電極基材の前記透明電極群を内包する領域との間に透明な液状の中間層が介在していることを特徴とするスペーサーレス入力デバイスを提供する。
本発明の第2態様によれば一方の面に長方形でその長手方向がX軸に平行なp個(pは2以上の正の整数)の上部透明電極U1-Upからなり、当該各上部透明電極の長手方向の両端にバスバーが形成された上部透明電極群を有する厚手の上部透明電極基材と、
一方の面に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の両端にバスバーが形成された下部透明電極群を有し、前記上部透明電極基材と透明電極群を有する面どうしを対向させて周縁部にて接着された下部透明電極基材と、
前記上部透明電極基材の上部透明電極群を有する面又は前記下部透明電極基材の下部透明電極群を有する面のうちいずれか一方について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備えて、
前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力で、前記感圧導電層内に分散含有する感圧粒子間で電流が流れることにより押圧点直下の上部透明電極と前記下部透明電極との間で導通が行われ、前記上部透明電極基材の前記他方の面沿いの、前記力が作用した位置座標を検出する入力デバイスであって、
さらに一方の透明電極基材に形成された前記感圧導電層と他方の透明電極基材の前記透明電極群を内包する領域との間に透明な液状の中間層が介在していることを特徴とするスペーサーレス入力デバイスを提供する。
一方の面に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の両端にバスバーが形成された下部透明電極群を有し、前記上部透明電極基材と透明電極群を有する面どうしを対向させて周縁部にて接着された下部透明電極基材と、
前記上部透明電極基材の上部透明電極群を有する面又は前記下部透明電極基材の下部透明電極群を有する面のうちいずれか一方について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備えて、
前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力で、前記感圧導電層内に分散含有する感圧粒子間で電流が流れることにより押圧点直下の上部透明電極と前記下部透明電極との間で導通が行われ、前記上部透明電極基材の前記他方の面沿いの、前記力が作用した位置座標を検出する入力デバイスであって、
さらに一方の透明電極基材に形成された前記感圧導電層と他方の透明電極基材の前記透明電極群を内包する領域との間に透明な液状の中間層が介在していることを特徴とするスペーサーレス入力デバイスを提供する。
なお、第1及び第2態様において、前記上部透明電極基材の上部透明電極群を有する面及び前記下部透明電極基材の下部透明電極群を有する面の各々について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備え、両方の感圧導電層間に透明な液状の中間層が介在しているように構成することもできる。
本発明の第3態様によれば、前記中間層が、アクリル系、シリコーン系、フッ素系またはアルコール系の不活性液体である、第1又は第2の態様のいずれか1つに記載のスペーサーレス入力デバイスを提供する。
本発明の第4態様によれば、前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力により、前記感圧導電層内の前記感圧粒子間で電流が流れることにより押圧点直下の前記上部透明電極と前記下部透明電極との間での抵抗値が変化し、前記力の大きさの変化を検出するZ方向検出部をさらに備える、第1~3の態様のいずれか1つに記載のスペーサーレス入力デバイスを提供する。
本発明の第5態様によれば、前記透明電極基材の前記透明電極群を有する面が、FPCの圧着領域を有し、かつ当該圧着領域と前記透明電極群を内包する領域との間に撥液層が設けられている第1~4の態様のいずれか1つに記載のスペーサーレス入力デバイスを提供する。
本発明の第6態様によれば、前記上部透明電極基材と前記下部透明電極基材とを周縁部にて接着する糊材が、硬化性樹脂の硬化層である第1~5の態様のいずれか1つに記載のスペーサーレス入力デバイスを提供する。
本発明によれば、上部透明電極基材の上部透明電極群を有する面と下部透明電極基材の下部透明電極群を有するが面との間の隙間に感圧導電層と中間層が充填されているため、上部透明電極基材と空気層、空気層と下部透明電極基材の2つの界面で発生する光の反射を抑制し、ニュートンリングの発生を防止することができて、視認性を向上させることができる。
また、上部透明電極基材の上部透明電極群を有する面と下部透明電極基材の下部透明電極群を有するが面との間の隙間に感圧導電層と中間層が充填され、かつ上部透明電極基材に剛性を有する厚手のものを用いているため、上部透明電極基材が撓みすぎて誤動作を起こすこともない。
また、撥液層によって、上部透明電極基材と下部透明電極基材とを周縁部で接着する糊材に比べ固着強度で劣る、FPC圧着部への中間層を構成する液状物の液漏れを防止できる。
また、上部透明電極基材と下部透明電極基材とを周縁部で接着する糊材を硬化性樹脂の硬化層とすることによって、中間層を構成する液状物の液漏れを防止できる。
以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。
本発明の第1の実施形態にかかるスペーサーレス入力デバイス15は、図1に示すように、上部透明電極基材1と、下部透明電極基材2と、糊材23と、感圧導電層3と、中間層4と、透明基板9とを主として備えるように構成されている。一例として、四角形のスペーサーレス入力デバイス15について説明する。
上部透明電極基材1は、一方の面(例えば図1の上部透明電極基材1の下面)の透明窓部12内の所定位置に、図2に示すような長方形でその長手方向がX軸に平行なp個(pは2以上の正の整数)の上部透明電極U1-Upからなり、当該各上部透明電極の長手方向の片端にバスバーが形成された上部透明電極群5を有する四角形のフィルムで構成されている。上部透明電極基材1は、透明であり、上部透明電極群5を支持し、通常のタッチパネルの透明電極基材と同等の電気特性(直線性など)を有していることが望ましく、上部透明電極基材1の他方の面(例えば図1の上部透明電極基材1の上面)に作用する力を下方の感圧導電層3に伝達できる機能があればよい。このため、上部透明電極基材1としては、可撓性は必ずしも必要とはしない。なお、従来のタッチパネルでは、空気層で潰れないようにある程度の強度が電極基材(フィルム)に必要であるが、本実施形態では空気層を感圧導電層3と中間層4で埋めるため、従来よりも薄型のフィルムを採用することが可能となっている。
上部透明電極基材1の一例として、ポリカーボネート系、ポリアミド系、ポリエーテルケトン系等のエンジニアリングプラスチック、アクリル系、ポリエチレンテレフタレート系、又は、ポリブチレンテレフタレート系などの樹脂フィルム50などを用いることができる。また、上部透明電極基材1の周囲であってかつ透明窓部12を囲む四角形枠状の額縁部11でかつ上部透明電極群5の周囲の前記一方の面(例えば図1の上部透明電極基材1の下面)には、銀などで印刷などにより形成されかつ各上部透明電極U1-Upのバスバー20と接続された上側引き回し配線5aが配置されている。額縁部11の内側は、入力デバイス15の入力部である透明窓部12を構成している。上側引き回し配線5aは、FPC(Flexible Printed Circuits)17の圧着部分を除き絶縁性のレジスト層8で覆われている。
下部透明電極基材2は、前記上部透明電極5が透明窓部12内の所定位置に配置された面に対向する面(例えば図1の下部透明電極基材2の上面)に、図2に示すような長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の片端にバスバー20が形成された下部透明電極群6を有する四角形のフィルムで構成されている。下部透明電極基材2は、透明であり、下部透明電極群6を支持し、通常のタッチパネルの透明電極基材と同等の電気特性(直線性など)を有してことが望ましい。下部透明電極基材2の周囲の四角形枠状の額縁部11でかつ下部透明電極群6の周囲の前記上部透明電極配置面対向面(例えば図1の下部透明電極基材2の上面)には、銀などで印刷などにより形成されかつ各下部透明電極L1-Lqのバスバー20と接続された下側引き回し配線6aが配置されている。下側引き回し配線6aは、FPC17の圧着部分を除き絶縁性のレジスト層8で覆われている。下部透明電極基材2の一例として、ポリカーボネート系、ポリアミド系、ポリエーテルケトン系等のエンジニアリングプラスチック、アクリル系、ポリエチレンテレフタレート系、又は、ポリブチレンテレフタレート系などの樹脂フィルムなどを用いることができる。
なお、上部透明電極及び下部透明電極の材質の例としては、酸化錫、酸化インジウム、酸化アンチモン、酸化亜鉛、酸化カドミウム、若しくはITO等の金属酸化物や、金、銀、銅、錫、ニッケル、アルミニウム、若しくはパラジウム等の金属や導電性ポリマーの薄膜が使用できる。
下部透明電極基材2の下面には、上部透明電極基材1と下部透明電極基材2となどを支持する透明基板9が配置されている。透明基板9は、通常のタッチパネルの透明基板と同等の機能(曲げ剛性、光学特性など)を有しており、例えば、ガラス、ポリカーボネート、又は、アクリルなどで構成することができて、厚みは一例として0.55~1.1mm程度とすればよい。他の部材で支持できるのであれば、透明基板は無くとも構わない。
また、上部透明電極基材1及び下部透明電極基材2との接着のために、透明窓部12を囲む額縁部11には中間層4が形成されない枠形状の糊材23を設けることが必要である。なお、枠形状の糊材23は、FPC17の圧着部分を除いて設けられる。
感圧導電層3は、少なくとも入力デバイス15の入力部である透明窓部12に均一な厚さで配置されている。一例としては、図1に示すように、下部透明電極基材2の下部透明電極群6を有する面について当該透明電極群6を内包する領域上に形成される。また別の例として、上部透明電極基材1の上部透明電極群5を有する面について当該透明電極群5を内包する領域上に形成されてもよいし(変形例1)、又上部透明電極基材1の上部透明電極群5を有する面および下部透明電極基材2の下部透明電極群6を有する面の各々について、透明電極群を内包する領域上に形成されてもよい(変形例2)。
感圧導電層3は、絶縁性の基材部3a内に、分散された多数の電気導電性の感圧粒子7を含有する。感圧導電層3の基材部3aの材料としては、無色透明で絶縁性を有し、形成面との密着性が良く、上部透明電極群5及び下部透明電極群6に対して侵食しないことが望ましい。
また、感圧導電層3の基材部3aの厚さは、感圧粒子7間でトンネル電流が流れる厚さであって、数十μm(例えば、5μm~80μm)で、例えば、スクリーン印刷で形成するのが好ましい。感圧導電層3の厚さは、製造可能な見地から5μm以上であり、トンネル電流が効果的に確実に流れる見地から80μmまでとするのが好ましい。ここで、トンネル電流とは、導電性の粒子が直接的には接触してはいないが、ナノメートルオーダーで非常に近接している場合において、導電性の粒子間における電子の存在確率密度がゼロでないために、電子が染み出して電流が流れることを意味するものであり、量子力学でトンネル効果として説明される現象である。感圧粒子7が透明な場合には視認性に問題はないが、感圧粒子7が不透明な場合には、視認性に影響を与えない程度に粒子を細かくして、基材部3a中に拡散させる必要がある。感圧導電層3の基材部3aの具体的な材料の例としては、透明電極群を有する面に対して感圧導電層3の材料が撥かれず(透明電極群を有する面に対して感圧導電層3を配置するとき、濡れ性が悪く、感圧導電層3の材料を透明電極群を有する面に塗布しても上手く濡れない状態とならず)、透明電極群5,6を浸食しない無色透明のインキが望ましい。
感圧粒子7としては、それ自体は変形せず、通電可能な導電性を有し、後述する量子トンネル効果が期待できるものであればよく、粒径は印刷に適した粒径であればよい。一例として、スクリーン印刷であれば、メッシュを抵抗なく通過できる粒径であればよい。感圧粒子7の具体的な材料の例としては、後述するQTCが挙げられる。感圧粒子7は、基材部3a内に、視認性に影響を与えず、通電可能な範囲で分散されている。
感圧導電層3は、一例として、圧力の印加に伴って、感圧導電層3の内部に多数含まれる導電性の粒子である感圧粒子7間であって、近接している複数の感圧粒子7間で、直接的な接触の有無とは関係なく、トンネル電流が流れて、感圧導電層3は絶縁状態から通電状態に変化するものである。そのような感圧導電層3を構成する組成物の一例は、英国、ダーリントン(Darlington)のペラテック社(PERATECH LTD)から商品名「QTC Clear」で入手可能な量子トンネル性複合材(Quantum Tunneling Composite)である。
中間層4は、少なくとも、入力デバイス15の入力部である透明窓部12には、すべて、均一な厚さで配置されている。一例としては、図1に示すように、下部透明電極基材2に形成された感圧導電層3と上部透明電極基材1の上部透明電極群5を内包する領域との間に、その隙間を全て埋めるように透明な液状の中間層4が介在している。なお、上記した変形例1の場合には、上部透明電極基材1に形成された感圧導電層3と下部透明電極基材1の下部透明電極群6を内包する領域との間に、その隙間を全て埋めるように透明な液状の中間層4を介在させる。また、上記した変形例2の場合には、両方の感圧導電層3,3間に透明な液状の中間層4を介在させる。
中間層4は、非導電性でかつ液状である必要がある。液状であれば形状の自由度が高いため、上部透明電極基材1を積層する際(図9参照)に前記した隙間を埋めやすいからである。なお、本明細書おいて液状とはゲル状をも含むものである。
また、中間層4が液状であれば僅かの押圧力でも中間層4が動くので、上部透明電極基材1の他方の面(例えば図1の上部透明電極基材1の上面)から指又はペンなどにより力を作用させた際、該作用させた力をほぼそのまま感圧導電層3に伝えることができるからである。すなわち、前記上部透明電極基材1の他方の面(例えば図1の上部透明電極基材1の上面)に指又はペンなどからの押圧力が作用すると、作用する力が上部透明電極基材1を厚み方向に貫通して感圧導電層3に伝わり、前記感圧導電層3内の前記複数の感圧粒子7間でトンネル効果が生じて、複数の感圧粒子7間でトンネル電流が流れて、押圧点直下の前記上部透明電極と前記下部透明電極との間で導通し、入力デバイス15の厚さ方向(Z方向)に作用する押圧力の変化を抵抗値の変化として(電圧の変化に換算して)図示しないXY方向座標検出部で検出することができ、前記上部透明電極基材1の前記上面において前記力が作用した位置座標(XY座標)を検出することができる。なお、上記したように僅かの押圧力でも中間層4が動くので、押圧点直下の中間層4が存在しないかあるいは通電できるほど薄くなるため、中間層4が非導電性であっても抵抗値の変化を検出できる。
中間層4の厚さは、1μm~1000μmくらいで、塗装やインクジェット、ディスペンサなどで感圧導電層3上に形成するとよい(図9参照)。中間層4の厚さは製造可能な見地から1μm以上であり、僅かの押圧力で中間層4が動いて作用させた力をほぼそのまま感圧導電層3に伝えることができる見地から1000μmまでにするのが好ましい。
中間層4の例としては、アクリル系、シリコーン系、フッ素系またはアルコール系の不活性液体が挙げられる。例えば3M社のフッ素系の不活性液体(商品名「フロリナート」や「ノベック」)、信越シリコーン社のシリコンオイル(商品名「KF」や「HIVAC」)、アルコール系のポリエチレングリコールなどは市販で入手可能な材料である。
XY方向座標検出部は、上部透明電極基材1の上面に力が作用すると、中間層4を貫通して作用する力で、感圧導電層3内の感圧粒子7間で電流が流れることにより上部透明電極5と下部透明電極6との間で導通が行われ、上部透明電極基材1の上面沿いの、力が作用した位置座標(XY位置座標)を検出することができる。具体的には、XY方向座標検出部は、上部透明電極群5と下部透明電極群6とにそれぞれ接続され、電源から電圧を上部透明電極群5の各端子に印加した状態で、上部透明電極群5の全ての端子と下部透明電極群6の全ての端子間での電圧の変化を検出して、電圧が変化した端子位置からXY方向の位置座標を検出することができる。
なお、前記電圧を上部透明電極群5に印加した状態で、XY方向の位置座標を検出しているが、これに限られるものではなく、前記電圧を下部透明電極群6に印加した状態で、XY方向の位置座標を検出するようにしてもよい。
一方、Z方向の位置検出は図示しないZ方向位置検出部で行う。すなわち、前項の処理でXY入力座標を検出した端子には、中間層4を貫通して、上下電極間に介する感圧導電層3に押圧力が作用し、感圧導電層3内の感圧粒子7間で電流が流れることにより押圧点直下の上部透明電極群5の入力を検出した端子と下部透明電極群6の入力を検出した端子との間での抵抗値が変化し、Z方向位置検出部は、力の大きさの変化を検出することができる。
なお、本実施形態では、上部透明電極群5および下部透明電極群6の各透明電極の片端のみにバスバー20が形成された検出方式を示したが、本発明はこれに限定されない。
例えば、本発明の第2の実施形態にかかるスペーサーレス入力デバイス15は、第1の実施形態と同様、図1に示すように、上部透明電極基材1と、下部透明電極基材2と、糊材23と、感圧導電層3と、中間層4と、透明基板9とを主として備えるように構成されているが、上部透明電極基材1は、一方の面(例えば図1の上部透明電極基材1の下面)の透明窓部12内の所定位置に、図11に示すような長方形でその長手方向がX軸に平行なp個(pは2以上の正の整数)の上部透明電極U1-Upからなり、当該各上部透明電極の長手方向の両端にバスバー20が形成された上部透明電極群5を有する四角形のフィルムで構成されている。
また、第2の実施形態にかかるスペーサーレス入力デバイス15は、下部透明電極基材2は、前記上部透明電極5が透明窓部12内の所定位置に配置された面に対向する面(例えば図1の下部透明電極基材2の上面)に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の両端にバスバー20が形成された下部透明電極群6を有する四角形のフィルムで構成されている(図11参照)。
第2の実施形態におけるその他の構成は、本発明の第1の実施形態におけるスペーサーレス入力デバイスと同様である。
また、上部透明電極基材1の上部透明電極群5を有する面が、FPC17の圧着領域を有し、かつ当該圧着領域と上部透明電極群5を内包する領域との間に撥液層22が設けられていてもよい。撥液層22が設けられていることにより、中間層4の液漏れを防ぐことができる(図10参照)。
撥液層2の材料としては、シリコーン系、フッ素系の撥水剤を塗布したものが挙げられる。撥液層22の塗布方法としては、例えば、スクリーン印刷、インクジェット印刷、ディスペンサなどがある。
また、上部透明電極基材1と下部透明電極基材2とを周縁部にて接着する糊材23が、硬化性樹脂の硬化層であってもよい。周縁部を接着する糊材23を硬化性樹脂の硬化層とすることにより、中間層4の液漏れを防ぐことができる。硬化性樹脂としては、例えば、UV硬化性樹脂、熱硬化性樹脂が使用できる。
次に、前記スペーサーレス入力デバイス15を組み込んだ携帯機器の一例としてのスレートPC18,18Aについて説明する。
図3及び図4は、スペーサーレス入力デバイス15の表面層に、印刷によるデコレーション(加飾層16)を施して構成されているタッチウインドウ19を示している。筐体14の第1凹部14a内にスペーサーレス入力デバイス15が嵌め込まれて、筐体14の第1凹部14aの周囲の外面とスペーサーレス入力デバイス15の外面とが面一となるように配置されている。第1凹部14aの底面に形成された第2凹部14bには液晶又は有機ELなどのディスプレイ13が固定されており、スペーサーレス入力デバイス15の透明窓部12を通してディスプレイ13の表示を見ることができる。17は引き回し配線5a,6aに接続されたFPCである。
このような構成では、印刷によるデコレーション(加飾層16)が施されたタッチウインドウ19は、前記回路部が加飾層16で隠れてしまうため、表面に実装することができ、スペーサーレス入力デバイス15と筐体14との間で段差のない、薄型でスタイリッシュなデザインを実現することができる。ベゼル構造から解放され、通常のタッチパネルでは実現できなかった薄型化が可能となっている。
図5に示す別の構造では、引き回し配線5a,6aなどの回路部が見えないように、筐体4のベゼル24cで回路部を覆うようにしている。筐体24には、1つの大きな凹部24aを形成して、凹部24a内に、液晶又は有機ELなどのディスプレイ13とスペーサーレス入力デバイス15とをはめ込み、スペーサーレス入力デバイス15の引き回し配線5a,6aなどの回路部を筐体4のベゼル24cで覆うようにしている。
前記実施形態によれば、以下のような効果を奏することかできる。
上部透明電極基材1の上部透明電極群5を有する面と下部透明電極基材2の下部透明電極群6を有するが面との間の隙間に感圧導電層3と中間層4が充填されているため、空気層が無く、界面(すなわち、上部透明電極基材1と空気層、空気層と下部透明電極機材2の2つの界面)で発生する光の反射を抑制し、ニュートンリングの発生を防止することができて、視認性を向上させることができる。
具体的には、図6に示すように、一般に、空気との界面で大きく光が反射されるが、上部透明電極基材1の上面とスペーサーレス入力デバイス15の外側の空気層との間での界面A、及び、基板9とスペーサーレス入力デバイス15の外側の空気層との間での界面Bとの2つの層のみで、上部透明電極基材1の下面と隙間の空気層との間での界面C、及び、下部透明電極基材2の上面と隙間の空気層との間での界面Dとの2つの層が減ることで、反射率が例えば15~20%程度、軽減される。これに対して、従来のタッチパネル30では、図7に示すように、上部透明電極基材31の上面とタッチパネル30の外側の空気層との間での界面Aと、上部透明電極基材31の下面と隙間33の空気層との間での界面Cと、下部透明電極基材32の上面と間33の空気層との間での界面Dと、基板39とタッチパネル30の外側の空気層との間での界面Bとの4つの層で反射が発生していた。また、上部透明電極と下部透明電極との間の空気層の隙間量が著しく小さくなると、ニュートンリングが発生してしまう。これらの影響で視認性が低下する原因となっていた。
また、上部透明電極基材1及び下部透明電極基材2の少なくとも一方に感圧導電層3が積層配置されており、さらに感圧導電層3を介して、上部透明電極群5と下部透明電極群6との間に中間層4が充填されているため、スペーサーレス入力デバイス15が高温高湿な状態で使用されたとしても、空気層が無いため、上部透明電極基材1及び下部透明電極基材2との間で結露したり、曇ったりといった不具合は発生しない。
また、作用する力を検出するために、スペーサーレス入力デバイス15の外側、例えば、下側に感圧センサを新たに設ける必要がなく、スペーサーレス入力デバイス15の厚みを小さく、コンパクトなものとすることができる。これに対して、従来、タッチパネルの内面側に感圧センサを配置することを考えた場合、図8に示すように、タッチパネル30の内面側に感圧センサ40を貼り重ねる構成となっているため、タッチパネル30の厚さに加えて感圧センサ40の厚さが加わり、全体としてタッチパネルの厚さが大きくならざるを得なかった。これに対して、センサ形態では、タッチパネル自体の構造内に感圧センサを配置することができて、部品点数が減ることで、コスト削減することができるとともに、通常のタッチパネルと一見類似する構成でありながら、XY座標検出だけでなく、感圧機能も備えることができ、非常にコンパクトでかつ高性能なスペーサーレス入力デバイスを提供することができる。
また、上部透明電極基材1と下部透明電極基材2との間には、感圧導電層3と中間層4が介在するため、従来のスペーサは不要となり、スペーサ形成工程が不要となりコスト削減が図れる。
なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、感圧導電層3は、単層に限らず、複数層で構成することも可能である。
また、上部透明電極基材1が、樹脂フィルム50と当該樹脂フィルム50の前面に形成された厚みのあるハードコート層60とを備えたものであってもよい。厚みのあるハードコート層60を用いることで、上部透明電極基材1全体の厚みを容易に厚く調整することができる。図14は、同じ樹脂フィルム50の前面に、(a)ハードコート層の無い撓み例と(b)ハードコート層60を厚く形成した撓み例を示す図である。図14(a)が撓みが極めて局所的で上下電極の導通する面積が小さくなるのに比べて、図14(b)は撓みがより周囲まで広がり上下電極の導通する面積が大きくなる。
XY座標を高精度に検出するために上下電極に幅の細いものを使用すると、上下電極の交点の面積が小さいため、図12(b)に示すように十分な感圧特性を示さなくなる。図12は、Force(加重)とResistance(抵抗値)の関係を示したFRカーブを示したグラフであり、(a)は理想的な例、(b)は細い電極を使用した例をそれぞれ示している。したがって、前記したように厚みのあるハードコート層60を用いることで、上部透明電極基材1全体の厚みを容易に厚く調整できと、感圧機能の感度が向上する。
また、上下電極に幅の細いものを使用するために十分な感圧特性を示さなくなることについて、別の対策も考えられる。例えば、上下電極それぞれ1本ずつを駆動してその交点の変化を検出するのではなく(図13(a)参照)、圧力検出に使用する上下電極を複数本まとめて駆動してその交点の変化を検出する(図13(b)参照)ようにしてもよい。このようにすることで、入力荷重が軽くなり、又圧力に検出に使える電極の面積が広がり、感圧機能の感度が向上する。
図15は、先の厚みのあるハードコート層60を用いる工夫や、上下電極を複数本まとめて駆動する工夫を施したスペーサーレス入力デバイスのFRカーブの違いを示すグラフである。
A:ハードコート層なし、上下電極をそれぞれ1本ずつ駆動する
B:ハードコート層あり、上下電極をそれぞれ1本ずつ駆動する
C:ハードコート層あり、上下電極をそれぞれ複数本ずつ駆動する
A:ハードコート層なし、上下電極をそれぞれ1本ずつ駆動する
B:ハードコート層あり、上下電極をそれぞれ1本ずつ駆動する
C:ハードコート層あり、上下電極をそれぞれ複数本ずつ駆動する
グラフに示されるように、カーブBは、カーブAに比べてなだらかになるが、入力荷重が重くなる。一方、カーブCは、カーブAに比べてなだらかになり、しかも入力荷重が軽くなる。
なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれ有する効果を奏するようにすることができる。
本発明にかかるスペーサーレス入力デバイスは、多点入力の検出が可能であり、XY面座標だけでなく押圧に伴うZ座標も検出可能となり、上部透明電極基材及び下部透明電極基材との間の隙間に感圧導電層と中間層が充填されており、空気層が無いため、界面での反射とニュートンリングの発生を防止することができて、視認性を向上させることができ、スレートPC、携帯電話、携帯ゲーム機、電子辞書、カーナビシステム、パーソナルコンピュータ、デジタルカメラ、ビデオカメラ、又は、携帯型MD(PMD)等として有用である。
1 上部透明電極基材
2 下部透明電極基材
3 感圧導電層
3a 感圧導電層の基材部
4 中間層
5 上部透明電極群
5a 上側引き回し配線
6 下部透明電極群
6a 下側引き回し配線
7 感圧粒子
8 レジスト層
9 基板
11 額縁部
12 透明窓部
14 筐体
14a 第1凹部
14b 第2凹部
15 スペーサーレス入力デバイス
16 加飾層
17 FPC
18,18A スレートPC
19 タッチウインドウ
20 バスバー
22 撥液層
23 糊材
50 樹脂フィルム
60 ハードコート層
U1-Up 上部透明電極
L1-Lq 下部透明電極
2 下部透明電極基材
3 感圧導電層
3a 感圧導電層の基材部
4 中間層
5 上部透明電極群
5a 上側引き回し配線
6 下部透明電極群
6a 下側引き回し配線
7 感圧粒子
8 レジスト層
9 基板
11 額縁部
12 透明窓部
14 筐体
14a 第1凹部
14b 第2凹部
15 スペーサーレス入力デバイス
16 加飾層
17 FPC
18,18A スレートPC
19 タッチウインドウ
20 バスバー
22 撥液層
23 糊材
50 樹脂フィルム
60 ハードコート層
U1-Up 上部透明電極
L1-Lq 下部透明電極
Claims (10)
- 一方の面に長方形でその長手方向がX軸に平行なp個(pは2以上の正の整数)の上部透明電極U1-Upからなり、当該各上部透明電極の長手方向の片端にバスバーが形成された上部透明電極群を有する厚手の上部透明電極基材と、
一方の面に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の片端にバスバーが形成された下部透明電極群を有し、前記上部透明電極基材と透明電極群を有する面どうしを対向させて周縁部にて接着された下部透明電極基材と、
前記上部透明電極基材の上部透明電極群を有する面又は前記下部透明電極基材の下部透明電極群を有する面のうちいずれか一方について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備えて、
前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力で、前記感圧導電層内に分散含有する感圧粒子間で電流が流れることにより押圧点直下の上部透明電極と前記下部透明電極との間で導通が行われ、前記上部透明電極基材の前記他方の面沿いの、前記力が作用した位置座標を検出する入力デバイスであって、
さらに一方の透明電極基材に形成された前記感圧導電層と他方の透明電極基材の前記透明電極群を内包する領域との間に透明な液状の中間層が介在していることを特徴とするスペーサーレス入力デバイス。 - 一方の面に長方形でその長手方向がX軸に平行なp個(pは2以上の正の整数)の上部透明電極U1-Upからなり、当該各上部透明電極の長手方向の片端にバスバーが形成された上部透明電極群を有する厚手の上部透明電極基材と、
一方の面に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の片端にバスバーが形成された下部透明電極群を有し、前記上部透明電極基材と透明電極群を有する面どうしを対向させて周縁部にて接着された下部透明電極基材と、
前記上部透明電極基材の上部透明電極群を有する面及び前記下部透明電極基材の下部透明電極群を有する面の各々について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備えて、
前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力で、前記感圧導電層内に分散含有する感圧粒子間で電流が流れることにより押圧点直下の上部透明電極と前記下部透明電極との間で導通が行われ、前記上部透明電極基材の前記他方の面沿いの、前記力が作用した位置座標を検出する入力デバイスであって、
さらに両方の感圧導電層間に透明な液状の中間層が介在していることを特徴とするスペーサーレス入力デバイス。 - 一方の面に長方形でその長手方向がX軸に平行なp個(pは2以上の正の整数)の上部透明電極U1-Upからなり、当該各上部透明電極の長手方向の両端にバスバーが形成された上部透明電極群を有する厚手の上部透明電極基材と、
一方の面に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の両端にバスバーが形成された下部透明電極群を有し、前記上部透明電極基材と透明電極群を有する面どうしを対向させて周縁部にて接着された下部透明電極基材と、
前記上部透明電極基材の上部透明電極群を有する面又は前記下部透明電極基材の下部透明電極群を有する面のうちいずれか一方について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備えて、
前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力で、前記感圧導電層内に分散含有する感圧粒子間で電流が流れることにより押圧点直下の上部透明電極と前記下部透明電極との間で導通が行われ、前記上部透明電極基材の前記他方の面沿いの、前記力が作用した位置座標を検出する入力デバイスであって、
さらに一方の透明電極基材に形成された前記感圧導電層と他方の透明電極基材の前記透明電極群を内包する領域との間に透明な液状の中間層が介在していることを特徴とするスペーサーレス入力デバイス。 - 一方の面に長方形でその長手方向がX軸に平行なp個(pは2以上の正の整数)の上部透明電極U1-Upからなり、当該各上部透明電極の長手方向の両端にバスバーが形成された上部透明電極群を有する厚手の上部透明電極基材と、
一方の面に長方形でその長手方向がY軸に平行なq個(qは2以上の正の整数)の下部透明電極L1-Lqからなり、当該各下部透明電極の長手方向の両端にバスバーが形成された下部透明電極群を有し、前記上部透明電極基材と透明電極群を有する面どうしを対向させて周縁部にて接着された下部透明電極基材と、
前記上部透明電極基材の上部透明電極群を有する面及び前記下部透明電極基材の下部透明電極群を有する面の各々について前記透明電極群を内包する領域上に形成された透明な感圧導電層とを備えて、
前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力で、前記感圧導電層内に分散含有する感圧粒子間で電流が流れることにより押圧点直下の上部透明電極と前記下部透明電極との間で導通が行われ、前記上部透明電極基材の前記他方の面沿いの、前記力が作用した位置座標を検出する入力デバイスであって、
さらに両方の感圧導電層間に透明な液状の中間層が介在していることを特徴とするスペーサーレス入力デバイス。 - 前記中間層が、アクリル系、シリコーン系、フッ素系またはアルコール系の不活性液体である、請求項1~4のいずれかに記載のスペーサーレス入力デバイス。
- 前記上部透明電極基材の他方の面に押圧力が作用すると、作用する力により、前記感圧導電層内の前記感圧粒子間で電流が流れることにより押圧点直下の前記上部透明電極と前記下部透明電極との間での抵抗値が変化し、前記力の大きさの変化を検出するZ方向検出部をさらに備える、請求項1~5のいずれかに記載のスペーサーレス入力デバイス。
- 前記透明電極基材の前記透明電極群を有する面が、FPCの圧着領域を有し、かつ当該圧着領域と前記透明電極群を内包する領域との間に撥液層が設けられている請求項1~6のいずれかに記載のスペーサーレス入力デバイス。
- 前記上部透明電極基材と前記下部透明電極基材とを周縁部にて接着する糊材が、硬化性樹脂の硬化層である請求項1~7のいずれかに記載のスペーサーレス入力デバイス。
- 前記上部透明電極基材が、樹脂フィルムと当該樹脂フィルムの前面に形成された厚みのあるハードコート層とを備えたものである請求項1~8のいずれかに記載のスペーサーレス入力デバイス。
- 前記上部透明電極及び前記下部透明電極をそれぞれ複数本ずつ駆動する駆動回路を備えた請求項1~9のいずれかに記載のスペーサーレス入力デバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280015163.6A CN103443751B (zh) | 2011-04-29 | 2012-04-27 | 无间隔件输入设备 |
EP12777100.4A EP2703963B1 (en) | 2011-04-29 | 2012-04-27 | Spacer-less input device |
US14/001,562 US20130333922A1 (en) | 2011-04-29 | 2012-04-27 | Spacerless input device |
JP2012548260A JP5174294B1 (ja) | 2011-04-29 | 2012-04-27 | スペーサーレス入力デバイス |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-102589 | 2011-04-29 | ||
JP2011102589 | 2011-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147948A1 true WO2012147948A1 (ja) | 2012-11-01 |
Family
ID=47072459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061451 WO2012147948A1 (ja) | 2011-04-29 | 2012-04-27 | スペーサーレス入力デバイス |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130333922A1 (ja) |
EP (1) | EP2703963B1 (ja) |
JP (1) | JP5174294B1 (ja) |
CN (1) | CN103443751B (ja) |
WO (1) | WO2012147948A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140139444A1 (en) * | 2012-11-19 | 2014-05-22 | Nokia Corporation | Apparatus and Method for Detecting User Input |
CN105765497A (zh) * | 2013-08-12 | 2016-07-13 | 江森自控科技公司 | 作为汽车内饰的压力传感界面 |
US10705666B2 (en) | 2013-08-12 | 2020-07-07 | Shanghai Yangfeng Jinqiao Automotive Trim Systems Co. Ltd. | Vehicle interior component with user interface |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112013002288T5 (de) | 2012-05-03 | 2015-04-16 | Apple Inc. | Momentkompensierter Biegebalkensensor zur Lastmessung auf einer Biegebalken-gestützten Plattform |
WO2014098946A1 (en) | 2012-12-17 | 2014-06-26 | Changello Enterprise Llc | Force detection in touch devices using piezoelectric sensors |
WO2014149023A1 (en) | 2013-03-15 | 2014-09-25 | Rinand Solutions Llc | Force sensing of inputs through strain analysis |
US10120478B2 (en) | 2013-10-28 | 2018-11-06 | Apple Inc. | Piezo based force sensing |
CN104714672B (zh) * | 2013-12-11 | 2019-04-09 | 昆山工研院新型平板显示技术中心有限公司 | 压敏型显示屏触控单元、触摸屏及其制造方法 |
AU2015100011B4 (en) | 2014-01-13 | 2015-07-16 | Apple Inc. | Temperature compensating transparent force sensor |
US9612170B2 (en) * | 2015-07-21 | 2017-04-04 | Apple Inc. | Transparent strain sensors in an electronic device |
US10055048B2 (en) | 2015-07-31 | 2018-08-21 | Apple Inc. | Noise adaptive force touch |
US9874965B2 (en) | 2015-09-11 | 2018-01-23 | Apple Inc. | Transparent strain sensors in an electronic device |
US9886118B2 (en) | 2015-09-30 | 2018-02-06 | Apple Inc. | Transparent force sensitive structures in an electronic device |
US10006820B2 (en) | 2016-03-08 | 2018-06-26 | Apple Inc. | Magnetic interference avoidance in resistive sensors |
US10209830B2 (en) | 2016-03-31 | 2019-02-19 | Apple Inc. | Electronic device having direction-dependent strain elements |
CN105930001B (zh) * | 2016-04-19 | 2019-03-01 | 京东方科技集团股份有限公司 | 触控面板及其制作方法和显示装置 |
GB2551502A (en) * | 2016-06-17 | 2017-12-27 | M-Solv Ltd | Apparatus and methods for manufacturing a sensor and a display, and a sensor and a display |
WO2018013557A1 (en) | 2016-07-11 | 2018-01-18 | Shanghai Yanfeng Jinqiao Automotive Trim Systems Co. Ltd | Vehicle interior component |
US10133418B2 (en) | 2016-09-07 | 2018-11-20 | Apple Inc. | Force sensing in an electronic device using a single layer of strain-sensitive structures |
US9863824B1 (en) * | 2016-09-19 | 2018-01-09 | The Hong Kong Polytechnic University | Resistance-voltage transformation system for sensors in dynamic strain measurement and structural health monitoring |
US10444091B2 (en) | 2017-04-11 | 2019-10-15 | Apple Inc. | Row column architecture for strain sensing |
US10309846B2 (en) | 2017-07-24 | 2019-06-04 | Apple Inc. | Magnetic field cancellation for strain sensors |
US10782818B2 (en) | 2018-08-29 | 2020-09-22 | Apple Inc. | Load cell array for detection of force input to an electronic device enclosure |
CN109634456B (zh) * | 2018-12-03 | 2020-07-10 | 武汉华星光电半导体显示技术有限公司 | 压力电阻触控装置 |
EP3999944A4 (en) | 2019-07-15 | 2023-07-26 | Shanghai Yanfeng Jinqiao Automotive Trim Systems Co. Ltd | VEHICLE INTERIOR COMPONENT |
US20210109615A1 (en) * | 2019-10-14 | 2021-04-15 | RET Equipment Inc. | Resistive pressure sensor device system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5971216A (ja) | 1982-10-16 | 1984-04-21 | ソニー株式会社 | 透明電極スイツチ |
JPS6414630A (en) * | 1987-07-08 | 1989-01-18 | Daicel Chem | Transparent touch type input device |
JPH01132017A (ja) * | 1987-11-17 | 1989-05-24 | Mitsubishi Electric Corp | 透明フラットスイッチ |
JPH06342332A (ja) * | 1993-04-05 | 1994-12-13 | Catalysts & Chem Ind Co Ltd | 透明描画パッド |
JPH07146755A (ja) * | 1993-11-25 | 1995-06-06 | Sumitomo Bakelite Co Ltd | タッチパネル |
JP2002007050A (ja) * | 2000-06-16 | 2002-01-11 | Alps Electric Co Ltd | 座標入力装置 |
US20060147701A1 (en) * | 2004-12-30 | 2006-07-06 | 3M Innovative Properties Company | Conductive polymer layer articles and method |
JP2010055453A (ja) | 2008-08-29 | 2010-03-11 | Nissha Printing Co Ltd | タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置 |
JP2011003104A (ja) * | 2009-06-19 | 2011-01-06 | Nissha Printing Co Ltd | 押圧検出機能を有する抵抗膜式タッチパネル |
JP2011003105A (ja) * | 2009-06-19 | 2011-01-06 | Nissha Printing Co Ltd | 抵抗膜式タッチパネル |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU582181B2 (en) * | 1984-12-28 | 1989-03-16 | Wang Laboratories, Inc. | Information display and entry device |
JP2000029612A (ja) * | 1998-07-15 | 2000-01-28 | Smk Corp | タッチパネル入力装置 |
GB0011829D0 (en) * | 2000-05-18 | 2000-07-05 | Lussey David | Flexible switching devices |
US7595790B2 (en) * | 2005-01-31 | 2009-09-29 | Panasonic Corporation | Pressure sensitive conductive sheet, method of manufacturing the same, and touch panel using the same |
US7896241B2 (en) * | 2006-01-03 | 2011-03-01 | Sandisk Il Ltd. | Automated card customization machine |
WO2009075218A1 (ja) * | 2007-12-12 | 2009-06-18 | Kimoto Co., Ltd. | ニュートンリング防止シート、及びこれを用いたタッチパネル |
JPWO2009084502A1 (ja) * | 2007-12-27 | 2011-05-19 | 日本写真印刷株式会社 | 保護パネル付きの電子機器 |
WO2009108334A2 (en) * | 2008-02-28 | 2009-09-03 | New York University | Method and apparatus for providing input to a processor, and a sensor pad |
CN101634918A (zh) * | 2008-07-24 | 2010-01-27 | 廖翔霖 | 导电膜整合结构 |
US20100075110A1 (en) * | 2008-09-23 | 2010-03-25 | Ming-Chung Pan | Electrocast Sticker |
JP4805999B2 (ja) * | 2008-12-09 | 2011-11-02 | 日東電工株式会社 | 粘着剤層付き透明導電性フィルムとその製造方法、透明導電性積層体およびタッチパネル |
US8094134B2 (en) * | 2008-12-25 | 2012-01-10 | Nissha Printing Co., Ltd. | Touch panel having press detection function and pressure sensitive sensor for the touch panel |
CN101963855B (zh) * | 2009-07-24 | 2012-11-21 | 群康科技(深圳)有限公司 | 用于触摸屏的多点触摸辨识方法 |
JP2011064866A (ja) * | 2009-09-16 | 2011-03-31 | Canon Inc | 液晶表示素子の製造方法及びその製造方法にて作成された液晶表示素子を用いた画像表示装置 |
US8692948B2 (en) * | 2010-05-21 | 2014-04-08 | Apple Inc. | Electric field shielding for in-cell touch type thin-film-transistor liquid crystal displays |
CN102019730A (zh) * | 2010-12-21 | 2011-04-20 | 苏州禾盛新型材料股份有限公司 | 防污抗指纹抗牛顿环的透明导电复合板材 |
-
2012
- 2012-04-27 US US14/001,562 patent/US20130333922A1/en not_active Abandoned
- 2012-04-27 EP EP12777100.4A patent/EP2703963B1/en active Active
- 2012-04-27 WO PCT/JP2012/061451 patent/WO2012147948A1/ja active Application Filing
- 2012-04-27 JP JP2012548260A patent/JP5174294B1/ja not_active Expired - Fee Related
- 2012-04-27 CN CN201280015163.6A patent/CN103443751B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5971216A (ja) | 1982-10-16 | 1984-04-21 | ソニー株式会社 | 透明電極スイツチ |
JPS6414630A (en) * | 1987-07-08 | 1989-01-18 | Daicel Chem | Transparent touch type input device |
JPH01132017A (ja) * | 1987-11-17 | 1989-05-24 | Mitsubishi Electric Corp | 透明フラットスイッチ |
JPH06342332A (ja) * | 1993-04-05 | 1994-12-13 | Catalysts & Chem Ind Co Ltd | 透明描画パッド |
JPH07146755A (ja) * | 1993-11-25 | 1995-06-06 | Sumitomo Bakelite Co Ltd | タッチパネル |
JP2002007050A (ja) * | 2000-06-16 | 2002-01-11 | Alps Electric Co Ltd | 座標入力装置 |
US20060147701A1 (en) * | 2004-12-30 | 2006-07-06 | 3M Innovative Properties Company | Conductive polymer layer articles and method |
JP2010055453A (ja) | 2008-08-29 | 2010-03-11 | Nissha Printing Co Ltd | タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置 |
JP2011003104A (ja) * | 2009-06-19 | 2011-01-06 | Nissha Printing Co Ltd | 押圧検出機能を有する抵抗膜式タッチパネル |
JP2011003105A (ja) * | 2009-06-19 | 2011-01-06 | Nissha Printing Co Ltd | 抵抗膜式タッチパネル |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140139444A1 (en) * | 2012-11-19 | 2014-05-22 | Nokia Corporation | Apparatus and Method for Detecting User Input |
US9292115B2 (en) * | 2012-11-19 | 2016-03-22 | Nokia Technologies Oy | Apparatus and method for detecting user input |
CN105765497A (zh) * | 2013-08-12 | 2016-07-13 | 江森自控科技公司 | 作为汽车内饰的压力传感界面 |
EP3033663A4 (en) * | 2013-08-12 | 2016-11-16 | Johnson Controls Tech Co | PRESSURE DETECTION INTERFACE FOR THE INTERIOR OF A VEHICLE |
US10705666B2 (en) | 2013-08-12 | 2020-07-07 | Shanghai Yangfeng Jinqiao Automotive Trim Systems Co. Ltd. | Vehicle interior component with user interface |
Also Published As
Publication number | Publication date |
---|---|
EP2703963B1 (en) | 2020-02-12 |
JP5174294B1 (ja) | 2013-04-03 |
EP2703963A4 (en) | 2015-01-28 |
EP2703963A1 (en) | 2014-03-05 |
CN103443751A (zh) | 2013-12-11 |
US20130333922A1 (en) | 2013-12-19 |
JPWO2012147948A1 (ja) | 2014-07-28 |
CN103443751B (zh) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5174294B1 (ja) | スペーサーレス入力デバイス | |
WO2011077981A1 (ja) | タッチパネル及びそれを利用する携帯機器 | |
JP4943565B2 (ja) | 薄型ディスプレイと抵抗膜式タッチパネルの実装構造、表面突起付き抵抗膜式タッチパネルユニット、及び、裏面突起付き薄型ディスプレイユニット | |
CN101639745B (zh) | 触摸面板和显示单元 | |
KR20130008604A (ko) | 투명하고 유연하며 힘에 민감한 터치 패널을 위한 방법 및 장치 | |
TWI452612B (zh) | 觸控面板及觸控顯示面板 | |
WO2015037171A1 (ja) | センサ装置、入力装置及び電子機器 | |
JP2013008231A (ja) | 静電容量方式にも抵抗膜方式にも対応可能な押圧検出機能を有するタッチパネル | |
JP4785965B2 (ja) | タッチパネル | |
JP4791591B1 (ja) | タッチパネル及びそのタッチパネルを利用する携帯機器 | |
JP2012203514A (ja) | 入力装置 | |
JP2013125287A (ja) | 入力装置 | |
KR20130002881A (ko) | 터치 패널 및 이를 포함하는 액정 표시 장치 | |
KR20150046669A (ko) | 터치 윈도우 및 이를 포함하는 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012548260 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12777100 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14001562 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |