WO2012147352A1 - 太陽電池セル、接合構造体、および太陽電池セルの製造方法 - Google Patents

太陽電池セル、接合構造体、および太陽電池セルの製造方法 Download PDF

Info

Publication number
WO2012147352A1
WO2012147352A1 PCT/JP2012/002862 JP2012002862W WO2012147352A1 WO 2012147352 A1 WO2012147352 A1 WO 2012147352A1 JP 2012002862 W JP2012002862 W JP 2012002862W WO 2012147352 A1 WO2012147352 A1 WO 2012147352A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
finger
type diffusion
connection pad
solder connection
Prior art date
Application number
PCT/JP2012/002862
Other languages
English (en)
French (fr)
Inventor
秀敏 北浦
将希 吉田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280020107.1A priority Critical patent/CN103503157A/zh
Priority to US14/113,229 priority patent/US20140041707A1/en
Priority to JP2013511936A priority patent/JP5627054B2/ja
Publication of WO2012147352A1 publication Critical patent/WO2012147352A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a back contact solar cell, a junction structure using the solar cell, and a method for manufacturing the solar cell.
  • a P-type diffusion layer and an N-type diffusion layer are formed on the non-light-receiving surface and electrodes are provided, so that the back without the electrode on the light-receiving surface Contact-type solar cells are disclosed (see, for example, Patent Document 1 and Patent Document 2).
  • 8 (a) to 8 (c) are diagrams showing typical back contact solar cells.
  • FIG. 8A is a schematic diagram showing a light receiving surface of a back contact solar cell.
  • the back contact solar cell 600 has a light receiving surface 601 on the surface of a silicon substrate 602.
  • FIG. 8B is a schematic diagram showing a non-light-receiving surface of a back contact solar cell. Finger electrodes 604n and 604p, a cell internal passivation layer 605, and a cell outer periphery passivation layer 606 are formed on the non-light-receiving surface 603, which is the back surface of the back contact solar cell 600.
  • FIG. 8 (c) is a diagram showing a LL cross section of FIG. 8 (b) of the back contact solar cell.
  • a P-type diffusion layer 607 and an N-type diffusion layer 608 are formed on the non-light-receiving surface 603 of the silicon substrate 602.
  • the P-type diffusion layer 607 and the N-type diffusion layer 608 are alternately formed on the non-light-receiving surface 603 of the silicon substrate 602 at regular intervals in order to reduce carrier recombination loss.
  • a cell internal passivation layer 605 is formed between the P-type diffusion layer 607 and the N-type diffusion layer 608 in order to maintain insulation.
  • a cell outer periphery passivation layer 606 is formed at the outer peripheral end of the silicon substrate 602 on the non-light-receiving surface 603 side.
  • SiO 2 or SiN having good insulating properties is used for the cell inner passivation layer 605 and the cell outer periphery passivation layer 606, SiO 2 or SiN having good insulating properties is used.
  • finger electrodes 604p and 604n for taking out electricity from the P-type diffusion layer 607 and the N-type diffusion layer 608 when sunlight enters from the light receiving surface 601 are formed on the diffusion layers 607 and 608, respectively.
  • a material for the finger electrodes 604p and 604n one kind or two or more kinds of Cu, Sn, Ag, Ni and the like having good electrical conductivity are used.
  • FIG. 9A is a schematic diagram showing details of the entire non-light-receiving surface 603 of the back contact solar cell 600 shown in FIG. 8B.
  • a positive electrode solder connection pad 701 and a negative electrode solder connection pad 702 are formed in order to connect to an external circuit or another back contact type solar battery cell.
  • FIG. 9B is a diagram showing the vicinity of the positive electrode solder connection pad 701 surrounded by a broken line as the A region in FIG. 9A. In the lower part of FIG. 9B, the vicinity of the negative electrode solder connection pad 702 corresponding to the upper positive electrode solder connection pad 701 is shown.
  • the positive electrode solder connection pad 701 is a broken line region y shown in FIG. 9B in the region where the finger electrodes 604p are collected, and the finger electrode that collects on the negative electrode solder connection pad 702 shown in FIG. 9A. This is a region surrounded by 604n1 to 604n9 and the cell outer periphery passivation layer 606. As shown in FIG. 9B, the positive electrode solder connection pad 701 is a portion where the finger electrodes 604p are gathered, and one or two kinds of Cu, Sn, Ag, Ni, etc., which are the same material as the finger electrodes 604p and 604n. Used and formed as described above.
  • FIG. 10 is a diagram of a connection portion of a joint structure in which two back contact solar cells 600 are electrically connected.
  • the positive solder connection pad 701 and the negative solder connection pad 702 are connected by the interconnector 801 using the solder 802.
  • solder 802. As a solder material, SnAgCu solder is used.
  • the solder 802 is supplied to both the solder connection pads 701 and 702 having different polarities formed in the solar cell 600. Then, after the interconnector 801 is mounted so as to straddle between the solder connection pads 701 and 702, it is heated to the melting point or higher of the solder 802. By this heating, the positive electrode solder connection pad 701 and the negative electrode solder connection pad 702 are joined by the interconnector 801 using the solder 802, and a target voltage and current can be taken out.
  • FIG. 11 is a view showing a connecting portion of a joint structure in which two conventional back-contact solar cells described in Patent Document 3 are connected using an interconnector with a solder material.
  • solder 852 is supplied to the opposing positive electrode solder connection pad 751 and negative electrode solder connection pad 752 of the two back contact solar cells 650, the interconnector 853 is mounted, and the solder 852 is mounted. Are heated and melted and joined.
  • connection work of two back contact solar cells 650 can be simplified. I have to.
  • the positive electrode solder connection pad 751 and the negative electrode solder connection pad 752 are wetted with the solder 852 as their forming material in order to be bonded to the solder 852.
  • One type or two or more types of metal materials such as Cu, Sn, Ag, and Ni that are good in quality are used. Therefore, when the solder 852 is heated and melted and joined, the solder 852 spreads on the positive solder connection pad 751 and the negative solder connection pad 752.
  • the solder 852 is wet and spreads, the positive electrode and the negative electrode are short-circuited when contacting the finger electrode 654n or 654p beyond the cell internal passivation layer 655. Therefore, in order to prevent a short circuit due to the spreading of the solder 852, it is necessary to design the areas of the positive solder connection pad 751 and the negative solder connection pad 752 to be wide in consideration of the spreading of the solder 852.
  • the present invention has been made in consideration of the above-described conventional problems, and an object of the present invention is to provide a solar cell, a junction structure, and a method for manufacturing the solar cell with improved power generation efficiency.
  • the first aspect of the present invention provides: A silicon substrate; A pair of finger electrodes connected to each of the P-type diffusion layer and the N-type diffusion layer formed on the first surface of the silicon substrate; An internal passivation layer that insulates between the pair of finger electrodes; A connection area for connection with the outside in the gathering part where the finger parts of one of the finger electrodes gather, In the connection area, the solar cell includes a barrier portion formed at the tip of the other finger electrode different from the polarity of the one finger electrode in the connection area.
  • each of the pair of finger electrodes has the connection area.
  • the barrier portion is a solar cell according to the first aspect of the present invention, wherein the barrier portion has an arc shape, and the tip of the other finger electrode is disposed outside the arc shape.
  • the fourth aspect of the present invention is The barrier section is the solar cell according to the first aspect of the present invention, which is formed of at least one material of Si oxide, Si nitride, Ti oxide, and Ti nitride.
  • the fifth aspect of the present invention provides A plurality of solar cells of the second invention are provided,
  • the solar cells are arranged such that the connection areas of different polarities face each other,
  • the adjacent solar cells are joined structures in which portions of the connection area existing between the opposing barrier portions are connected to each other via an interconnect connected by solder.
  • the sixth aspect of the present invention provides A method for manufacturing a solar cell in which a pair of finger electrodes connected to each of a P-type diffusion layer and an N-type diffusion layer is formed on a first surface of a silicon substrate, A diffusion layer forming step in which the P-type diffusion layer and the N-type diffusion layer are alternately arranged on the first surface of the silicon substrate to form a comb shape; After the diffusion layer forming step, the outer surface of the gathering portion where the finger portions of at least one of the finger electrodes gather together with the inner passivation layer for insulating the pair of finger electrodes on the first surface of the silicon substrate A passivation layer forming step for forming a barrier portion along the tip of the other finger electrode different from the polarity of the finger electrode in the connection area in the connection area for connection to the connection area; After the passivation layer forming step, an electrode forming step of forming the pair of finger electrodes by attaching a metal to a portion of the first surface of the silicon substrate where the internal passivation layer and the barrier portion
  • the present invention it is possible to provide a solar cell, a junction structure, and a solar cell manufacturing method in which the power generation efficiency is improved by reducing the area of the solder connection pad.
  • A A schematic top view showing a light receiving surface of a solar battery cell in an embodiment of the present invention
  • the figure which compared the area of the solder connection pad of the photovoltaic cell of embodiment of this invention, and the area of the solder connection pad of the conventional back contact type photovoltaic cell A
  • FIGS. 1A and 1B are a top view and a bottom view schematically showing a solar battery cell having a barrier portion in the embodiment of the present invention.
  • FIG. 1A is a top view showing the light receiving surface 111 of the back contact solar cell according to the present embodiment.
  • Solar cell 100 of the present embodiment is formed of a silicon substrate 112.
  • Silicon substrate 112 has a thickness of 0.2 mm, an octagonal shape, and adjacent sides of 110.0 mm and 30.0 mm. The sides facing each other are parallel.
  • the silicon substrate 112 is derived from the size of the silicon ingot, and the thickness and size of the silicon substrate 112 are not limited to the above sizes.
  • FIG.1 (b) is a bottom view which shows the non-light-receiving surface 113 of the photovoltaic cell 100 of this Embodiment.
  • the positive electrode solder connection pads 102 and the negative electrode solder connection pads 103 are formed at three positions so as to face the inner side of the long side of the solar battery cell 100.
  • finger electrodes 114p that gather on the positive electrode solder connection pad 102 and finger electrodes 114n that gather on the negative electrode solder connection pad are formed in a comb-like shape (see FIG. 8B for a comb-like shape), and the finger electrode 114p And 114n, a cell internal passivation layer 115 as an insulating layer is formed. Further, a barrier portion 101 is formed on each solder connection pad 102 and 103.
  • the non-light-receiving surface 113 corresponds to an example of the first surface of the silicon substrate of the present invention.
  • the finger electrodes 114p and 114n correspond to an example of a pair of finger electrodes according to the present invention.
  • the positive electrode solder connection pad 102 and the negative electrode solder connection pad 103 are both examples of connection areas for connection to the outside of the present invention.
  • the portion where the finger electrodes 114p are gathered that is, the portion of the finger electrodes 114p along the upper side in the solar battery cell 100 of FIG. 1B is an example of the gathering portion of the present invention, and the finger electrodes 114n are gathered.
  • the cell internal passivation layer 115 corresponds to an example of the internal passivation layer of the present invention.
  • FIG. 2 is an enlarged view of the vicinity of the positive electrode solder connection pad 102 of the present embodiment, which is surrounded by a broken line as a B region in FIG. In the lower part of FIG. 1B, the vicinity of the negative electrode solder connection pad 103 corresponding to the upper positive electrode solder connection pad 102 is shown.
  • the barrier portion 101 formed on the positive electrode solder connection pad 102 is a cell outer periphery passivation along the tip portion of each finger electrode 114n2, 114n3, 114n4, 114n5, 114n6, 114n7, 114n8 forming the finger electrode 114n. It is formed in an arc shape that opens toward the layer 116.
  • the tip portions of the finger electrodes 114n3 to 114n7 are depicted as being aligned, but the tip portions of the finger electrodes 114n3, 114n4, 114n6, and 114n7 may be formed so as to approach the barrier portion 101.
  • the cell internal passivation layer 115 is provided to maintain insulation between the finger electrode 114p formed on the P-type diffusion layer 117 and the finger electrode 114n formed on the N-type diffusion layer 118, SiO 2 and SiN, which are insulating materials, are provided. , TiO, TiO 2 and other oxides and nitrides. These oxides and nitrides have poor wettability with solder.
  • the barrier portion 101 in the positive electrode solder connection pad 102 is formed of the material that forms the cell internal passivation layer 115 together with the cell internal passivation layer 115, whereby the barrier portion 101 forms the positive electrode. It can suppress that the solder in the solder connection pad 102 spreads out. That is, the barrier portion 101 is formed using at least one material among oxides and nitrides such as SiO 2 , SiN, TiO, and TiO 2 which are insulating materials.
  • FIGS. 3A to 3D are process diagrams for forming the barrier portion 101.
  • FIGS. 3A to 3D show the respective steps, and show cross-sectional views taken along the line MM of FIG. 1B.
  • FIG. 3A is a diagram in which a P-type diffusion layer 117 and an N-type diffusion layer 118 are formed on a silicon substrate 112.
  • a mask is applied on the non-light-receiving surface 113 of the silicon substrate 112 to form a P-type diffusion layer 117, and then the mask pattern is changed to form an N-type diffusion layer 118.
  • FIG. 3B is a diagram of a process for forming a passivation layer.
  • the passivation layer 104 is formed on the entire surface of the non-light-receiving surface 113 so as to cover the silicon substrate 112 and the P-type diffusion layer 117 and the N-type diffusion layer 118 formed on the silicon substrate 112.
  • FIG. 3C is a diagram of a process for forming a contact hole.
  • a portion of the passivation layer 104 formed in the step shown in FIG. 3B is partially removed to form an electrically connected portion between the P-type diffusion layer 117 and the N-type diffusion layer 118.
  • Contact hole 201 is formed.
  • a mask is applied to the passivation layer 104 on the non-light-receiving surface 113 side, and etching is performed by a dry method or a wet method. Thereby, the contact hole 201 in which the P-type diffusion layer 117 and the N-type diffusion layer 118 are exposed can be formed.
  • 3B remains as the cell outer periphery passivation layer 116, the cell inner passivation layer 115, and the barrier portion 101. As shown in FIG.
  • FIG. 3D is a diagram in which the finger electrodes 114 p and 114 n and the solder connection pads 102 and 103 are connected to the P-type diffusion layer 117 and the N-type diffusion layer 118.
  • Electrolytic Cu plating is performed on the contact hole 201 where the P-type diffusion layer 117 and the N-type diffusion layer 118 exposed on the non-light-receiving surface 113 of the silicon substrate 112 are exposed, and the positive electrode solder connection pad 102, the finger electrodes 114p and 114n, and the negative electrode solder A connection pad 103 is formed.
  • plating is not formed on the cell outer periphery passivation layer 116, the cell inner passivation layer 115 and the barrier portion 101, which are insulating layers, so that these portions formed by the passivation layer 104 are exposed.
  • the barrier portion 101 is formed on the finger electrode 114n side of the positive electrode solder connection pad 102 facing the cell outer periphery passivation layer 116 and on the finger electrode 114p side of the negative electrode solder connection pad 103 facing the cell outer periphery passivation layer 116. Can be formed.
  • FIG. 3A corresponds to an example of the diffusion layer forming step of the present invention.
  • 3B and 3C corresponds to an example of a passivation layer forming step of the present invention.
  • the process shown in FIG.3 (d) is an example of the electrode formation step of this invention.
  • FIG. 4 is a diagram comparing the area of the solder connection pad of the solar battery cell of the present embodiment and the area of the solder connection pad of the conventional back contact type solar battery cell, and shows a portion of the positive electrode solder connection pad. ing.
  • the region z (the region surrounded by the one-dot chain line in FIG. 4) of the positive electrode solder connection pad 102 having the barrier portion 101 is 3.5 mm ⁇ 3.5 mm. Since the area y (area surrounded by the broken line in FIG. 4) of the positive electrode solder connection pad 701 is 10.0 mm ⁇ 10.0 mm, the area of the positive electrode solder connection pad 102 clearly having the barrier portion 101 of the present embodiment is clearly shown. The area of z is decreasing.
  • the arc-shaped barrier portion 101 opened to the cell outer periphery passivation layer 116 side is formed along the tip of the finger electrode 114n, and the size of the barrier portion 101 is set to L1: 3.2 mm, L2: 2.5 mm. , L3:
  • the area of the solar battery cell 100 of the present embodiment of 0.5 mm is 22326.9 mm 2 , and a total of six locations of the positive electrode solder connection pad 102 and the negative electrode solder connection pad 103 provided at three locations, respectively. Is 73.5 mm 2 , and the total area of the finger electrodes 114 p and 114 n is 17788.0 mm 2 .
  • the positive electrode solder connection pads 701 provided at three locations, respectively, The total area of the six locations of the negative electrode solder connection pads 702 is 600 mm 2 , and the total area of the finger electrodes 604p and 604n is 17261.5 mm 2 .
  • the area of the finger electrode of solar cell 100 of the present embodiment and that of conventional solar cell 600 are compared, in solar cell 100 of the present embodiment, the area of the finger electrode can be increased by 3%. .
  • the area of the P-type diffusion layer 607 in contact with the positive electrode solder connection pad 701 is reduced by reducing the area of the positive electrode solder connection pad 701, and the N-type diffusion layer 118 and the N-type diffusion layer 118 are connected to the portion of the reduced area.
  • the n-type diffusion layer 608 in contact with the negative electrode solder connection pad 702 is reduced by reducing the area of the negative electrode solder connection pad 702, and the P type diffusion layer is formed at the reduced area.
  • FIG. 5A is a view showing the vicinity of the positive electrode solder connection pad 102 of the joint structure in which the interconnector is connected to the positive electrode solder connection pad 102 of the solar battery cell in the present embodiment.
  • the interconnector 121 used in the present embodiment is the same as the interconnector 801 used when joining the conventional solar battery cell 600 shown in FIG.
  • the positive electrode solder connection pad 102 which is the z region shown in FIG.
  • the arc-shaped barrier portion 101 made of the same material as that of the cell inner passivation layer 115 opened to the cell outer periphery passivation layer 116 side, wetting and spreading during solder melting can be suppressed.
  • the area of the P-type diffusion layer 607 that is in contact with the conventional positive electrode solder connection pad 701 can be reduced, and the N-type diffusion layer of the present embodiment is placed at the reduced area.
  • the power generation efficiency of the back contact solar cell can be improved.
  • FIG. 5B is a view showing the vicinity of the positive electrode solder connection pad 701 of the joint structure in which the interconnector is connected to the positive electrode solder connection pad 701 of the conventional solar battery cell 600.
  • the solder 802 wets and spreads on the positive electrode solder connection pad 701 that is the y region shown in FIG. Since the positive electrode solder connection pad 701 is made of Cu by the wettability with the solder 802, the solder 802 is wet and spread when the solder 802 is heated and melted at the time of connection.
  • the solar battery cell 100 having the barrier portion 101 according to the present embodiment can clearly suppress the wetting and spreading of the solder and can prevent the finger electrode from being short-circuited.
  • Table 1 shows the results of verifying the effects of the difference in the amount of solder and the width of the barrier portion 101 (see L3 in FIG. 4) using the solar battery cell 100 having the configuration of the present embodiment.
  • the solder spreads over the barrier portion 101 even if the solder amount is 1 mg, and the solder spread cannot be suppressed.
  • the width of the barrier part 101 is 0.2 mm, wetting and spreading can be suppressed when the solder is 1 mg, but wetting and spreading cannot be suppressed when the solder is 5 mg.
  • the width of the barrier portion 101 is 0.5 mm or more, it was possible to suppress the wetting and spreading of the solder even when the solder amount was 20 mg.
  • the barrier portion 101 can suppress the wetting and spreading of the solder and can prevent the finger electrode from being short-circuited due to the solder connection.
  • the shape of the barrier portion 101 has been described as an example of an arc shape opened on the cell outer periphery passivation layer 116 side.
  • the concave shape is opened on the cell outer periphery passivation layer 116 side, Similar effects can be obtained with other shapes.
  • FIGS. 6A and 6B are diagrams showing the vicinity of the positive electrode solder connection pad of the solar battery cell having another configuration of the present embodiment in which the barrier portion has another shape.
  • symbol is used for the same component as FIG.
  • barrier portion 105 shown in FIG. 6A and the barrier portion 106 shown in FIG. 6B surround the interconnector 121 to be connected and have a gap with the interconnector 121, The same effect as the barrier part 101 can be obtained.
  • the shape of the barrier portion may be one continuous shape like the barrier portion 101 in FIG. 2 or the barrier portion 105 in FIG. 6A, or like the barrier portion 106 in FIG. A plurality of shapes may be combined.
  • the barrier unit 106 shown in FIG. 6B is divided into three parts, and has a central part 106a and parts 106b arranged on the left and right sides thereof. The central portion 106a is disposed on the inner side, and the left and right portions 106b are disposed on the outer side.
  • a portion where the connection between the inner side and the outer side of the barrier portion 106 in the positive electrode solder connection pad 102 is interrupted is the barrier portion 101.
  • the barrier portion 105 which is advantageous in terms of connection resistance between the positive electrode solder connection pad 102 and the other finger electrode 114p.
  • the barrier portion 106 having a central portion arranged outside the left and right portions is used.
  • the central portion 107a is the left and right portions 107b.
  • a barrier unit 107 disposed on the inner side may be used.
  • barrier portions 106 and 107 may be divided into four or more parts, and may be alternately arranged on the inner side and the outer side.
  • the cell inner passivation layer 115 and the cell outer periphery passivation layer 116 are formed before the positive electrode solder connection pad 102 and the negative electrode solder connection pad 103 are formed.
  • the barrier portion 101 is simultaneously formed has been described.
  • the barrier portion may be formed after the positive electrode solder connection pad 102 and the negative electrode solder connection pad 103 are formed.
  • FIG. 7 shows a cross-sectional view of the solar battery cell when the barrier portion is formed after the solder connection pad is formed.
  • the cross section shown in FIG. 7 shows a cross section of a portion corresponding to the MM cross section of FIG.
  • symbol is used for the same component as FIG.3 (d).
  • the barrier portion is formed after the step of forming the finger electrode 134n, the positive electrode solder connection pad 132, and the negative electrode solder connection pad 133 described in FIG. 3D, as shown in FIG. Formed on the positive electrode solder connection pad 132 and the negative electrode solder connection pad 133.
  • the barrier portion 131 may be formed of the same material as the cell inner passivation layer 115 and the cell outer periphery passivation layer 116, or a tape whose surface is formed of these materials is connected to the positive electrode solder connection pad 132 and the negative electrode solder connection. You may make it stick on the pad 133.
  • FIG. 1 the barrier portion 131 may be formed of the same material as the cell inner passivation layer 115 and the cell outer periphery passivation layer 116, or a tape whose surface is formed of these materials is connected to the positive electrode solder connection pad 132 and the negative electrode solder connection. You may make it stick on the pad 133.
  • the positive electrode solder connection pad 132 and the negative electrode solder connection pad 133 do not have a portion that is interrupted between the inner side and the outer side of the barrier portion 131, and therefore, between the solder connection pad and the finger electrode (for example, the finger electrode 134 n And the other portion of the negative electrode solder connection pad 133).
  • the height of the barrier part 131 to be formed can be changed, and the barrier part 131 can be made high. It is possible to reduce the width of the barrier portion 131 (L3 in FIG. 4) by increasing the barrier portion 131.
  • the position where the barrier portion is provided on the solder connection pad can be appropriately adjusted depending on the joining strength and the size of the interconnector.
  • the solar battery cell according to the present embodiment can suppress the spread of solder on the solder connection pad by providing the solder connection pad with the barrier portion, and can prevent the finger electrode from being short-circuited by the solder. .
  • the areas of the positive and negative electrode solder connection pads and the P-type and N-type diffusion layers in contact with the solder connection pads can be reduced, and the P-type diffusion layer and the P-type diffusion layer are connected to the areas where the areas are reduced. Since the finger electrode, the N-type diffusion layer, and the finger electrode connected to the N-type diffusion layer can be formed, the power generation efficiency of the back contact solar cell can be improved.
  • the solar battery cell of the present invention can improve the power generation efficiency of the back contact solar battery cell and can be applied to a solar battery module.
  • the solar cell, the junction structure, and the solar cell manufacturing method according to the present invention have the effect of reducing the area of the solder connection pad to improve the power generation efficiency, and the back contact solar cell and solar cell It is useful as a manufacturing method of a junction structure and a solar battery cell using.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

バックコンタクト型の太陽電池セルにおいて、はんだ接続部で発生するキャリアの再結合損失を低減させ、発電効率を向上できる太陽電池セルとその接合構造体を得る。 シリコン基板(112)と、シリコン基板の第1の面(113)に形成された、P型拡散層(117)およびN型拡散層(118)のそれぞれに接続した一対のフィンガー電極(114p)、(114n)と、一対のフィンガー電極間を絶縁する内部パッシベーション層(115)と、一方のフィンガー電極(114p)のフィンガー部が集結する集結部における、外部との接続のための接続エリア(102)と、その接続エリア内において、接続エリアの一方のフィンガー電極の極性とは異なる他方のフィンガー電極(114n)の先端に形成されたバリアー部(101)とを備えた。

Description

太陽電池セル、接合構造体、および太陽電池セルの製造方法
 本発明は、バックコンタクト型の太陽電池セル、太陽電池セルを用いた接合構造体および太陽電池セルの製造方法に関するものである。
 太陽電池は発電効率の向上を目指し、古くから多くの研究が行われてきた。現在もコンマ数%の発電効率向上のために、さまざまな研究が行われているなかで、太陽電池の受光面積の拡大は発電効率の向上に非常に有効な手段である。
 太陽電池の受光面積を拡大するために、太陽電池を構成する太陽電池セルにおいて、非受光面にP型拡散層とN型拡散層を形成し電極を設けることで、受光面に電極がないバックコンタクト型の太陽電池セルが開示されている(例えば、特許文献1および特許文献2参照)。
 図8(a)~(c)は、一般的なバックコンタクト型の太陽電池セルを示す図である。
 図8(a)は、バックコンタクト型の太陽電池セルの受光面を示す模式図である。バックコンタクト型の太陽電池セル600は、シリコン基板602の表面に受光面601を設けている。
 図8(b)は、バックコンタクト型の太陽電池セルの非受光面を示す模式図である。バックコンタクト型の太陽電池セル600の裏面である非受光面603には、フィンガー電極604nおよび604pとセル内部パッシベーション層605とセル外周パッシベーション層606が形成されている。
 図8(c)は、バックコンタクト型の太陽電池セルの、図8(b)のL-L断面を示す図である。
 バックコンタクト型の太陽電池セル600は、シリコン基板602の非受光面603にP型拡散層607およびN型拡散層608が形成されている。P型拡散層607およびN型拡散層608は、キャリアの再結合損失を低減するために、一定の間隔で交互にシリコン基板602の非受光面603に形成されている。また、P型拡散層607とN型拡散層608の間には、絶縁を保つために、セル内部パッシベーション層605が形成されている。さらに、シリコン基板602の非受光面603側の外周の端部には、セル外周パッシベーション層606が形成されている。セル内部パッシベーション層605およびセル外周パッシベーション層606には、絶縁性の良いSiOやSiNが用いられている。
 さらに、太陽光が受光面601から入射した際にP型拡散層607とN型拡散層608から電気を取り出すための、フィンガー電極604pおよび604nが各拡散層607および608上に形成されている。フィンガー電極604pおよび604nの材料としては、電気伝導性の良いCu、Sn、Ag、Ni等が1種類もしくは2種類以上用いられる。
 図9(a)は、図8(b)に示すバックコンタクト型の太陽電池セル600の非受光面603の全体の詳細を示す模式図である。
 非受光面603には、外部回路もしくは、他のバックコンタクト型の太陽電池セルに接続するために、正極はんだ接続パッド701と負極はんだ接続パッド702が形成されている。
 図9(b)は、図9(a)にA領域として破線で囲んでいる、正極はんだ接続パッド701付近を示す図である。図9(b)の下方には、上方の正極はんだ接続パッド701に対応する負極はんだ接続パッド702付近を記載している。
 正極はんだ接続パッド701は、フィンガー電極604pが集まった領域のうちの、図9(b)に示した破線領域yであり、図9(a)に示した負極はんだ接続パッド702に集結するフィンガー電極604n1~604n9と、セル外周パッシベーション層606に囲まれた領域である。正極はんだ接続パッド701は、図9(b)に示すようにフィンガー電極604pが集まった部分であり、フィンガー電極604pおよび604nと同じ材料であるCu、Sn、Ag、Ni等が1種類もしくは2種類以上用いられ形成されている。
 図10は、2枚のバックコンタクト型の太陽電池セル600を電気的に接続した接合構造体の接続部の図を示す。
 2枚のバックコンタクト型の太陽電池セル600は、正極はんだ接続パッド701と負極はんだ接続パッド702をインターコネクタ801により、はんだ802を用いて接続している。はんだ材料としては、SnAgCu系のはんだを用いている。
 2枚のバックコンタクト型の太陽電池セル600の接続について説明すると、はじめに、太陽電池セル600に形成された極性の異なるはんだ接続パッド701および702の双方にはんだ802が供給される。そして、それらのはんだ接続パッド701および702間を跨ぐようにインターコネクタ801が搭載された後に、はんだ802の融点以上に加熱される。この加熱により正極はんだ接続パッド701と負極はんだ接続パッド702がインターコネクタ801により、はんだ802を用いて接合され、目的の電圧、電流を取り出すことが可能となる。
 図11は、特許文献3に記載された、従来の2枚のバックコンタクト型の太陽電池セルを、はんだ材料によりインターコネクタを用いて接続した接合構造体の接続部を示した図である。
 図11に示す接合構造体は、2枚のバックコンタクト型の太陽電池セル650の対向する正極はんだ接続パッド751および負極はんだ接続パッド752にはんだ852が供給され、インターコネクタ853を搭載し、はんだ852を加熱溶融し、接合されたものである。
 複数の正極はんだ接続パッド751および負極はんだ接続パッド752間を、1枚の平板状のインターコネクタ853で接続する構成としたことにより、2枚のバックコンタクト型の太陽電池セル650の接続作業を簡便にしている。
米国特許第5053083号明細書 米国特許第4927770号明細書 特開2005-191479号公報
 しかしながら、従来の太陽電池セルの構成では、はんだによって外部と接続するためのはんだ接続パッドの部分の面積を広く形成しなければならないため、発電効率が低下していた。
 例えば、図11に示した特許文献3に記載の接合構造体においても、正極はんだ接続パッド751および負極はんだ接続パッド752には、はんだ852と接合させるために、それらの形成材料としてはんだ852と濡れのよいCu、Sn、Ag、Ni等の金属材料を1種類もしくは2種類以上用いられる。そのため、はんだ852を加熱溶融させて接合する際に、はんだ852が正極はんだ接続パッド751上および負極はんだ接続パッド752上に濡れ拡がる。はんだ852が濡れ拡がることで、セル内部パッシベーション層655を越えて、フィンガー電極654nまたは654pに接すると正極と負極がショートする。そこで、はんだ852の濡れ拡がりによるショートを防止するために、はんだ852の濡れ拡がりを考慮し、正極はんだ接続パッド751および負極はんだ接続パッド752の面積を広く設計する必要があった。
 正極はんだ接続パッド751および負極はんだ接続パッド752の面積を広くすることで、正極はんだ接続パッド751に接している部分のP型拡散層から、フィンガー電極654nに接続されているN型拡散層までのキャリアの移動距離が長くなり、また、負極はんだ接続パッド752に接している部分のN型拡散層から、フィンガー電極654pに接続されているP型拡散層までのキャリアの移動距離も長くなる。それに伴ってキャリアの再結合損失が増加するため、発電効率が低下していた。
 本発明は、上記従来の課題を考慮して、発電効率を向上させた太陽電池セル、接合構造体および太陽電池セルの製造方法を提供することを目的とする。
 上述した課題を解決するために、第1の本発明は、
 シリコン基板と、
 前記シリコン基板の第1の面に形成された、P型拡散層およびN型拡散層のそれぞれに接続した一対のフィンガー電極と、
 前記一対のフィンガー電極間を絶縁する内部パッシベーション層と、
 一方の前記フィンガー電極のフィンガー部が集結する集結部における、外部との接続のための接続エリアと、
 前記接続エリア内において、前記接続エリアの前記一方のフィンガー電極の極性とは異なる他方の前記フィンガー電極の先端に形成されたバリアー部とを備えた、太陽電池セルである。
 また、第2の本発明は、
 前記一対のフィンガー電極のそれぞれに、前記接続エリアがある、第1の本発明の太陽電池セルである。
 また、第3の本発明は、
 前記バリアー部は、円弧形状をしており、前記円弧形状の外側に、前記他方のフィンガー電極の先端が配置されている、第1の本発明の太陽電池セルである。
 また、第4の本発明は、
 前記バリアー部は、Si酸化物、Si窒化物、Ti酸化物およびTi窒化物の少なくとも1種類の材料で形成されている、第1の本発明の太陽電池セルである。
 また、第5の本発明は、
 第2の本発明の太陽電池セルを、複数備え、
 前記太陽電池セルは、互いに異なる極性の前記接続エリアが対向するように配置されており、
 隣接する前記太陽電池セルは、対向するそれぞれの前記バリアー部の間に存在する前記接続エリアの部分同士が、はんだで接続されるインターコネクトを介して連結されている、接合構造体である。
 また、第6の本発明は、
 シリコン基板の第1の面に、P型拡散層およびN型拡散層のそれぞれに接続した一対のフィンガー電極が形成された太陽電池セルの製造方法であって、
 前記シリコン基板の第1の面に、前記P型拡散層およびN型拡散層を交互に配列してそれぞれ櫛型に形成する拡散層形成ステップと、
 前記拡散層形成ステップの後、前記シリコン基板の第1の面に、前記一対のフィンガー電極間を絶縁するための内部パッシベーション層と共に、少なくとも一方の前記フィンガー電極のフィンガー部が集結する集結部における外部との接続のための接続エリアに、前記接続エリアの前記フィンガー電極の極性とは異なる他方の前記フィンガー電極の先端に沿ったバリアー部を形成する、パッシベーション層形成ステップと、
 前記パッシベーション層形成ステップの後、前記シリコン基板の第1の面の、前記内部パッシベーション層および前記バリアー部が形成されていない部分に金属を付着させて、前記一対のフィンガー電極を形成する電極形成ステップとを備えた、太陽電池セルの製造方法である。
 本発明により、はんだ接続パッドの面積を縮小して発電効率を向上させた太陽電池セル、接合構造体および太陽電池セルの製造方法を提供できる。
(a)本発明の実施の形態における、太陽電池セルの受光面を示す模式上面図、(b)本発明の実施の形態における、太陽電池セルの非受光面を示す模式底面図 本発明の実施の形態における、太陽電池セルの正極はんだ接続パッド付近および負極パッド付近を示す図 (a)~(d)本発明の実施の形態における、バリアー部を形成する工程図 本発明の実施の形態の太陽電池セルのはんだ接続パッドの面積と、従来のバックコンタクト型の太陽電池セルのはんだ接続パッドの面積を比較した図 (a)本発明の実施の形態における、太陽電池セルの正極はんだ接続パッドにインターコネクタを接続したときの正極はんだ接続パッド付近を示す図、(b)従来の太陽電池セルのはんだ正極はんだ接続パッドにインターコネクタを接続したときの正極はんだ接続パッド付近を示す図 本発明の実施の形態における、バリアー部の形状が異なる他の構成の太陽電池セルの正極はんだ接続パッド付近を示す図 本発明の実施の形態における、バリアー部の形状が異なる他の構成の太陽電池セルの正極はんだ接続パッド付近を示す図 本発明の実施の形態における、バリアー部の形状が異なる他の構成の太陽電池セルの正極はんだ接続パッド付近を示す図 本発明の実施の形態における、はんだ接続パッドを形成した後にバリアー部を形成した場合の太陽電池セルの断面図 (a)従来のバックコンタクト型の太陽電池セルの受光面を示す上面図、(b)従来のバックコンタクト型の太陽電池セルの非受光面を示す底面図、(c)従来のバックコンタクト型の太陽電池セルの断面図 従来のバックコンタクト型の太陽電池セルの非受光面の詳細を示す模式図 従来のバックコンタクト型の太陽電池セルの正極はんだ接続パッド付近および負極パッド付近を示す模式図 従来の2枚のバックコンタクト型の太陽電池セルを電気的に接続した接合構造体の接続部を示した図 従来の2枚のバックコンタクト型の太陽電池セルを、はんだ材料により1枚の板状のインターコネクタで接合した接合構造体の接続部を示した図
 以下本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態)
 図1(a)および(b)は、本発明の実施の形態における、バリアー部を有した太陽電池セルを模式的に示した上面図および底面図である。
 図1(a)は、本実施の形態のバックコンタクト型の太陽電池セルの受光面111を示す上面図である。
 本実施の形態の太陽電池セル100は、シリコン基板112で構成されており、シリコン基板112は、厚み0.2mm、形状が8角形となっており、隣り合う辺が110.0mm、30.0mmで向かい合う辺が平行になっている。シリコン基板112は、シリコンインゴットのサイズに由来するものであり、シリコン基板112の厚みや大きさは、上記サイズに限定するものではない。
 図1(b)は、本実施の形態の太陽電池セル100の非受光面113を示す底面図である。
 非受光面113には、正極はんだ接続パッド102と負極はんだ接続パッド103が3箇所ずつ、太陽電池セル100の長辺の対辺の内側に対向するように形成されている。また、正極はんだ接続パッド102に集まるフィンガー電極114pと負極はんだ接続パッドに集まるフィンガー電極114nが櫛歯状に形成されており(櫛歯状の図は、図8(b)参照)、フィンガー電極114pおよび114nの間には、絶縁層としてのセル内部パッシベーション層115が形成されている。また、それぞれのはんだ接続パッド102および103には、バリアー部101が形成されている。
 なお、非受光面113が、本発明のシリコン基板の第1の面の一例にあたる。また、フィンガー電極114pおよび114nが、本発明の一対のフィンガー電極の一例にあたる。また、正極はんだ接続パッド102および負極はんだ接続パッド103が、いずれも、本発明の外部との接続のための接続エリアの一例にあたる。また、フィンガー電極114pが集結している部分、すなわち図1(b)の太陽電池セル100において上辺に沿ったフィンガー電極114pの部分が、本発明の集結部の一例にあたり、フィンガー電極114nが集結してセル内部パッシベーション層115で区切られていない部分、すなわち図1(b)の太陽電池セル100において下辺に沿ったフィンガー電極114nの部分も、本発明の集結部の一例にあたる。また、セル内部パッシベーション層115が、本発明の内部パッシベーション層の一例にあたる。
 図2は、図1(b)にB領域として破線で囲んでいる、本実施の形態の正極はんだ接続パッド102付近の拡大図である。図1(b)の下方には、上方の正極はんだ接続パッド102に対応する負極はんだ接続パッド103付近を記載している。
 正極はんだ接続パッド102に形成されているバリアー部101は、フィンガー電極114nを形成している114n2、114n3、114n4、114n5、114n6、114n7、114n8の各フィンガー電極の先端部分に沿って、セル外周パッシベーション層116に向かって開口している円弧形状に形成されている。この図2では、フィンガー電極114n3~114n7の先端部分を揃えて描いているが、フィンガー電極114n3、114n4、114n6、114n7の先端部分をバリアー部101に近づくように形成しても良い。
 セル内部パッシベーション層115は、P型拡散層117上に形成したフィンガー電極114pとN型拡散層118上に形成したフィンガー電極114nとの絶縁を保つために設けるので、絶縁物質であるSiO、SiN、TiO、TiO等の酸化物および窒化物で形成される。これらの酸化物および窒化物は、はんだとの濡れ性が悪い。セル内部パッシベーション層115を形成する際に、セル内部パッシベーション層115と共に、セル内部パッシベーション層115を形成する材料で、正極はんだ接続パッド102内のバリアー部101を形成することで、バリアー部101によって正極はんだ接続パッド102内のはんだが濡れ拡がることを抑制できる。すなわち、バリアー部101は、絶縁物質であるSiO、SiN、TiO、TiO等の酸化物および窒化物のうち少なくとも1種類の材料を用いて形成されている。
 次に、本実施の形態におけるバリアー部101の形成方法について説明する。
 図3(a)~(d)は、バリアー部101を形成する工程図である。図3(a)~(d)は、それぞれの工程を示しており、図1(b)のM-M断面の断面図を示している。
 図3(a)は、シリコン基板112にP型拡散層117およびN型拡散層118を形成した図である。
 シリコン基板112の非受光面113上にマスクを施し、P型拡散層117が形成され、次にマスクパターンを変更し、N型拡散層118が形成される。
 図3(b)は、パッシベーション層を形成する工程の図である。
 パッシベーション層104は、シリコン基板112と、シリコン基板112に形成したP型拡散層117およびN型拡散層118とを覆うように、非受光面113の全面に形成される。
 図3(c)は、コンタクトホールを形成する工程の図である。
 図3(b)に示した工程で形成したパッシベーション層104を一部除去することにより、P型拡散層117とN型拡散層118に電気的な接続箇所の形成を目的とする、パッシベーション層104のコンタクトホール201が形成される。パッシベーション層104のコンタクトホール201の形成方法としては、非受光面113側のパッシベーション層104にマスクを施し、ドライ方式もしくはウェット方式でエッチングが行われる。これにより、P型拡散層117とN型拡散層118が露出したコンタクトホール201を形成することができる。また、図3(b)に示すパッシベーション層104のエッチングを行わない箇所は、セル外周パッシベーション層116とセル内部パッシベーション層115とバリアー部101として残存する。
 図3(d)は、フィンガー電極114pおよび114nと、はんだ接続パッド102および103を、P型拡散層117およびN型拡散層118に接続させた図である。
 シリコン基板112の非受光面113に形成したP型拡散層117とN型拡散層118が露出したコンタクトホール201に、電解Cuめっきを行い、正極はんだ接続パッド102とフィンガー電極114pおよび114nと負極はんだ接続パッド103が形成される。電解Cuめっきでは、絶縁層であるセル外周パッシベーション層116とセル内部パッシベーション層115とバリアー部101の上にはめっきが形成されないため、パッシベーション層104で形成されたこれらの部分は露出する。
 この工程によって、正極はんだ接続パッド102の、セル外周パッシベーション層116に対向するフィンガー電極114n側、および、負極はんだ接続パッド103の、セル外周パッシベーション層116に対向するフィンガー電極114p側に、バリアー部101が形成できる。
 なお、図3(a)に示す工程が、本発明の拡散層形成ステップの一例にあたる。また、図3(b)および(c)に示す工程が、本発明のパッシベーション層形成ステップの一例にあたる。また、図3(d)に示す工程が、本発明の電極形成ステップの一例にあたる。
 図4は、本実施の形態の太陽電池セルのはんだ接続パッドの面積と、従来のバックコンタクト型の太陽電池セルにおけるはんだ接続パッドの面積を比較した図であり、正極はんだ接続パッドの部分を示している。
 本実施の形態の太陽電池セル100におけるフィンガー電極114nを覆う箇所のセル内部パッシベーション層115において、図8~図10に示した従来の太陽電池セル600と比較して、増加した部分を実線で示している。また、本実施の形態のバックコンタクト型の太陽電池セル100のセル内部パッシベーション層115において、従来の太陽電池セル600と同じ箇所は点線で示している。
 本実施の形態の太陽電池セル100の、バリアー部101を有する正極はんだ接続パッド102の領域z(図4の一点差線で囲んだ領域)は、3.5mm×3.5mmであり、従来の正極はんだ接続パッド701の領域y(図4の破線で囲んだ領域)は、10.0mm×10.0mmであるため、明らかに本実施の形態のバリアー部101を有する正極はんだ接続パッド102の領域zの面積が減少している。
 このように、フィンガー電極114nの先端に沿ってセル外周パッシベーション層116側に開口した円弧状のバリアー部101を形成し、バリアー部101の大きさを、L1:3.2mm、L2:2.5mm、L3:0.5mmとする本実施の形態の太陽電池セル100の面積は、22326.9mmであり、それぞれ3箇所に設けた正極はんだ接続パッド102と負極はんだ接続パッド103の6箇所の合計の面積は、73.5mmであり、フィンガー電極114pおよび114nの合計の面積は、17788.0mmである。一方、バリアー部101を形成しない従来の太陽電池セル600で、太陽電池セルの面積が本実施の形態の太陽電池セル100の面積と同様の場合、それぞれ3箇所に設けた正極はんだ接続パッド701と負極はんだ接続パッド702の6箇所の合計の面積は600mmであり、フィンガー電極604pおよび604nの合計の面積は17261.5mmである。
 本実施の形態の太陽電池セル100と従来の太陽電池セル600のフィンガー電極の面積を比較すると、本実施の形態の太陽電池セル100では、フィンガー電極の面積を3%拡大することが可能である。正極はんだ接続パッド701の面積の削減による正極はんだ接続パッド701に接するP型拡散層607の面積削減を行い、その削減した面積の箇所に、N型拡散層118およびそのN型拡散層118に接続したフィンガー電極114nを形成し、また、負極はんだ接続パッド702の面積の削減による負極はんだ接続パッド702に接するN型拡散層608の面積削減を行い、その削減した面積の箇所に、P型拡散層117およびそのP型拡散層117に接続したフィンガー電極114pを形成することで、キャリアの移動距離が短縮でき、キャリアの再結合損失が低減可能である。
 図5(a)は、本実施の形態における、太陽電池セルの正極はんだ接続パッド102にインターコネクタを接続した接合構造体の、正極はんだ接続パッド102付近を示す図である。
 本実施の形態で用いるインターコネクタ121は、図10に示す従来の太陽電池セル600を接合する際に用いたインターコネクタ801と同じものである。
 本実施の形態の太陽電池セル100とインターコネクタ121とをはんだ122を用いて接続する際に、図5(a)に示すz領域である正極はんだ接続パッド102内にフィンガー電極114nの先端に沿って、セル外周パッシベーション層116側に開口した円弧状の、セル内部パッシベーション層115と同じ材料で形成されたバリアー部101を設けたことによって、はんだ溶融時の濡れ拡がりを抑制できる。はんだ溶融時の濡れ拡がりを抑制できることにより、従来の正極はんだ接続パッド701と接していたP型拡散層607の面積を削減でき、その削減した面積の箇所に、本実施の形態のN型拡散層118およびそのN型拡散層118に接続したフィンガー電極114nを形成し、また、従来の負極はんだ接続パッド702と接していたN型拡散層608の面積も削減でき、その削減した面積の箇所に、本実施の形態のP型拡散層117およびそのP型拡散層117に接続したフィンガー電極114pを形成することで、バックコンタクト型の太陽電池セルの発電効率を向上することが出来る。
 図5(b)は、従来の太陽電池セル600の正極はんだ接続パッド701にインターコネクタを接続した接合構造体の、正極はんだ接続パッド701付近を示す図である。
 太陽電池セル600とインターコネクタ801とをはんだ802を用いて接続する際に、図5(b)に示すy領域である正極はんだ接続パッド701に、はんだ802が濡れ拡がる。正極はんだ接続パッド701は、はんだ802との濡れ性がCuにより形成されるため、接続時にはんだ802を加熱溶融させるとはんだ802が濡れ拡がる。
 この結果より、本実施の形態のバリアー部101を有する太陽電池セル100は、明らかにはんだの濡れ広がりを抑制でき、フィンガー電極のショートを防止することが可能である。
 表1は、本実施の形態の構成の太陽電池セル100を用いて、はんだ量の違いとバリアー部101の幅(図4のL3参照)の効果を検証した結果を示している。
 はんだ122を溶融させてバックコンタクト型の太陽電池セル100のはんだ接続パッド102および103とインターコネクタ121を接続する際に、バリアー部101の幅の違いによるフィンガー電極114pと114n間のショートの有無を確認した。ショート無しの場合を○、ショート有りの場合を×と示している。
Figure JPOXMLDOC01-appb-T000001
 バリアー部101の露出している幅が0.1mmの場合、はんだ量が1mgでもバリアー部101を越えてはんだが濡れ拡がり、はんだの濡れ拡がりを抑制することが出来なかった。一方、バリアー部101の幅が0.2mmでは、はんだが1mgの場合は濡れ拡がりを抑制できるが、はんだが5mgになると濡れ拡がりは抑制できなかった。しかし、バリアー部101の幅が0.5mm以上の場合は、はんだ量20mgとなっても、はんだの濡れ拡がりを抑制することが可能であった。
 これらの結果より、本実施の形態のバリアー部101を有する太陽電池セル100を、はんだを用いてインターコネクタで接合した接合構造体は、従来の太陽電池セル600を、はんだを用いてインターコネクタで接合した接合構造体と比較して、バリアー部101によってはんだの濡れ拡がりを抑制でき、はんだ接続によるフィンガー電極のショートを防止することが可能である。
 なお、上記した実施の形態では、バリアー部101の形状を、セル外周パッシベーション層116側に開口した円弧状とする例で説明したが、セル外周パッシベーション層116側に開口した凹形状であれば、その他の形状であっても同様の効果が得られる。
 図6(a)および(b)に、バリアー部を他の形状とした、本実施の形態の他の構成の太陽電池セルの正極はんだ接続パッド付近の図を示す。なお、図2と同じ構成部分には、同じ符号を用いている。
 図6(a)に示すバリアー部105および図6(b)に示すバリアー部106のように、接続されるインターコネクタ121を取り囲み、インターコネクタ121との間に隙間を有するような形状であれば、バリアー部101と同様の効果が得られる。
 また、バリアー部の形状は、図2のバリアー部101や図6(a)のバリアー部105のように連続した一つの形状としてもよいし、図6(b)のバリアー部106のように、複数の形状を組み合わせて構成されていてもよい。図6(b)に示すバリアー部106は、3つの部分に分けられており、中央部分106aと、その左右に配置されている部分106bを有している。この中央部分106aが内側に、左右の部分106bが外側に配置されている。
 図6(b)のバリアー部106のように複数の形状を組み合わせて構成した場合には、正極はんだ接続パッド102におけるバリアー部106の内側と外側との間で接続が途絶える部分を、バリアー部101やバリアー部105よりも少なくでき、正極はんだ接続パッド102とそれ以外のフィンガー電極114pの部分との間の接続抵抗の点で有利となる。
 また、図6(b)に示す構成の場合、バリアー部106の内側と外側で正極はんだ接続パッド102がつながっている部分があるが、バリアー部106のようにバリアー部106の内側から外側に至る経路(図6(b)の矢印R参照)を長くすることにより、はんだの外側への濡れ広がりを抑制できる。
 なお、図6(b)では、中央部分が左右部分の外側に配置されているバリアー部106が用いられているが、図6(c)に示すように、中央部分107aが左右の部分107bの内側に配置されているバリアー部107が用いられても良い。
 また、バリアー部106、107が4つ以上の部分に分かれて構成され、内側と外側に交互に配置されていても良い。
 また、上記した本実施の形態では、図3を用いて説明したように、正極はんだ接続パッド102および負極はんだ接続パッド103を形成する前に、セル内部パッシベーション層115およびセル外周パッシベーション層116を形成する際に、同時にバリアー部101を形成する例で説明したが、正極はんだ接続パッド102および負極はんだ接続パッド103を形成した後に、バリアー部を形成するようにしてもよい。
 図7に、はんだ接続パッドを形成した後にバリアー部を形成した場合の、太陽電池セルの断面図を示す。図7に示した断面は、図1(b)のM-M断面に対応する部分の断面を示している。なお、図3(d)と同じ構成部分には、同じ符号を用いている。
 図3(d)で説明した、フィンガー電極134n、正極はんだ接続パッド132および負極はんだ接続パッド133を形成する工程の後に、バリアー部を形成するので、図7に示すように、バリアー部131が、正極はんだ接続パッド132および負極はんだ接続パッド133の上に形成される。
 バリアー部131は、例えば、セル内部パッシベーション層115およびセル外周パッシベーション層116と同じ材料で形成してもよいし、表面がこれらの材料で形成されているテープを正極はんだ接続パッド132および負極はんだ接続パッド133に貼り付けるようにしてもよい。
 図7に示す構成の場合、正極はんだ接続パッド132および負極はんだ接続パッド133において、バリアー部131の内側と外側の部分で途切れる部分が無いので、はんだ接続パッドとフィンガー電極間(例えば、フィンガー電極134nとそれ以外の負極はんだ接続パッド133の部分との間)の接続抵抗の点で有利である。また、形成するバリアー部131の高さを変えることができ、バリアー部131を高くすることもできる。バリアー部131を高くすることで、バリアー部131の幅(図4のL3)を細くすることも可能である。
 また、はんだ接続パットにバリアー部を設ける位置については、接合強度とインターコネクタの大きさにより、適宜調整することも可能である。
 以上に説明したように、本実施の形態の太陽電池セルは、はんだ接続パッドにバリアー部を設けたことにより、はんだ接続パッドにおけるはんだの濡れ拡がりを抑制でき、はんだによるフィンガー電極のショートが防止できる。そして、正極および負極はんだ接続パッドとそれらのはんだ接続パッドに接しているP型およびN型拡散層の面積を削減でき、その面積を削減した箇所にP型拡散層およびそのP型拡散層に接続したフィンガー電極と、N型拡散層およびそのN型拡散層に接続したフィンガー電極を形成できるので、バックコンタクト型の太陽電池セルの発電効率を向上させることが出来る。
 このように本発明の太陽電池セルは、バックコンタクト型の太陽電池セルの発電効率を向上させることが可能であり、太陽電池のモジュールに適用できる。
 本発明に係る太陽電池セル、接合構造体および太陽電池セルの製造方法は、はんだ接続パッドの面積を縮小して発電効率を向上させる効果を有し、バックコンタクト型の太陽電池セル、太陽電池セルを用いた接合構造体および太陽電池セルの製造方法等として有用である。
 100 太陽電池セル
 101 バリアー部
 102 正極はんだ接続パッド
 103 負極はんだ接続パッド
 104 パッシベーション層
 105 バリアー部
 106 バリアー部
 111 受光面
 112 シリコン基板
 113 非受光面
 114n、114p、114n2~114n8 フィンガー電極
 115 セル内部パッシベーション層
 116 セル外周パッシベーション層
 117 P型拡散層
 118 N型拡散層
 121 インターコネクタ
 122 はんだ
 131 バリアー部
 132 正極はんだ接続パッド
 133 負極はんだ接続パッド
 134n フィンガー電極
 201 コンタクトホール
 600、650 太陽電池セル
 601 受光面
 602 シリコン基板
 603 非受光面
 604n、604p、604n1~604n9、654n、654p フィンガー電極
 605、655 セル内部パッシベーション層
 606 セル外周パッシベーション層
 607 P型拡散層
 608 N型拡散層
 701、751 正極はんだ接続パッド
 702、752 負極はんだ接続パッド
 801 インターコネクタ
 802、852 はんだ
 803、853 インターコネクタ

Claims (6)

  1.  シリコン基板と、
     前記シリコン基板の第1の面に形成された、P型拡散層およびN型拡散層のそれぞれに接続した一対のフィンガー電極と、
     前記一対のフィンガー電極間を絶縁する内部パッシベーション層と、
     一方の前記フィンガー電極のフィンガー部が集結する集結部における、外部との接続のための接続エリアと、
     前記接続エリア内において、前記接続エリアの前記一方のフィンガー電極の極性とは異なる他方の前記フィンガー電極の先端に形成されたバリアー部とを備えた、太陽電池セル。
  2.  前記一対のフィンガー電極のそれぞれに、前記接続エリアがある、請求項1に記載の太陽電池セル。
  3.  前記バリアー部は、円弧形状をしており、前記円弧形状の外側に、前記他方のフィンガー電極の先端が配置されている、請求項1に記載の太陽電池セル。
  4.  前記バリアー部は、Si酸化物、Si窒化物、Ti酸化物およびTi窒化物の少なくとも1種類の材料で形成されている、請求項1に記載の太陽電池セル。
  5.  請求項2に記載の太陽電池セルを、複数備え、
     前記太陽電池セルは、互いに異なる極性の前記接続エリアが対向するように配置されており、
     隣接する前記太陽電池セルは、対向するそれぞれの前記バリアー部の間に存在する前記接続エリアの部分同士が、はんだで接続されるインターコネクトを介して連結されている、接合構造体。
  6.  シリコン基板の第1の面に、P型拡散層およびN型拡散層のそれぞれに接続した一対のフィンガー電極が形成された太陽電池セルの製造方法であって、
     前記シリコン基板の第1の面に、前記P型拡散層およびN型拡散層を交互に配列してそれぞれ櫛型に形成する拡散層形成ステップと、
     前記拡散層形成ステップの後、前記シリコン基板の第1の面に、前記一対のフィンガー電極間を絶縁するための内部パッシベーション層と共に、少なくとも一方の前記フィンガー電極のフィンガー部が集結する集結部における外部との接続のための接続エリアに、前記接続エリアの前記フィンガー電極の極性とは異なる他方の前記フィンガー電極の先端に沿ったバリアー部を形成する、パッシベーション層形成ステップと、
     前記パッシベーション層形成ステップの後、前記シリコン基板の第1の面の、前記内部パッシベーション層および前記バリアー部が形成されていない部分に金属を付着させて、前記一対のフィンガー電極を形成する電極形成ステップとを備えた、太陽電池セルの製造方法。
PCT/JP2012/002862 2011-04-26 2012-04-26 太陽電池セル、接合構造体、および太陽電池セルの製造方法 WO2012147352A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280020107.1A CN103503157A (zh) 2011-04-26 2012-04-26 太阳能电池单元、接合结构体、及太阳能电池单元的制造方法
US14/113,229 US20140041707A1 (en) 2011-04-26 2012-04-26 Solar battery cell, junction structure, and solar battery cell fabrication method
JP2013511936A JP5627054B2 (ja) 2011-04-26 2012-04-26 太陽電池セル、接合構造体、および太陽電池セルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011098157 2011-04-26
JP2011-098157 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147352A1 true WO2012147352A1 (ja) 2012-11-01

Family

ID=47071882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002862 WO2012147352A1 (ja) 2011-04-26 2012-04-26 太陽電池セル、接合構造体、および太陽電池セルの製造方法

Country Status (4)

Country Link
US (1) US20140041707A1 (ja)
JP (1) JP5627054B2 (ja)
CN (1) CN103503157A (ja)
WO (1) WO2012147352A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816155B1 (ko) * 2017-02-13 2018-01-08 엘지전자 주식회사 태양 전지 패널
WO2022107542A1 (ja) * 2020-11-18 2022-05-27 株式会社カネカ 太陽電池セル及び太陽電池モジュール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD765590S1 (en) * 2013-12-11 2016-09-06 Solaero Technologies Corp. Solar cell
USD765024S1 (en) * 2013-12-11 2016-08-30 Solaero Technologies Corp. Solar cell
EP3660927B1 (en) * 2018-11-30 2021-11-10 CSEM Centre Suisse D'electronique Et De Microtechnique SA Photovoltaic module
CN112349791B (zh) * 2020-10-27 2023-11-28 浙江晶科能源有限公司 太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191186A (ja) * 2003-12-25 2005-07-14 Sekisui Jushi Co Ltd 太陽電池モジュール
JP2008028366A (ja) * 2006-06-23 2008-02-07 Sharp Corp 光電変換素子およびインターコネクタ付き光電変換素子
DE102007003682A1 (de) * 2007-01-25 2008-08-07 Institut Für Solarenergieforschung Gmbh Verschaltung von Rückseitenkontaktsolarzellen mit Lötstoplack und Metalldrähten
WO2008115309A2 (en) * 2007-03-16 2008-09-25 Sunpower Corporation Solar cell contact fingers and solder pad arrangement for enhanced efficiency
JP2009176782A (ja) * 2008-01-21 2009-08-06 Sanyo Electric Co Ltd 太陽電池モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979154B2 (ja) * 2000-06-07 2012-07-18 ルネサスエレクトロニクス株式会社 半導体装置
US6781065B1 (en) * 2000-06-08 2004-08-24 The Whitaker Corporation Solder-coated articles useful for substrate attachment
US20050022857A1 (en) * 2003-08-01 2005-02-03 Daroczi Shandor G. Solar cell interconnect structure
US8148627B2 (en) * 2006-08-25 2012-04-03 Sunpower Corporation Solar cell interconnect with multiple current paths
US8138426B2 (en) * 2007-11-05 2012-03-20 Panasonic Corporation Mounting structure
US9029689B2 (en) * 2010-12-23 2015-05-12 Sunpower Corporation Method for connecting solar cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191186A (ja) * 2003-12-25 2005-07-14 Sekisui Jushi Co Ltd 太陽電池モジュール
JP2008028366A (ja) * 2006-06-23 2008-02-07 Sharp Corp 光電変換素子およびインターコネクタ付き光電変換素子
DE102007003682A1 (de) * 2007-01-25 2008-08-07 Institut Für Solarenergieforschung Gmbh Verschaltung von Rückseitenkontaktsolarzellen mit Lötstoplack und Metalldrähten
WO2008115309A2 (en) * 2007-03-16 2008-09-25 Sunpower Corporation Solar cell contact fingers and solder pad arrangement for enhanced efficiency
JP2009176782A (ja) * 2008-01-21 2009-08-06 Sanyo Electric Co Ltd 太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816155B1 (ko) * 2017-02-13 2018-01-08 엘지전자 주식회사 태양 전지 패널
WO2022107542A1 (ja) * 2020-11-18 2022-05-27 株式会社カネカ 太陽電池セル及び太陽電池モジュール

Also Published As

Publication number Publication date
JP5627054B2 (ja) 2014-11-19
US20140041707A1 (en) 2014-02-13
JPWO2012147352A1 (ja) 2014-07-28
CN103503157A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5627054B2 (ja) 太陽電池セル、接合構造体、および太陽電池セルの製造方法
US9502590B2 (en) Photovoltaic devices with electroplated metal grids
KR101110951B1 (ko) 에미터 랩 쓰루 백 컨택 실리콘 태양전지의 컨택 제작
JP5149376B2 (ja) 太陽電池素子及び太陽電池モジュール
WO2017177726A1 (zh) 一种太阳能电池模组及其制备方法和组件、系统
EP2302689A1 (en) Photovoltaic system and manufacturing method thereof
JP6272391B2 (ja) 太陽電池と太陽電池モジュール
TWI585989B (zh) 太陽電池單元、太陽電池模組、太陽電池單元之製造方法及太陽電池模組之製造方法
CN218677162U (zh) 一种太阳能电池串和光伏组件
CN102884635A (zh) 具有特殊汇流条形状的太阳能电池,含有所述太阳能电池的太阳能电池安排,以及用于生产太阳能电池的方法
JP2008186928A (ja) 太陽電池および太陽電池モジュール
KR101875742B1 (ko) 태양 전지 모듈
TW201731117A (zh) 背面接觸式太陽電池的內連線以及具有該內連線的太陽板
WO2012128284A1 (ja) 裏面電極型太陽電池、裏面電極型太陽電池の製造方法及び太陽電池モジュール
KR101067807B1 (ko) 태양전지 셀 및 그의 전극 형성 방법
JP5944081B1 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法、太陽電池モジュールの製造方法
TWI517419B (zh) 太陽能電池元件
CN103296096A (zh) 太阳能电池
CN117457759B (zh) 双面太阳能电池片、电池组件和光伏系统
KR101358513B1 (ko) 도금전극을 가지는 태양전지의 접착력 개선 구조 및 그 방법
KR20180001183A (ko) 태양전지의 전면전극 구조 및 그 형성방법
TWI513026B (zh) 太陽能電池
TWI552360B (zh) 太陽能電池
KR20150083746A (ko) 인터커넥터 및 이를 구비한 태양전지 모듈
JP2013062308A (ja) 太陽電池とその製造方法および太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511936

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14113229

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776937

Country of ref document: EP

Kind code of ref document: A1