WO2012145957A1 - 一种热能聚合器 - Google Patents

一种热能聚合器 Download PDF

Info

Publication number
WO2012145957A1
WO2012145957A1 PCT/CN2011/075568 CN2011075568W WO2012145957A1 WO 2012145957 A1 WO2012145957 A1 WO 2012145957A1 CN 2011075568 W CN2011075568 W CN 2011075568W WO 2012145957 A1 WO2012145957 A1 WO 2012145957A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer casing
cold liquid
liquid tube
tube
hydrothermal
Prior art date
Application number
PCT/CN2011/075568
Other languages
English (en)
French (fr)
Inventor
赵新德
Original Assignee
惠州市新力达制冷技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市新力达制冷技术有限公司 filed Critical 惠州市新力达制冷技术有限公司
Publication of WO2012145957A1 publication Critical patent/WO2012145957A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to a high-performance thermal molecular polymerization device, in particular to a thermal energy aggregator which can be used for cooling or heating of an ultra-energy-saving air conditioner.
  • heat exchange type also called transfer type exchanger
  • transfer type exchanger which is based on double-circulation pipelines of cold (hot) convection.
  • external heating type that is, a heating element passes through a certain container or pipe through a single liquid flow, so that the liquid is heated to exchange heat energy, the exchange is short, the internal loss is large, and the exchange efficiency is low.
  • the production process is also very complicated.
  • the area of the exchange surface is also limited by the design size and the objective factors such as production cost pressure, most of the current cold (hot) energy exchange methods still remain on the basis of traditional process design.
  • the invention has the advantages of providing a thermal energy aggregator which can be used for air conditioning or other refrigeration and heating and heating equipment, is not limited by design size and shape requirements, has large exchange energy, fast energy transfer time, and simple processing technology.
  • a thermal energy aggregator comprising an outer casing having a cavity structure at both ends, a hydrothermal pipe, a cold liquid pipe and a power supply; the hydrothermal pipe and the cold liquid pipe are arranged in a honeycomb shape at a cavity of the outer casing a U-shaped connector for connecting the hydrothermal tube and the cold liquid tube to independent passages at both ends of the outer casing; and correspondingly disposed on the upper and lower sides of the outer casing, the inner and the cold liquid tube Positive and negative electromagnetic plates which generate eddy current effect and fission effect after magnetic cutting of the refrigerant; and high temperature curing adhesive layers sealed on the two ends of the outer casing respectively by the hot liquid pipe and the cold liquid pipe which are penetrated in the casing;
  • the power supply line of the power supply is connected to the positive and negative electromagnetic plates respectively.
  • the inner side of the outer casing is further provided with a PTC refrigeration chip which increases the amplitude of the eddy current effect and the fission effect generated by the positive and negative electromagnetic plates.
  • the outer casing has a square shape, a circular shape, or an elliptical shape.
  • the hydrothermal tube and the cold liquid tube are arranged in a layered alternating manner or in a crosswise manner in the cavity of the outer casing.
  • the invention has the beneficial effects that the invention can be used for air conditioning or other refrigeration and heating and heating equipment, and the overall structure is not limited by the design size and shape requirements, and the outer casing is made of metal materials such as copper, iron, steel and lead, according to An elongated object which can be processed into a square shape, a circular shape or an elliptical shape is required, and the small round pipe pipes are arranged in a honeycomb manner in a crosswise manner or a layered alternating manner according to actual exchange parameter requirements, so that the refrigerant flows in the pipe.
  • the volume is small, the exchange time is long, and the exchange area is increased, so that the heat exchange performance is further fully utilized.
  • the refrigerant molecules will produce continuous thermal expansion and cold-shrinkage effects, which expand the high-speed exchange conditions of the molecules, so that the exchange reaction rate is rapidly increased and enhanced; in addition, in this energy
  • the positive and negative electromagnetic plates provided on the upper and lower sides of the outer casing are connected, and the power supply is connected.
  • the generated magnetic lines further cut the cold liquid tube in the outer casing and the refrigerant in the hydrothermal tube, which will produce a vortex effect, which makes the thermal energy and the cold energy molecule more active, and under the action of high vacuum pressure, the molecule has a fission effect, so that the output
  • the cold and heat energy of the end refrigerant carries a huge energy inertia.
  • On the inner side of the outer casing there is also a PTC refrigeration chip which increases the amplitude of the eddy current effect and the fission effect generated by the positive and negative electromagnetic plates, so that the magnetic field is applied.
  • the formation of two different substances in the tubular group causes the formation of the microelectronic particles in two different atmospheric pressures, which makes the energy exchange level increase instantaneously and increase in speed, thereby effectively improving the refrigeration or heating process. Performance value.
  • Figure 1 is a schematic cross-sectional view of the present invention
  • 2 is a schematic perspective view showing the outer casing of the present invention in connection with a cold liquid pipe and a hydrothermal pipe
  • Figure 3 is a cross-sectional structural view of Figure 2
  • Figure 4 is a side elevational view of Figure 2
  • Figure 5 is a schematic view showing the joint structure of the outer casing, the U-shaped sealing head, the cold liquid pipe and the hydrothermal pipe end side of the present invention.
  • a thermal energy aggregator includes a square outer casing 1 having a cavity structure at both ends, a hydrothermal pipe 2, a cold liquid pipe 3, and a power supply 4; the hydrothermal pipe 2 and The cold liquid tubes 3 are arranged in a honeycomb cross-over manner in the cavity of the outer casing 1; at both ends of the outer casing 1 are provided U-shaped joints for respectively connecting the hydrothermal tubes 2 and the cold liquid tubes 3 into independent passages. 5; corresponding to the upper and lower sides of the outer casing 1 are provided with positive and negative electromagnetic plates (6, 7) capable of magnetically cutting the refrigerant in the hydrothermal pipe 2 and the cold liquid pipe 3 in the casing to generate eddy current effect and fission effect.
  • a high-temperature resistant adhesive layer 8 for sealing the hot liquid pipe and the cold liquid pipe which are penetrated in the casing is respectively provided; the power supply line of the power supply 4 and the positive and negative electromagnetic plates (6) And 7) are connected separately.
  • a PTC refrigerating chip 9 for increasing the eddy current effect and the fission effect generated by the positive and negative electromagnetic plates (6, 7) is provided.
  • the outer casing 1 is made of metal materials such as copper, iron, steel, lead, etc., and the small round pipe (hydrothermal pipe or cold liquid pipe) is arranged in a cross manner on the outer casing 1 according to actual exchange parameter requirements.
  • the U-shaped joint 5 is welded to the hydrothermal pipe 2 and the cold liquid pipe 3, respectively, and then both ends of the outer casing 1 are sealed with high temperature resistant curing glue, and the whole structure is such that the hydrothermal pipe 2 and the cold liquid pipe 3 are
  • the flow volume of the refrigerant is small, the exchange time is long, and the exchange area is increased, so that the heat exchange performance is further fully utilized.
  • the refrigerant is in each cycle.
  • the flow in the pipeline makes the refrigerant molecules under the high-pressure sealed vacuum condition, and the refrigerant molecules will produce continuous thermal expansion and cold-shrinkage effects, which expands the high-speed exchange conditions of the molecules, so that the exchange reaction speed is rapidly increased and enhanced.
  • the positive and negative electromagnetic plates (6, 7) provided on the upper and lower sides of the outer casing 1 are connected, and after the power supply 4 is connected, the magnetic flux generated in the outer casing 1 is generated. Further cutting of the refrigerant in the tube 2 and the cold liquid tube 3 will cause a vortex effect, so that the heat energy in the hydrothermal tube 2 and the cold energy molecules in the cold liquid tube 3 are more active, and the molecules are made under the action of high vacuum pressure.
  • the fission effect is generated, so that the cold and heat energy of the refrigerant at the output end carries a huge energy inertia, and further, the amplification effect of the PTC refrigeration chip 9 causes the two groups of different substances to form in the tube group under the action of the magnetic electric field, respectively causing the amphoteric substance.
  • the formation of the microelectronic particle state under two different normal temperature pressures causes the energy exchange level to be instantaneously increased and the speed is increased, thereby improving the performance value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

一种热能聚合器
【技术领域】
本发明涉及高效能热分子聚合装置,尤其涉及一种可用于超节能空调制冷或制热的热能聚合器。
【背景技术】
目前,有关热能处理的方法与产品的品种类别繁多,按工作原理可分为:(1)热交换式,又叫传递式交换器,它是依靠冷(热)对流方式的双循环管道进行能量交换;(2)外加热式,即由一个发热体通过某一容器或管道,通过单项液体流动,使得液体被加热后实现热能交换,其交换因时间短、内部损耗大,而且交换效率低、生产工艺也十分复杂。同时,由于交换面的面积也受到设计尺寸的限制、以及生产成本压力等客观因素的约束,因此,目前冷(热)能交换方式大多数仍停留在传统的工艺设计基础上。
【发明内容】
本发明的优点是提供一种可用于空调或其他制冷、制热取暖设备,不受设计尺寸和形状要求限制,交换能量大,传递能量时间快,并且加工工艺简单的热能聚合器。
本发明解决其技术问题所采用的技术方案是: 一种热能聚合器,包括两端贯通具有空腔结构的外壳体、热液管、冷液管和供电电源;所述热液管和冷液管呈蜂窝状间隔布置在外壳体的空腔中;在外壳体的两端设有将热液管、冷液管分别贯通连接成独立通路的U型连接头;在外壳体的上下侧对应的设有可对壳体内热液管和冷液管内的冷媒磁力切割后产生涡流效应和裂变效应的正、负电磁极板;在外壳体的两端还分别设有对壳体内贯通的热液管和冷液管密封的耐高温固化胶层;所述供电电源的电源线与正、负电磁极板分别相连。
所述外壳体的内侧还设有对正、负电磁极板产生的涡流效应和裂变效应起增幅作用的PTC制冷芯片
所述外壳体的形状为方形、或圆形、或椭圆形。
所述热液管和冷液管呈层状交替方式或交叉方式布置在外壳体的空腔中。
本发明的有益效果是:本发明可用于空调或其他制冷、制热取暖设备,整体结构不受设计尺寸及形状要求的限制,外壳体采用铜、铁、钢、铅等金属材料制成,根据需要可各自加工成方形、或圆形、或椭圆形的长形物体,按实际交换参数要求将小圆管管道分别进行交叉方式或层状交替方式蜂窝状布置在外壳体内,使得管中冷媒流动容积小,交换的时间长、交换的面积增大,使冷热交换效能得到更进一步充分发挥作用;同时由于冷液管和热液管组成的管族群的存在,冷媒在各循环管道内的流动,使得冷媒分子在高压密封真空条件下,冷媒分子将会产生不断的热膨胀、冷急收缩效应,从中扩充了分子的高速交换条件,使得交换反应速度迅速增快、增强;另外,在这种能量聚合的过程中,通过增设在外壳体上下侧设置的正、负电磁极板,接上供电电源后,产生的磁力线对外壳体内的冷液管和热液管内的冷媒进一步的切割,将产生涡流效应,使得热能与冷能分子更活跃,在高真空压力的作用下,使得分子产生裂变效应,使得输出端冷媒的冷、热能量携带巨大的能量惯性,在外壳体的内侧还设有对正、负电磁极板产生的涡流效应和裂变效应起增幅作用的PTC制冷芯片,使得通过磁电场作用下的管族群中形成两性不同的物质,分别引起了两性物质形成两种不同常温压下的微电子粒状态,使得能量交换等级瞬间提升、速度增大,从而起到有效地提升制冷或制热过程中的效能值。
【附图说明】
图1是本发明剖视结构示意图;
图2是本发明外壳体与冷液管、热液管连接配合的立体结构示意图;
图3是图2的剖视结构示意图;
图4是图2的侧视结构示意图;
图5是本发明外壳体、U型封管头、冷液管和热液管端侧配合连接结构示意图。
【具体实施方式】
如图1至图5所示,一种热能聚合器,包括两端贯通具有空腔结构的方形外壳体1、热液管2、冷液管3和供电电源4;所述热液管2和冷液管3呈蜂窝状交叉方式间隔布置在外壳体1的空腔中;在外壳体1的两端设有将热液管2、冷液管3分别贯通连接成独立通路的U型连接头5;在外壳体1的上下侧对应的设有可对壳体内热液管2和冷液管3内的冷媒磁力切割后产生涡流效应和裂变效应的正、负电磁极板(6、7);在外壳体1的两端还分别设有对壳体内贯通的热液管和冷液管密封的耐高温固化胶层8;所述供电电源4的电源线与正、负电磁极板(6、7)分别相连。
在外壳体1的内侧还设有对正、负电磁极板(6、7)产生的涡流效应和裂变效应起增幅作用的PTC制冷芯片9。
本发明使用时,外壳体1采用铜、铁、钢、铅等金属材料制成,按实际交换参数要求将小圆管管道(热液管或冷液管)分别进行交叉方式布置在外壳体1内,再在热液管2、冷液管3端分别焊接U型连接头5,然后将外壳体1的两端用耐高温固化胶密封,整体结构使得热液管2和冷液管3中冷媒流动容积小,交换的时间长而且交换的面积增大,使冷热交换效能得到更进一步充分发挥作用;同时由于热液管2和冷液管3组成的管族群的存在,冷媒在各循环管道内的流动,使得冷媒分子在高压密封真空条件下,冷媒分子将会产生不断的热膨胀、冷急收缩效应,从中扩充了分子的高速交换条件,使得交换反应速度迅速增快、增强。
另外,在这种能量聚合的过程中,设置在外壳体1上下侧设置的正、负电磁极板(6、7),接上供电电源4后,产生的磁力线对外壳体1内的热液管2和冷液管3内的冷媒进一步的切割,将产生涡流效应,使得热液管2中的热能与冷液管3中的冷能分子更活跃,在高真空压力的作用下,使得分子产生裂变效应,使得输出端冷媒的冷、热能量携带巨大的能量惯性,进一步的通过PTC制冷芯片9的增幅作用,使得磁电场作用下的管族群中形成两性不同的物质,分别引起了两性物质形成两种不同常温压下的微电子粒状态,使得能量交换等级瞬间提升、速度增大,从而起到提升效能值。
以上所述实施例只是为本发明的较佳实施例,并非以此限制本发明的实施范围,凡依本发明之形状、构造及原理所作的等效变化,均应涵盖于本发明的保护范围内。

Claims (4)

  1. 一种热能聚合器,其特征在于,包括两端贯通具有空腔结构的外壳体、热液管、冷液管和供电电源;
    所述热液管和冷液管呈蜂窝状间隔布置在外壳体的空腔中;
    在外壳体的两端设有将热液管、冷液管分别贯通连接成独立通路的U型连接头;
    在外壳体的上下侧对应的设有可对壳体内热液管和冷液管内的冷媒磁力切割后产生涡流效应和裂变效应的正、负电磁极板;
    在外壳体的两端还分别设有对壳体内贯通的热液管和冷液管密封的耐高温固化胶层;
    所述供电电源的电源线与正、负电磁极板分别相连。
  2. 根据权利要求1所述一种热能聚合器,其特征在于,所述外壳体的内侧还设有对正、负电磁极板产生的涡流效应和裂变效应起增幅作用的PTC制冷芯片。
  3. 根据权利要求1或2所述一种热能聚合器,其特征在于,所述外壳体的形状为方形、或圆形、或椭圆形。
  4. 根据权利要求1或2所述一种热能聚合器,其特征在于,所述热液管和冷液管呈层状交替方式或交叉方式布置在外壳体的空腔中。
PCT/CN2011/075568 2011-04-27 2011-06-10 一种热能聚合器 WO2012145957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110106459.6 2011-04-27
CN2011101064596A CN102200359A (zh) 2011-04-27 2011-04-27 一种热能聚合器

Publications (1)

Publication Number Publication Date
WO2012145957A1 true WO2012145957A1 (zh) 2012-11-01

Family

ID=44661226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075568 WO2012145957A1 (zh) 2011-04-27 2011-06-10 一种热能聚合器

Country Status (2)

Country Link
CN (1) CN102200359A (zh)
WO (1) WO2012145957A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062320A1 (ja) * 2003-01-06 2004-07-22 Ono Foods Industrial Co.,Ltd. 流体加熱ヒータ
CN2730071Y (zh) * 2004-06-14 2005-09-28 冯迎胜 不锈钢波纹管迷宫式电磁加热元件
EP1736717A1 (en) * 2005-06-20 2006-12-27 Haute Ecole d'Ingénieurs et de Gestion du Canton Continuously rotary magnetic refrigerator and heat pump and process for magnetic heating and/or cooling with such a refrigerator or heat pump
CN201255530Y (zh) * 2008-06-23 2009-06-10 赵新德 水循环电子制冷装置
CN101558681A (zh) * 2006-12-05 2009-10-14 九州电力株式会社 电磁感应加热烹调器用冷却装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411856A (en) * 1981-07-15 1983-10-25 Corning Glass Works Method and apparatus for high speed manifolding of honeycomb structures
JPS62227573A (ja) * 1986-03-28 1987-10-06 Aisin Seiki Co Ltd プレ−ト式熱交換器の製造方法
CN2566174Y (zh) * 2002-08-18 2003-08-13 曲庆生 电磁换热器
KR100908259B1 (ko) * 2002-11-06 2009-07-20 엘지전자 주식회사 공기조화기용 열교환소자 조립체
CN100451525C (zh) * 2007-01-17 2009-01-14 华南理工大学 一种带有蜂窝结构的交换器
CN201754051U (zh) * 2010-06-22 2011-03-02 合肥天鹅制冷科技有限公司 一种蜂窝式换热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062320A1 (ja) * 2003-01-06 2004-07-22 Ono Foods Industrial Co.,Ltd. 流体加熱ヒータ
CN2730071Y (zh) * 2004-06-14 2005-09-28 冯迎胜 不锈钢波纹管迷宫式电磁加热元件
EP1736717A1 (en) * 2005-06-20 2006-12-27 Haute Ecole d'Ingénieurs et de Gestion du Canton Continuously rotary magnetic refrigerator and heat pump and process for magnetic heating and/or cooling with such a refrigerator or heat pump
CN101558681A (zh) * 2006-12-05 2009-10-14 九州电力株式会社 电磁感应加热烹调器用冷却装置
CN201255530Y (zh) * 2008-06-23 2009-06-10 赵新德 水循环电子制冷装置

Also Published As

Publication number Publication date
CN102200359A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2017113571A1 (zh) 一体化相变抑制传热换热板结构及其制造方法
CN107401942A (zh) 蓄热装置、电控箱及空调
CN101280973B (zh) 一种气体的超音速加热装置及加热方法
WO2012145957A1 (zh) 一种热能聚合器
CN209415828U (zh) 一种基于脉冲磁场的微型cpu芯片冷却装置
CN203964737U (zh) 空心热管散热器
CN104713390A (zh) 多孔换热器
CN205992812U (zh) 一种电机定子、电机及汽车
CN205619629U (zh) 一种微通道冷凝器
CN107228586A (zh) 一种集水热管
CN107734934A (zh) 一种直接接触连通型热管散热器及使用方法
CN204358974U (zh) 太阳能导热管
CN214095556U (zh) 一种烧结炉冷却装置
CN209672885U (zh) 一种螺旋式内循环制冷换热器
CN209263746U (zh) 一种组合式除湿热管
CN207399742U (zh) 一种直接接触连通型热管散热器
CN202177323U (zh) 一种热能聚合器
CN207991331U (zh) 一种中冷器用复合冷却管
CN206410366U (zh) 一种带阻尼元件的抗液击翅片式换热器
CN207963134U (zh) 超短距低温差微通道快速热水发生器
CN201653079U (zh) 一种冻干机前箱制冷系统
JP3156355U (ja) 2重管式熱交換器
CN204535476U (zh) 多孔换热器
CN103398484B (zh) 一种超音速气体对撞式加热装置及加热方法
CN104324688B (zh) 一种用低压氮气进行分子筛再生节能系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864219

Country of ref document: EP

Kind code of ref document: A1