WO2012145949A1 - 一种驱油用微生物与含有该微生物的复合型驱油剂及其制备方法 - Google Patents

一种驱油用微生物与含有该微生物的复合型驱油剂及其制备方法 Download PDF

Info

Publication number
WO2012145949A1
WO2012145949A1 PCT/CN2011/075140 CN2011075140W WO2012145949A1 WO 2012145949 A1 WO2012145949 A1 WO 2012145949A1 CN 2011075140 W CN2011075140 W CN 2011075140W WO 2012145949 A1 WO2012145949 A1 WO 2012145949A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
microorganism
composite oil
displacing agent
surfactant
Prior art date
Application number
PCT/CN2011/075140
Other languages
English (en)
French (fr)
Inventor
杨印海
Original Assignee
工合聚能(天津)石油精化科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工合聚能(天津)石油精化科技发展有限公司 filed Critical 工合聚能(天津)石油精化科技发展有限公司
Priority to US13/322,567 priority Critical patent/US8859258B2/en
Publication of WO2012145949A1 publication Critical patent/WO2012145949A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/582Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the invention relates to oil recovery by oil recovery, in particular to a microorganism for oil displacement and a composite oil displacement agent containing the microorganism.
  • the oil-discharging technology mainly uses the synergistic effect of alkali, polymer and surfactant to achieve oil-increasing and precipitation effects and improve oil recovery.
  • Alkali/polymer/surfactant ternary composite flooding system can greatly improve oil recovery, but it also has some problems in large-scale industrial application: 1.
  • the use of alkali will cause multivalent ion precipitation, The rock minerals are dissolved, thereby destroying the oil layer and the oil well structure, seriously damaging the formation, and it is necessary to clean the pump barrel every 10-15 days, which increases the oil production cost; 2.
  • the presence of alkali not only greatly increases the polymer usage, but also Will greatly reduce the viscoelasticity of the polymer, especially the polymer elasticity; 3, the use of alkali will also lead to the production of high viscosity W / 0 type emulsion, which affects the productivity of the well, but also increases the difficulty of demulsification.
  • CN1580486 discloses an oil displacement method, and the sequence includes the following steps: Bacillus cereus ⁇ , CGMCC Ne. 1141, and at least one strain of Bacillus brevis (5re bacj'7 ⁇ br /s) HT, CGMCCNs.
  • the invention utilizes the microbial fermentation liquid obtained by HP and HT to act on the crude oil, and the physical properties of the crude oil are improved, and the interfacial tension between the crude oil and the existing ternary formula is improved.
  • Unactual crude oil reduction dilute 2-12 times microbial fermentation broth to add a small amount of alkylbenzene sulfonate surfactant S1 (0. 01wt% - 0. 04wt%), the interfacial tension can reach 10-3mN / m, greatly reduced The cost and good stability.
  • Patent application CN101544885 discloses a composite microbial oil displacing agent for enhancing oil recovery, a by-product of 1-8% by weight of wheat processing, a by-product of processing of 1-8% by weight of corn, 0.5-6%.
  • CN1504529 discloses a heavy oil emulsified viscosity reducer comprising: 1) an anionic surfactant selected from the group consisting of petroleum sulfonate formaldehyde condensate and lignosulfonate, 2) selected from nonionic monophosphate salt type, non Ionic monosulfate type, nonionic monocarboxylate type and nonionic monosulfonate type nonionic one
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a microorganism for oil displacement and a composite oil displacing agent containing the microorganism.
  • the composite oil displacing agent has no alkali, low interfacial tension and good salt resistance. Under the conditions of no alkali, high temperature and high salinity, the oil and water form an ultra-low interfacial tension of 10 - 3 m / m.
  • a microorganism for oil displacement the strain is classified as ro ia/w' w ac ier albofiavus, and is deposited in: General Microbiology Center of China Microbial Culture Collection Management Committee, and the preservation date is: March, 2011 On the 15th, the deposit number is: CGMCC 4670, and the deposit address is: No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing, China. Institute of Microbiology, Chinese Academy of Sciences.
  • a composite oil displacing agent comprising the microorganism for oil displacement according to claim 1.
  • a composite oil displacing agent containing the above microorganisms, the composition and the parts by weight are as follows:
  • the concentration of the microorganism CGMCC 4670 was 10 8 _10 1 () / g.
  • the culture condition of the microorganism CGMCC 4670 is: weight percentage of the medium: sucrose 20_30%,
  • the polymer modifier is sorbitol, xylose, gelatin, reducing gum, soluble starch, sodium methylcellulose, methylcellulose M20, hydroxyethylcellulose, hydroxypropylcellulose, polyethylene One or a mixture of two or more of diol 600, polyethylene glycol 6000, polyvinylpyrrolidone, and polyvinyl alcohol.
  • the surfactant comprises a nonionic surfactant and a zwitterionic surfactant, the weight percentage of the total amount of the oil displacing agent being:
  • the nonionic surfactant is isooctylphenol-based polyoxyethylene ether, alkylphenol ethoxylate, fatty alcohol polyoxyethylene ether, nonylphenol ethoxylate, polyethylene glycol octylbenzene One or more of a group ether, a oleic acid polyoxyethylene ester, a fatty acid polyoxyethylene ether, a hexamethylene nitrile, and a polyoxyethylene alkylamine.
  • the zwitterionic surfactant is one or more of carboxylic acid betaine, N-amidocarboxylic acid betaine, N-alkylthiocarboxylic acid betaine, and cocamidopropyl betaine.
  • the viscosity reducing agent includes a nonionic-phosphate salt type, a nonionic-sulfate type, a nonionic-carboxylate type, and a nonionic-sulfonate type, lauryl amine polyoxyethylene ether phosphate One or more of the esters.
  • the additive includes one or more of isopropanol, n-butanol, n-propanol, and ethanol.
  • the microorganism used in the component of the present invention is a facultative anaerobic bacterium, which is a microorganism capable of growing and reproducing in an aerobic or anaerobic environment, which is derived from the underground culture and is preferably cultured. The resulting microorganism.
  • the component of the present invention does not contain a base, overcomes the problem that the alkali reduces the viscoelasticity of the polymer, and the alkali scale formed by the alkali destroys the formation structure and the pumping operation, that is, it meets environmental protection requirements and reduces the production cost.
  • the surfactants and polymer modifiers used in the components of the present invention are all fine chemicals which are industrially produced, and the raw materials are easily available, and the water in the components is ordinary water, and can also be re-injected. Sewage, good environmental protection and low production cost.
  • the oil displacing agent according to the invention can increase the oil recovery rate by more than 30% under the conditions of high temperature and high salinity; and it is proved by experiments that under the condition of 45_75 °C and 1500_20000 mg/L salinity, the viscosity reached 16. 8mPa / s, may be formed 10- 3 m / m ultralow interfacial tension with the oil.
  • the invention has been experimentally proved that under the condition of oil displacement, the surfactant and the polymer modifier can effectively reduce the degree of freedom of the polymer chain, increase the hydrodynamic volume of the polymer, and obtain a high viscosity of the solution, Strong salt resistance; Moreover, the surfactant can effectively reduce the interfacial tension of the system under the synergistic effect of the nonionic surfactant and the amphoteric surfactant.
  • the strain used in the present invention is: Prot inobacter albofiavus, preserved by: General Microbiology Center of China Microbial Culture Collection Management Committee, and the preservation date is: March 15, 2011, the preservation number is: CGMCC 4670, preservation The address is: No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing, China. Institute of Microbiology, Chinese Academy of Sciences.
  • the culture method of this strain is as follows:
  • the fermentation process of the strain is as follows:
  • composition of the medium used in the following fermentation and culture processes is in percentage by weight: sucrose 20-30%, ⁇ 2 ⁇ 0 4 1-5%, MgS0 4 1-5%, (NH 4 ) 2 S0 4 1-5%, 1_5% corn syrup, 20-30% common nitrogen source (such as beef extract, peptone, etc.), and the remaining water is added to 100%. Adjust pH 6. 5.
  • the specific ratio is as follows.
  • Air system treatment The air system of the fermentation unit is steam sterilized, and after ventilation, it is filtered and dewatered to make the air quality aseptic and the humidity is less than 5%.
  • the temperature of the tank is raised to 117 °C, and after 30 minutes, it is cooled to the fermentation requirement.
  • the temperature can be; 4. Transfer the cultured bacteria in the shake flask to the small fermenter under aseptic conditions (have been air-empted and dissolved), and pass through sterile air for about 24 h (28 ° C). When the strain reaches the optimal growth state, it is transferred to the large fermenter (has been subjected to emptying and real elimination) to expand the culture, and the sterile air is introduced for about 24 h (28 ° C) to achieve no bacteria and the best condition. After the fermentation is stopped, the cans are loaded;
  • the quality standards to be achieved by the above fermented products include two aspects, namely, the appearance of milky white liquid, slightly fishy smell; after concentration detection, it is required to reach 10 8 /g or more, and the content of bacteria is low. 10% of the total bacteria.
  • microorganisms used in the following examples are all the above-mentioned preserved bacteria, and the concentration of the microbial liquid is 10 8 /g or more.
  • a composite oil displacing agent whose constituent components and their weights are respectively:
  • Oleic acid polyoxyethylene ester l Oleic acid polyoxyethylene ester l. Og
  • Methyl cellulose M20 5. 0g
  • methyl cellulose M20 which is a polymer modifier, can also use sorbitol, xylose, gelatin, reducing gum, soluble starch, methyl cellulose sodium, hydroxyethyl cellulose, hydroxypropyl cellulose,
  • polyethylene glycol 600, polyethylene glycol 6000, polyvinylpyrrolidone, and polyvinyl alcohol are mixed and replaced, and all are commercially available products.
  • Isooctylphenol-based polyoxyethylene ether and oleic acid polyoxyethylene ester are nonionic surfactants, and alkylphenol ethoxylates, fatty alcohol polyoxyethylene ethers, nonylphenol ethoxylates, poly One or more of ethylene glycol octyl phenyl ether, oleic acid polyoxyethylene ether, fatty acid polyoxyethylene ether, hexamethylene nitrile and polyoxyethylene alkylamine are substituted for the substance, First time product.
  • the nonionic-phosphate salt type viscosity reducer is a viscosity reducing agent, and the viscosity reducing agent also includes a nonionic-phosphate salt type, a nonionic-sulfate type, a nonionic-carboxylate type, and a nonionic-sulfonate.
  • a nonionic-phosphate salt type a nonionic-sulfate type
  • a nonionic-carboxylate type a nonionic-sulfonate.
  • One or more of the type and lauryl amine polyoxyethylene ether phosphates are commercially available products.
  • Isopropanol is an additive, and one or more of isopropanol, n-butanol, n-propanol, and ethanol may be used instead of isopropanol.
  • oleic acid polyoxyethylene ester 1. 0g, non-ion - Phosphate salt type viscosity reducer 7.
  • Og and water to 100g were added to a mixer equipped with a stirring device, and stirred at room temperature for 2 hours to obtain a molecular composite surfactant.
  • the measured viscosity is 16. 5mPa.
  • the measured viscosity is 16. 5mPa.
  • the temperature is measured at a temperature of 45_75 ° C, a degree of mineralization of 1500-20000mg / L, a DV-I I type Brookfield viscometer (UL joint) at a temperature of 30 rpm.
  • S using the TX-500C interfacial tension meter, at a rotational speed of 5000 rpm, according to the 1SY/T5370-1999 surface and interfacial tension measurement method and price standard, the lowest interfacial tension is 6 X 10 - 3 m / m.
  • a composite oil displacing agent whose constituent components and their weights are respectively:
  • betaine is a zwitterionic surfactant, and one of carboxylic acid betaine, N-amidocarboxylic acid betaine, N-alkylthiocarboxylic acid betaine, and cocamidopropyl betaine can also be used. Or two or more instead, are the first time
  • the measured viscosity is 10. 5mPa.
  • the temperature is measured at a temperature of 45_75 ° C, a degree of mineralization of 1500-20000mg / L, DV-I I type Brookfield viscometer (UL joint) at 30 rev / min. S, using the TX-500C interfacial tension meter, at the rotation speed of 5000 rev / min, according to "SY/T5370- 1999 surface and interface tension measurement method and ⁇ price standard", the minimum interfacial tension measured is 5 X 10 - 3 m / m.
  • a composite oil displacing agent whose constituent components and their weights are respectively:
  • the measured viscosity is 18. 5mPa.
  • the temperature is measured at a temperature of 45_75 ° C, a degree of mineralization of 1500-20000mg / L, a DV-I I type Brookfield viscometer (UL joint) at a temperature of 30 rpm.
  • S using the TX-500C interfacial tension meter, at a rotation speed of 5000 rpm, according to "SY/T5370-1999 Surface and Interfacial Tension Measurement Method and Evaluation Criteria", the lowest interfacial tension is 3 X 10 - 3 m /m.
  • the composite oil displacing agent is an oil displacement system obtained by proportioning microorganisms and surfactants in proportion, and the microorganisms eat long-chain saturated alkanes (wax), reduce the wax content, and pass the derivatized light components.
  • wax long-chain saturated alkanes
  • Changing the viscosity and composition of the crude oil increases the fluidity of the formation fluid into the well, thereby realizing the deblocking and wax removal of the reservoir fluid;
  • the synergistic effect of various surfactants is used to reduce the interfacial tension between oil and water, and the two together work to achieve the purpose of improving oil recovery.
  • microorganism and the surfactant composite type oil displacing agent and the preparation method thereof are illustrative and not limiting, and thousands of examples can be listed according to the limited range. Variations and modifications without departing from the general inventive concept are intended to be within the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

一种驱油用微生物与含有该微生物的复合型驱油剂及其制备方法 技术领域
本发明涉及石油三采强化采油, 尤其是一种驱油用微生物及含有该微生物的复合 型驱油剂。 背景技术
地下原油经过一次、 二次开采后, 仍有 40%以上原油滞留在地层中; 若地层条件不理 想, 一次、 二次采油后甚至还有 80%的原油残留在地层中。 目前, 我国主要油田已进入高 含水期, 地下原油处于不连续的分散状态, 其驱油技术主要利用碱、 聚合物和表面活性剂 协同效应达到增油降水效果, 提高原油采收率。
碱 /聚合物 /表面活性剂三元复合驱驱油体系虽然能够大幅度提高原油采收率,但在大 规模工业化应用过程中也伴随一些问题: 1、 碱的使用会引起多价离子沉淀、 岩石矿物溶 蚀, 从而破坏油层和油井结构, 严重损坏地层, 而且, 需每隔 10-15天清洗一次泵桶, 增 加了采油成本; 2、 碱的存在不仅会大幅度增加聚合物使用量, 还会大大降低聚合物粘弹 性, 尤其是聚合物弹性; 3、 碱的使用还会导致采出液为粘度较高的 W/0 型乳化液, 既影 响了油井产能, 又增加了破乳难度。
据检索, 发现与本发明相关的三篇专利文献, 其中 CN1580486公幵了一种驱油方法, 顺序包括以下步骤: 将蜡状芽孢杆菌
Figure imgf000002_0001
ΗΡ, CGMCC Ne. 1141, 和短短芽孢 杆菌(5re bacj'7 ^ br /s) HT, CGMCCNs. 1142中至少一株在以原油为碳源的培养基中培 养得到发酵液; 将得到的发酵液注入油层中 3至 5天; 再用三元复配体系驱油, 该发明利 用 HP、 HT 得到的微生物发酵液作用原油后, 原油物性得到改善, 作用后原油与现有三元 配方界面张力较未作用原油降低, 稀释 2-12 倍微生物发酵液加入少量的烷基苯磺酸盐表 活剂 Sl (0. 01wt%- 0. 04wt%), 界面张力可达到 10- 3mN/m, 大大降低了成本, 并具有较好的 稳定性。专利申请 CN101544885公开了一种提高原油采收率的复合微生物驱油剂, 由 1-8% 重量的麦类加工的副产品、 1-8 %重量的玉米类加工的副产品、 0. 5-6%重量的木业加工的 副产品和余量为水组成的混合液, 加入 5- 10mg/L微量元素和 300-500mg/L的聚丙烯酰胺 组成, 农、 木业加工副产品的粒径小于 0. 5mm。 CN1504529 公开了一种稠油乳化降粘剂, 包括: 1)选自石油磺酸盐甲醛缩合物和木质素磺酸盐的阴离子表面活性剂, 2)选自非离子 一磷酸酯盐型、 非离子一硫酸酯盐型、 非离子一羧酸盐型和非离子一磺酸盐型的非离子一
1
替换页 (细则第 26条) 阴离子型表面活性剂, 和 3)水。 其中, 阴离子表面活性剂与非离子一阴离子型表面活性剂 的重量比为 1: 0. 2-10, 水量是表面活性剂总量的 0. 5-9倍。
通过比较上述专利文献与本专利的主要区别在于: 首先上述专利中的微生物不是 与其他成分一起使用, 而是将微生物与其他试剂分步骤加入到采油层, 其次本发明中 无碱。 发明内容
本发明的目的是克服现有技术的不足, 提供一种驱油用微生物及含有该微生物的复 合型驱油剂, 本复合型驱油剂不含碱、 低界面张力、 抗盐性能好, 可在无碱、 高温及高矿 化度条件下, 使油、 水间形成 10— 3m /m的超低界面张力。
本发明的目的是通过以下技术方案实现的:
一种驱油用微生物,菌种分类命名为白黄精朊细菌( ro ia/w' w ac ier albofiavus) , 保藏于: 中国微生物菌种保藏管理委员会普通微生物中心, 保藏日期为: 2011年 03月 15 日, 保藏编号为: CGMCC 4670 , 保藏地址为: 北京市朝阳区北辰西路 1号院 3号, 中国 科学院微生物研究所。
一种复合型驱油剂, 含有权利要求 1所述的驱油用微生物。
一种含有上述微生物的复合型驱油剂, 组成成分及重量份数如下:
微生物 CGMCC 4670菌液 20-40%
表面活性剂 6-30%
高分子改性剂 5-10%
降粘剂 1-10%
添加剂 1-5%
其余加水至 100%。
所述微生物 CGMCC 4670菌液浓度为 108_101()个 /g。
而且,所述微生物 CGMCC 4670菌液的培养条件为:培养基重量百分比:蔗糖 20_30% 、
KH2P04 1-5%、 MgS04 1-5% 、 (NH4) 2S04 1-5% 、 玉米浆 1-5%、 氮源 20-30%、 其余加水至 100%, pH 6-7。
而且, 所述高分子改性剂为山梨醇、 木糖、 明胶、 还原胶、 可溶性淀粉、 甲基纤维素 钠、 甲基纤维素 M20、 羟乙基纤维素、 羟丙基纤维素、 聚乙二醇 600、 聚乙二醇 6000、 聚 乙烯吡咯烷酮、 聚乙烯醇的一种或两种以上的混合物。 而且, 所述表面活性剂包括非离子表面活性剂和两性离子表面活性剂, 其占驱油剂总 量的重量百分比分别为:
非离子类表面活性剂 3-15%
两性表面活性剂 3-15%。
而且, 所述非离子表面活性剂为异辛基酚基聚氧乙烯醚、烷基酚聚氧乙烯醚、 脂肪醇 聚氧乙烯醚、 壬基酚聚氧乙烯醚、 聚乙二醇辛基苯基醚、 油酸聚氧乙烯酯、 脂肪酸聚氧乙 烯醚、 六次甲基次胺和聚氧乙烯烷基胺的其中一种或两种以上。
而且, 所述两性离子表面活性剂为羧酸甜菜碱、 N-酰胺基羧酸甜菜碱、 N-烷基硫代羧 酸甜菜碱、 椰油酰胺丙基甜菜碱的其中一种或两种以上。
而且, 所述降粘剂包括非离子-磷酸酯盐型、 非离子-硫酸酯盐型、 非离子 -羧酸盐型和 非离子 -磺酸盐型、 月桂基胺基聚氧乙烃醚磷酸酯的其中一种或两种以上。
而且, 所述添加剂包括异丙醇、 正丁醇、 正丙醇、 乙醇的其中一种或两种以上。 本发明的优点和积极效果是:
(1)本发明组分中使用的微生物为兼性厌氧菌, 是一种在有氧或无氧环境中均能生长 繁殖的微生物, 其来源于地下采出物中分离出来经优选培养而得到的微生物。
(2)本发明的成分中不含有碱, 克服了碱降低聚合物粘弹性, 以及碱所形成的碱垢破 坏地层结构和卡泵洗井作业问题, 即符合环保要求, 又降低了生产成本。
(3)本发明组分中使用的表面活性剂、 高分子改性剂集其他聚合物均为工业化生产的 精细化学品, 原料易得, 组分中的水为普通清水, 亦可为回注污水, 环保效果好, 生产成 本低廉。
(4)本发明所涉及的驱油剂在高温、 高矿化度条件下, 可提高原油采收率 30%以上; 并 经实验证明, 在 45_75 °C、 1500_20000mg/L矿化度条件下, 粘度达到 16. 8mPa/s, 可与原 油形成 10— 3m /m超低界面张力。
(5)本发明经过实验证明, 在驱油条件下, 表面活性剂与高分子改性剂可有效降 低聚合物链的自由度, 增大高分子的流体力学体积, 使溶液获得高粘度, 具有较强抗 盐性能; 而且, 在非离子表面活性剂与两性表面活性剂协同作用下, 该表面活性剂能 够有效降低体系界面张力。 具体实施方式
下面结合实施例对本发明的技术内容做进一步说明; 下述实施例是说明性的, 不是限 定性的, 不能以下述实施例来限定本发明的保护范围。
关于菌种:
本发明所用的菌种为: 白黄精朊细菌 Prot inobacter albofiavus), 保藏单位: 中国微生物菌种保藏管理委员会普通微生物中心, 保藏日期为: 2011年 03月 15日, 保藏 编号为: CGMCC 4670 , 保藏地址为: 北京市朝阳区北辰西路 1号院 3号, 中国科学院微 生物研究所。
本菌种的培养方法如下:
在无菌的状态下向保存菌种的斜面试管中加入无菌水约 3毫升, 震荡后, 用无菌吸管 吸取 1毫升, 加入到装有 99毫升无菌水的三角瓶中, 并从中取 1毫升液体加入到装有 9 毫升无菌水的三角瓶中, 如此依次操作, 直至稀释到 10— 6倍。
用无菌吸管取 0. 2毫升上述稀释后的溶液,放入配制好的培养皿中,用玻璃涂棒涂匀, 放入培养箱中, 28°C下培养 48 小时后, 表面皿上会出现均匀的、 不透明的光滑橙色圆形 菌落。 无菌条件下选取其中任一菌落, 制成涂片, 电子显微镜下观察, 此菌为单细胞、 无 芽孢短杆状。 革兰氏染色检测为阴性。
菌种的发酵过程如下:
以下发酵和培养过程所用的培养基组成均为重量百分比):蔗糖 20-30% 、ΚΗ2Ρ04 1-5%、 MgS04 1-5%、 (NH4) 2S04 1-5%、 玉米浆 1_5%、 普通氮源 20-30% (如牛肉膏、 蛋白胨等)、 其 余加水至 100%, 调整 pH 6. 5, 具体配比见下述。
1、在无菌室内进行无菌操作, 将试管中的菌种移入小三角瓶中, 置于摇床上震荡(28 V ) 并跟踪检测, 保证培养过程中无杂菌产生, 约 24 h后, 菌种达到最佳生长状态时移入 大三角瓶中扩大培养, 同样约 24 h ( 28°C ) 后进行监测, 达到无杂菌、 最佳状态时停止发 酵。
2、 空气系统处理: 将发酵装置的空气系统进行蒸汽消毒, 完毕后通风, 经过过滤和 除水处理, 使空气质量达到无菌状态, 湿度小于 5%。
3、 空消和实消: 将发酵罐用清水洗净后, 封闭并用蒸汽消毒, 温度控制在 117°C, 时 间为 35分钟,结束后按照配方(重量百分比):蔗糖 23% 、KH2P04 2%、 MgS04 1% 、(幽 2S04 2% 、 玉米浆 2% 、 牛肉膏 20% 调整 pH 为 6. 5 (pH调整: 如果所用自来水品质较好, 采用此配方培养基配制好以后 pH无需调整。 如果 pH不对可用饱和 NaOH水溶液或饱和浓 盐酸调节, 在培养基灭菌前调整即可), 将上述原材料按照比例配好后, 将罐体升温至 117 °C, 保持 30分钟后, 冷却至发酵要求的温度即可; 4、 将上面摇瓶中培养好的菌液无菌操作条件下移入到小发酵罐中 (已进行过空消和 实消), 通入无菌空气, 约 24 h ( 28°C ), 观察菌种达到最佳生长状态时移入到大发酵罐中 (已进行过空消和实消)扩大培养, 通入无菌空气约 24 h ( 28°C ), 达到无杂菌、 最佳状态 时停止发酵后下罐装车;
5、 检验评定: 上述发酵的产品要达到的质量标准包括两个方面, 即外观为乳白色液 体, 略有鱼腥味; 经过浓度检测, 要求达到 108个 /g以上, 杂菌的含量要低于细菌总量的 10%。
以下实施例使用的微生物均为上述保藏的菌种,所述微生物菌液的浓度为 108个 /g及 以上含量的菌液。
实施例 1 :
一种复合型驱油剂, 其构成成分及其重量分别为:
微生物菌液 30. 0g
油酸聚氧乙烯酯 l. Og
异辛基酚基聚氧乙烯醚 15. 0g
甲基纤维素 M20 5. 0g
非离子 -磷酸酯盐型降粘剂 7. 0g
异丙醇 2. 0g
清水 加至 100g。
其中: 甲基纤维素 M20、 为高分子改性剂, 还可以用山梨醇、 木糖、 明胶、 还原胶、 可溶性淀粉、甲基纤维素钠、羟乙基纤维素、羟丙基纤维素、聚乙二醇 600、聚乙二醇 6000、 聚乙烯吡咯烷酮、 聚乙烯醇的其中一种或两种以上混合代替, 均为市售产品。
异辛基酚基聚氧乙烯醚和油酸聚氧乙烯酯为非离子表面活性剂,还可以用烷基酚聚氧 乙烯醚、脂肪醇聚氧乙烯醚、 壬基酚聚氧乙烯醚、聚乙二醇辛基苯基醚、 油酸聚氧乙烯酯、 脂肪酸聚氧乙烯醚、 六次甲基次胺和聚氧乙烯烷基胺的其中一种或两种以上代替该物质, 均为是首次产品。
非离子-磷酸酯盐型降粘剂为降粘剂, 降粘剂还包括非离子-磷酸酯盐型、 非离子-硫 酸酯盐型、 非离子 -羧酸盐型和非离子 -磺酸盐型、 月桂基胺基聚氧乙烃醚磷酸酯的其中一 种或两种以上, 均为市售产品。
异丙醇为添加剂, 还可以用异丙醇、 正丁醇、 正丙醇、 乙醇的其中一种或两种以上来 代替异丙醇。 上述复合型驱油剂的制备方法是: 微生物 30. 0g、 异辛基酚基聚氧乙烯醚 15. 0g、 甲 基纤维素 M20 5. 0g、 油酸聚氧乙烯酯 1. 0g、 非离子 -磷酸酯盐型降粘剂 7. 0g、 异丙醇 2. Og 和清水至 100g加入到装有搅拌装置的混合器中, 室温搅拌 2h, 即得分子复合型表面活性 剂成品。
测定油水界面张力体系:
表面活性剂量 0. 1%浓度
聚丙烯酰胺和清水(或回注污水) lOOOppm
原油 检测量
实验检测结果:在温度为 45_75°C、矿化度 1500-20000mg/L, DV-I I型布氏粘度计(UL 接头) 在 30转 /分种条件下, 测得粘度为 16. 5mPa. S, 使用 TX-500C界面张力仪, 在旋转 速度 5000转 /分钟条件下, 根据 1SY/T5370-1999表面及界面张力测定方法及 价标准》, 测得最低界面张力为 6 X 10— 3m /m。
实施例 2:
一种复合型驱油剂, 其构成成分及其重量分别为:
微生物菌液 40. 0g
脂肪醇聚氧乙烯醚 10. 0g
甜菜碱 4. 0g
聚乙烯吡咯烷酮 4. 5g
还原胶 3. Og
六次甲基次胺 3. Og
非离子 -硫酸酯盐型降粘剂 3. Og
正丁醇 2. Og
清水 加至 lOOgo
其中, 甜菜碱为两性离子表面活性剂, 还可以用羧酸甜菜碱、 N-酰胺基羧酸甜菜碱、 N-烷基硫代羧酸甜菜碱、 椰油酰胺丙基甜菜碱的其中一种或两种以上来代替, 均为是首次
- n口
广口口。
上述复合型驱油剂的制备方法是: 微生物 40g、脂肪醇聚氧乙烯醚 10g、甜菜碱 4. 0g、 聚乙烯吡咯烷酮 4. 5g、还原胶 3. 0g、六次甲基次胺 3. 0g、非离子 -硫酸酯盐型降粘剂 3. 0g、 正丁醇 2. 0g和清水至 100g加入到装有搅拌装置的混合器中, 室温搅拌 2h。
测定油水界面张力体系: 表面活性剂量 0. 1%浓度
聚丙烯酰胺和清水(或回注污水) lOOOppm
原油 检测量
实验检测结果:在温度为 45_75°C、矿化度 1500-20000mg/L, DV-I I型布氏粘度计(UL 接头) 在 30转 /分种条件下, 测得粘度为 10. 5mPa. S, 使用 TX-500C界面张力仪, 在旋转 速度 5000转 /分钟条件下, 根据 《SY/T5370- 1999表面及界面张力测定方法及 ^价标准》, 测得最低界面张力为 5 X 10— 3m /m。
实施例 3:
一种复合型驱油剂, 其构成成分及其重量分别为:
微生物菌液 40. 0g
还原胶 1. 0g
甜菜碱 16. 0g
月桂基胺基聚氧乙烃醚磷酸酯 4. 0g
正丙醇 3. 0g
清水 加至 100g。
上述复合型驱油剂的制备方法是: 微生物 40g、 还原胶 1. 0g、 甜菜碱 16. 0g、 月桂基 胺基聚氧乙烃醚磷酸酯 4. 0g、正丙醇 3. 0g和清水至 100g加入到装有搅拌装置的混合器中, 室温搅拌 2h。
测定油水界面张力体系:
表面活性剂量 0. 1%浓度
聚丙烯酰胺和清水(或回注污水) 1200ppm
原油 检测量
实验检测结果:在温度为 45_75°C、矿化度 1500-20000mg/L, DV-I I型布氏粘度计(UL 接头) 在 30转 /分种条件下, 测得粘度为 18. 5mPa. S, 使用 TX-500C界面张力仪, 在旋转 速度 5000转 /分钟条件下, 根据 《SY/T5370- 1999表面及界面张力测定方法及评价标准》, 测得最低界面张力为 3 X 10— 3m /m。
本发明的原理是:
此复合型驱油剂为微生物与表面活性剂按比例进行复配得到的驱油体系, 利用微生物 吃长链的饱和烷烃 (蜡), 通过含蜡量的减少, 并通过衍生的轻组分去改变原油的粘度和 组分, 增加了地层流体向井中的流动性, 从而实现对油藏流体的解堵、 清蜡作用; 同时利 用多种表面活性剂的协同作用, 降低油水界面张力, 二者共同作用达到提高原油采收率的 目的。
上述参照实施例对该微生物与表面活性剂复合型驱油剂及其制备方法进行的详 细描述, 是说明性的而不是限定性的, 可按照所限定范围列举出若千个实施例, 因此 在不脱离本发明总体构思下的变化和修改, 应属本发明的保护范围之内。

Claims

权利要求书
1、一种驱油用微生物,其特征在于:菌种分类命名为白黄精朊细菌( ia/w' w acier albofiavus) , 保藏于: 中国微生物菌种保藏管理委员会普通微生物中心, 保藏日期为: 2011年 03月 15日, 保藏编号为: CGMCC 4670 , 保藏地址为: 北京市朝阳区北辰西路 1 号院 3号, 中国科学院微生物研究所。
2、 一种复合型驱油剂, 其特征在于: 含有权利要求 1所述的驱油用微生物。
3、 一种含有如权利要 1所述微生物的复合型驱油剂, 其特征在于: 组成成分及重量 份数如下:
微生物 CGMCC 4670菌液 20-40%
表面活性剂 6-30%
高分子改性剂 5-10%
降粘剂 1-10%
添加剂 1-5%
其余加水至 100%。
所述微生物 CGMCC 4670菌液浓度为 108_101()个 /g。
4、 根据权利要求 3所述的复合型驱油剂, 其特征在于: 所述微生物 CGMCC 4670菌液 的培养条件为: 培养基重量百分比: 蔗糖 20-30% 、 KH2P04 l-5%、 MgS04 1- 5% 、 (NH4) 2S04 1-5% 、 玉米浆 1-5%、 氮源 20-30%、 其余加水至 100%, pH 6_7。
5、 根据权利要求 3所述的复合型驱油剂, 其特征在于: 所述高分子改性剂为山梨醇、 木糖、 明胶、 还原胶、 可溶性淀粉、 甲基纤维素钠、 甲基纤维素 M20、 羟乙基纤维素、 羟 丙基纤维素、 聚乙二醇 600、 聚乙二醇 6000、 聚乙烯吡咯烷酮、 聚乙烯醇的一种或两种以 上的混合物。
6、 根据权利要求 3所述的复合型驱油剂, 其特征在于: 所述表面活性剂包括非离子 表面活性剂和两性离子表面活性剂, 其占驱油剂总量的重量百分比分别为:
非离子类表面活性剂 3-15%
两性表面活性剂 3-15%。
7、 根据权利要求 3所述的复合型驱油剂, 其特征在于: 所述非离子表面活性剂为异 辛基酚基聚氧乙烯醚、 烷基酚聚氧乙烯醚、 脂肪醇聚氧乙烯醚、 壬基酚聚氧乙烯醚、 聚乙 二醇辛基苯基醚、 油酸聚氧乙烯酯、 脂肪酸聚氧乙烯醚、 六次甲基次胺和聚氧乙烯烷基胺 的其中一种或两种以上。
8、 根据权利要求 5所述的复合型驱油剂, 其特征在于: 所述两性离子表面活性剂为 羧酸甜菜碱、 N-酰胺基羧酸甜菜碱、 N-烷基硫代羧酸甜菜碱、 椰油酰胺丙基甜菜碱的其中 一种或两种以上。
9、 根据权利要求 3所述的复合型驱油剂, 其特征在于: 所述降粘剂包括非离子 -磷酸 酯盐型、 非离子-硫酸酯盐型、 非离子 -羧酸盐型和非离子 -磺酸盐型、 月桂基胺基聚氧乙烃 醚磷酸酯的其中一种或两种以上。
10、根据权利要求 3所述的复合型驱油剂, 其特征在于: 所述添加剂包括异丙醇、 正丁醇、 正丙醇、 乙醇的其中一种或两种以上。
PCT/CN2011/075140 2011-04-28 2011-06-02 一种驱油用微生物与含有该微生物的复合型驱油剂及其制备方法 WO2012145949A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/322,567 US8859258B2 (en) 2011-04-28 2011-06-02 Composite oil displacement agent containing a microorganism for oil displacement and a preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101090410A CN102242076B (zh) 2011-04-28 2011-04-28 一种驱油用微生物及含有该微生物的复合型驱油剂
CN201110109041.0 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012145949A1 true WO2012145949A1 (zh) 2012-11-01

Family

ID=44960324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075140 WO2012145949A1 (zh) 2011-04-28 2011-06-02 一种驱油用微生物与含有该微生物的复合型驱油剂及其制备方法

Country Status (3)

Country Link
US (1) US8859258B2 (zh)
CN (1) CN102242076B (zh)
WO (1) WO2012145949A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410047A (zh) * 2019-06-17 2019-11-05 中国石油天然气股份有限公司 一种针对高含气油田的驱油方法及其气体能量释放驱油剂
CN115612019A (zh) * 2021-07-14 2023-01-17 中国石油化工股份有限公司 一种聚合物、制备方法及应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293332B (zh) * 2014-09-11 2018-03-20 长江大学 非常规水平井多段钻塞用钻塞液
BR112017010332B1 (pt) * 2014-11-24 2022-06-14 Akzo Nobel Chemicals International B.V. Composição, método de tratamento de formação subterrânea, e uso de um composto no tratamento de formação subterrânea
CN104449620B (zh) * 2014-12-03 2017-08-11 唐山冀油瑞丰化工有限公司 酸化解堵用驱油微乳酸体系及其制备方法
CN107936936A (zh) * 2017-11-30 2018-04-20 山东安捷宇石油技术服务有限公司 一种驱油剂及其制备方法
CN111763159B (zh) * 2019-04-02 2022-08-02 中国石油天然气股份有限公司 十二烷基磺酸钠-双苷肽化合物及复合驱油剂
CN111793490A (zh) * 2019-04-08 2020-10-20 中国石油天然气股份有限公司 植物胶压裂液微生物复合降粘体系及其在稠油开采领域的应用
CN112745855B (zh) * 2019-10-29 2022-10-21 中国石油化工股份有限公司 一种石油污染土壤微生物修复过程中的增效剂及其制备方法
CN111440605B (zh) * 2020-03-26 2021-12-07 刘存辉 一种微生物表面活性增效剂的制备方法
CN111471445B (zh) * 2020-04-03 2022-08-05 中国石油天然气股份有限公司 一种配体型双子表面活性剂的驱油剂、制备方法及其应用
CN111608623B (zh) * 2020-04-27 2022-06-28 夏文杰 一种应用于油气资源开采的生物纳米制剂
CN114456789A (zh) * 2020-10-22 2022-05-10 中国石油化工股份有限公司 粘性自乳化体系及其制备方法与应用
CN112267850B (zh) * 2020-10-23 2022-09-20 西安石油大油气科技有限公司 一种利用微生物解堵技术提高油井产量的方法及装置
CN112592706B (zh) * 2020-12-03 2022-11-29 西安长庆化工集团有限公司 一种压裂用驱油剂及其制备方法和应用
CN113652217B (zh) * 2021-09-03 2023-04-11 扬州工业职业技术学院 一种石油开采用降粘剂及其制备方法
CN116218503A (zh) * 2022-11-29 2023-06-06 合肥全景泰益新材料科技有限公司 一种高效聚合物-表面活性剂复合驱油剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905761A (en) * 1988-07-29 1990-03-06 Iit Research Institute Microbial enhanced oil recovery and compositions therefor
CN1580486A (zh) * 2004-05-17 2005-02-16 大庆油田有限责任公司 一种微生物驱油方法以及一种微生物-三元复合驱油剂
CN101412980A (zh) * 2008-12-01 2009-04-22 大庆油田有限责任公司 一株梭形芽孢杆菌及其应用
CN101493003A (zh) * 2009-04-14 2009-07-29 大庆油田有限责任公司 一种聚驱后微生物采油方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101596428A (zh) * 2009-07-08 2009-12-09 工合聚能(天津)石油精化科技发展有限公司 一种分子复合型表面活性剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905761A (en) * 1988-07-29 1990-03-06 Iit Research Institute Microbial enhanced oil recovery and compositions therefor
CN1580486A (zh) * 2004-05-17 2005-02-16 大庆油田有限责任公司 一种微生物驱油方法以及一种微生物-三元复合驱油剂
CN101412980A (zh) * 2008-12-01 2009-04-22 大庆油田有限责任公司 一株梭形芽孢杆菌及其应用
CN101493003A (zh) * 2009-04-14 2009-07-29 大庆油田有限责任公司 一种聚驱后微生物采油方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410047A (zh) * 2019-06-17 2019-11-05 中国石油天然气股份有限公司 一种针对高含气油田的驱油方法及其气体能量释放驱油剂
CN115612019A (zh) * 2021-07-14 2023-01-17 中国石油化工股份有限公司 一种聚合物、制备方法及应用

Also Published As

Publication number Publication date
CN102242076A (zh) 2011-11-16
US8859258B2 (en) 2014-10-14
CN102242076B (zh) 2013-01-02
US20140038265A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2012145949A1 (zh) 一种驱油用微生物与含有该微生物的复合型驱油剂及其制备方法
US8053216B2 (en) Bacterial cellulose-containing formulations
JP5808309B2 (ja) バクテリアセルロース含有調合物及び有効なバクテリアセルロース含有調合物の製造方法
CN111056776B (zh) 一种高保坍性再生混凝土及其制备方法
CN104946216A (zh) 一种仿生钻井液及其制备方法
Suthar et al. Selective plugging strategy based microbial enhanced oil recovery using Bacillus licheniformis TT33
JP2011527900A (ja) カルボキシメチルセルロース成分を欠くバクテリアセルロース含有製剤
Sun et al. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery
CN107935443B (zh) 一种改性混凝土减水剂及其制备方法
CN103045221B (zh) 一种表面活性剂驱油体系及其应用
CN103184154B (zh) 一种生产380号船舶燃料油的生物技术及应用
CN106244478A (zh) 地衣芽孢杆菌、由其制备絮凝剂的方法及絮凝剂的应用
CN113337267A (zh) 一种生物酶破胶剂在高矿化度水基压裂液产品中的应用及压裂液产品
CN102911892B (zh) 一株石油降解菌及其在三元采油污水处理中的应用
CN113583893B (zh) 枯草芽孢杆菌株、菌剂、表面活性剂、其制备方法及应用
CN113512448B (zh) 一种用于水煤浆的添加剂组合物
Feng et al. Optimal production of bioflocculant from Pseudomonas sp. GO2 and its removal characteristics of heavy metals
JP5121057B2 (ja) 水酸化カルシウムの水性スラリー組成物
CN111286522B (zh) 一种含有鼠李糖脂的发酵液的制备方法
CN110066651B (zh) 生物驱油剂威兰胶及其驱油体系
CN114836188A (zh) 一种生物复合驱油体系及其应用
CN110872493B (zh) 一种生物质合成基钻井液及其制备方法
AZİMA et al. A BIO-BASED RHEOLOGY MODIFYING AGENT INSPIRED FROM NATURE
CN111807753A (zh) 泛菌多糖作为添加剂在水泥上的应用
Ribeiro Construction of engineered microorganisms for application in microbial enhanced oil recovery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13322567

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864420

Country of ref document: EP

Kind code of ref document: A1