WO2012145875A1 - 一种汽轮机排汽用的蒸发式冷凝器散热模件 - Google Patents

一种汽轮机排汽用的蒸发式冷凝器散热模件 Download PDF

Info

Publication number
WO2012145875A1
WO2012145875A1 PCT/CN2011/001446 CN2011001446W WO2012145875A1 WO 2012145875 A1 WO2012145875 A1 WO 2012145875A1 CN 2011001446 W CN2011001446 W CN 2011001446W WO 2012145875 A1 WO2012145875 A1 WO 2012145875A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
section
tube bundle
cooling section
water separation
Prior art date
Application number
PCT/CN2011/001446
Other languages
English (en)
French (fr)
Inventor
石红晖
马庆中
王进
卢家勇
张龙英
白志刚
Original Assignee
山西省电力公司
山西省电力公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山西省电力公司, 山西省电力公司电力科学研究院 filed Critical 山西省电力公司
Priority to US13/882,154 priority Critical patent/US9618268B2/en
Publication of WO2012145875A1 publication Critical patent/WO2012145875A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present invention generally relates to a condenser, and more particularly to a heat dissipation module in a condenser for evaporatively condensing steam discharged from a steam turbine in parallel with an air-cooled island. .
  • a direct air cooling unit uses air as a cooling medium for discharging steam from a steam turbine. Because of the light density of the air, the small specific heat capacity, and the low heat transfer coefficient, the design temperature rise of the air side of the air cooling system is much higher than that of the wet cooling system. The pressure is also much higher than that of the wet cooling unit, which has a great impact on the thermal economy of the unit. In the actual operation of air-cooled units, the following problems are common: When the air-cooling system is dirty, the back pressure of the unit is increased, which affects its economy. At the same time, the back pressure of the unit is large, which makes the unit safe and reliable. In addition, the unit The back pressure of the operation is greatly affected by the environmental factors.
  • Evaporative condenser is a new type of cooling equipment. It is widely used in the refrigeration and chemical industries. It is used in small-scale units as a condensing unit for steam turbine low-pressure cylinder exhaust. The application on large-scale units is also development. stage.
  • the direct air-cooling system parallel peak evaporative condenser is used to cool part of the steam exhaust of the steam turbine. Due to the large heat of cooling, the large scale of the equipment, the large floor space, and the high required ventilation height, dozens of formed integral evaporative condensations are used. The combination is not suitable for large units.
  • the tube bundle design applied to the refrigeration system usually adopts a serpentine coil. Due to the large resistance along the path, it is not suitable for the cooling of the turbine exhaust with a larger volume.
  • Evaporative condensers using power station condensing systems must seek to reduce system resistance to reduce unit operating back pressure and improve unit economics.
  • the parallel peak evaporative condenser is inevitably leaky due to the in-tube system being under negative pressure.
  • the present invention provides an evaporative condenser cooling module for steam turbine exhaust to solve existing equipment.
  • the system has a large scale, the system covers a large area, and the tube bundle of the refrigeration system adopts a serpentine coil, so that the resistance along the path is not suitable for the cooling problem of the turbine exhaust gas.
  • a cooling condenser cooling module for steam turbine exhaust comprising a tube bundle and a steam-water separation chamber
  • the steam-water separation chamber is provided with a steel support frame
  • the closed central steam-water separation chamber On the left side, there is a steam-water separation chamber between the B sections, and a partition plate is arranged in the steam-water separation chamber between the A and B sections, and the partition plate divides the steam-water separation chamber between the A and B sections into an upper closed space and a lower closed space.
  • the closed space between the lower part of the steam-water separation chamber between the B section and the central steam-water separation chamber is connected.
  • the B-stage downstream cooling section tube bundle, the C-stage counter-current cooling section tube bundle and the B-stage downstream cooling section tube bundle are arranged parallel to each other and at an inclination angle of 20 degrees to the horizontal plane, and are disposed on the upper closed space of the steam-water separation chamber between the eighth and B sections.
  • An A-stage downstream cooling section tube bundle is arranged between the A-stage steam inlet chamber and the lower closed space of the 8-stage and B-stage steam-water separation chambers, and the A-stage downstream cooling section tube bundles are arranged in parallel with each other and at 20 degrees to the horizontal plane.
  • Inclination angle a steam inlet left port is arranged on the left side of the A-stage steam inlet chamber; a tube bundle and a steam-water separation chamber which are identical to the left side structure are disposed on the right side of the central steam-water separation chamber, and the entire evaporation type
  • the condenser heat dissipation module is symmetrically arranged in a V shape.
  • the length of the C-stage countercurrent cooling section tube bundle, the B section downstream cooling section tube bundle and the A section downstream cooling section tube bundle are both 2-2. 5 meters.
  • the pipe diameter of the downstream section of the A section is the same as that of the C section of the counterflow cooling section and the wall thickness of the pipe is the same; the pipe diameter of the B section downstream cooling section and the pipe diameter of the downstream section of the A section downstream cooling section
  • the ratio is 80/100, and the ratio of the wall thickness of the tube of the B-stage downstream cooling section bundle to the wall thickness of the tube of the A-stage downstream cooling section bundle is 2/3.
  • the tube sections of the C-stage countercurrent cooling section tube bundle, the B-stage downstream cooling section tube bundle, and the A-stage downstream cooling section tube bundle are each arranged in a 30-degree triangular staggered pattern on the respective sections perpendicular to the tube bundle.
  • the invention can significantly improve the safety and economy of the unit.
  • the parallel type peak evaporating condenser directly diverts a certain proportion of the steam exhaust of the steam turbine low pressure cylinder. Compared with the series system, the obvious advantages are that the system resistance can be reduced, the air cooling system and the evaporation
  • the condenser has the same steam inlet parameters and enhanced heat transfer capacity. Evaporative condenser condensate drainage and air cooling system condensate drainage and collection into the condensate system.
  • FIG. 1 is a schematic structural view of a heat dissipation module of an evaporative condenser of the present invention
  • Figure 2 is a cross-sectional view taken along line I-I of Figure 1;
  • Figure 3 is a cross-sectional view taken along line H-H of Figure 1.
  • a parallel type peak evaporative condenser includes a steam turbine low pressure cylinder 14 and an air cooling island 16, and a cooling unit 17 is connected to a low pressure cylinder exhaust pipe 15 connecting a turbine low pressure cylinder 14 and an air cooling island 16 to cool
  • the output of the unit 17 is communicated with the condensate pump 19 via the condensate tank 18;
  • the cooling unit 17 includes a tube bundle and a steam-water separation chamber, the steam-water separation chamber is provided with a steel support frame 13, and the closed central steam-water separation chamber 7 is provided with A on the left side.
  • the B-stage steam-water separation chamber 4 is provided with a partition plate 9 in the steam-water separation chamber 4 between the 8 and B sections, and the partition plate 9 divides the steam-water separation chamber 4 between the A and B sections into an upper closed space 10 and a lower closed portion.
  • the central steam-water separation chamber 7 is connected with a B-stage downstream cooling section tube bundle 5, and the C-stage counter-current cooling section tube bundle 8 and the B-stage downstream cooling section tube bundle 5 are arranged parallel to each other and at 20 degrees to the horizontal plane.
  • the inclined angle, the upper closed space 10 of the steam-water separation chamber 4 between the B sections is provided with an air suction duct 11, and at the bottom of the central steam-water separation chamber 7, a condensed water drain pipe 12 is provided, and the steam-water separation chamber between the sections A and B is provided.
  • 4 is provided with a closed A-stage steam inlet chamber 2, and a section A downstream cooling section tube bundle 3 is arranged between the A-stage steam inlet chamber 2 and the lower closed space of the A- and B-stage steam-water separation chamber 4.
  • the tube bundles 3 of the downstream section of the A section are arranged in parallel with each other and at an inclination angle of 20 degrees with the horizontal plane.
  • a steam inlet port 1 is provided on the left side of the steam inlet chamber 2 of the section A; in the central steam and water separation
  • the right side of the chamber 7 is provided with a tube bundle and a steam-water separation chamber which are identical to the structure on the left side thereof, and the entire evaporative condenser heat-dissipating module is symmetrically arranged in a V shape.
  • the length of the C-stage countercurrent cooling section tube bundle 8, the B-stage downstream cooling section tube bundle 5, and the A-stage downstream cooling section bundle 3 are both 2-2.5 meters.
  • the diameter of the tube bundle 3 of the downstream section of the A section is the same as the tube diameter of the tube bundle 8 of the C section of the countercurrent cooling section, and the wall thickness of the tube is also the same; the diameter of the tube bundle 5 of the downstream section of the B section and the downstream section of the section A of the downstream section
  • the ratio of the pipe diameter of 3 is 80/100, and the ratio of the wall thickness of the pipe of the B-stage downstream cooling section pipe bundle 5 to the wall thickness of the pipe of the A-stage downstream cooling section pipe bundle 3 is 2/3.
  • the C-stage counter-current cooling section tube bundle 8, the B-stage downstream cooling section tube bundle 5, and the A-stage downstream cooling section tube The tube bundles of the bundles 3 on their respective sections perpendicular to the tube bundle are arranged in a 30 degree triangular staggered pattern.
  • the cooling module of the cooling unit adopts double-measuring steam inlet, which can reduce the steam flow in the pipe, which is beneficial to reduce the system resistance, reduce the pipe length, increase the heat transfer coefficient, and reduce the unit size and material consumption.
  • the heat transfer module Since the flow resistance of the steam is approximately proportional to the square of the flow rate, the heat transfer module enters the steam with 3 ⁇ 4 side inlet steam, and the flow rate can be reduced to 50% of the single-side steam inlet. In order to meet the system resistance control requirements, the process resistance is reduced. Small factor, the inner diameter of the double-inlet steam tube can be reduced by 40%, and under the same cooling area, the material can be reduced by 70%, and after the thin tube is used, the condensation heat transfer coefficient is enhanced, and the tube wall is thin and thermally conductive. When reduced, the heat exchange area can be further reduced. ' Fully combine the heat sink structure with the condensing characteristics of the cooled gas at each stage, and further improve the tube bundle design to make the radiator have high performance.
  • the flow of the inlet steam tube bundle is further optimized.
  • Each inlet side is divided into three processes, all of which enter the downstream section A.
  • the condensate is directly discharged, which can effectively control the liquid film thickness of the lower process tube bundle; the downstream section A is not condensed
  • the steam enters the downstream B section and continues to condense.
  • the remaining 15% of the uncondensed steam enters the countercurrent C section to condense, and the non-condensed gas is discharged from the upper part.
  • the thin tube bundle is used in the downstream B section to increase the heat exchange area, enhance the heat transfer coefficient, and reduce the amount of material.
  • the counterflow C section is the same as the downstream A section tube bundle, which can reduce the flow rate, reduce the resistance, and reduce the Cold, easy to empty.
  • the design of the radiator structure taking into account the structural strength and stiffness requirements, through a reasonable design, to increase the strength and rigidity of the system, easy to install.
  • One module is divided into four sections, five headers, which increases the rigidity of the tube bundle.
  • the cooling section increases the thick tube bundle and improves the system stiffness as a whole.
  • Five headers can be used as the support surface of the module to increase the strength of the support system. And stiffness and stability.
  • the modularization and unitized design concept of the building block method makes the product processing process simple, convenient to transport, quick to install, and reduced system investment cost.
  • One cooling unit consists of 8-10 modules with a fan; several cooling units form a system, which makes the product processing process simple, convenient to transport and quick to install.
  • the system support system, the ventilation channel, the cooling water system and the water supply system are designed in a unified way, which can simplify the system configuration, reduce the investment cost, facilitate the whole water volume adjustment, ensure the water quality index, and reduce the operation and maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

一种汽轮机排汽用的蒸发式冷凝器散热模件 技术领域 本发明涉及一种冷凝器, 特别涉及一种与空冷岛并联的对汽轮机排出的蒸 汽进行蒸发式冷凝的冷凝器中的散热模件。
背景技术 直接空冷机组是以空气作为汽轮机排出汽体的冷却介质, 因空气的密度轻、 比热容小、 传热系数低, 因此空冷系统空气侧的设计温升远高于湿冷系统, 机 组的设计背压也远远高于湿冷机组, 对机组运行热经济性带来很大的影响。 空 冷机组实际运行中还普遍存在以下问题: 当空冷系统脏污时使机组运行背压升 高, 影响其经济性; 同时, 机组运行背压变化幅度大, 使机组运行安全可靠性 差; 另外, 机组运行背压受环境要素的影响大, 机组在环境温度高的时段, 存 在因背压高限负荷问题突出。 针对上述问题, 业内已普遍釆用增加辅助的湿式 冷却系统方式, 如采用喷雾冷却系统、 并联水塔凝结器湿冷系统、 串联蒸发式 冷凝器系统, 以增强空冷系统的换热能力, 满足机组安全经济运行的要求。 蒸 发式冷凝器是一种新型的冷却设备, 在制冷和化工行业应用较为广泛, 在电站 系统作为汽轮机低压缸排汽的冷凝设备在小型机组上有所应用, 在大型机组上 的应用还属于开发阶段。 应用于电站凝汽系统的蒸发式冷凝器与制冷系统采用 蒸发式冷凝器的技术特点存在很大的差异。 在系统及结构设计中需重点考虑下 面几个方面的问题。 直接空冷系统并联尖峰蒸发式冷凝器用于冷却汽轮机的部 分排汽, 由于冷却热量大, 设备规模大, 系统占地面积大, 需要的通风高度高, 采用数十台成型的整体式的蒸发式冷凝器组合不适用于大型机组。 应用于制冷 系统的管束设计通常采用蛇型盘管, 由于沿程阻力大, 不适应用于比容大的汽 轮机排汽的冷却。 应用电站凝汽系统的蒸发式冷凝器必须设法减小系统阻力, 以降低机组运行背压, 提高机组运行的经济性。 直接空冷系统并联尖峰蒸发式 冷凝器, 由于管内系统处于负压状态, 汽轮机真空系统不可避免地存在漏空现 象。
发明内容 本发明提供的一种汽轮机排汽用的蒸发式冷凝器散热模件解决了现有设备 系统规模大, 系统占地面积大和制冷系统的管束采用蛇型盘管使得沿程阻力大 不适合于汽轮机排汽比容大的冷却问题。 本发明是通过以下技术方案解决以上技术问题的: 一种汽轮机排汽用的蒸发式冷凝器散热模件, 包括管束和汽水分离室, 汽 水分离室设置有钢支撑架, 封闭的中央汽水分离室的左侧设置有 、 B段间汽水 分离室, 在 A、 B段间汽水分离室中设置有分隔板, 分隔板将 A、 B段间汽水分 离室分隔成上部封闭空间和下部封闭空间, 在 、 B段间汽水分离室的上部封闭 空间与中央汽水分离室之间连通有 C段逆流冷却段管束, 在 、 B段间汽水分离 室的下部封闭空间与中央汽水分离室之间连通有 B段顺流冷却段管束, C段逆流 冷却段管束和 B段顺流冷却段管束均相互平行设置并与水平面成 20度倾斜角, 在八、 B段间汽水分离室的上部封闭空间上设置有抽空气管道, 在中央汽水分离 室的底部设置有凝结水排水管, 在八、 B段间汽水分离室的左侧设置有封闭的 A 段蒸汽进汽室, 在 A段蒸汽进汽室与八、 B段间汽水分离室的下部封闭空间之间 设置有 A段顺流冷却段管束, A段顺流冷却段管束相互之间平行设置并与水平面 成 20度倾斜角, 在 A段蒸汽进汽室的左侧面上设置有蒸汽进汽左管口; 在中央 汽水分离室的右侧设置有与其左侧结构完全相同的管束和汽水分离室, 整个蒸 发式冷凝器散热模件呈 V字形对称设置。
所述的 C段逆流冷却段管束、 B段顺流冷却段管束和 A段顺流冷却段管束 的长度均为 2-2. 5米。
A段顺流冷却段管束的管径与 C段逆流冷却段管束的管径相同并且管子的 壁厚也相同; B段顺流冷却段管束的管径与 A段顺流冷却段管束的管径的比为 80/100, B段顺流冷却段管束的管子的壁厚与 A段顺流冷却段管束的管子的壁厚 的比为 2/3。
所述的 C段逆流冷却段管束、 B段顺流冷却段管束和 A段顺流冷却段管束 在各自的与管束垂直的切面上的管束布置方式均为 30度三角形错排型式。
本发明可显著提高机组的安全经济性, 并联式尖峰蒸发式冷凝器直接分流 一定比例的汽轮机低压缸排汽, 与串联式系统比较其明显的优点是可减小系统 的阻力, 空冷系统和蒸发式冷凝器的进汽参数相同, 换热能力增强。 蒸发式冷 凝器凝结水排水与空冷系统凝结水排水汇集后进入凝结水系统。 附图说明
图 1是本发明蒸发式冷凝器散热模件的结构示意图;
图 2是图 1中的 I-I向剖视图;
图 3是图 1中的 H-H向剖视图。
具体实施方式 一种并联式尖峰蒸发式冷凝器, 包括汽轮机低压缸 14、空冷岛 16, 在连通 汽轮机低压缸 14与空冷岛 16之间的低压缸排汽管 15上连通有冷却单元 17,冷 却单元 17的输出经凝结水箱 18与凝结水泵 19连通在一起; 冷却单元 17包括 管束和汽水分离室, 汽水分离室上设置有钢支撑架 13, 封闭的中央汽水分离室 7的左侧设置有 A、 B段间汽水分离室 4, 在八、 B段间汽水分离室 4中设置有分 隔板 9,分隔板 9将 A、 B段间汽水分离室 4分隔成上部封闭空间 10和下部封闭 空间, 在八、 B段间汽水分离室 4的上部封闭空间 10与中央汽水分离室 7之间 连通有 C段逆流冷却段管束 8, 在八、 B段间汽水分离室 4的下部封闭空间与中 央汽水分离室 7之间连通有 B段顺流冷却段管束 5, C段逆流冷却段管束 8和 B 段顺流冷却段管束 5均相互平行设置并与水平面成 20度倾斜角, 在 、 B段间 汽水分离室 4的上部封闭空间 10上设置有抽空气管道 11, 在中央汽水分离室 7 的底部设置有凝结水排水管 12,在 A、 B段间汽水分离室 4的左侧设置有封闭的 A段蒸汽进汽室 2, 在 A段蒸汽进汽室 2与 A、 B段间汽水分离室 4的下部封闭 空间之间设置有 A段顺流冷却段管束 3, A段顺流冷却段管束 3相互之间平行设 置并与水平面成 20度倾斜角, 在 A段蒸汽进汽室 2的左侧面上设置有蒸汽进汽 左管口 1;在中央汽水分离室 7的右侧设置有与其左侧结构完全相同的管束和汽 水分离室, 整个蒸发式冷凝器散热模件呈 V字形对称设置。
所述的 C段逆流冷却段管束 8、 B段顺流冷却段管束 5和 A段顺流冷却段管 束 3的长度均为 2- 2. 5米。
A段顺流冷却段管束 3的管径与 C段逆流冷却段管束 8的管径相同并且管 子的壁厚也相同; B段顺流冷却段管束 5的管径与 A段顺流冷却段管束 3的管径 的比为 80/100, B段顺流冷却段管束 5的管子的壁厚与 A段顺流冷却段管束 3 的管子的壁厚的比为 2/3。
所述的 C段逆流冷却段管束 8、 B段顺流冷却段管束 5和 A段顺流冷却段管 束 3在各自的与管束垂直的切面上的管束布置方式均为 30度三角形错排型式。 冷却单元的散热模件采用双测进汽, 可减小管内进汽流量, 有利于减小系 统阻力, 减小管经, 增大换热系数, 减小单元尺寸和用材量。
由于蒸汽的流动阻力近似与流速的平方成正比, 散热模件进汽釆用¾侧进 汽, 流量可减小到单侧进汽的 50%, 为满足系统阻力控制要求, 同时考虑流程阻 力减小的因素, 双侧进汽的管束内经可减小 40%, 在同样的冷却面积下, 材料可 减少 70%, 而且釆用细管经后, 凝结换热系数增强, 管壁薄导热热阻减小, 换热 面积还可进一步减小。 ' 充分将散热器结构型式与被冷却汽体在各阶段冷凝特点相结合, 进一步改 进管束设计使得散热器具有高性能。
在双侧进汽的基础上, 对个进汽侧管束的流程进行的进一步的优化。 各进 汽侧分为三个流程, 全部进汽进入顺流 A段, 50%左右的蒸汽凝结后, 凝结水直 接排出, 可有效控制, 下流程管束的液膜厚度; 顺流 A段未凝结的蒸汽进入顺 流 B段, 继续凝结, 剩余的 15%未凝结的蒸汽进入逆流 C段凝结, 不凝结气体上 部排出。 在顺流 B段采用薄细管束, 起到增加换热面积、 增强换热系数、 减少 材料用量的作用; 逆流 C段与顺流 A段管束相同, 可达到降低流速、 减小阻力、 减少过冷, 便于排空目的。
散热器结构设计, 同时考虑结构强度和刚度的要求, 通过合理的设计, 起 到增加系统强度、 刚度, 便于安装的目的。
一个模件分为四段, 五个联箱, 增加了管束的刚度, 更冷却段增加了粗厚 管束, 整体提高了系统刚度; 五个联箱可作为模块的支撑面, 增加支撑系统的 强度和刚度及稳定性。
采用积木法模块化、单元化设计理念, 使得产品加工工艺简单、运输方便、 安装快捷、 系统投资费用减少。
一个冷却单元由 8- 10个模件组成,配备一台风机;若干冷却单元组成一个 系统, 使得产品加工工艺简单、 运输方便、 安装快捷。 系统支撑系统, 通风通 道、 冷却水系、 补水系统统一设计, 可简化系统配置, 减少投资费用, 便于整 体水量调节, 保证水质指标, 减少运行维护量。

Claims

权利要求
1、 一种汽轮机排汽用的蒸发式冷凝器散热模件, 包括管束和汽水分离室, 其特征在于, 封闭的中央汽水分离室(7) 的左侧设置有 A、 B段间汽水分离室
(4), 在八、 B段间汽水分离室(4) 中设置有分隔板(9), 分隔板(9)将 A、 B 段间汽水分离室 (4)分隔成上部封闭空间 (10)和下部封闭空间, 在 A、 B段 间汽水分离室(4)的上部封闭空间 (10)与中央汽水分离室(7)之间连通有 C 段逆流冷却段管束 (8), 在 A、 B段间汽水分离室(4) 的下部封闭空间与中央 汽水分离室(7)之间连通有 B段顺流冷却段管束(5), C段逆流冷却段管束(8) 和 B段顺流冷却段管束 (5)均相互平行设置并与水平面成 20度倾斜角, 在八、 B段间汽水分离室(4) 的上部封闭空间 (10)上设置有抽空气管道(11 ), 在中 央汽水分离室(7) 的底部设置有凝结水排水管 (12), 在八、 B段间汽水分离室
(4) 的左侧设置有封闭的 A段蒸汽进汽室(2), 在 A段蒸汽进汽室 (2) 与八、 B段间汽水分离室(4)的下部封闭空间之间设置有 A段顺流冷却段管束(3), A 段顺流冷却段管束 (3)相互之间平行设置并与水平面成 20度倾斜角, 在 A段 蒸汽进汽室(2)的左侧面上设置有蒸汽进汽左管口(1);在中央汽水分离室(7) 的右侧设置有与其左侧结构完全相同的管束和汽水分离室, 整个蒸发式冷凝器 散热模件呈 V字形对称设置。
2、根据权利要求 1所述的一种汽轮机排汽用的蒸发式冷凝器散热模件,其 特征在于: 所述的 C段逆流冷却段管束(8)、 Β段顺流冷却段管束(5)和 Α段 顺流冷却段管束 (3) 的长度均为 2- 2. 5米。
3、根据权利要求 1或 2所述的一种汽轮机排汽用的蒸发式冷凝器散热模件, 其特征在于: A段顺流冷却段管束(3) 的管径与 C段逆流冷却段管束(8 ) 的管 径相同并且管子的壁厚也相同; B段顺流冷却段管束 (5) 的管径与 A段顺流冷 却段管束 (3) 的管径的比为 80/100, B段顺流冷却段管束 (5) 的管子的壁厚 与 A段顺流冷却段管束 (3) 的管子的壁厚的比为 2/3。
4、根据权利要求 1或 2所述的一种汽轮机排汽用的蒸发式冷凝器散热模件, 其特征在于: 所述的 C段逆流冷却段管束 (8)、 B段顺流冷却段管束 (5)和 A 段顺流冷却段管束(3)在各自的与管束垂直的切面上的管束布置方式均为 30 度三角形错排型式。
PCT/CN2011/001446 2011-04-29 2011-08-29 一种汽轮机排汽用的蒸发式冷凝器散热模件 WO2012145875A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/882,154 US9618268B2 (en) 2011-04-29 2011-08-29 Evaporative condenser radiating module for steam exhaust of a steam turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101110096A CN102192660B (zh) 2011-04-29 2011-04-29 一种汽轮机排汽用的蒸发式冷凝器散热模件
CN201110111009.6 2011-04-29

Publications (1)

Publication Number Publication Date
WO2012145875A1 true WO2012145875A1 (zh) 2012-11-01

Family

ID=44601242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001446 WO2012145875A1 (zh) 2011-04-29 2011-08-29 一种汽轮机排汽用的蒸发式冷凝器散热模件

Country Status (3)

Country Link
US (1) US9618268B2 (zh)
CN (1) CN102192660B (zh)
WO (1) WO2012145875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118089428A (zh) * 2024-03-05 2024-05-28 水利部节约用水促进中心 水回收系统和方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP1300085A2 (en) * 2013-02-11 2014-08-28 Gea Egi Energiagazdalkodasi Zrt Heat exchanger unit for dry cooling towers
BR102014023072B1 (pt) 2014-09-13 2020-12-01 Citrotec Indústria E Comércio Ltda sistema de condensação à vácuo utilizando condensador evaporativo e sistema de remoção de ar acoplado as turbinas de condensação em termoelétricas
US10082090B2 (en) * 2016-08-25 2018-09-25 General Electric Company Systems and methods to improve shut-down purge flow in a gas turbine system
US10082091B2 (en) * 2016-08-25 2018-09-25 General Electric Company Systems and methods to improve shut-down purge flow in a gas turbine system
EP3364142B1 (en) * 2017-02-17 2019-10-02 HS Marston Aerospace Limited Heat transfer segment
US20180292140A1 (en) * 2017-04-10 2018-10-11 Hamilton Sundstrand Corporation Heat exchanger assembly
CN112709614B (zh) * 2019-10-25 2023-04-14 新疆知信科技有限公司 冲洗空冷岛的装置
CN115265221A (zh) * 2020-02-18 2022-11-01 暨南大学 串联式冷却调节系统、空冷岛系统及冷却方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2051596A (en) * 1979-05-23 1981-01-21 Deeg Artur Gas-to-liquid condenser
CN1048262A (zh) * 1989-06-21 1991-01-02 奥马特涡轮(1965)有限公司 冷凝含不凝气体蒸汽的换热器
EP0854341A2 (de) * 1997-01-18 1998-07-22 GEA Energietecknik GmbH Wärmetauscherrohr
CN201293561Y (zh) * 2008-09-02 2009-08-19 哈尔滨空调股份有限公司 过冷却空冷器
CN101526313A (zh) * 2009-01-08 2009-09-09 江苏双良空调设备股份有限公司 防止冻结的直接空冷凝汽器
CN201772768U (zh) * 2010-09-02 2011-03-23 洛阳隆华传热科技股份有限公司 空蒸并联高效复合凝汽器
CN102141347A (zh) * 2011-04-29 2011-08-03 山西省电力公司电力科学研究院 一种并联式尖峰蒸发式冷凝器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1435612A (en) * 1919-04-01 1922-11-14 Ljungstroms Angturbin Ab Air-cooled condenser
GB1151521A (en) * 1965-08-17 1969-05-07 English Electric Co Ltd Cooling Towers
US3543843A (en) * 1968-08-20 1970-12-01 Hudson Products Corp Air cooled condenser apparatus
US3556204A (en) * 1969-05-26 1971-01-19 Perfex Corp Air cooled surface condenser
US3881548A (en) * 1971-07-14 1975-05-06 Westinghouse Electric Corp Multi-temperature circulating water system for a steam turbine
CH539818A (de) * 1971-12-17 1973-07-31 Bbc Brown Boveri & Cie Wärmetauscher für zwei dampfförmige Medien
DE2242058B2 (de) * 1972-08-26 1980-06-19 Balcke-Duerr Ag, 4030 Ratingen Kühlturm mit einem rohrförmigen, senkrecht stehenden Mantel
US3942588A (en) * 1974-11-04 1976-03-09 The Lummus Company Cooling tower
US4168742A (en) * 1978-03-27 1979-09-25 Hudson Products Corporation Tube bundle
US6012290A (en) * 1998-06-19 2000-01-11 Garcia; Jaime G. Condenser performance optimizer in steam power plants
CN1283905C (zh) * 1999-12-21 2006-11-08 西门子公司 工业设备和用于操纵装置的容器
JP2002122387A (ja) * 2000-10-13 2002-04-26 Hitachi Eng Co Ltd 空気冷却式熱交換器
CN101025343A (zh) * 2006-02-21 2007-08-29 许建壮 发电厂循环水热电联产与空冷喷淋联合冷却系统
CN101776401B (zh) * 2010-01-29 2011-09-14 华中科技大学 自然通风直接水膜蒸发空冷凝汽系统
CN101832595A (zh) * 2010-05-14 2010-09-15 石家庄安能科技有限公司 火电厂空冷机组回收排汽汽化潜热供热装置
CN202074845U (zh) * 2011-04-29 2011-12-14 山西省电力公司电力科学研究院 一种汽轮机排汽用的蒸发式冷凝器散热模件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2051596A (en) * 1979-05-23 1981-01-21 Deeg Artur Gas-to-liquid condenser
CN1048262A (zh) * 1989-06-21 1991-01-02 奥马特涡轮(1965)有限公司 冷凝含不凝气体蒸汽的换热器
EP0854341A2 (de) * 1997-01-18 1998-07-22 GEA Energietecknik GmbH Wärmetauscherrohr
CN201293561Y (zh) * 2008-09-02 2009-08-19 哈尔滨空调股份有限公司 过冷却空冷器
CN101526313A (zh) * 2009-01-08 2009-09-09 江苏双良空调设备股份有限公司 防止冻结的直接空冷凝汽器
CN201772768U (zh) * 2010-09-02 2011-03-23 洛阳隆华传热科技股份有限公司 空蒸并联高效复合凝汽器
CN102141347A (zh) * 2011-04-29 2011-08-03 山西省电力公司电力科学研究院 一种并联式尖峰蒸发式冷凝器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118089428A (zh) * 2024-03-05 2024-05-28 水利部节约用水促进中心 水回收系统和方法

Also Published As

Publication number Publication date
CN102192660A (zh) 2011-09-21
US9618268B2 (en) 2017-04-11
US20140034273A1 (en) 2014-02-06
CN102192660B (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2012145875A1 (zh) 一种汽轮机排汽用的蒸发式冷凝器散热模件
CN103527267B (zh) 一种采用板式蒸发冷凝器组的直接空冷机组系统
WO2023010853A1 (zh) 间接蒸发冷却设备
WO2009009928A1 (fr) Procédé de condensation et de transfert thermique ayant une fonction de division de liquide automatique et appareil apparenté
CN203531984U (zh) 一种采用板式蒸发冷凝器组的直接空冷机组系统
CN106323024B (zh) 蒸发式冷凝器
WO2021012936A1 (zh) 板程分流式板式换热器
CN201488621U (zh) 一种空冷与蒸发冷一体式换热器
CN210426166U (zh) 一种温控型高效节能冷却塔
CN102141347B (zh) 一种并联式尖峰蒸发式冷凝器
CN102425957A (zh) 一种换热板束倾斜布置的板式蒸发空冷凝汽器
CN205279781U (zh) 一种冷凝器
CN203216313U (zh) 带有扩展水膜板的管式间接蒸发冷却器
CN116242160A (zh) 一种蒸发式冷凝器机组
CN103808180A (zh) 热管冷却装置
CN202074845U (zh) 一种汽轮机排汽用的蒸发式冷凝器散热模件
CN209371833U (zh) 一种水冷式冷凝器节能装置
CN104990316A (zh) 一种过热段和冷凝段分置的蒸发式冷凝换热器及其方法
CN203286907U (zh) 管壳式空冷器
CN204943977U (zh) 一种过热段和冷凝段分置的蒸发式冷凝换热器
WO2020034259A1 (zh) 冷却塔
CN207066213U (zh) 一种移动式空气热阱
CN205481960U (zh) 一种用于复叠式超低温制冷系统的双级冷凝器
CN2775568Y (zh) 一种蒸发式冷凝器
CN202066389U (zh) 一种并联式尖峰蒸发式冷凝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13882154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864376

Country of ref document: EP

Kind code of ref document: A1