WO2020034259A1 - 冷却塔 - Google Patents

冷却塔 Download PDF

Info

Publication number
WO2020034259A1
WO2020034259A1 PCT/CN2018/102966 CN2018102966W WO2020034259A1 WO 2020034259 A1 WO2020034259 A1 WO 2020034259A1 CN 2018102966 W CN2018102966 W CN 2018102966W WO 2020034259 A1 WO2020034259 A1 WO 2020034259A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
air
liquid
membrane
cooling tower
Prior art date
Application number
PCT/CN2018/102966
Other languages
English (en)
French (fr)
Inventor
李银银
宋强
刘景升
刘江彬
Original Assignee
青岛海尔空调电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2020034259A1 publication Critical patent/WO2020034259A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/10Arrangements for suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Definitions

  • the invention relates to the technical field of cooling, and in particular to a cooling tower.
  • Cooling towers are mostly devices that use water as a circulating coolant to absorb heat from a system and discharge it to the atmosphere to reduce the water temperature.
  • the cooling tower of an air conditioner disperses the cooling water exchanged with the heat exchanger of the central air conditioning inside the cooling tower, and directly conducts heat transfer with the air flowing inside the cooling tower or indirectly absorbs after the liquid water is converted into a gaseous state. A large amount of heat is taken away by the atmosphere, so that the temperature of the water is reduced, and the cooling water is recovered and recycled.
  • Air-conditioning cooling towers are commonly used in open cooling towers and closed cooling towers.
  • the working principle of the open cooling tower is: by spraying the circulating water on the cooling tower filler, the water and air are contacted to achieve heat exchange, and then the fan drives the air circulation in the tower to circulate with the water. After the heat exchange, the hot air flow is taken out to achieve the purpose of cooling the circulating water.
  • the working principle of the closed cooling tower is: the self-circulating water in the tower is used to contact the coil, and the heat of the cooling medium in the coil is taken away by the heat exchange between the water and the outer wall of the coil to achieve the purpose of cooling.
  • closed cooling tower does not have the problem of water pollution, and also has the advantages of high safety and easy maintenance compared with the open cooling tower, but due to the large number of copper coils with high heat exchange performance and high cost, closed cooling Towers generally have problems with complex systems and high costs.
  • the northern region has relatively low winter temperatures. If effective anti-freezing measures are not taken, it may also cause local freezing cracking of cooling pipes.
  • how to reduce the cost and complexity of the cooling tower on the basis of ensuring high safety and easy maintenance of the cooling tower has become the focus of attention of those skilled in the art.
  • the present invention provides a cooling tower. It includes a tower body and a cooling unit.
  • the tower body is provided with a first liquid inlet and a first liquid outlet.
  • the cooling unit includes an evaporative condensing membrane group.
  • the evaporative condensing membrane group is disposed in the tower body and is respectively connected with the tower body.
  • the first liquid inlet is in communication with the first liquid outlet, and the evaporative condensation membrane group is configured to selectively allow water molecules to pass through, and when the cooling liquid flows into the evaporative condensation through the first liquid inlet In the case of a membrane group, a part of water molecules in the cooling liquid passes through the evaporation condensation module and is evaporated into the air.
  • the evaporative condensation membrane group includes a frame and a membrane structure that allows water molecules to pass through, the frame is formed with a cavity, and the membrane structure is covered by the cavity, so that The membrane structure and the frame are surrounded to form a water flow channel.
  • the frame is provided with a second liquid inlet and a second liquid outlet, and the second liquid inlet and the second liquid outlet are connected to the first liquid inlet through a pipeline.
  • a liquid inlet is in communication with the first liquid outlet.
  • the membrane structure is a fiber membrane, a microporous membrane, a nano-membrane, or a composite membrane.
  • the cooling unit includes a plurality of evaporative condensation film groups, and the plurality of evaporative condensation film groups are connected in parallel through a pipeline.
  • the evaporative condensation film groups are arranged side by side, and an air channel is formed between adjacent evaporative condensation modules.
  • a mounting bracket is provided in the tower body, and the evaporative condensation module is fixed in the tower body through the mounting bracket.
  • an air inlet hole is opened on the side of the tower body, and an air outlet hole is opened on the top of the tower body.
  • the air inlet hole is provided corresponding to a side of the evaporative condensation module.
  • an induced draft fan is arranged in the air inlet hole, and the induced draft fan can introduce air outside the tower into the tower body through the air inlet hole and flow through the air. After the channels exchange heat with the cooling liquid in the evaporative condensation module, the tower is led out from the air outlet.
  • the cooling tower includes a tower body and a cooling unit, the tower body is provided with a first liquid inlet and a first liquid outlet, and the cooling unit includes an evaporation condensation film group
  • the evaporative condensing membrane group is arranged in the tower body and communicates with the first liquid inlet and the first liquid outlet respectively.
  • the evaporative condensing membrane group is set to selectively allow water molecules to pass through.
  • the cooling tower of the present invention By setting an evaporative condensing membrane group in the tower body of the cooling tower, and the evaporative condensing membrane group is communicated with the first liquid inlet and the first liquid outlet on the tower body respectively, the cooling tower of the present invention reduces the operating noise and pollution. At the same time, it can also simplify the system structure and reduce system costs. Specifically, since the evaporative condensing membrane group of the present invention is set to selectively allow water molecules to pass through, when the cooling tower is in operation, the cooling liquid flows into the evaporative condensing membrane group through the first liquid inlet and passes through the first liquid outlet The outflow continues to cycle.
  • the membrane structure can only selectively allow water molecules to pass, while other gases and liquids cannot pass through, so water molecules in some of the cooling liquid in the membrane group It is easy to enter the air through the membrane, and the latent heat required for its vaporization and evaporation process will absorb the heat of the cooling fluid in the membrane group, thereby reducing the temperature of the cooling fluid in the membrane. At the same time, a small amount of cooling liquid further reduces the temperature during the flow process by exchanging heat with the air outside the evaporation condensation film group.
  • the present invention creatively combines the evaporative cooling film group and the cooling tower to form a new type of cooling tower.
  • the structure of the cooling tower is different from the open cooling tower and the closed cooling tower, but it is compatible
  • the efficiency of the open cooling tower and the safety and ease of maintenance of the closed cooling technology First, because the cooling liquid is circulated and cooled by the evaporative condensation membrane group, this cooling is mainly through the water molecules in the cooling liquid after passing through the membrane group.
  • the vaporization process absorbs the heat of the cooling liquid in the module, so the arrangement of the water distributor is omitted, the structure is simplified, and the cost is saved.
  • the present invention solves the problems of existing open cooling towers that are noisy and easy to pollute, and the closed cooling tower systems are complicated and costly, and opens a new research direction in the field of cooling technology.
  • FIG. 1 is a schematic structural diagram of an air conditioning cooling tower according to the present invention.
  • FIG. 2 is a schematic diagram of removing an air inlet side plate of an air conditioning cooling tower according to the present invention
  • FIG. 3 is a view along the direction A of FIG. 2; FIG.
  • FIG. 4 is a schematic diagram of the working principle of the air conditioning cooling tower of the present invention.
  • FIG. 5 is a schematic outline view of a first embodiment of an evaporative condensation film group of an air conditioning cooling tower according to the present invention.
  • Figure 6 is an exploded view of Figure 5;
  • FIG. 7 is a schematic diagram of the working principle of a membrane structure applied to the present invention.
  • FIG. 8 is a schematic outline view of a second embodiment of an evaporative condensation film group of an air conditioning cooling tower according to the present invention.
  • FIG. 9 is a schematic outline view of a third embodiment of an evaporative condensing film group of an air-conditioning cooling tower of the present invention.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense.
  • they may be fixed connections or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be the internal communication of two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • FIG. 1 is an outline structural diagram of the air-conditioning cooling tower of the present invention
  • FIG. 2 is a schematic diagram of the air-conditioning cooling tower of the present invention with the air inlet side plate removed
  • the air conditioning cooling towers (hereinafter referred to as cooling towers) of the present invention mainly include Tower body 1 and cooling unit.
  • the tower body 1 is provided with a first liquid inlet 11, a first liquid outlet 12, an air inlet hole 13 and an air outlet hole 14.
  • the air inlet hole 13 is provided with an induced draft fan 15. The air is introduced into the tower body 1 through the air inlet 13, and passes through the air outlet 14 after the air passes through the internal space of the tower 1.
  • the cooling unit includes a plurality of evaporative condensing film groups 21.
  • the evaporative condensing film groups 21 are arranged in parallel in the tower body 1 and communicate with the first liquid inlet 11 and the first liquid outlet 12 after being connected in parallel.
  • a membrane structure 212 is provided in the evaporative condensation membrane group 21, and the membrane structure 212 is arranged to selectively allow water molecules to pass through.
  • the induced draft fan 15 drives air from the air inlet 13 into the tower body 1, and after passing through the evaporation condensation module, it exits from the air outlet 14.
  • the pump located in the air-conditioning system drives the cooling liquid (for example, the cooling liquid is water) to flow into the evaporative condensing membrane group 21 through the first liquid inlet 11.
  • the membrane structure 212 can only selectively allow water molecules to pass, but other gases and liquids cannot pass, so water molecules in some of the cooling liquid in the module easily pass through the evaporation condensation module and vaporize and evaporate in the air stream
  • the evaporated water molecules use the latent heat of evaporation and vaporization to absorb the heat of the cooling liquid in the evaporative condensation film group 21, thereby reducing the temperature of the cooling liquid in the film group.
  • a small amount of cooling liquid exchanges heat with the flowing air outside the evaporative condensation module during the flow process, further reducing the temperature of the cooling liquid.
  • the air-conditioning cooling tower of the present invention not only reduces the operating noise and water pollution, but also simplifies the structure of the system and reduces the cost of the system by providing an evaporation condensation film group 21 in the tower body 1. Specifically, when the cooling liquid flows through the evaporative condensing film group 21, the water molecules passing through the evaporating and condensing film group 21 mainly pass through the evaporative condensing film group 21 to generate an evaporation and vaporization phenomenon in the air flow.
  • the setting method for reducing the temperature of the cooling liquid not only makes the cooling tower There is no need to set a water distributor, which simplifies the structure of the cooling tower, reduces the system cost, and also eliminates the noise generated by the water distributor and water spray.
  • the other cooling liquids are sealed in the evaporative condensing film group 21 except for water molecules, the cooling liquids will not be polluted during the circulation process and will not cause pollution to the external environment, which improves the safety of the cooling tower. Reduced maintenance difficulty.
  • the setting method in which a part of the cooling liquid directly exchanges heat with the air flow to cool down further optimizes the cooling effect of the cooling tower and makes the cooling effect of the cooling tower better.
  • the present invention mainly uses the vaporization and evaporation process of water molecules in the cooling liquid to pass through the membrane structure 212, cooling the cooling liquid will consume part of the cooling water, but Compared with the open cooling towers and closed cooling towers in the prior art, due to the phenomenon of scooping water and evaporation during the operation of the open cooling towers and closed cooling towers, the water consumption is very large, and the present invention The water consumed by vaporization and evaporation is far less than the water consumed by the open cooling tower and the closed cooling tower, and the amount of supplemental water is greatly reduced accordingly, which can save water resources.
  • FIG. 5 is an outline diagram of the first embodiment of the evaporative condensing film group 21 of the air-conditioning cooling tower of the present invention
  • FIG. 6 is an exploded view of FIG. 5
  • FIG. 7 is a work of a membrane structure 212 applied to the present invention Schematic diagram.
  • the tower body 1 of the cooling tower is a cuboid or a cube, and the tower body 1 is provided with a mounting bracket 16.
  • the mounting bracket 16 is provided with a plurality of passing pipes 3 side by side.
  • the evaporative condensation film groups 21 are connected in parallel, and an air passage 4 is formed between the adjacent evaporative condensation film groups 21.
  • Each evaporation condensation film group 21 has a second liquid inlet 2111 and a second liquid outlet 2112, and the second liquid inlet 2111 and the second liquid outlet 2112 are respectively connected to the first liquid inlet 11 and the first liquid outlet 12 connected.
  • An air inlet 13 is provided on the lower part of the side of the tower body 1, and an air outlet 14 is provided in the middle of the top, so that the air inlet 13, the air channel 4 and the air outlet 14 together form a complete air flow channel.
  • the air inlet holes 13 are preferably opened corresponding to the left and right sides of the evaporative condensing film group 21 (the surface shown in FIG. 2 is the right side) so that the outside air can smoothly flow into the air passage 4 to strengthen and evaporate the Heat exchange.
  • a draft fan 15 is also provided in the air outlet hole 14, such as an axial fan shown in FIG.
  • the evaporative condensation membrane group 21 includes a frame 211 and a membrane structure 212 that allows water molecules to pass through.
  • the material of the frame 211 may be metal or plastic, and the front surface thereof is generally rectangular.
  • a cavity 2113 is formed, and the membrane structure 212 is covered on the cavity 2113, so that the membrane structure 212 and the frame 211 are surrounded to form a water flow channel.
  • the front of the frame 211 is provided with two second liquid inlets 2111 and a second liquid outlet 2112.
  • the second liquid inlet 2111 is located at two upper corners of the front of the frame 211, and the second liquid outlet 2112 is located on the front of the frame 211. In the lower corners of the lower part, the cooling liquid enters the water flow channel from the upper two second liquid inlets 2111, and flows out of the water flow channel from the two second lower liquid outlets 2112.
  • the membrane structure 212 may be a nano-membrane, for example, a nano-non-porous membrane made of a sulfonated styrene-olefin polymer laminated on a nylon nonwoven reinforcement, as shown in FIG. 7 It shows that the nano-porous membrane has a hydrophilic region and a hydrophobic region. Under the combined effect of the adsorption of the hydrophilic region and the partial pressure difference of steam on both sides, it can achieve a high-speed selective passage of a large number of water vapor molecules and evaporate after passing . In addition, this membrane material not only has the characteristics of high selectivity and high throughput, but also has the advantages of anti-fouling and renewable.
  • membrane structures 212 can be used in the present invention, as long as the membrane structure 212 can satisfy the conditions that allow water molecules to pass and other liquid or gas molecules cannot pass.
  • membrane structure 212 can satisfy the conditions that allow water molecules to pass and other liquid or gas molecules cannot pass.
  • fiber membranes, microporous membranes or composite membranes used for membrane distillation are used for membrane distillation.
  • the cooling water used in the cooling tower of the present invention can be non-potable water, or even industrial wastewater or brine.
  • traditional cooling tower technology as the water evaporates, the solution ion concentration becomes higher and higher, eventually forming scale deposits and affecting the life of the cooling tower.
  • the membrane structure 212 of the present invention has been proven to be resistant to fouling, avoid the formation of scale deposits, and allow the use of high-concentration water, breaking through the filler design of today's cooling towers. Therefore, the present invention eliminates the restriction on water quality, can make full use of waste water resources, and can also reduce the phenomenon that cooling water is discharged as sewage, which is convenient for the use of recycled water instead of drinking water.
  • the traditional technique is to spray or filter water onto the evaporation surface inside the cooling tower.
  • water is pumped to the top of a tower 3 to 4 meters high and runs vertically along the filling material.
  • the distribution method at the top of the tower requires that the heads form a uniform film.
  • This type of water distributor or nozzle can cause head losses of up to 5 meters.
  • the cooling tower membrane structure 212 of the present invention continuous liquid water flow is maintained, and the continuous water flow is evenly distributed. No water distributor or nozzle is required, which simplifies the system structure and eliminates pressure loss.
  • the static pressure head of the circulating pump of the present invention is 4-9 meters less than the conventional system, which makes the pump selection smaller, which not only reduces system noise, but also saves the system Cost, saving system energy consumption.
  • the cooling tower of the present invention allows water vapor molecules to pass through, and the microorganisms and other pollutants in liquid water and water cannot pass through the membrane structure 212 into the air, the present invention does not cause droplets to carry microorganisms. Or the bacteria spread outwards, and the safety is high.
  • the cooling water is separated by a closed system similar to dry cooling technology to reduce the spread of dangerous bacteria and viruses like Legionella through the air.
  • cooling water In traditional cooling towers, cooling water is in direct contact with air, so any particles in the air may be trapped when it comes into contact with liquid water. For a long time, there will be more and more impurities deposited in the water, which will foul on the bottom of the cooling tower and affect the service life, so it needs to be cleaned regularly.
  • the cooling liquid In the cooling tower of the present invention, the cooling liquid is basically enclosed in the membrane group, and the inner surface of the tower body 1 is kept dry and cannot capture particles. Therefore, it is largely maintenance-free and safer, so it is more suitable for residential and light-duty applications. Commercial applications.
  • the number of the evaporation and condensation membrane groups 21, the structure and shape of the membrane groups, the arrangement manner in the tower body 1, and the installation manner are not unique, and those skilled in the art can adjust it.
  • the number can be one, two, three, four, or more; the front side of the membrane group can also be circular or oval; the membrane group can be connected in series, or can be combined in series and parallel.
  • the setting position and number of the second liquid inlet 2111 and the second liquid outlet 2112 of the evaporative condensing membrane group 21 can be adjusted, as shown in FIG. 8 and FIG. 9.
  • 8 and FIG. 9 are schematic diagrams illustrating the second and third embodiments of the evaporative condensing film group 21 according to the present invention.
  • the position of the second liquid inlet 2111 may also be on the top or side of the frame 211, and the number may be one or more.
  • the second liquid outlet 2112 may also be provided on the frame.
  • the number of the side lower part or the bottom middle part of 211 may be one or more.
  • a circulating pump may be provided on the pipeline 3 of the first liquid inlet 11 or the second liquid inlet 2111 to convey the cooling liquid.
  • Circulation pumps are set at 12 and the second liquid outlet 2112 to suck the cooling liquid.
  • the shape of the tower body 1 may also be a cylinder or any other possible shape.
  • the position of the induced draft fan 15 in the tower body 1 may be provided in addition to the air outlet 14 in the air outlet hole 14.
  • the air inlet 13 is not required to be provided on the tower body 1 as long as the installation position is sufficient for the air flow outside the tower body 1 to enter through the air inlet 13 and exit from the air outlet 14.
  • the air inlet holes 13 can also be provided on the four sides of the tower body 1, or the bottom surface of the tower body 1, etc. It is arranged outside the middle part of the top surface, and can also be arranged at other positions from the top surface, or the upper part of the side of the tower body 1.
  • the above-mentioned alternative implementations can also be used in cross-cooperation, so as to combine new implementations to be applicable to more specific application scenarios.
  • the positions of the second liquid inlet 2111 and the second liquid outlet 2112 can be adjusted to the upper side and the lower side of the frame 211, respectively, so as to form a combination A new implementation.

Abstract

一种冷却塔,包括塔体(1)和冷却单元,塔体(1)设置有第一进液口(11)和第一出液口(12),冷却单元包括蒸发冷凝膜组(21),蒸发冷凝膜组(21)设置于塔体(1)内并分别与第一进液口(11)和第一出液口(12)连通,蒸发冷凝膜组(21)设置成选择性地允许水分子穿过;当冷却液通过第一进液口(11)流入蒸发冷凝膜组(21)时,冷却液中的部分水分子穿过蒸发器冷凝膜组(21)后蒸发至空气中。

Description

冷却塔 技术领域
本发明涉及冷却技术领域,具体涉及一种冷却塔。
背景技术
冷却塔多是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置。以空调为例,空调冷却塔是将与中央空调的换热器进行换热的冷却水在冷却塔内部分散,通过与冷却塔内部流动的空气直接进行热传递或液态水转化为气态后间接吸收大量热量,被大气带走,从而使得水温得以降低,冷却水被回收循环使用的装置。空调冷却塔常用的有开式冷却塔和闭式冷却塔。开式冷却塔的工作原理为:通过将循环水以喷淋的方式,喷淋到冷却塔填料上,通过水与空气的接触,达到换热,再由风机带动塔内气流循环,将与水换热后的热气流带出,从而达到冷却循环水的目的。闭式冷却塔的工作原理为:利用塔内自循环的水和盘管接触,通过水与盘管外壁热交换带走盘管内冷却介质的热量达到冷却的目的。
对于开式冷却塔来说,虽然其具有高效、结构简单、造价低等优点,但是其存在的问题也较多。首先,运行时会存在淋水声、风机风噪声、水泵震动声等,因此运行时的噪音比较大。其次,由于是开式系统,冷却塔在运行的时候,会产生飘水现象,造成水量损失,要经常补水,同时一定程度上也会污染冷却水,使其水质下降,而且外界的杂物也会进入冷却水中,造成水质污染。闭式冷却塔虽然不存在水质污染的问题,而且相对于开式冷却塔还具有安全性高、维护简便等优点,但由于大量采用了换热性能高且价格昂贵的紫铜盘管,闭式冷却塔普遍存在系统复杂、成本较高的问题。并且,北方地区冬季气温较低,如果未采取有效的防冻措施,还可能引起冷却管局部冻裂的问题。综上所述,如何在保证冷却塔安全性高和维护简便的基础上,降低其成本和结构复杂度,成为本领域技术人员关注的焦点。
相应地,本领域需要一种新的冷却塔来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有开式冷却塔噪音大、易污染,闭式冷却塔系统复杂、成本高的问题,本发明提供了一种冷却塔,所述冷却塔包括塔体和冷却单元,所述塔体设置有第一进液口和第一出液口,所述冷却单元包括蒸发冷凝膜组,所述蒸发冷凝膜组设置于所述塔体内并分别与所述第一进液口和所述第一出液口连通,所述蒸发冷凝膜组设置成选择性地允许水分子穿过,当冷却液通过所述第一进液口流入所述蒸发冷凝膜组时,冷却液中的部分水分子穿过所述蒸发冷凝模组后蒸发至空气中。
在上述冷却塔的优选技术方案中,所述蒸发冷凝膜组包括框架和允许水分子穿过的膜结构,所述框架形成有腔体,所述膜结构盖设于所述腔体,从而所述膜结构与所述框架围设形成水流通道。
在上述冷却塔的优选技术方案中,所述框架上设置有第二进液口和第二出液口,所述第二进液口和所述第二出液口通过管路与所述第一进液口和所述第一出液口连通。
在上述冷却塔的优选技术方案中,所述膜结构为纤维膜、微孔膜、纳米膜或复合膜。
在上述冷却塔的优选技术方案中,所述冷却单元包括多个蒸发冷凝膜组,所述多个蒸发冷凝膜组通过管路并联连接。
在上述冷却塔的优选技术方案中,所述蒸发冷凝膜组并排排列,相邻的蒸发冷凝模组之间形成空气通道。
在上述冷却塔的优选技术方案中,所述塔体内设置有安装支架,所述蒸发冷凝模块通过所述安装支架固定于所述塔体内。
在上述冷却塔的优选技术方案中,所述塔体的侧面开设有进风孔,所述塔体顶部开设有出风孔。
在上述冷却塔的优选技术方案中,所述进风孔对应所述蒸发冷凝模块的侧面设置。
在上述冷却塔的优选技术方案中,所述进风孔中配置有引风机,所述引风机能够将所述塔体外的空气通过所述进风孔引入所述塔体并流经所述空气通道与所述蒸发冷凝模组中的冷却液换热后,从所述出风孔引出所述塔体。
本领域技术人员能够理解的是,在本发明的优选技术方案中,冷却塔包括塔体和冷却单元,塔体设置有第一进液口和第一出液口,冷却单元包括蒸发冷凝膜组,蒸发冷凝膜组设置于塔体内并分别与第一进液口和第一出液口连通,蒸发冷凝膜组设置成选择性地允许水分子穿过,当冷却液通过第一进液口流入蒸发冷凝膜组时,冷却液中的部分水分子穿过蒸发冷凝模组后蒸发至空气中。
通过在冷却塔的塔体中设置蒸发冷凝膜组,并且蒸发冷凝膜组分别与塔体上的第一进液口和第一出液口连通,本发明的冷却塔降低了运行噪音和污染的同时,还能够简化系统结构,降低系统成本。具体而言,由于本发明的蒸发冷凝膜组设置成选择性的允许水分子穿过,因此冷却塔在工作时,冷却液通过第一进液口流入蒸发冷凝膜组,通过第一出液口流出继续循环。在流动过程中,由于蒸发冷凝膜组内采用特有的膜结构,该膜结构只能选择性地允许水分子通过,而其他气体和液体不能通过,因此膜组内的部分冷却液中的水分子极易通过该膜进入空气中,其汽化蒸发过程所需的潜热会吸收膜组内冷却液的热量,从而降低膜内冷却液的温度。同时,少量冷却液在流动过程中还通过与蒸发冷凝膜组外的空气进行热交换进一步降低温度。
通过上述描述可以看出,本发明创造性地将蒸发冷却膜组与冷却塔相结合,形成一种新型的冷却塔,该冷却塔结构上不同于开式冷却塔和闭式冷却塔,但兼容了开式冷却塔的高效性和闭式冷却技术的安全性及维护简便性:首先,由于冷却液通过蒸发冷凝膜组循环冷却,这种冷却主要通过冷却液中的水分子穿过膜组后的汽化蒸发过程吸收模组内冷却液热量,因此省略了布水器的设置,简化了结构,节省了成本;其次由于绝大部分冷却液都被密封在蒸发冷凝膜组中,因此不存在淋水声,冷却液不会遭到污染,也不会对外界环境造成污染。也就是说,本发明解决了现有开式冷却塔噪音大、易污染,闭式冷却塔系统复杂、成本高的问题,在冷却技术领域开创了一种新的研究方向。
附图说明
下面参照附图并结合空调冷却塔来描述本发明的冷却塔。附图中:
图1为本发明的空调冷却塔的外形结构示意图;
图2为本发明的空调冷却塔去除进风侧板的示意图;
图3为图2沿A向的视图;
图4为本发明的空调冷却塔的工作原理示意图;
图5为本发明的空调冷却塔的蒸发冷凝膜组第一种实施方式的外形示意图;
图6为图5的爆炸图;
图7为应用于本发明的一种膜结构的工作原理示意图;
图8为本发明的空调冷却塔的蒸发冷凝膜组的第二种实施方式的外形示意图;
图9为本发明的空调冷却塔的蒸发冷凝膜组的第三种实施方式的外形示意图。
附图标记列表
1、塔体;11、第一进液口;12、第一出液口;13、进风孔;14、出风孔;15、引风机;16、安装支架;21、蒸发冷凝膜组;211、框架;2111、第二进液口;2112、第二出液口;2113、腔体;212、膜结构;3、管路;4、空气通道。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然附图中的塔体的进风孔开设与塔体的两对侧,但是这种位置关系非一成不变,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,进风孔还可以开设与塔体的四个侧面,或者开设与塔体的底面等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参照图1至图4,对本发明的空调冷却塔进行介绍。其中,图1为本发明的空调冷却塔的外形结构示意图;图2为本发明的空调冷却塔去除进风侧板的示意图;图3为图2沿A向的视图;图4为本发明的空调冷却塔的工作原理示意图。
如图1至图3所示,为了解决现有开式冷却塔噪音大、易污染,闭式冷却塔系统复杂、成本高的问题,本发明的空调冷却塔(以下或简称冷却塔)主要包括塔体1和冷却单元。塔体1设置有第一进液口11、第一出液口12、进风孔13和出风孔14,进风孔13出配置有引风机15,引风机15能够将塔体1外的空气通过进风孔13引入塔体1,并在空气穿过塔体1内部空间后,从出风孔14穿出。冷却单元包括多个蒸发冷凝膜组21,蒸发冷凝膜组21并联设置于塔体1内并且在并联后与第一进液口11和第一出液口12连通。其中,蒸发冷凝膜组21中设置有膜结构212,膜结构212设置成选择性地允许水分子穿过。
参照图4,空调冷却塔在工作时,引风机15带动空气从进风孔13进入塔体1,在穿过蒸发冷凝模组后,从出风孔14穿出。与此同时,位于空调系统中的泵带动冷却液(如冷却液为水)通过第一进液口11流入蒸发冷凝膜组21,在流动过程中,由于蒸发冷凝膜组内采用特有的膜结构212,该膜结构212只能选择性地允许水分子通过,而其他气体和液体不能通过,因此模组内的部分冷却液中的水分子极易穿过蒸发冷凝模组后汽化蒸发在空气流中,蒸发的水分子利用其蒸发汽化潜热,吸收蒸发冷凝膜组21中冷却液的热量,从而降低膜组内冷却液的温度。与此同时,少量冷却液在流动过程中与蒸发冷凝模组外的流动空气进行热交换,进一步降低冷却液的温度。
通过上述描述可以看出,本发明的空调冷却塔通过在塔体1内设置蒸发冷凝膜组21,不仅降低了运行噪音和水质污染,还能够简化系统的结构,降低系统的成本。具体而言,冷却液流过蒸发冷凝膜组 21时主要通过冷却液中的水分子穿过蒸发冷凝膜组21至空气流中产生蒸发汽化现象降低冷却液温度的设置方式,不仅使得冷却塔中无需设置布水器,简化了冷却塔的结构,降低了系统成本,而且还消除了布水器和淋水产生的噪音。此外,由于除了水分子以外,其他冷却液均被密封在蒸发冷凝膜组21中,因此循环过程中冷却液不会被污染,也不会对外界环境造成污染,提高了冷却塔的安全性,降低了维护难度。而一部分冷却液直接与空气流换热降温的设置方式,则进一步优化了冷却塔的冷却效果,使得冷却塔的冷却效果更好。经发明人反复试验、观测、分析和比较,虽然本发明中主要通过冷却液中的水分子穿过膜结构212的汽化蒸发过程实现对冷却液的降温,会消耗部分冷却液中的水,但是相比于现有技术中的开式冷却塔和闭式冷却塔来说,由于开式冷却塔和闭式冷却塔在工作过程中存在瓢水和蒸发等现象,水量消耗非常大,而本发明的汽化蒸发所消耗的水分远远小于开式冷却塔和闭式冷却塔消耗的水量,补水量相应的也大大减少,反而能够起到节约水资源的效果。
下面参照图1至图7,进一步对本发明的空调冷却塔进行描述。其中,图5为本发明的空调冷却塔的蒸发冷凝膜组21第一种实施方式的外形示意图;图6为图5的爆炸图;图7为应用于本发明的一种膜结构212的工作原理示意图。
参照图1至图3,在一种可能的实施方式中,冷却塔的塔体1为长方体或正方体,塔体1中设置有安装支架16,安装支架16上并排设置有多个通过管路3并联的蒸发冷凝膜组21,相邻的蒸发冷凝膜组21之间形成空气通道4。每个蒸发冷凝膜组21均具有第二进液口2111和第二出液口2112,第二进液口2111和第二出液口2112分别与第一进液口11和第一出液口12连通。塔体1的侧面靠下的部位设置有进风孔13,顶部中部设置有出风孔14,从而进风孔13、空气通道4和出风孔14共同组成了完整的气流通道。其中,进风孔13优选地对应蒸发冷凝膜组21的左右两侧面(图2所示出的面为右侧面)开设,以便外部空气顺利流入空气通道4,强化与蒸发冷凝膜组21的换热。此外,出风孔14内还设置有引风机15,如图1中所示的轴流风机。
参照图5和图6,在一种可能的实施方式中,蒸发冷凝膜组21包括框架211和允许水分子穿过的膜结构212,框架211的材料可以为金属或塑料,其正面大致呈矩形并形成有腔体2113,膜结构212盖 设于腔体2113,从而膜结构212与框架211围设形成水流通道。框架211的正面设置有两个第二进液口2111和第二出液口2112,第二进液口2111位于框架211正面的上部两个边角处,第二出液口2112位于框架211正面的下部两个边角处,从而冷却液从上部两个第二进液口2111进入水流通道,从下部两个第二出液口2112流出水流通道。
在一种较为优选的实施方式中,膜结构212可以选择纳米膜,例如,由磺化苯乙烯-烯烃聚合物层压于尼龙无纺增强体上制成的纳米无孔膜,如图7所示,该纳米无孔膜具有亲水区和疏水区,在亲水区的吸附作用及两侧蒸汽分压差共同作用下,能够实现大量水蒸气分子的高速选择性通过并在通过后蒸发汽化。此外,这种膜材料除了具备高选择性、高通量特点外,还具备抗结垢、可再生等优势。
当然,除了上述介绍的纳米膜外,本发明中还可以选用其他膜结构212,只要该膜结构212能够满足允许水分子通过,而其他液体或气体分子无法通过的条件即可。如,用于膜蒸馏的纤维膜、微孔膜或复合膜等。这里需要说明的是,虽然本实施方式中没有对其他膜结构212的原理进行具体介绍,但是这并不代表其他膜结构212不能够实施本发明的技术方案,正是由于现有技术中上述膜结构212的原理和应用已经足够成熟,因此本文中不再对其原理进行赘述。
上述实施方式的优点在于:
1.冷却液选择范围广
由于选用了特殊的蒸发冷凝膜组21,因此本发明的冷却塔使用的冷却水可以为非饮用水,甚至是工业废水、盐水。传统冷却塔技术中,随着水分的蒸发,溶液离子浓度越来越高,最终会形成结垢沉积物,影响冷却塔的使用寿命。而本发明的膜结构212已被证明耐结垢、可避免水垢沉积物生成、允许高浓水的使用,突破了当今冷却塔的填料设计。因此,本发明消除了对水质的限制,可充分利用废水资源,也可以减少冷却水作为污水排出的现象,便于再生水替代饮用水使用。
2.结构简单、噪音小、成本低、节约能耗
传统技术是将水喷洒或过滤到冷却塔内的蒸发表面上。通常情况下,水被泵送3到4米高的塔顶,并沿填充材料垂直运行。塔顶的分配方法要求压头形成均匀的薄膜,这种类型的布水器或喷嘴可以造成高达5米的压头损失。而本发明的冷却塔膜结构212内保持连续的液 态水流,连续水流均匀分布,无需设置布水器或喷嘴,简化了系统结构,消除了压力损失。经发明人反复试验、观测、分析和比较,本发明的循环泵的静压头比常规系统少4-9米,这使得泵的选型更小,不仅能降低系统噪音,而且还能够节省系统成本,节约了系统能耗。
3.安全性高
传统的冷却塔在工作过程中,水与空气直接接触,冷却水在蒸发过程中,容易以液滴形式离开塔,因此容易携带一些微生物或细菌向外传播,造成细菌传播与污染。而本发明的冷却塔的膜结构212由于至允许水蒸气分子通过,而液态水与水中的微生物和其他污染物均无法穿过膜结构212进入空气中,因此本发明不会造成液滴夹带微生物或细菌向外传播,安全性高。实际上,冷却水被一个类似于干燥冷却技术的封闭系统隔开,以降低类似军团菌的危险细菌和病毒通过空气进行传播。
4.便于维护
传统的冷却塔中,冷却水与空气直接接触,所以任何空气中的微粒在与液态水接触时都可能被截留。长期以往,水中沉积杂质会越来越多,会在冷却塔底部结垢附着,影响使用寿命,因此需要定期清理。而本发明的冷却塔中冷却液基本上被封闭在膜组内,塔体1内表面保持干燥,无法捕捉颗粒,因此在很大程度上免维护,并且更安全,因此更加适用于住宅和轻型商业应用。
需要说明的是,上述优选的实施方式仅仅用于阐述本发明的原理,并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员就可以对上述设置方式进行调整,以便本发明能够应用于更加具体的应用场景。
例如,在一种可替换的实施方式中,蒸发冷凝膜组21的数量、膜组的结构形状、在塔体1内排列方式以及安装方式等均不唯一,本领域技术人员可以对其进行调整。例如,数量可以为一个、两个、三个、四个、或更多个;膜组的正面还可以为圆形、椭圆形;膜组可以串联、可以串并联结合等。
再如,在另一种可替换的实施方式中,蒸发冷凝膜组21的第二进液口2111和第二出液口2112的设置位置和设置数量可以进行调整,参照图8和图9所示,图8和图9示出了为本发明的蒸发冷凝膜 组21的第二种和第三种实施方式的外形示意图。如图8和图9所示,第二进液口2111的设置位置还可以在框架211的顶面或侧面上部,其数量可以为一个或多个,第二出液口2112还可以设置在框架211的侧面下部或底面中部,其数量可以为一个或多个。
再如,在另一种可替换的实施方式中,可以在第一进液口11或第二进液口2111的管路3上设置循环泵输送冷却液,当然也可以在第一出液口12和第二出液口2112位置设置循环泵抽吸冷却液。
再如,在另一种可替换的实施方式中,塔体1形状还可以圆柱体或其他任意可能的形状,引风机15在塔体1的设置位置除了出风孔14内,还可以设置在进风孔13,或者不设置在塔体1上,只要该设置位置能够满足将塔体1外的空气流从进风孔13进入、从出风孔14引出即可。进风孔13除了设置在塔体1对应蒸发冷凝膜组21侧面的两相对侧下部外,还可以设置于塔体1的四个侧面,或者塔体1的底面等;同样的出风孔14出设置于顶面中部外,还可以设置与顶面其他位置,或者塔体1侧面的上部。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。例如,可以在将进风孔13设置于塔体1底部的基础上,将第二进液口2111和第二出液口2112的位置分别调整到框架211的侧面上部和底面,从而组合出一种新的实施方式。
最后需要说明的是,虽然本优选地实施方式是以空调冷却塔进行描述的,显然本领域技术人员能够理解的是,冷却塔还可以应用于其他应用场景,如冷冻行业、塑胶化工行业等。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种冷却塔,其特征在于,所述冷却塔包括塔体和冷却单元,所述塔体设置有第一进液口和第一出液口,所述冷却单元包括蒸发冷凝膜组,所述蒸发冷凝膜组设置于所述塔体内并分别与所述第一进液口和所述第一出液口连通,所述蒸发冷凝膜组设置成选择性地允许水分子穿过,
    当冷却液通过所述第一进液口流入所述蒸发冷凝膜组时,冷却液中的部分水分子穿过所述蒸发冷凝模组后蒸发至空气中。
  2. 根据权利要求1所述的冷却塔,其特征在于,所述蒸发冷凝膜组包括框架和允许水分子穿过的膜结构,所述框架形成有腔体,所述膜结构盖设于所述腔体,从而所述膜结构与所述框架围设形成水流通道。
  3. 根据权利要求2所述的冷却塔,其特征在于,所述框架上设置有第二进液口和第二出液口,所述第二进液口和所述第二出液口通过管路与所述第一进液口和所述第一出液口连通。
  4. 根据权利要求2所述的冷却塔,其特征在于,所述膜结构为纤维膜、微孔膜、纳米膜或复合膜。
  5. 根据权利要求1至4中任一项所述的冷却塔,其特征在于,所述冷却单元包括多个蒸发冷凝膜组,所述多个蒸发冷凝膜组通过管路并联连接。
  6. 根据权利要求5所述的冷却塔,其特征在于,所述蒸发冷凝膜组并排排列,相邻的蒸发冷凝模组之间形成空气通道。
  7. 根据权利要求5所述的冷却塔,其特征在于,所述塔体内设置有安装支架,所述蒸发冷凝模块通过所述安装支架固定于所述塔体内。
  8. 根据权利要求6所述的冷却塔,其特征在于,所述塔体的侧面开设有进风孔,所述塔体顶部开设有出风孔。
  9. 根据权利要求8所述的冷却塔,其特征在于,所述进风孔对应所述蒸发冷凝模块的侧面设置。
  10. 根据权利要求8所述的冷却塔,其特征在于,所述进风孔中配置有引风机,所述引风机能够将所述塔体外的空气通过所述进风孔引入所述塔体并流经所述空气通道与所述蒸发冷凝模组中的冷却液换热后,从所述出风孔引出所述塔体。
PCT/CN2018/102966 2018-08-14 2018-08-29 冷却塔 WO2020034259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810922349.9A CN110822936A (zh) 2018-08-14 2018-08-14 冷却塔
CN201810922349.9 2018-08-14

Publications (1)

Publication Number Publication Date
WO2020034259A1 true WO2020034259A1 (zh) 2020-02-20

Family

ID=69524947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102966 WO2020034259A1 (zh) 2018-08-14 2018-08-29 冷却塔

Country Status (2)

Country Link
CN (1) CN110822936A (zh)
WO (1) WO2020034259A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113418406B (zh) * 2021-06-07 2022-09-30 广东申菱环境系统股份有限公司 一种冷却散热装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020130A (en) * 1975-08-21 1977-04-26 Ovard John C Splash bar for cooling tower fill assembly
US4435339A (en) * 1979-08-06 1984-03-06 Tower Systems, Inc. Falling film heat exchanger
JPS61168788A (ja) * 1985-01-18 1986-07-30 Sumitomo Light Metal Ind Ltd 復水器の自動運転管理装置
US5587053A (en) * 1994-10-11 1996-12-24 Grano Environmental Corporation Boiler/condenser assembly for high efficiency purification system
JP2006226660A (ja) * 2005-02-21 2006-08-31 Ebara Shinwa Ltd 片吸込み型の直交流式の小型冷却塔
CN201407927Y (zh) * 2009-06-04 2010-02-17 浙江联丰股份有限公司 一种闭式冷却塔高效换热器
CN202361843U (zh) * 2011-11-09 2012-08-01 宁波思创水冷机械有限公司 闭式冷却塔
CN102809306A (zh) * 2012-08-16 2012-12-05 上海廷亚冷却系统有限公司 等焓加湿降温节水闭式冷却塔
CN103234372A (zh) * 2013-05-31 2013-08-07 无锡禹兵冷却设备有限公司 复合式闭式冷却塔
CN205383760U (zh) * 2016-01-12 2016-07-13 广东美的制冷设备有限公司 换热器、空调室外机、空调室内机及空调系统
CN108253815A (zh) * 2018-01-05 2018-07-06 深圳达实智能股份有限公司 一种开闭式冷却塔及其运行方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248629B2 (ja) * 2008-01-25 2013-07-31 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー 除湿のために、膜に含有された液体乾燥剤を用いる間接蒸発冷却器
JP2012159237A (ja) * 2011-01-31 2012-08-23 E's Inc 水の潜熱を利用した熱交換器及びそれを用いた空調機
US11408681B2 (en) * 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
DK3183051T3 (da) * 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc Væske-til-luftmembranenergivekslere

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020130A (en) * 1975-08-21 1977-04-26 Ovard John C Splash bar for cooling tower fill assembly
US4435339A (en) * 1979-08-06 1984-03-06 Tower Systems, Inc. Falling film heat exchanger
JPS61168788A (ja) * 1985-01-18 1986-07-30 Sumitomo Light Metal Ind Ltd 復水器の自動運転管理装置
US5587053A (en) * 1994-10-11 1996-12-24 Grano Environmental Corporation Boiler/condenser assembly for high efficiency purification system
JP2006226660A (ja) * 2005-02-21 2006-08-31 Ebara Shinwa Ltd 片吸込み型の直交流式の小型冷却塔
CN201407927Y (zh) * 2009-06-04 2010-02-17 浙江联丰股份有限公司 一种闭式冷却塔高效换热器
CN202361843U (zh) * 2011-11-09 2012-08-01 宁波思创水冷机械有限公司 闭式冷却塔
CN102809306A (zh) * 2012-08-16 2012-12-05 上海廷亚冷却系统有限公司 等焓加湿降温节水闭式冷却塔
CN103234372A (zh) * 2013-05-31 2013-08-07 无锡禹兵冷却设备有限公司 复合式闭式冷却塔
CN205383760U (zh) * 2016-01-12 2016-07-13 广东美的制冷设备有限公司 换热器、空调室外机、空调室内机及空调系统
CN108253815A (zh) * 2018-01-05 2018-07-06 深圳达实智能股份有限公司 一种开闭式冷却塔及其运行方法

Also Published As

Publication number Publication date
CN110822936A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CA2863401C (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
CN103527267B (zh) 一种采用板式蒸发冷凝器组的直接空冷机组系统
WO2012145875A1 (zh) 一种汽轮机排汽用的蒸发式冷凝器散热模件
CN203531984U (zh) 一种采用板式蒸发冷凝器组的直接空冷机组系统
WO2020034259A1 (zh) 冷却塔
CN109539637A (zh) 膜蒸发式冷凝器
CN211953332U (zh) 一种节能节水的高效率蒸发式冷凝器
CN101162101B (zh) 逆流复合间接蒸发制冷空气处理机
CN210426166U (zh) 一种温控型高效节能冷却塔
RU2614623C2 (ru) Устройство для предварительного охлаждения воздуха в аппаратах воздушного охлаждения
CN201429158Y (zh) 节能环保型水源热泵专用风机盘管
CN207317327U (zh) 一种蒸发冷凝盘管及蒸发式冷凝器
CN205174937U (zh) 具有翅片的套管蒸发式冷凝器
CN211770781U (zh) 一种节能零排放低温常压蒸发结晶系统
CA2890696C (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
KR20160133980A (ko) 습식 냉각탑을 위한 공기 대 공기 열 교환기 바이패스 장치 및 방법
CN111121515B (zh) 换热组件、换热器及换热系统
CN102230751A (zh) 一种真空蒸发降温装置
CN2722172Y (zh) 喷淋降膜蒸发式空气冷却器
CN206410379U (zh) 一种冷凝装置
CN219674859U (zh) 换热装置
CN211346410U (zh) 横流丝堵冷却塔
CN220689846U (zh) 一种用于气分装置高效薄膜蒸发冷却器
CN213578835U (zh) 一种降膜换热装置及降膜蒸发式冷却塔
RU2750513C1 (ru) Пассивный радиатор модульного типа

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930357

Country of ref document: EP

Kind code of ref document: A1