WO2012144804A2 - 고온용 면상발열체 조성물 및 이를 이용한 면상발열체 - Google Patents

고온용 면상발열체 조성물 및 이를 이용한 면상발열체 Download PDF

Info

Publication number
WO2012144804A2
WO2012144804A2 PCT/KR2012/002971 KR2012002971W WO2012144804A2 WO 2012144804 A2 WO2012144804 A2 WO 2012144804A2 KR 2012002971 W KR2012002971 W KR 2012002971W WO 2012144804 A2 WO2012144804 A2 WO 2012144804A2
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
planar heating
temperature
composition
high temperature
Prior art date
Application number
PCT/KR2012/002971
Other languages
English (en)
French (fr)
Other versions
WO2012144804A3 (ko
Inventor
김병철
이고르 유리예비치쉘레호프
니콜라이 아카디예비치이바노프
Original Assignee
(주)피엔유에코에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피엔유에코에너지 filed Critical (주)피엔유에코에너지
Publication of WO2012144804A2 publication Critical patent/WO2012144804A2/ko
Publication of WO2012144804A3 publication Critical patent/WO2012144804A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater

Definitions

  • the present invention relates to a high-temperature planar heating element composition and a method of manufacturing a planar heating element using the same, and more particularly has a heat generating function due to the supply of power, the high temperature planar heating element composition and a planar heating element using the same It relates to a manufacturing method.
  • planar heating element which is recently emerging, is a product that reduces power by 20 to 40% than the electric heating element that is generally used, and is expected to have a large electric energy saving and economic ripple effect.
  • the planar heating element is easy to control the temperature by using the radiant heat generated by the electric current, it does not pollute the air has advantages in terms of hygiene and noise has been used for bedding, such as heating mats and pads.
  • it is widely used for heating of floors of houses, industrial heating of offices and workplaces, heating devices in various industrial fields such as painting and drying, vinyl houses, barns, agricultural equipment, automobile back mirrors, freezing prevention devices for parking lots, cold protection equipment for leisure, home appliances, etc. It is used.
  • the planar heating element is mainly composed of a metal heating element etched a thin metal plate such as iron, nickel, chromium, platinum, and non-metal heating element such as silicon carbide, zirconium, carbon.
  • a metal heating element etched a thin metal plate such as iron, nickel, chromium, platinum, and non-metal heating element such as silicon carbide, zirconium, carbon.
  • Multilayer heating elements in the form of layered products with conductive layers on both sides insulated with insulating layers are well known. It also has a heat reflecting layer of metal or metal polymer film on one side of the surface of the heating element.
  • the conductive layer is made based on coal-fiber paper, and the insulating layers are known to be made of thermoplastic polymer film material.
  • a conductive layer of element carbon, graphite, and modified phenolformaldehyde resin is formed to form a resistance element in a manner that is infiltrated with the insulation in the insulating substrate.
  • a layer of absorbing epoxyphenol or phenolformaldehyde binder is coated thereon to form an insulating coating and all layers are pressurized at the appropriate temperature, time and pressure.
  • the resistive element is separated together with similar resistive elements before application of a resistive coating thereon and in a separate form at 130-140 ° C. Heat-cure (cure) for 10-12 minutes per millimeter of lamination thickness.
  • planar heating element was not easy to control the temperature accurately, and even after rising to a constant boiling point temperature, the same power supply was continuously maintained at the boiling temperature, resulting in excessive energy loss. Therefore, there is a need for a technology that enables easy control of a specific temperature range while not only applying a specific electric power among the planar heating elements, but also using power efficiency.
  • the present invention is to solve the problems of the prior art, an object of the present invention is to provide a high-temperature planar heating element composition that can be precisely controlled in a specific temperature range according to the composition ratio of the material and the heat loss is small, thereby reducing the power consumption. .
  • It provides a planar heating element composition for high temperature, characterized in that the temperature is controlled to a maximum of 150 ⁇ 450 °C in the state in which the heating element formed by using the composition.
  • It provides a high-temperature planar heating element comprising a; electrode formed on the heating layer.
  • planar heating element composition according to the present invention can provide a high temperature planar heating element capable of precise temperature control in a specific temperature range according to the composition ratio of the material, and self-control of power and temperature over time to ensure stability. .
  • planar heating element for high temperature of the present invention can be manufactured in the form of coating on a substrate, so the structure is very simple and excellent heat generation compared to the existing heating element products, the efficiency of the heat dissipated to the surroundings is excellent.
  • FIG. 1 illustrates a power test result according to an embodiment of the present invention.
  • FIG. 3 shows the results of the temperature change experiment according to an embodiment of the present invention.
  • the present invention (A) 5 to 16% by weight of the insulating binder component; (B) 50 to 75% by weight resistive component; And (C) 10 to 40% by weight of a temperature regulating component, wherein the surface heating element composition for high temperature is characterized in that the temperature is controlled to a maximum of 150 ⁇ 450 °C in the state where the heating element formed using the composition is energized. To provide.
  • the (A) insulating binder component can be used for a conventional planar heating element, for example, phenol-based, amide-based, polyester-based, epoxy-based, polyvinyl alcohol-based, polyvinyl butyral-based, polyimide And polyetherimide, polycarbonate, polysulfone, polyether, polyether ketone, urethane, rubber chloride, acrylic, vinyl chloride, nitrocellulose, and acetylcellulose.
  • fluoropolymers examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene hexafluoropropylene copolymer (FEP), tetrafluoroethylene perfluoroalkylvinylether copolymer (PFA, non-limiting examples): Tetrafluoroethylene perfluoromethylvinylether copolymer, tetrafluoroethylene perfluoroethylvinylether copolymer), tetrafluoroethyleneperfluoropropylvinylether copolymer), ethylene tetrafluoroethylene copolymer (ETFE) , Ethylene chlorotrifluoroethylene copolymer (ECTFE) and polyvinylidene fluoride (PVDF) and the like can be optionally used.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene hexafluoropropylene copolymer
  • PFA
  • the content of the insulating binder component is preferably 5 to 16% by weight, and the content of the insulating binder component is less than 5% by weight, which is not preferable because the bonding strength of the composition is lowered. It is not preferable because the composition content of the composition is small and the exothermic performance is lowered.
  • the resistive composition is preferably a mixture of nickel and aluminum.
  • one or more calibration components selected from molybdenum (Mo), boron (B), and silicon (Si) may be further included.
  • the calibration component can be said to be a stabilizer in the form of a nanostructured powder to stabilize the parameters. It is preferable that the specific surface area of such a stabilizer is 200 m ⁇ 2> / g or less. At this time, the formation time of the structure is shortened, and the content used may be added 0.4-0.6% by weight of the composition content. At this time, stability of change of temperature resistance coefficient does not change even after long-term use.
  • the content of the (B) resistance component is preferably 50 to 75% by weight.
  • the content of the resistive component is less than 50% by weight, it is not preferable to insufficient heat generation performance of the heating element, and when it exceeds 75% by weight, it is not preferable because the stability of temperature control is lowered.
  • the content of the component for correcting this in the resistive component is preferably 1/10 to 1/100 at%.
  • Calibration here can be understood as an additive which is added in order to further improve the effect of the resistive component.
  • the average particle diameter of a mixture is 0.5-5.0 micrometers in a resistance component.
  • the resistance component determines the base level of the relative resistance and the temperature resistance coefficient, and the calibration components of the molybdenum and boron additives change the relative resistance value.
  • the change in the temperature resistance coefficient is controlled by changing the dispersion value of the particle component to 0.5-5.0 mu m, which change is determined by the preparation time in the ball mill. It is controlled by the PSH-12, a device that measures relative surfaces by air permeation.
  • (C) plays a role in controlling the planar heating element up to 150 ⁇ 450 °C in the state energized through the temperature control component.
  • a specific substance should be included in an appropriate amount to prevent overheating of the heating element and to contribute to proper power consumption.
  • the temperature control component is preferably at least one oxide selected from the group consisting of silicon oxide, aluminum oxide, boron oxide, barium oxide.
  • the content of the regulative composition is preferably 10 to 40% by weight. If the content of the temperature control component is less than 10% by weight, it is not sufficient to realize the function of adjusting to a specific temperature, and if it exceeds 40% by weight, the content of other components such as the resistance component is too small. Can not do it.
  • Temperature control components are produced in a closed space of planetary ball mills for 6 to 10 hours without the ingress of oxygen.
  • the particle diameter of the particles is preferably determined within the range of 0.1 to 1.0 ⁇ m.
  • heating elements having various temperature resistance coefficients can be obtained in a wide range of resistivity.
  • the content of lead-free glass added to the control component determines the level at which it begins to affect the general properties of the heating element, the amount of which is determined empirically for each resistive component.
  • the planar heating element composition for high temperature is an organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butanol, alcohols, benzene, xylene, texanol, ethylene glycol, butyl carbitol, ethyl cellosolve, glycerol, and It can be used individually or in mixture of 2 or more types chosen from dimethyl sulfoxide, etc. In addition, aqueous (water) may be used as the solvent instead of the organic solvent.
  • planar heating element composition for high temperature of the present invention may further comprise a dispersant.
  • the dispersant may use at least one selected from the group consisting of urethane, acrylic, phosphorus, organic acid salts and inorganic acid salts.
  • the planar heating element composition for high temperature according to the invention may further comprise a thickener.
  • the thickener is to increase the viscosity on the paste for the processability, such as coating properties in the manufacturing of the planar heating element, which is a crowd consisting of cellulose-based, polyacrylamide-based, polyurethane-based, polysaccharide-based and copolymers thereof You can use one or more selected from.
  • the cellulose-based may include methyl cellulose, hydroxy ethyl cellulose, hydroxy propyl cellulose, and the like, and the polyacrylamide-based polyacrylamide and copolymers thereof may be exemplified.
  • the polyurethane-based may include polyurethane, polyurethane-acryl, and a combination thereof.
  • the polysaccharide-based may include biopolymers such as wellan gum and curdlan.
  • the resin composition for high-temperature planar heating elements according to the present invention may be used by further adding a conventional antifoaming agent, leveling agent, antioxidant, and the like as necessary.
  • the heating element for a high temperature of the present invention can be used for cooking cooking appliances and the like, in addition to the various types of applications can be produced.
  • the planar heating element generates heat when a voltage is applied to the electrode.
  • a uniform heating temperature is distributed over the entire surface of the heating element, and resistance is constant, thereby generating a constant heating temperature. It is applicable to all industrial fields where heating element is used. In addition, it is more durable than conventional copper heating wire and carbon planar heating element.
  • the planar heating element of the present invention is referred to as 'high temperature use' to distinguish it from 'low temperature use' which exhibits a temperature change in the range of 150 to 450 ° C. and temperature change in the range of 50 to 70 ° C.
  • planar heating element composition according to the present invention can be usefully used as a material of the heating element that generates heat by applying power.
  • the planar heating element composition according to the present invention may be prepared as a heating element of a plate-like sheet or a molded body having a three-dimensional shape, and preferably may be applied as a heating layer of the planar heating element according to the present invention described below.
  • Planar heating element according to the present invention is a substrate; An exothermic layer formed on the substrate using the planar heating element composition; And an electrode formed in the heating layer.
  • Planar heating element formed using the composition according to the invention is characterized in that the temperature is controlled to a maximum of 150 ⁇ 450 °C in the energized state.
  • the heat capacity of the water supplies power similarly to the nonlinear curve. This can reduce the loss of the amount of power supplied by about 40% energy can be reduced by significantly reducing the heat loss compared to supplying the same amount of power until the water boils the conventional planar heating element products.
  • the planar heating element according to the present invention preferably has a specific resistance of 0.09 to 1.9 ⁇ / square, and has a temperature resistance coefficient of 560 ⁇ 10. -6 To 40 ⁇ 10 -4 It is preferable that it is / degreeC.
  • This temperature resistance coefficient represents the resistance change in the resistor material as a function of temperature. While not necessarily a linear relationship, positive values refer to materials whose resistance properties increase or decrease in proportion to rising or falling temperatures, whereas negative values refer to materials whose resistance properties change in inverse proportion to temperature changes. Point to.
  • the method of manufacturing the planar heating element will be described in more detail.
  • the method of preparing a base material and the method of manufacturing the planar heating element may include: forming a paste by mixing a binder including an insulating binder, a resistance component, and a control component;
  • the paste may be applied to a substrate, and may be manufactured through a process including an electrode forming step of forming an electrode after the applying step.
  • the substrate is flexible, and may be selected from a synthetic resin film, a fiber sheet, or paper.
  • the synthetic resin film is PE (polyethylene), PP (polypropylene), PS (polystyrene), PC (polycarbonate), PA (polyamide), PET (polyethylene terephthalate), PU (polyurethane) or fluorine resin And a foamed sheet thereof (foamed PS sheet or the like).
  • the fiber sheet includes a woven fabric and a nonwoven fabric made from natural fibers or synthetic fibers.
  • various methods such as screen printing, roll, gravure, knife, spraying, and immersion coating may be used, and it is preferable to apply the paste using screen printing.
  • the electrode may be made of a single metal or alloy selected from the group consisting of aluminum, silver, gold, iron, platinum, copper, and the like, and the electrode may be attached after being cut into a strip or by being cut to a predetermined width. Can be.
  • the electrode may be laminated on the heating layer (or deposited) or included in the heating layer.
  • the composite paste is then heat treated in a conveyor furnace that emits infrared light for 8-12 minutes at 130-160 ° C. and then heat treated at 170-200 ° C. for 10-30 minutes.
  • conductive paths are fabricated, which may be any of known methods, including screen printing.
  • the heating elements are then coated with a polyethylene terephthalate film and bonded to each other by thermal compression.
  • the power supply to the heating element can be made in a mechanical manner, by peeling off the protective film at the location of the conductive passage.
  • the paste compositions prepared in Examples 1 to 10 were applied to polyethylene terephthalate, heat treated at 140 ° C. for 10 minutes in a conveyor furnace with infrared rays, and then heat treated at 180 ° C. for 30 minutes. Next, after heat treatment, the electrode was brought into close contact with each other by using a screen printing method to prepare a planar heating element for high temperature.
  • the AC was applied for 1 minute and the exothermic temperature was measured using the non-contact temperature.
  • Table 1 shows the maximum temperature, specific resistance, and temperature resistance coefficient of the planar heating element using Examples 1 to 10.
  • Example 1 Heating element temperature (°C) Resistivity ( ⁇ / Square) Temperature resistance coefficient (/ °C)
  • Example 1 150 1.5 87 ⁇ 10 -5
  • Example 2 180 1.2 57 ⁇ 10 -5
  • Example 3 200
  • Example 4 250
  • Example 5 280 1.1 23 ⁇ 10 -5
  • Example 6 300
  • Example 7 350 0.9 13 ⁇ 10 -5
  • Example 8 380 1.1 15 ⁇ 10 -5
  • Example 9 400 1.3 20 ⁇ 10 -5
  • Example 10 450 1.4 34 ⁇ 10 -5 Comparative Example 1 145 0.5 63 ⁇ 10 -7
  • the temperature range was changed in the range of 150 to 450 ° C., and the specific resistance was 0.9 to It was measured as 1.6 ⁇ / square and the temperature resistance coefficient was measured as 13 ⁇ 10 ⁇ 5 to 87 ⁇ 10 ⁇ 5 .
  • Example 1 the resistance value (impedance) increases with time, and thus the power usage decreases.
  • Comparative Example 1 the impedance is almost constant and the power consumption is almost constant. Therefore, the planar heating element according to the present invention can increase the resistance value with time to reduce the power consumption, and the power and temperature self-regulation with time is possible due to the increase of the resistance value (material characteristics). You can see that.

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

(A) 절연바인더 성분 5 내지 16 중량%; (B) 저항 성분 50 내지 75 중량%; 및 (C) 온도조절 성분 10 내지 40 중량%;를 포함하는 조성물로서, 상기 조성물을 이용하여 형성된 발열체가 통전된 상태에서 최대 150 ~ 450℃로 온도가 조절되는 것을 특징으로 하는 면상발열체 조성물을 개시한다. 본 발명에 따른 면상발열체 조성물은, 물질의 조성비에 따라 특정한 온도 영역에서 정확한 온도조절이 가능하고, 시간에 따른 전력 및 온도의 자기제어가 가능하여 안정성이 확보된 면상발열체를 제공할 수 있다. 또한 본 발명의 면상발열체는 기재에 도포하는 형태로 제조가 가능하므로 구조가 매우 간단하고 기존의 발열체 제품에 비하여 발열이 우수하고 주위로 발산되는 열의 적어 효율이 우수하다.

Description

고온용 면상발열체 조성물 및 이를 이용한 면상발열체
본 발명은 고온용 면상발열체 조성물 및 이를 이용한 면상발열체의 제조방법에 관한 것으로서, 더욱 상세하게는 전원의 공급으로 인하여 발열기능을 가지며, 특정온도로 조절되는 고온용 면상발열체 조성물 및 이를 이용한 면상발열체의 제조방법에 관한 것이다.
에너지 자원의 고갈에 따라 세계 각국은 에너지 절약 부분에 많은 투자를 하고 있다. 이러한 흐름에 맞춰 최근 부각되고 있는 면상발열체는 일반적으로 사용하고 있는 전기발열체보다 20 ~ 40 %의 전력을 감소하는 제품으로 전기 에너지 절약 및 경제적 파급효과가 클 것으로 예상된다.
일반적으로 면상발열체는 전기통전에 의해 발생하는 복사열을 이용하고 있어 온도조절이 용이하고, 공기를 오염시키지 않아 위생과 소음 면에서 장점이 있어 히팅 매트나 패드 등의 침구류에 이용되고 왔다. 또한 주택의 바닥 난방, 사무실 및 작업장 등의 산업용 난방, 도장 건조 등 각종 산업장의 가열장치, 비닐하우스나 축사, 농업용 설비, 자동차용 백밀러, 주차장의 동결방지장치, 레저용 방한용 장비, 가전제품 등 폭넓게 이용되고 있다.
면상발열체는 특히, 최근에 그 이용이 활발하여 유럽의 주택난방의 많은 부분을 대체하고 있으며 주택분야 외에 산업용 건조기, 농산물 건조기, 건장의료 보조제품 및 건축부자재 등으로 응용이 가능한 신소재로 국내뿐만 아니라 수출주력이 가능한 제품으로 평가받고 있다.
통상적으로 면상발열체는 철, 니켈, 크롬, 백금 등의 금속 박판을 에칭한 금속 발열체와 탄화규소, 지르코늄, 탄소 등의 비금속 발열체 등이 주류를 이루고 있었다. 그러나 이들은 열과 내구성이 약하고 제작이 어려운 문제점이 지적되어 왔다.
양쪽이 절연층으로 절연되어 있는 전도층을 갖는 층상 제품 형태의 다층 가열요소는 잘 알려져 있다. 이것은 가열요소의 표면 중 한 면에 금속이나 금속 폴리머 필름 재질의 열반사층도 지니고 있다. 전도층은 석탄 섬유(coal-fiber) 종이에 기반하여 제작되고, 절연층들은 열가소성 폴리머 필름 재질로 된다고 알려져 있다.
또한 폴리머 전기가열기 제조 방법도 잘 알려져 있다. 제조 시에 절연 기판에 단열재와 함께 스며들게 하는 방식으로 저항요소(resistance element)를 형성하는 탄소(element carbon), 흑연, 변형된 페놀포름알데히드 수지로 된 전도층을 입힌다. 그 위에 에폭시페놀 또는 페놀포름알데히드 바인더를 흡수한 층을 입혀 절연 코팅을 형성하고 적합한 온도와 시간, 압력에서 모든 층들이 압력을 받도록 한다. 저항요소는 그 위에 저항 코팅을 하기 전에 유사한 저항요소들과 함께 분리하고 분리된 형태로 130 - 140℃에서 적층 두께 1 밀리미터 당 10-12분간 열처리(경화)한다.
그러나 기존 면상발열체는 정확한 온도조절이 용이하지 않았고, 일정한 비등점 온도까지 상승한 이후에도 지속적으로 비등 온도에 동일한 전력공급 유지하고 있어서 에너지 손실이 과다하였다. 따라서 면상발열체 중에서도 특정한 전력을 단순히 인가하는 것이 아니라 전력사용의 효율성을 기하면서 특정한 온도범위의 조절이 용이한 기술을 필요로 하고 있다.
본 발명은 상기 종래 기술의 문제점을 해결하기 위한 것으로서, 물질의 조성비에 따라 특정한 온도 영역에서 정확한 온도조절이 가능하고 열손실이 적어서 전력사용량이 절감되는 고온용 면상발열체 조성물을 제공하는 것을 목적으로 한다.
또한 상기 조성물을 이용하여 물의 비선형 곡선과 유사하게 전력을 공급하여 소모전력을 자기 제어할 수 있어 안정성이 확보된 고온용 면상발열체를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은,
(A) 절연바인더 성분 5 내지 16 중량%;
(B) 저항 성분 50 내지 75 중량%; 및
(C) 온도조절 성분 10 내지 40 중량%;를 포함하는 조성물로서,
상기 조성물을 이용하여 형성된 발열체가 통전된 상태에서 최대 150 ~ 450℃로 온도가 조절되는 것을 특징으로 하는 고온용 면상발열체 조성물을 제공한다.
또한 상기 다른 목적을 달성하기 위하여 본 발명은,
기재;
상기 기재 상에 상기 발열체 조성물을 이용하여 형성된 발열층; 및
상기 발열층에 형성된 전극;을 포함하는 것을 특징으로 하는 고온용 면상발열체를 제공한다.
본 발명에 따른 면상발열체 조성물은, 물질의 조성비에 따라 특정한 온도 영역에서 정확한 온도조절이 가능하고, 시간에 따른 전력 및 온도의 자기제어가 가능하여 안정성이 확보된 고온용 면상발열체를 제공할 수 있다.
또한 본 발명의 고온용 면상발열체는 기재에 도포하는 형태로 제조가 가능하므로 구조가 매우 간단하고 기존의 발열체 제품에 비하여 발열이 우수하고 주위로 발산되는 열의 적어 효율이 우수하다.
도 1은 본 발명의 일 실시예에 따른 전력실험 결과를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 임피던스 실험 결과를 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 온도변화 실험 결과를 도시한 것이다.
본 발명은 (A) 절연바인더 성분 5 내지 16 중량%; (B) 저항 성분 50 내지 75 중량%; 및 (C) 온도조절 성분 10 내지 40 중량%;를 포함하는 조성물로서, 상기 조성물을 이용하여 형성된 발열체가 통전된 상태에서 최대 150 ~ 450℃로 온도가 조절되는 것을 특징으로 하는 고온용 면상발열체 조성물을 제공한다.
본 발명에서 (A)절연바인더 성분은 통상의 면상 발열체에 사용되는 것을 사용할 수 있으며, 예를 들어 페놀계, 아미드계, 폴리에스테르계, 에폭시계, 폴리비닐알콜계, 폴리비닐부티랄계, 폴리이미드계, 폴리에테르이미드, 폴리카르보네이트, 폴리술폰, 폴리에테르, 폴리에테르케톤, 우레탄계, 염화고무계, 아크릴계, 염화비닐계, 니트로셀룰로스, 및 아세틸셀룰로스 등이 있다. 적합한 플루오로중합체의 예로는 폴리테트라플루오로에틸렌(PTFE), 테트라플루오로에틸렌 헥사플루오로프로필렌 공중합체(FEP), 테트라플루오로에틸렌 퍼플루오로알킬비닐에테르 공중합체(PFA, 비제한적인 예: 테트라플루오로에틸렌 퍼플루오로메틸비닐에테르 공중합체, 테트라플루오로에틸렌 퍼플루오로에틸비닐에테르 공중합체, 테트라플루오로에틸렌퍼플루오로프로필비닐에테르 공중합체), 에틸렌 테트라플루오로에틸렌 공중합체(ETFE), 에틸렌 클로로트리플루오로에틸렌 공중합체(ECTFE) 및 폴리비닐리덴 플루오라이드(PVDF) 등에서 임의로 선택되어 사용될 수 있다. 그 중에서도 폴리에스테르계 또는 에폭시계 고분자가 바람직하다. 또한, 사용되는 고분자 수지에 맞는 경화제를 선택하여 통상의 사용범위 내에서 추가로 투입하여 사용할 수 있다.
(A)절연바인더 성분의 함량은 5 내지 16 중량%인 것이 바람직하고, 함량이 5 중량% 미만인 경우에는 조성물의 결합력이 저하되기 때문에 바람직하지 못하고, 16 중량%를 초과하는 경우에는 저항 성분 등 기타 조성물의 성분 함량이 적어서 발열성능이 저하되기 때문에 바람직하지 못하다.
(B)저항 성분(resistive composition)은 니켈과 알루미늄의 혼합물인 것이 바람직하다. 저항 성분에 상대저항값을 변화시키기 위하여 몰리브덴(Mo), 보론(B), 규소(Si) 중에서 선택된 하나 이상의 교정 성분들이 추가로 포함되는 것이 바람직하다. 교정 성분은 파라메터를 안정화시키기 위하여 나노 구조의 분말 형태의 안정화물이라고 할 수 있다. 이러한 안정화물의 비표면적은 200 m2/g 이하인 것이 바람직하다. 이때 구조(structure)의 형성 시간이 단축되며, 사용되는 함량은 조성물 함량의 0.4-0.6 중량%가 첨가될 수 있다. 이때 온도저항계수 변화의 안정성은 장기간 사용하여도 변화하지 않는다.
(B)저항 성분의 함량은 50 내지 75 중량%인 것이 바람직하다. 저항 성분의 함량이 50 중량% 미만인 경우에는 발열체의 발열 성능을 구현하기에 미흡하기에 바람직하지 못하고, 75 중량%를 초과하는 경우에는 온도조절의 안정성이 저하되기 때문에 바람직하지 못하다.
저항 성분에서 이를 교정하기 위한 성분의 함량은 1/10 ~ 1/100 at%인 것이 바람직하다. 여기서 교정이라는 것은 저항 성분의 효과를 더욱 개선하기 위하여 추가로 첨가되는 첨가제로 이해되어질 수 있다.
저항 성분 중에서 혼합물의 평균 입자 입경이 0.5 ~ 5.0㎛인 것이 바람직하다.
저항 성분은 상대 저항의 기본 수준과 온도저항계수를 결정하고 몰리브덴과 보론 첨가물의 교정 성분들은 상대 저항값을 변경시킨다. 온도저항계수의 변화는 입자 성분의 분산값이 0.5-5.0㎛로 변화함으로써 조절되는데, 그러한 변화는 보올밀(ball mill)에서의 준비 시간에 의해 결정된다. 공기투과법으로 상대표면을 측정하는 기기인 PSH-12에 의해 제어된다.
본 발명에서는 (C)온도조절 성분을 통하여 통전된 상태에서 면상발열체가 최대 150 ~ 450℃로 조절되는 데에 역할을 담당한다. 온도조절 성분으로서 특정한 물질이 적절한 함량으로 포함되어야 발열체의 과열을 방지하고, 적절한 전력을 소모하는데 기여하는 것이다. 구체적으로 (C)온도조절 성분은 산화규소, 산화알루미늄, 산화붕소, 산화바륨으로 이루어진 군으로부터 선택된 하나 이상의 산화물인 것이 바람직하다.
(C)온도조절(regulative composition) 성분의 함량은 10 내지 40 중량%인 것이 바람직하다. 온도조절 성분의 함량이 10 중량% 미만인 경우에는 특정 온도로 조절하는 기능을 실현하기에 부족하기에 바람직하지 못하고, 40 중량%를 초과하는 경우에는 저항 성분 등 기타 성분들의 함량이 너무 적게 되어 바람직하지 못하다.
(C)온도조절 성분은 산소의 유입없이 6 ~ 10 시간 동안 유성형 볼 밀의 폐쇄공간에서 제작된다. 입자의 입경은 0.1~1.0㎛ 범위 내에서 정해지는 것이 바람직하다.
나머지 각 성분들의 비율 대비 전체 조성물의 중량%를 변경하는 방식으로 광범위한 비저항 범위에서 다양한 온도저항계수를 갖는 가열요소들을 얻을 수 있다.
조절성분에 첨가되는 납성분이 없는 유리(lead-free glass)의 함량은 가열 요소의 일반적인 특성에 영향을 미치기 시작하는 수준을 결정하는데, 그 양은 각각의 저항성분에 대하여 경험적인 방법으로 결정된다.
본 발명에 따른 고온용 면상발열체 조성물은 유기용제로서 메틸알콜, 에틸알콜, 이소프로필알콜, 부탄올 등의 알콜류, 벤젠, 크실렌, 텍사놀, 에틸렌글리콜, 부틸카비톨, 에틸셀로솔브, 글리세롤, 및 디메틸술폭시드 등으로부터 선택된 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 또한, 이러한 유기용제 대신에 수성(물)을 용제로 사용할 수 있다.
또한 본 발명의 고온용 면상발열체 조성물은 분산제를 추가로 포함할 수 있다. 분산제는 우레탄계, 아크릴계, 인계, 유기산염계 및 무기산염계로 이루어진 군 중에서 선택된 하나 이상을 사용할 수 있다.
또한, 본 발명에 따른 고온용 면상발열체 조성물은 증점제를 더 포함할 수 있다. 이때, 상기 증점제는 페이스트 상에서의 점도를 증가시켜 면상발열체의 제조 시 코팅성 등의 가공성을 위한 것으로, 이는 셀룰로즈계, 폴리아크릴아미드계, 폴리우레탄계, 폴리사카라이드계 및 이들의 공중합체로 이루어진 군중에서 선택된 하나 이상을 사용할 수 있다. 이때, 상기 셀룰로즈계로는 메틸 셀룰로즈, 하이드록시 에틸셀룰로즈, 하이드록시 프로필셀룰로즈 등을 예로 들 수 있으며, 상기 폴리아크릴아미드계로는 폴리아크릴아미드 및 이의 공중합체 등을 예로 들 수 있다. 또한 상기 폴리우레탄계로는 폴리우레탄, 폴리우레탄-아크릴 및 이들의 공합체 등을 예로 들 수 있으며, 상기 폴리사카라이드계는 웰란검, 커들란 등의 바이오 고분자 등을 예로 들 수 있다.
본 발명에 따른 고온용 면상 발열체용 수지 조성물은 필요에 따라 통상의 소포제, 레벨링제, 산화방지제 등을 더 첨가하여 사용할 수 있다.
본 발명의 고온용 발열체 조성물로는 취사용 가열기구 등을 제조할 수 있으며, 그 이외에도 다양한 형태의 응용품을 제조할 수 있다.
면상발열체는 전극에 전압을 걸어주게 되면 열이 발생하게 되는데, 본 발명에서는 발열체 전면에 걸쳐 균일한 발열온도 분포를 보임과 동시에 저항이 일정하여 발열온도가 일정하게 된다. 발열체가 사용되는 전 산업분야에 적용이 가능하다. 또한 기존의 구리 열선 및 탄소 면상발열체 대비 내구성이 뛰어나다. 본 발명의 면상발열체가 '고온용'이라고 하는 것은 150 내지 450℃의 범위에서 온도변화를 나타내고 있어서 50 내지 70℃의 범위에서 온도변화되는 '저온용'과 구별하기 위하여 명명한 것이다.
본 발명에 따른 면상발열체 조성물은 전원 인가에 의해 열을 발생시키는 발열체의 재료로 유용하게 사용될 수 있다. 본 발명에 따른 면상발열체 조성물은 판상의 시트나 입체적 형상을 가지는 성형체의 발열체로 제조될 수 있으며, 바람직하게는 이하에서 설명되는 본 발명에 따른 면상발열체의 발열층으로 적용될 수 있다.
본 발명에 따른 면상발열체는 기재; 상기 기재 상에 상기 면상발열체 조성물을 이용하여 형성된 발열층; 및 상기 발열층에 형성된 전극;을 포함한다. 본 발명에 따른 상기 조성물을 이용하여 형성된 면상발열체는 통전된 상태에서 최대 150 ~ 450℃로 온도가 조절되는 것이 특징이다. 상기 면상발열체에 전압을 인가하는 경우 물의 Heat Capacity가 비선형 곡선과 유사하게 전력을 공급한다. 이는 종래의 면상발열체 제품이 물이 끓을 때까지 동일한 전력량을 공급하는 것에 비하여 열손실을 상당 부분 줄임으로써 공급되는 전력량의 손실을 감소시킬 수 약 40% 정도의 에너지를 절약할 수 있다.
본 발명에 따른 면상발열체는 비저항이 0.09 내지 1.9Ω/스퀘어인 것이 바람직하고, 온도저항계수가 560×10-6 내지 40×10-4/℃ 인 것이 바람직하다. 이러한 온도저항계수는 저항기 물질에 있어서 저항 변화를 온도의 함수로서 나타낸다. 반드시 선형 관계는 아니지만, 정(+) 값은 저항 특성이 온도가 올라가거나 떨어지는 것에 정비례하여 증가하거나 감소하는 물질을 가리키고, 반대로, 부(-) 값은 저항 특성이 온도 변화에 반비례하여 변화하는 물질을 가리킨다.
면상발열체의 제조방법을 보다 상세하게 설명하면, 기재를 준비하는 단계와, 면상발열체를 제조하는 방법은 용제에 절연성바인더, 저항 성분, 조절성분을 포함하는 바인더를 혼합하여 페이스트를 형성하는 단계와, 상기 페이스트를 기재에 도포하는 단계와, 도포단계 이후에 전극을 형성시키는 전극형성단계를 포함하는 공정을 통하여 제조될 수 있다.
상기 기재는 유연성을 갖는 것으로서, 합성수지 필름, 섬유시트 또는 종이로부터 선택될 수 있다. 이때, 상기 합성수지 필름은 PE(폴리에틸렌), PP(폴리프로필렌), PS(폴리스티렌), PC(폴리카보네이트), PA(폴리아미드), PET(폴리에틸렌테레프탈레이트), PU(폴리우레탄) 또는 불소 수지 등으로의 구성된 필름 및 이들의 발포 시트 (발포 PS 시트 등)를 예로 들 수 있다. 또한, 상기 섬유시트는 천연섬유나 합성섬유로부터 제조된 직포 및 부직포를 포함한다.
상기 페이스트를 기재 상에 도포함에 있어서, 스크린 프린팅, 롤, 그라비아, 나이프, 분사, 침지코팅방식 등 다양한 방법을 이용할 수 있고 스크린 프린팅 방식을 이용하여 도포하는 것이 바람직하다.
또한, 상기 전극은 알루미늄, 은, 금, 철, 백금, 및 구리 등으로 이루어진 군중에서 선택된 단일 금속 또는 합금을 이루어질 수 있으며, 이러한 전극은 띠 형상으로 증착에 의하거나 소정의 폭으로 절단된 후 부착될 수 있다. 또한, 상기 전극은 발열층 상에 적층 부착(또는 증착)되거나, 발열층에 포함될 수 있다.
복합 페이스트는 발려진 후 130-160 ℃에서 8-12분 동안 적외선 광선이 나오는 컨베이서 용광로(conveyer furnace)에서 열처리되고, 그 후 170-200 ℃에서 10-30분간 열처리된다. 그 다음 전도 통로(pathes)가 제작되는데, 스크린 프린팅을 비롯하여 알려져 있는 방법 중 어떠한 것을 사용하여도 된다. 그 후 가열요소는 폴리에틸렌테레프탈레이트(polyethylene terephthalate) 필름으로 코팅되고 열 압축법으로 서로 결합된다. 가열요소에 대한 전원공급은 기계적인 방식, 전도 통로가 있는 위치에서 보호 필름을 박리하는 방식으로 이루어질 수 있다.
이하 본 발명을 하기 실시예를 통하여 보다 상세하게 설명하기로 하나, 이는 본 발명의 이해를 돕기 위하여 제시된 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.
실시예
<면상발열체 조성물의 제조>
실시예 1
에폭시 페놀 래커 수지 7g, 니켈-알루미늄(Ni-53%, Al-47%) 70g, SiO2-BaO-B2O3-Al2O3 23g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 2
에폭시 페놀 래커 수지 7g, 니켈-알루미늄(Ni-53%, Al-47%) 75g, SiO2-BaO-B2O3-Al2O3 18g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 3
에폭시 페놀 래커 수지 12g, 니켈-알루미늄(Ni-53%, Al-47%) 66g, SiO2-BaO-B2O3-Al2O3 22g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 4
에폭시 페놀 래커 수지 15g, NiAl[(Ni-53%, Al-47%)(45wt%)]-B(5wt%)-Mo(30wt%)-Si(20wt%) 65g, SiO2-BaO-B2O3-Al2O3 20g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 5
에폭시 페놀 래커 수지 14g, NiAl[(Ni-53%, Al-47%)(45wt%)]-B(5wt%)-Mo(30wt%)-Si(20wt%) 60g, SiO2-BaO-B2O3-Al2O3 26g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 6
에폭시 페놀 래커 수지 12g, NiAl[(Ni-53%, Al-47%)(45wt%)]-B(5wt%)-Mo(30wt%)-Si(20wt%) 59g, SiO2-BaO-B2O3-Al2O3 39g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 7
에폭시 페놀 래커 수지 15g, 니켈-알루미늄(Ni-53%, Al-47%) 75g, SiO2-BaO-B2O3-Al2O3 10g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 8
에폭시 페놀 래커 수지 6g, 니켈-알루미늄(Ni-53%, Al-47%) 75g, SiO2-BaO-B2O3-Al2O3 19g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 9
에폭시 페놀 래커 수지 6g, NiAl[(Ni-53%, Al-47%)(45wt%)]-B(5wt%)-Mo(30wt%)-Si(20wt%) 70g, SiO2-BaO-B2O3-Al2O3 24g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
실시예 10
에폭시 페놀 래커 수지 9g, NiAl[(Ni-53%, Al-47%)(45wt%)]-B(5wt%)-Mo(30wt%)-Si(20wt%) 68g, SiO2-BaO-B2O3-Al2O3 23g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
비교예 1
에폭시 페놀 래커 수지 27g, NiAl[(Ni-53%, Al-47%)(45wt%)]-B(5wt%)-Mo(30wt%)-Si(20wt%) 73 g를 에탄올 200g에 분산하고 프리 믹싱한 후 고속으로 교반하여 고온용 면상발열체 페이스트 조성물을 제조하였다.
<면상발열체의 제조>
실시예 1 내지 10에서 제조된 페이스트 조성물을 폴리에틸렌테레프탈레이트에 도포하고 적외선 광선이 나오는 컨베이어 용광로에서 140℃에서 10 분 동안 열처리하고 그 후 180℃에서 30분간 열처리하였다. 다음으로 열처리 이후 스크린 프린팅 방법을 이용하여 전극을 밀착시키고 고온용 면상발열체를 제조하였다.
<평가 및 결과>
제조된 면상발열체에 대하여 양 전극간 저항을 측정한 후 AC를 1분간 인가하여 발열온도를 비접촉시 온도를 이용하여 측정하였다.
경화된 실시예 1 내지 10, 비교예 1의 시료를 손더스 앤 어쏘시에이션 인코포레이티드(Saunders amp; Assoc. Inc.)의 온도저항계수 시험 챔버 모델 4210A에 넣었다. 다중주파수 LCR 미터, HP 모델-4274를 온도저항계수 챔버에 연결하였다. 4-프로브 키이쓸리(Keithley) 미터 모델-2400을 사용하여 저항을 측정하였다.
실시예 1 내지 10을 이용한 면상발열체의 최대 온도, 비저항 및 온도저항계수를 표 1에 나타내었다.
표 1
발열체 온도(℃) 비저항(Ω/스퀘어) 온도저항계수(/℃)
실시예 1 150 1.5 87×10-5
실시예 2 180 1.2 57×10-5
실시예 3 200 1.6 30×10-5
실시예 4 250 1.2 20×10-5
실시예 5 280 1.1 23×10-5
실시예 6 300 1.0 20×10-5
실시예 7 350 0.9 13×10-5
실시예 8 380 1.1 15×10-5
실시예 9 400 1.3 20×10-5
실시예 10 450 1.4 34×10-5
비교예 1 145 0.5 63×10-7
표 1을 참조하면, 본 발명의 실시예 1 내지 10에 따른 고온용 면상발열체 조성물로 제조한 면상발열체의 경우 전압을 인가한 경우 온도범위가 150 ~ 450℃의 범위에서 변경되었으며, 비저항은 0.9 ~ 1.6 Ω/스퀘어로 측정되었으며, 온도저항계수는 13×10-5 내지 87×10-5로 측정되었다.
또한 실시예 1 및 비교예 1에 대하여 전력실험, 임피던스, 온도제어 실험을 실시하였고, 결과를 도 1 내지 3에 도시하였다. 도 1 내지 도 3을 참조하면, 온도는 실시예 1과 비교예 1이 유사하게 증가하고 있다. 그러나 실시예 1은 시간에 따라 저항값(임피던스)이 증가하여 전력사용량이 감소하는 것을 확인할 수 있고, 비교예 1은 임피던스도 거의 일정하게 나타나고 전력사용량도 거의 일정하게 나타난다. 따라서 본 발명에 따른 면상발열체는 시간에 따라 저항값이 증가하여 전력사용량을 감소시킬 수 있고, 저항값의 증가(물질 특성)로 인하여 시간에 따른 전력 및 온도 자기제어(Self-Regulation)이 가능하다는 것을 확인할 수 있다.

Claims (12)

  1. (A) 절연바인더 성분 5 내지 16 중량%;
    (B) 저항 성분 50 내지 75 중량%; 및
    (C) 온도조절 성분 10 내지 40 중량%;를 포함하는 조성물로서,
    상기 조성물을 이용하여 형성된 발열체가 통전된 상태에서 최대 150 ~ 450℃로 온도가 조절되는 것을 특징으로 하는 고온용 면상발열체 조성물.
  2. 제1항에 있어서,
    상기 (A)절연바인더 성분은 폴리에스테르계 또는 에폭시 페놀 래커 수지계 재료인 것을 특징으로 하는 고온용 면상발열체 조성물.
  3. 제1항에 있어서,
    상기 (B)저항 성분은 니켈과 알루미늄의 혼합물인 것을 특징으로 하는 고온용 면상발열체 조성물.
  4. 제3항에 있어서,
    상기 (B)저항 성분에 상대저항값을 변화시키기 위하여 몰리브덴(Mo), 보론(B), 규소(Si) 중에서 선택된 하나 이상의 교정 성분들이 추가로 포함되는 것을 특징으로 하는 고온용 면상발열체 조성물.
  5. 제4항에 있어서,
    상기 교정 성분의 함량은 1/10 ~ 1/100 at%인 것을 특징으로 하는 고온용 면상발열체 조성물.
  6. 제3항에 있어서,
    상기 혼합물의 평균 분산값이 0.5 ~ 5.0㎛인 것을 특징으로 하는 고온용 면상발열체 조성물.
  7. 제4항에 있어서,
    상기 규소의 비표면적이 200 m2/g 이하인 것을 특징으로 하는 고온용 면상발열체 조성물.
  8. 제1항에 있어서,
    상기 온도조절 성분은 산화규소, 산화알루미늄, 산화붕소, 산화바륨으로 이루어진 군으로부터 선택된 하나 이상의 산화물인 것을 특징으로 하는 고온용 면상발열체 조성물.
  9. 기재;
    상기 기재 상에 제1항 내지 제8항 중 어느 하나의 항에 따른 고온용 발열체 조성물을 이용하여 형성된 발열층; 및
    상기 발열층에 형성된 전극;을 포함하는 것을 특징으로 하는 고온용 면상발열체.
  10. 제1항 내지 제8항 중 어느 한 항에 따른 고온용 면상발열체 조성물을 적용한 핫 플레이트.
  11. 제1항 내지 제8항 중 어느 한 항에 따른 고온용 면상발열체 조성물을 적용한 난방 필름.
  12. 제1항 내지 제8항 중 어느 한 항에 따른 고온용 면상발열체 조성물을 적용한 히팅 케이블.
PCT/KR2012/002971 2011-04-20 2012-04-19 고온용 면상발열체 조성물 및 이를 이용한 면상발열체 WO2012144804A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0036491 2011-04-20
KR1020110036491A KR20120118870A (ko) 2011-04-20 2011-04-20 고온용 면상발열체 조성물 및 이를 이용한 면상발열체

Publications (2)

Publication Number Publication Date
WO2012144804A2 true WO2012144804A2 (ko) 2012-10-26
WO2012144804A3 WO2012144804A3 (ko) 2013-01-10

Family

ID=47042046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002971 WO2012144804A2 (ko) 2011-04-20 2012-04-19 고온용 면상발열체 조성물 및 이를 이용한 면상발열체

Country Status (2)

Country Link
KR (1) KR20120118870A (ko)
WO (1) WO2012144804A2 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010022476A (ko) * 1999-06-09 2001-03-15 엔도 마사루 세라믹히터 및 그 제조방법 및 발열체용 도전 페이스트
KR20090022757A (ko) * 2007-08-31 2009-03-04 (주)창성 은 코팅분말을 포함하는 전극용 전도성 페이스트 조성물 및그 제조방법
KR20090025521A (ko) * 2007-09-06 2009-03-11 삼성코닝정밀유리 주식회사 면광원장치용 전극재와 그 제조방법 및 이를 구비하는면광원장치 및 백라이트 유닛
KR20090063902A (ko) * 2007-12-14 2009-06-18 (주)폴리메리츠 발열체용 전도성 조성물 및 이를 이용한 면상발열체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010022476A (ko) * 1999-06-09 2001-03-15 엔도 마사루 세라믹히터 및 그 제조방법 및 발열체용 도전 페이스트
KR20090022757A (ko) * 2007-08-31 2009-03-04 (주)창성 은 코팅분말을 포함하는 전극용 전도성 페이스트 조성물 및그 제조방법
KR20090025521A (ko) * 2007-09-06 2009-03-11 삼성코닝정밀유리 주식회사 면광원장치용 전극재와 그 제조방법 및 이를 구비하는면광원장치 및 백라이트 유닛
KR20090063902A (ko) * 2007-12-14 2009-06-18 (주)폴리메리츠 발열체용 전도성 조성물 및 이를 이용한 면상발열체

Also Published As

Publication number Publication date
KR20120118870A (ko) 2012-10-30
WO2012144804A3 (ko) 2013-01-10

Similar Documents

Publication Publication Date Title
KR100977479B1 (ko) 발열체용 전도성 조성물 및 이를 이용한 면상발열체
KR101572803B1 (ko) 발열 페이스트 조성물을 이용한 히팅유닛 및 히팅모듈
KR20190115639A (ko) 투명 발열필름 및 이의 제조방법
TW200832453A (en) Composition for electric-heating film and electric-heating film and electric-heating device manufactured by the same
KR200448882Y1 (ko) 페이스트 조성물을 이용한 히터
JP6412106B2 (ja) ポリマー厚膜正温度係数カーボン組成物
CN110769527B (zh) 一种有机高温电热复合膜及制备方法
CN103224677A (zh) 聚合物厚膜正温度系数碳组合物
CN102821495A (zh) 一种聚四氟乙烯基电热厚膜及其制造方法
WO2012148120A2 (ko) 저온용 면상발열체 조성물 및 이를 이용한 면상발열체
WO2012148126A2 (ko) 특정한 저항온도계수를 갖는 면상발열체 조성물 및 이를 이용한 면상발열체
WO2012144804A2 (ko) 고온용 면상발열체 조성물 및 이를 이용한 면상발열체
KR102575970B1 (ko) 그래핀의 제조방법 및 그래핀 기반 고분자 나노복합소재를 포함하는 ptc 정온발열체 제조방법
WO2012144743A2 (ko) 온도 자가조절형 면상발열체를 적용한 스티어링 휠 및 그 제조방법
KR101931254B1 (ko) 탄소 함유형 면상발열 구조체
WO2012148123A2 (ko) 면저항이 특정값을 갖는 면상발열체 조성물 및 이를 이용한 면상발열체
WO2012148124A2 (ko) 비표면적이 특정한 저항성분을 포함하는 면상발열체 조성물 및 이를 이용한 면상발열체
KR20170097340A (ko) 탄소나노튜브를 이용한 면상발열체 필름
TW202024210A (zh) 具有溫度自限及自調節特色的導電性發熱材料及使用該導電性發熱材料的可撓性導電發熱元件
KR100703029B1 (ko) 저항특성이 우수한 면상발열체
KR20120119120A (ko) 온도 자가조절형 면상발열체를 적용한 의류 및 그 제조방법
KR101572802B1 (ko) 발열 페이스트 조성물 그리고 이를 이용한 면상 발열체 및 히팅롤러
RU2573594C1 (ru) Резистивный углеродный композиционный материал
KR101260175B1 (ko) 발열체용 전도성 조성물 및 이를 포함하는 면상발열체
RU109628U1 (ru) Нагревательный элемент

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774089

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774089

Country of ref document: EP

Kind code of ref document: A2