WO2012144636A1 - 医用画像診断装置及び制御方法 - Google Patents

医用画像診断装置及び制御方法 Download PDF

Info

Publication number
WO2012144636A1
WO2012144636A1 PCT/JP2012/060791 JP2012060791W WO2012144636A1 WO 2012144636 A1 WO2012144636 A1 WO 2012144636A1 JP 2012060791 W JP2012060791 W JP 2012060791W WO 2012144636 A1 WO2012144636 A1 WO 2012144636A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
subject
event data
data
circumference
Prior art date
Application number
PCT/JP2012/060791
Other languages
English (en)
French (fr)
Inventor
ガグノン,ダニエル
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Priority to CN201280007728.6A priority Critical patent/CN103370636B/zh
Publication of WO2012144636A1 publication Critical patent/WO2012144636A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography

Definitions

  • Embodiments relate to a medical image diagnostic apparatus and a control method.
  • PET imaging a radiopharmaceutical is administered to a subject to be imaged by infusion, inhalation, or ingestion. After administration of a radiopharmaceutical, the drug concentrates at a specific site in the human body due to physical and biomolecular properties. The actual spatial distribution of the drug, the concentration of the drug accumulation area, and the kinetics of the process from administration to final elimination are all factors that may have clinical significance. In this process, the positron emitter attached to the radiopharmaceutical emits positrons depending on the physical properties of the isotope, such as half-life, branching ratio.
  • Radionuclides emit positrons. When the emitted positron collides with an electron, an annihilation event occurs and the positron and the electron are destroyed. In many cases, the annihilation event generates two gamma rays flying at 511 keV in the opposite direction of approximately 180 degrees.
  • LOR Line-Of-Response
  • the limit in determining the location of the original scintillation event determines the ultimate spatial resolution of the PET scanner.
  • the intrinsic properties of isotopes eg, positron energy
  • the intrinsic properties of isotopes also contribute to the determination of the spatial resolution of a particular drug (by the positron range and colinearity of the two gamma rays).
  • LOR is a line that crosses the system-patient aperture between the system and the subject. More information about the location of the event can be obtained.
  • PSF Point-Spread-Function
  • PSF Point-Spread-Function
  • the problem to be solved by the present invention is to provide a medical image diagnostic apparatus and a control method capable of appropriately collecting PET image data.
  • the medical image diagnostic apparatus includes a first detector, a second detector, and a data collection unit.
  • the first detector is disposed in a range of a first angle with respect to a center of a circumference surrounding the subject and includes a plurality of first detector elements.
  • the second detector is movably disposed in at least one of the circumferential direction and the radial direction of the circumference within a range of a second angle facing the first detector, and the first detector element A plurality of second detector elements of different types.
  • the data collection unit collects first event data from the first detector, collects second event data from the second detector, and uses the first event data and the second event data as event data. It transmits to the data processing part which processes.
  • FIG. 1 is a diagram showing a conventional full-ring PET scanner.
  • FIG. 2 is a diagram illustrating a structure of a PET scanner according to an embodiment.
  • FIG. 3A is a diagram showing an increase in sensitivity of the embodiment shown in FIG.
  • FIG. 3B is a diagram showing an increase in sensitivity of the embodiment shown in FIG.
  • FIG. 3C is a diagram showing an increase in sensitivity of the embodiment shown in FIG.
  • FIG. 4 is a diagram showing the axial sensitivity of the two-half scanner.
  • FIG. 5 is a diagram showing another embodiment of the two-half scanner.
  • FIG. 6 is a diagram showing another embodiment of the two-half scanner.
  • FIG. 7 is a diagram showing another embodiment of the two-half scanner.
  • FIG. 8 is a diagram showing another embodiment of the two-half scanner.
  • FIG. 1 is a diagram showing a conventional full-ring PET scanner.
  • FIG. 2 is a diagram illustrating a structure of a PET scanner according to an embodiment.
  • FIG. 9 is a diagram showing another embodiment of the two-half scanner.
  • FIG. 10A shows an embodiment in which a flat top scanner is positioned based on the target site to be scanned.
  • FIG. 10B shows an embodiment in which a flat top scanner is positioned based on the target site to be scanned.
  • FIG. 11 is a diagram showing an embodiment of a PET / CT (Computed Tomography) system incorporating a two-half scanner.
  • FIG. 12A is a diagram showing an embodiment of a conventional PET / CT system.
  • FIG. 12B is a diagram illustrating an embodiment of a PET / CT system incorporating a two-half scanner.
  • FIG. 12C is a diagram illustrating an embodiment of a PET / CT system incorporating a two-half scanner.
  • FIG. 13 is a flowchart illustrating steps of a control method executed by the PET / CT system according to the embodiment.
  • FIG. 14 is a diagram illustrating a configuration of a PET / CT system according to
  • the PET scanner includes a first detector unit (hereinafter referred to as “first detector” as appropriate) and a second detector unit (hereinafter referred to as “second detector” as appropriate).
  • the first detector is provided along a circumference surrounding the subject, and is arranged in a range of a first angle with respect to the center of the circumference.
  • the second detector is provided with a radius of curvature different from the circumference, and is disposed in a range of a second angle facing the first detector.
  • the first detector is provided in the circumferential direction around a subject pallet (also referred to as a “bed”).
  • the first detector has a certain width in the axial direction (for example, the body axis direction of the subject).
  • the transverse direction of the first detector is in the range of an angle of 180 degrees or more and less than 360 degrees with respect to the center of the circumference (that is, the central axis of the PET scanner determined by the first detector). is there.
  • the second detector is provided so as to be separated from the first detector and to face the first detector.
  • the second detector has a radius of curvature that is smaller than the radius of curvature of the first detector.
  • the transverse direction of the second detector is in a range of an angle of less than 180 degrees with respect to the central axis of the PET scanner defined by the first detector.
  • the second detector is arranged in a range of 30 degrees or more as the range of the second angle.
  • the sum of the first angle range in which the first detector is disposed and the second angle range in which the second detector is disposed is (substantially) less than 360 degrees.
  • the sum of the first angle range in which the first detector is arranged and the second angle range in which the second detector is arranged may be (substantially) 360 degrees or more.
  • the second detector is arranged at a position closer to the center of the circumference than the circumference where the first detector is provided. That is, the second detector is provided closer to the central axis than the first detector. Further, for example, the second detector is arranged at a position closer to 10% or more than the distance between the circumference where the first detector is provided and the center. That is, the second detector is provided closer to the central axis by at least 10% of the radius of the first detector than the first detector.
  • the first detector includes a plurality of first detector elements
  • the second detector includes a plurality of second detector elements
  • each of the second detector elements is a first detector element.
  • the detection surface is smaller than that (also referred to as “surface region”).
  • the second detector may be flat.
  • the PET scanner may further include a third detector arranged in a range of the second angle facing the first detector.
  • the first detector includes a plurality of first detector elements
  • the second detector is flat, and includes a plurality of second detector elements
  • the third detector is flat, And a plurality of third detector elements.
  • each of the second detector element and the third detector element has a detection surface that is smaller than that of the first detector element.
  • the second detector may be arranged in contact with a bed under which the subject is placed. That is, a 2nd detector is provided so that it may contact under a bed. Further, for example, the second detector may be arranged above a bed on which the subject is placed. In addition, for example, the second detector is movable in at least one of a circumferential direction (or a tangential direction of the circumference) and a radial direction of the circumference. Further, for example, the first detector and the second detector rotate in the circumferential direction surrounding the subject. That is, the first detector and the second detector may be configured to rotate at any axial angle around the bed.
  • the PET scanner includes a first detector and a second detector.
  • the first detector is disposed within a first angle range with respect to the center of the circumference surrounding the subject and includes a plurality of first detector elements.
  • the second detector is movably arranged in at least one of a circumferential direction (or a tangential direction of the circumference) and a radial direction of the circumference within a range of a second angle facing the first detector.
  • a plurality of second detector elements of a different type from the detector elements are included.
  • each of the first detector elements includes a photomultiplier tube (PMT (Photomultiplier Tube)), and each of the second detector elements includes a photosensor of a type different from the first detector element.
  • Each of the first detector elements includes a scintillation crystal having a first thickness and a first surface region, for example, each of the second detector elements includes a scintillation crystal having a second thickness different from the first thickness.
  • each second detector element includes a scintillation crystal having a second surface region different from the first surface region, and each second detector element includes, for example, a solid-state light.
  • each second detector element includes a silicon photomultiplier tube, and each second detector element includes, for example, an APD (Avalanche Photodiode). )including.
  • each of the first detector elements includes a photomultiplier tube
  • each of the second detector elements includes a photosensor of a different type from the photomultiplier tube of the first detector element.
  • each of the second detector elements includes a silicon photomultiplier tube, a semiconductor photosensor, or an APD.
  • the PET scanner includes a first detector and a second detector.
  • the first detector is disposed within a first angle range with respect to the center of the circumference surrounding the subject and includes a plurality of first detector elements.
  • the second detector is movably arranged in at least one of a circumferential direction (or a tangential direction of the circumference) and a radial direction of the circumference within a range of a second angle facing the first detector.
  • a plurality of second detector elements of a different type from the detector elements are included. Each second detector element has different characteristics than the first detector element.
  • each second detector element is different from the first detector element in at least one of time resolution, energy resolution, and sensitivity.
  • the PET scanner includes a first detector and a second detector.
  • the first detector is arranged in a range of a first angle with respect to the center of the circumference surrounding the subject.
  • the second detector is movably arranged in at least one of a circumferential direction (or a tangential direction of the circumference) and a radial direction of the circumference within a range of a second angle facing the first detector.
  • the energy window of the first detector is different from the energy window of the second detector.
  • a medical image diagnostic apparatus includes a first detector, a second detector, and a data collection unit.
  • the first detector is disposed within a first angle range with respect to the center of the circumference surrounding the subject and includes a plurality of first detector elements.
  • the second detector is movably arranged in at least one of a circumferential direction (or a tangential direction of the circumference) and a radial direction of the circumference within a range of a second angle facing the first detector.
  • a plurality of second detector elements of a different type from the detector elements are included.
  • the data collection unit collects the first event data from the first detector, collects the second event data from the second detector, and processes the event data by using the first event data and the second event data. Send to the processing unit. For example, the data processing unit analyzes and reconstructs event data.
  • the medical image diagnostic apparatus further includes an image acquisition unit and a control unit.
  • the image acquisition unit acquires an image of the subject.
  • the image acquisition unit includes a CT scanner that scans a subject and acquires CT image data.
  • the control unit identifies a region of interest based on the image, and moves the second detector based on the identified region of interest in at least one of a circumferential direction (or circumferential tangential direction) and a circumferential radial direction.
  • the control unit specifies the spread of the region of interest in the body axis direction of the subject based on the projection data obtained from the CT image data.
  • control unit specifies the position of the region of interest based on the cross-sectional image obtained from the CT image data. For example, the control unit moves the bed on which the subject is placed in the longitudinal direction according to the spread in the specified body axis direction, and moves the second detector in the circumferential direction and the circumference according to the specified position. Is moved in at least one of the radial directions.
  • control unit scans the subject with PET and collects event data.
  • the medical image diagnostic apparatus further includes a bed moving mechanism that moves the bed in response to a control signal from the control unit.
  • the medical image diagnostic apparatus further includes a detector moving mechanism that moves the second detector in response to a control signal from the control unit.
  • the PET / CT system may further include a third detector.
  • the third detector is movably arranged in at least one of a circumferential direction (or a tangential direction of the circumference) and a radial direction of the circumference within a range of a second angle facing the first detector, and the first detector It includes a plurality of third detector elements of a different type from the detector elements.
  • the data collection unit further collects third event data from the third detector, and transmits the first event data, the second event data, and the third event data to the data processing unit.
  • control method is a control method executed by the medical image diagnostic apparatus.
  • first event data is collected from the first detector
  • second event data is collected from the second detector
  • the first event data and the second event data are transmitted to the data processing unit.
  • the first detector is disposed within a first angle range with respect to the center of the circumference surrounding the subject and includes a plurality of first detector elements.
  • the second detector collects the first event data and has at least one of a circumferential direction (or a tangential direction of the circumference) and a radial direction of the circumference within a range of a second angle facing the first detector. And a plurality of second detector elements of a type different from the first detector elements.
  • the data processing unit processes event data.
  • control method acquires an image of the subject, specifies a region of interest based on the acquired image, and sets the second detector based on the specified region of interest in the circumferential direction and the circumferential radial direction. Move in at least one direction.
  • a medical image diagnostic apparatus includes a CT scanner that scans a subject and acquires CT image data. Further, the control method obtains CT image data of the subject, specifies the extent of the region of interest in the body axis direction of the subject based on the projection data obtained from the obtained CT image data, and is obtained from the CT image data. The position of the region of interest is specified based on the cross-sectional image. Then, the control method moves the bed on which the subject is placed in the longitudinal direction according to the spread in the specified body axis direction, and moves the second detector in the circumferential direction and the radius of the circumference according to the specified position. Move in at least one of the directions.
  • FIG. 1 is a diagram showing a conventional full-ring PET scanner.
  • the PET imaging system uses detectors arranged at positions facing each other in order to detect gamma rays emitted from the subject.
  • a detector ring is typically used to detect gamma rays coming from all angles.
  • PET scanners are generally approximately cylindrical in shape so that as much radiation as possible can be collected, and of course isotropic. Although it is also possible to use a partial ring or rotate the detector to capture the missing angle, these approaches have harsh consequences for the overall sensitivity of the scanner. For cylindrical shapes where all gamma rays contained in the plane have an opportunity to interact with the detector, increasing the axial dimension has a very beneficial effect on the sensitivity or ability to capture radiation.
  • the best structure is a sphere structure with the opportunity to detect all gamma rays.
  • the spherical structure must be very large, which makes it very expensive.
  • the cylindrical shape is a realistic starting point for the structure of modern PET scanners because the axial region of the detector is variable.
  • the next challenge is to place as much scintillation material as possible in the gamma ray path and convert as much gamma ray as possible to light. What is needed is to consider the two importance of optimization in this process.
  • “in-plane” sensitivity requires as many crystals (crystal thickness) as possible around the circumference of the detector.
  • the axial length of the detector cylinder determines the total system sensitivity. The sensitivity is approximately proportional to the square of the axial length (solid angle defined by the center point of the cylinder). Practical cost considerations inevitably become part of the optimization process.
  • the optimal distribution of crystals and associated sensors is central to the overall system cost. That generally represents up to two-thirds of the total cost of a PET imaging system.
  • the cylindrical shape is the structure of choice for a PET scanner. As shown in FIG. 1, the cylindrical shape can capture all events in cross section. The axial extent of the detector determines how many such planes can be defined, as well as how many inclined planes can be used.
  • a PET scanner is formed by a series of small blocks representing detector elements. Only a few dozen detector elements are shown for simplicity. In practice, hundreds of pixels are required to properly extract the shape. The same is true for the axial direction.
  • the detector elements are generally the same predetermined size in both directions, but both dimensions may be different sizes.
  • the cross section of the subject shows the chest, lungs, heart, and spine.
  • FIG. 1 shows a few estimated LORs representing positron annihilation events emanating from the “heart” both circumferentially and axially and collected at various points on the PET scanner.
  • the overall dimensions of a PET scanner generally vary from 70 cm to 90 cm in diameter to cover the entire human body.
  • the axial dimensions can be changed more.
  • Conventional PET scanners have an axial coverage of at least 15 cm (at least covering the heart), but larger scales are possible and desirable.
  • the subject is placed approximately in the center of the PET scanner. Given that the subject typically occupies 50% or less of the PET scanner diameter, it is also desirable to place the subject slightly below the center, providing a wider “breathing” space for the subject within the PET scanner opening. It is done.
  • the goal of PET scanners is to collect as much LOR as possible from the subject, both in the axial plane and in the cross section.
  • any attempt to increase the PET scanner aperture (ie, larger diameter) or its axial extent would require a significant cost increase.
  • a therapeutic positioning (immobilization) tool matches radiotherapy unit
  • conventional designs do not provide a method for changing or optimizing a PET scanner that scans a specific organ or target region of a subject, and regardless of the subject or location of the subject to be optimized, Images are acquired in the same way.
  • FIG. 2 is a diagram showing the structure of a PET scanner according to an embodiment.
  • a PET scanner according to one embodiment has a new shape to optimize the collection of positron annihilation events.
  • the PET scanner according to an embodiment includes two divided detectors, that is, a first detector 10 and a second detector 20, and in FIG.
  • the structure includes a control circuit, a support, and the like as appropriate.
  • the first detector 10 is arranged so as to cover a substantially upper half range of the circumference surrounding the subject P, and the second detector 20 is opposed to the first detector 10 and has a generally lower half range. Arranged to cover.
  • the PET scanner according to one embodiment is a so-called two-half scanner.
  • the lower half (second detector 20) of the PET scanner is reduced to match the size of the subject P.
  • the second detector 20 has a radius of curvature that is smaller than the radius of curvature of the first detector 10.
  • the size of the subject P is approximately half the diameter of the PET scanner (for example, the diameter of the first detector 10 in FIG. 2).
  • the space under the subject palette a is a useless space and does not help the comfort of the subject P.
  • the new two-half scanner has the same transverse sensitivity and the same extraction capability as the traditional full-ring scanner, while delivering up to 20-25% savings in detector cost. Is a point.
  • the bottom portion of the two-half scanner is close to the subject P.
  • an increase in the axial solid angle (3D) an increase in sensitivity that is beneficial for improving performance and reducing the amount of crystal thickness, and further cost savings are realized.
  • FIGS. 3A-3C are diagrams showing an increase in sensitivity of the embodiment shown in FIG. 3A to 3C and below, a part of the first detector 10 is expressed as “first detector 10 ′”, and a part of the second detector 20 is expressed as “second detector 20 ′”. There are things to do.
  • the increase in sensitivity of this embodiment is evident by observing the axial plane for FIGS. 3A-3C.
  • the central point light source of the PET scanner (first detector 10 'and second detector 20') does not generate more concurrent events compared to a conventional ring (square pattern portion in FIG. 3A). ). The reason is that further LOR from that point source falls outside the range of the upper detector (first detector 10 '), so a closer detector (second detection) to subtract such further LOR.
  • FIG. 4 is a diagram showing the axial sensitivity of the two-half scanner.
  • the obtained count distribution is also clearly affected by the two-half scanner shown in FIG.
  • the sensitivity characteristic in the axial direction of the radiation source is a triangle. This means that as you move from the axial center of the PET scanner toward the end of the FOV (Field Of View), as shown on the left side of FIG. Yes.
  • the fact that the overall system sensitivity goes to zero at the end of the FOV causes problems for reconstruction and in particular prevents certain statistical properties.
  • the overall system sensitivity is simply the solid angle of the upper detector (first detector 10 ') and shows only a slight bump in the middle of the axial FOV. In the middle case, it is considered that the shape gradually changes from a triangular shape toward an almost flat distribution.
  • LORs ensures proper tomographic reconstruction.
  • smaller detector elements correspond to smaller (ie better) final spatial resolution.
  • Spatial resolution is in the “tube of response”, ie the volume adjacent to the surface of the two detector elements (as opposed to the dimensionless line adjacent to the center of the two detector elements).
  • imaging performance can be improved by utilizing better spatial resolution.
  • slightly larger detector elements can be used as both upper and lower parts of the PET scanner by using fewer and larger crystal elements.
  • the split ratio of the two-half scanner is not necessarily equal.
  • the first detector 10 is arranged to cover a wide range of angles of 180 degrees or more and less than 360 degrees with respect to the center of the circumference of the first detector 10.
  • the second detector 20 is arranged to cover an angle of less than 180 degrees.
  • the second detector 20 is preferably arranged so as to cover a range of, for example, 30 degrees or more in view of the width of the subject and the width of the subject pallet.
  • different ratios can be implemented to provide a larger opening around the subject pallet.
  • all of the LOR is still captured by this new shape. The effect of the “savings” amount due to a given two-half structure can be estimated by the above method.
  • the second detector 20 is disposed closer to the subject pallet than the first detector 10. Further, for example, the second detector 20 is arranged at a position closer to 10% or more than the distance between the circumference where the first detector 10 is provided and the center. That is, the second detector is provided closer to the central axis by at least 10% of the radius of the first detector than the first detector.
  • a smaller ring portion (second detector 20) can contact the subject pallet, as shown in FIG. 6 as a curved pallet (left side) or a flat pallet (right side), and much more.
  • a high sensitivity / geometric increase can be provided. Both of these palettes are those commonly used in PET imaging, particularly radiation therapy.
  • the smaller second detector 20 covers the lower half range and is arranged close to the subject pallet.
  • a slight LOR for example, five LORs shown in FIG. Of these, the rightmost LOR
  • the vertical position of the two-half is limited.
  • FIG. 7 shows a technically acceptable shape, but in practice the subject is lowered by lowering the smaller upper part (second detector 20) (or raising the subject palette equally). Approaching will create an unpleasant situation for the subject. It is particularly clear when FIG. 7 omits the rest of the detector system (photomultiplier tubes, electronics circuitry, supports, cables, etc.) and shows only detector elements.
  • the detector can be composed of a semiconductor sensor such as a silicon photomultiplier tube (SiPM (Silicon Photomultiplier)) or an avalanche photodiode (APD (Avalanche Photodiode)).
  • SiPM Silicon photomultiplier tube
  • APD avalanche photodiode
  • the semiconductor-based detector is movable (unlike the rest of the ring), and the subject P is first positioned before the top
  • the third part of the ring can actually be further divided into a plurality of parts, which can be easily positioned and stored when not imaged.
  • some of the detector elements can be arranged in one or more flat linear portions.
  • the PET scanner may include a first detector 10, a second detector 20, and a third detector 30.
  • the first detector 10 is provided along the circumference and is arranged to cover the lower half range.
  • the first detector 10 is arranged so as to be close to the subject pallet.
  • the second detector 20 and the third detector 30 are flat and are arranged so as to cover the upper half range.
  • the second detector 20 and the third detector 30 are also arranged so as to be close to the subject pallet.
  • the detector can be miniaturized. Can do. Note that “half” does not necessarily mean a strict range of 180 degrees. The same applies to other embodiments.
  • the same image is produced in substantially the same time (if not exactly the same) as the full-ring shape, resulting in 20% material for detection. Reduction of ⁇ 50%. Such a reduction is important to improve system performance at the same cost, or lower the cost for the same imaging performance.
  • the LOR enters a smaller portion of the detector element at a larger angle of incidence (not perpendicular to the plane of incidence), so higher space due to further parallax errors.
  • higher parallax errors may be compensated, at least in part, by a reduction in crystal thickness due to the very high solid angle formed by the smaller ring portion relative to the subject.
  • TOF information can provide sufficient “local” characteristics to accommodate near-perfect imaging conditions and reconstruction of some target sites, while imaging is progressively degraded away from the site.
  • Become. 10A and 10B show an embodiment in which a flat top scanner is positioned based on the region of interest (or region of interest) to be scanned. For example, some important imaging tasks, such as heart or chest imaging, clearly focus on information gathered from relatively small parts of the body, as shown in FIGS. 10A and 10B.
  • FIG. 10A shows that the two flat top detectors (second detector 20 and third detector 30) positioned as illustrated, allow the heart to accept an almost complete angle extraction and to optimize or sub-optimally re-optimize.
  • FIG. 5 illustrates providing sufficient information for configuration.
  • the point on the opposite side of the body receives significantly less LOR, and for this point the right detector (third detector 30) is completely useless for this point. Yes, indicating that only a small part of the lower detector (first detector 10) can be used.
  • TOF imaging inherently allows better isolation of the two sites.
  • the CT or MR image is used to identify the region or organ of interest, and to a PET detector. Can be used for optimization of positioning.
  • only one type of detector has TOF capability.
  • both detectors are clearly necessary to obtain sufficient time information for reconstruction and benefit from the additional information. is there.
  • most events come from mixed detectors.
  • the minimum total time resolution for obtaining useful TOF information is 1 ns (commercial systems currently achieve 500-600 ps).
  • the system has two types of detector structures: (1) Type A detector capable of 300 ps time resolution (when detector A is measured as a complete or at least very fast detector) And (2) a type B detector with only 2 ns (2000 ps) capability, a system built with only a type A detector is SQRT (300 2 +300 2 ) or approximately 425 ps Will have total system time resolution (using classical quadratic composition).
  • a system built with Type B detectors alone would have a total system time resolution of SQRT (2000 2 +2000 2 ) or 2.8 ns or 2,800 ps.
  • systems in which most events are type A and type B hybrids are effectively controlled in 2 ns by a type B detector, providing useful advantages for front detector electronics and image quality. provide.
  • the PET scanner includes a first detector provided circumferentially around the subject pallet, and a second detector separated from the first detector and provided opposite to the first detector. including.
  • the first detector includes a plurality of first detector elements, but the second detector section further includes a plurality of second detector elements.
  • the second detector element may be of a different type than the first detector element.
  • each of the first detector elements includes a photomultiplier tube and a scintillation crystal having a first thickness and a first pixel surface area, while Each of the two detector elements has a scintillation crystal having a second thickness different from the first thickness and a second pixel surface region different from the first pixel surface region.
  • each of the second detector elements includes a photosensor different from the photomultiplier tube of the first detector element.
  • each of the second detector elements includes a semiconductor photosensor such as a silicon photomultiplier tube.
  • the second detector is configured to have an imaging characteristic different from that of the first detector.
  • the first detector and the second detector have different energy and time resolution.
  • the energy window for the first detector is different from the energy window for the second detector.
  • PET / CT system Next, a PET / CT system will be described as an example of the medical image diagnostic apparatus according to the embodiment.
  • 11, 12B and 12C are diagrams illustrating an embodiment of a PET / CT system incorporating a two-half scanner.
  • the two-half geometries described above can be incorporated into existing CT systems in several ways.
  • a smaller, movable, semiconductor detector is provided on the top of the subject pallet, and an integrated PET / CT apparatus can be formed as an extension device of an existing CT system.
  • the two upper detectors are movable, for example, in a neurological or cardiovascular scan application, the area of interest of the subject being imaged (“interest” It can be placed at a position depending on the region (also referred to as “region of interest”).
  • FIG. 12A is a diagram showing a conventional approach
  • FIG. 12B shows that the upper part (first detector 10) is half of a ring with a larger diameter, while the lower part (second detection).
  • FIG. 9 shows an embodiment in which the vessel 20) has a reduced diameter.
  • the lower detector portion is flat (second detector 20).
  • the same image is generated in substantially the same time (if not at all) as the full ring shape, but as a result, 20% to 50% of the detector material is reduced. Using this increased efficiency, it is possible to improve system performance at the same cost or reduce costs for the same imaging performance.
  • FIG. 13 is a flowchart illustrating steps of a control method executed by the PET / CT system according to the embodiment. That is, FIG. 13 is a diagram illustrating a method for acquiring imaging data of a subject provided on a subject pallet using a CT scanner and a PET scanner in one embodiment.
  • the CT scanner is configured to scan a subject.
  • the PET scanner is a first detector provided in a circumferential direction around the object pallet, and has a predetermined axial range, and a range below 360 degrees with respect to the central axis of the scanner is set in the transverse direction.
  • the second detector is configured to be movable in the radial direction and the circumferential direction around the subject.
  • an image acquisition unit (for example, a CT apparatus 1406 described later) of the PET / CT system 1400 acquires CT image data of the subject by controlling the CT scanner.
  • the image acquisition unit may take out CT image data acquired last time from a storage unit (for example, a storage unit 1410 described later).
  • a control unit obtains the axial extent of a region of interest (for example, the heart, chest, or other organ of the subject) from the acquired CT image data. Based on the projected image. For example, the control unit specifies a range in the axial direction of the region of interest (for example, the body axis direction of the subject) using a sagittal or coronal CT image.
  • step S1303 the control unit (for example, a controller 1407 described later) specifies the position of the region of interest (for example, the xy coordinate of the center) based on the transverse CT image obtained from the acquired CT image data.
  • the control unit for example, a controller 1407 described later
  • steps S1302 and 1303 can be executed manually by the operator or automatically by image processing software operating on the data processing unit.
  • step S1304 the control unit (for example, a controller 1407 described later) sets the subject palette based on the axial extent of the region of interest specified in step S1302 and the current position of the subject on the subject palette. Automatic positioning in the longitudinal direction. For example, the control unit automatically positions the subject pallet in the longitudinal direction so that the axial center of the region of interest is positioned around the axial center of the detector. Then, as will be discussed below, the controller 1407 transmits a command (control signal) to the bed moving mechanism (pallet and pallet positioning unit 1402 which is a mechanical subsystem), and the bed moving mechanism moves the subject pallet in the longitudinal direction. It is possible to perform favorable imaging of the region of interest by PET scanning.
  • a command control signal
  • step S1305 the control unit (for example, a controller 1407 described later) automatically moves the second detector 20 and the third detector 30 in the radial direction and the circle based on the position of the region of interest specified in step S1303. Move in at least one of the circumferential directions. Then, the controller 1407 transmits a command (control signal) to the detector moving mechanism (PET detector positioning unit 1403 described later), and the detector moving mechanism moves the second detector 20 and the third detector 30. . See FIGS. 9 and 10A. For example, in the case of the example shown in FIG. 9, the control unit moves the second detector 20 and the third detector 30 in the radial direction so as to approach the subject P, and approaches the part of the heart that is the region of interest.
  • the control unit moves the second detector 20 and the third detector 30 in the radial direction so as to approach the subject P, and approaches the part of the heart that is the region of interest.
  • the control unit may rotate the first detector 10 in the circumferential direction as shown in FIG.
  • the control unit rotates and moves the first detector 10 in the circumferential direction so that the first detector 10 and the moved second detector 20 and the third detector 30 face each other. Just do it.
  • the controller repositions the second and / or third detector part.
  • a data collection unit (for example, described later) The data acquisition system 1404) performs a PET scan of the subject, and performs first event data from the first detector 10, second event data from the second detector 20, and third from the third detector unit 30. Get all or any of the event data.
  • step S1307 the data collection processing unit (for example, a data processing unit 1405 described later) applies the PET image of the target region of the subject to all or one of the acquired first, second, and third event data. Reconfigure based on.
  • FIG. 14 is a diagram illustrating a configuration of a PET / CT system 1400 according to an embodiment.
  • the PET / CT system 1400 includes a CT apparatus 1406 and a PET detector apparatus 1401.
  • the PET detector device 1401 includes, for example, a detector array shown in FIGS. 11, 12B, and 12C. Further, the PET / CT system 1400 includes a movable subject pallet 1402 including a pallet positioning unit (bed movement mechanism). The movable object pallet 1402 is configured to position the object pallet inside the PET detector device 1401 and the CT device 1406 based on, for example, a command (control signal) received from the controller 1407.
  • a command control signal
  • the controller 1407 controls all functions of the PET / CT system 1406 including the position control of the subject pallet by the pallet positioning unit 1402.
  • the pallet positioning unit 1402 includes a mechanism configured to move the subject pallet at least in the longitudinal direction.
  • the controller 1407 also controls a PET detector positioning unit 1403 that positions one or more PET detector units around the subject on the pallet.
  • the PET detector positioning unit 1403 has one or a plurality of “circumferential and radial directions” around the subject based on the region of interest of the subject to be imaged. It includes a mechanism configured to move the “upper” detector array.
  • the controller 1407 transmits a command (control signal) to the pallet positioning unit 1402 and the PET detector positioning unit 1403, positioning information obtained from the CT scan of the subject, and the pallet And positioning the pallet and detector prior to the PET scan based on the current position of the detector.
  • the data acquisition system 1404 obtains PET event data from the PET detector device 1401 during the PET scan, transmits the event data to the data processing unit 1405, and reconstructs the PET image.
  • the data acquisition system 1404 can store the PET event data in the storage unit 1410 prior to processing by the data processing unit 1405.
  • the operator interface unit 1408 performs, for example, reception of an operator command for starting a CT scan or PET scan, or setting an area of interest on a CT image, and / or receiving parameters related to the scan. Composed.
  • the PET image and CT image of the subject and the operation parameters related to the scan are displayed on the display unit 1409.
  • the controller 1407 and the data processing unit 1405 may be a discontinuous logic such as an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or another CPLD (Complex Programmable Logic Device).
  • a CPU Central Processing Unit
  • the FPGA or CPLD implementation may be coded in VHDL (Very High Speed Integrated Circuit Hardware Description Language), Verilog, or any other hardware description language, and the code is stored directly in electronic memory in the FPGA or CPLD. Or it may be stored as a separate electronic memory.
  • the storage unit 1410 may be non-volatile such as ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), or flash memory.
  • the storage unit 1410 may be volatile such as static RAM (Random-Access Memory) or dynamic ram.
  • a processor such as a microcontroller or microprocessor may be provided to manage the interaction between the electronic memory, FPGA or CPLD and the storage unit.
  • the CPU in the controller 1407 or the data processing unit 1405 can execute a computer program that includes a set of computer-readable instructions that perform the functions described herein.
  • the program can be any of the above non-transitory electronic memory and hard disk device, CD (Compact Disc), DVD (Digital Versatile Disc), flash drive (FLASH drive) or any other known storage medium Or it is stored in one side.
  • a computer-readable instruction is sent to a processor such as Intel's Xenon processor (registered trademark) in the United States or an Opteron processor (registered trademark) in AMD (Advanced Micro Devices, Inc.) in the United States, and Microsoft VISTA (registered trademark).
  • the processed signal is stored in the storage unit 1410 and / or displayed on the display unit 1409.
  • the storage unit 1410 is a hard disk device, CD-ROM device, DVD device, flash (FLASH) device, RAM, ROM, or any other electronic storage device known in the art. It's okay.
  • the display unit 1409 includes an LCD (Liquid Crystal Display) display device, a CRT (Cathode Ray Tube) display device, a plasma display device, an organic light emitting diode (OLED (Organic Light Emitting Diode)), and a light emitting diode (LED (Light Emitting Diode)). Or any other display device known in the art.
  • the description of the storage unit 1410 and the display unit 1409 provided in this specification is merely a specific example, and does not limit the scope of the present proposal.
  • the control unit only has to specify the extent of the region of interest in the body axis direction of the subject based on the MR image data reconstructed from the collected magnetic resonance signals.
  • the control unit may specify the position of the region of interest based on the MR image data.
  • the control unit moves the bed on which the subject is placed in the longitudinal direction according to the spread in the specified body axis direction, and moves the detector in the circumferential direction and the radius of the circumference according to the specified position. What is necessary is just to move to at least one direction among directions. For example, when the target part is clarified from the imaging conditions input to the system prior to imaging, the control unit moves the bed or the detector based on the input imaging conditions instead of from the image. You may control.
  • PET image data can be appropriately collected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 実施形態に係る医用画像診断装置は、第1検出器(10)と、第2検出器(20)と、データ収集部(1404)とを備える。第1検出器(10)は、被検体を囲む円周の中心に対して第1角度の範囲に配置され、複数の第1検出器素子を含む。第2検出器(20)は、第1検出器(10)に対向する第2角度の範囲に、円周方向及び円周の半径方向のうち少なくとも一方向に可動に配置され、第1検出器素子とは異なる種類の複数の第2検出器素子を含む。データ収集部(1404)は、第1検出器(10)から第1イベントデータを収集し、第2検出器(20)から第2イベントデータを収集し、該第1イベントデータと該第2イベントデータとをイベントデータの処理を行うデータ処理部(1405)に送信する。

Description

医用画像診断装置及び制御方法
 実施形態は、医用画像診断装置及び制御方法に関する。
 医用イメージングの分野において、ポジトロン(Positron)放射断層撮影(以下、適宜「PET」)の利用が増えている。PETイメージングにおいて、放射性薬剤は、注入、吸入、又は経口摂取によって、画像化される被検体に投与される。放射性薬剤の投与後、物理的及び生体分子的な性質により、薬剤が人体内の特定部位に集中する。薬剤の実際の空間分布、薬剤の蓄積領域の濃度、及び投与から最終の排出までのプロセスの動態は、全て臨床的な重要性を持ち得る因子である。このプロセスにおいて、放射性薬剤に付着したポジトロン放射体は、半減期、分岐比などの同位元素の物理的な性質に応じてポジトロンを放射する。
 放射性核種はポジトロンを放射する。放射されたポジトロンが電子と衝突すると、消滅イベント(annihilation event)が発生し、ポジトロン及び電子は破壊される。多くの場合、消滅イベントは、略180度反対方向に511keVで飛翔する2つのガンマ線(gamma ray)を生成する。
 2つのガンマ線を検出し、これらの検出位置間に、直線、すなわちLOR(Line-Of-Response)を引くことによって、本来消滅したであろう位置を割り出すことができる。このプロセスは、相互作用(interaction)のあり得る線を識別するだけであるが、そのような線を多数蓄積することによって、断層撮影再構成プロセスを通して、本来の分布を推定できる。2つのシンチレーションイベント(scintillation event)の位置に加えて、正確なタイミング(数百ピコ秒以内の)を利用可能であれば、TOF(Time-Of-Flight)の計算によって、LORに沿ったイベントの推定位置に関する情報を更に加えることができる。PETスキャナの時間分解能の限界が、この線に沿った位置決めの精度を決定する。本来のシンチレーションイベントの位置を決定する際の限界が、PETスキャナの究極の空間分解能を決定する。一方で、同位元素の固有の特性(例えば、ポジトロンのエネルギー)もまた、(2つのガンマ線のポジトロン範囲及び共直線性によって)特定の薬剤の空間分解能の決定に寄与する。
 多数のイベントの収集によって、断層撮影再構成を通して推定される被検体の画像に必要な情報が創出される。対応する検出器素子においてほぼ同時に発生する2つの検出されたイベントは、投影位置又は再構成されるサイノグラム(sinogram)を画定するために、それらイベントの幾何学的特質に応じてヒストグラム化できるLORを形成する。イベントもまた、個々に画像に加えることができる。
 したがって、データ収集及び画像再構成の基本的要素は、LORである。LORは、システムと被検体との隙間(system-patient aperture)を横切る線である。イベントの位置に関して更なる情報を得ることができる。第1に、サンプリング及び再構成を通して、点を再構成又は位置付けるシステムの能力は、視野全体で空間不変ではなく、中央部で比較的良好であるが、周辺部に向かって徐々に低下していくことは周知である。この挙動を特徴付けるために、一般的に、PSF(Point-Spread-Function)を使用する。PSFを再構成プロセスに取り込むためにツールが開発されてきた。第2に、対になったガンマ線の検出に関与する各検出器のガンマ線の到着間の飛行時間又は時間差を使って、イベントが発生したであろう位置をLORに沿って決定できる。
 上記検出プロセスを多数の消滅イベントに対して繰り返さなければならない。イメージング症例ごとに解析して、イメージングタスクを支援するために何回のカウント(すなわち、対になったイベント)が必要になるかを決定しなければならないが、現在の慣例では、典型的な100cm長のフルオロデオキシグルコース(FDG(Fluoro-Deoxyglucose))の検査によって数億カウントは蓄積されるとされている。この数のカウントを蓄積するのに要する時間は、薬剤の注入量、スキャナの感度及びカウント性能によって決まる。
米国特許第6,455,856号明細書 米国特許第6,946,658号明細書
 本発明が解決しようとする課題は、PET画像データを適切に収集することができる医用画像診断装置及び制御方法を提供することである。
 実施形態に係る医用画像診断装置は、第1検出器と、第2検出器と、データ収集部とを備える。前記第1検出器は、被検体を囲む円周の中心に対して第1角度の範囲に配置され、複数の第1検出器素子を含む。前記第2検出器は、前記第1検出器に対向する第2角度の範囲に、前記円周方向及び前記円周の半径方向のうち少なくとも一方向に可動に配置され、前記第1検出器素子とは異なる種類の複数の第2検出器素子を含む。前記データ収集部は、前記第1検出器から第1イベントデータを収集し、前記第2検出器から第2イベントデータを収集し、該第1イベントデータと該第2イベントデータとをイベントデータの処理を行うデータ処理部に送信する。
図1は、従来のフルリングPETスキャナを示す図である。 図2は、一実施形態に係るPETスキャナの構造を示す図である。 図3Aは、図2に示す実施形態の感度増大を示す図である。 図3Bは、図2に示す実施形態の感度増大を示す図である。 図3Cは、図2に示す実施形態の感度増大を示す図である。 図4は、ツーハーフスキャナの軸方向の感度を示す図である。 図5は、ツーハーフスキャナの他の実施形態を示す図である。 図6は、ツーハーフスキャナの他の実施形態を示す図である。 図7は、ツーハーフスキャナの他の実施形態を示す図である。 図8は、ツーハーフスキャナの他の実施形態を示す図である。 図9は、ツーハーフスキャナの他の実施形態を示す図である。 図10Aは、平坦な上部スキャナが、スキャンされるべき対象部位に基づいて位置決めされる実施形態を示す図である。 図10Bは、平坦な上部スキャナが、スキャンされるべき対象部位に基づいて位置決めされる実施形態を示す図である。 図11は、ツーハーフスキャナが組み込まれたPET/CT(Computed Tomography)システムの実施形態を示す図である。 図12Aは、従来のPET/CTシステムの実施形態を示す図である。 図12Bは、ツーハーフスキャナが組み込まれたPET/CTシステムの実施形態を示す図である。 図12Cは、ツーハーフスキャナが組み込まれたPET/CTシステムの実施形態を示す図である。 図13は、実施形態に係るPET/CTシステムによって実行される制御方法のステップを示すフローチャートである。 図14は、一実施形態におけるPET/CTシステムの構成を示す図である。
 以下、実施形態に係るPETスキャナ、医用画像診断装置、及び制御方法を、同一又は対応する部に類似の参照番号を付した図面を参照しながら説明する。
 一実施形態に係るPETスキャナは、第1検出器部(以下、適宜「第1検出器」)と、第2検出器部(以下、適宜「第2検出器」)とを備える。第1検出器は、被検体を囲む円周に沿って設けられ、この円周の中心に対して第1角度の範囲に配置される。第2検出器は、この円周とは異なる曲率半径で設けられ、第1検出器に対向する第2角度の範囲に配置される。
 例えば、第1検出器は、被検体パレット(patient pallet、「寝台」などとも称する)の周囲に円周方向に設けられる。また、例えば、第1検出器は、軸方向(例えば、被検体の体軸方向)に一定の幅を有する。また、例えば、第1検出器の横断方向は、円周の中心(すなわち、この第1検出器によって確定されるPETスキャナの中心軸線)に対して、180度以上360度未満の角度の範囲である。また、例えば、第2検出器は、第1検出器と分離し、且つ第1検出器に対向して設けられる。また、例えば、第2検出器は、第1検出器の曲率半径より小さい曲率半径を有する。また、例えば、第2検出器の横断方向は、第1検出器によって確定されるPETスキャナの中心軸線に対して、180度未満の角度の範囲である。
 また、例えば、第2検出器は、第2角度の範囲として30度以上の範囲に配置される。また、例えば、第1検出器が配置される第1角度の範囲と、第2検出器が配置される第2角度の範囲との合計は、(実質的に)360度未満である。また、例えば、第1検出器が配置される第1角度の範囲と、第2検出器が配置される第2角度の範囲との合計は、(実質的に)360度以上でもよい。
 また、例えば、第2検出器は、第1検出器が設けられる円周に比較して、円周の中心との距離が近い位置に配置される。すなわち、第2検出器は、第1検出器に比較して、上記中心軸線により近接して設けられる。また、例えば、第2検出器は、第1検出器が設けられる円周と中心との距離に比較して、10%以上近い位置に配置される。すなわち、第2検出器は、第1検出器に比較して、第1検出器の半径の少なくとも10%分、中心軸線により近接して設けられる。
 また、例えば、第1検出器は、複数の第1検出器素子を含み、第2検出器は、複数の第2検出器素子を含み、第2検出器素子のそれぞれは、第1検出器素子に比較して小さい検出面(「表面領域」などとも称する)を有する。
 また、例えば、第2検出器は、平坦でもよい。
 また、例えば、PETスキャナは、第1検出器に対向する第2角度の範囲に配置される第3検出器を更に備えてもよい。例えば、第1検出器は、複数の第1検出器素子を含み、第2検出器は、平坦であり、且つ、複数の第2検出器素子を含み、第3検出器は、平坦であり、且つ、複数の第3検出器素子を含む。また、第2検出器素子及び第3検出器素子のそれぞれは、第1検出器素子に比較して小さい検出面を有する。
 また、例えば、第2検出器は、被検体が載置される寝台の下に接して配置されてもよい。すなわち、第2検出器は、寝台の下に接触するように設けられる。また、例えば、第2検出器は、被検体が載置される寝台の上方に配置されてもよい。また、例えば、第2検出器は、円周方向(若しくは円周の接線方向)及び円周の半径方向のうち少なくとも一方向に可動である。また、例えば、第1検出器及び第2検出器は、被検体を囲む円周方向に回転する。すなわち、第1検出器及び第2検出器は、寝台の周囲で、あらゆるアキシャルアングルで回転するように構成されてもよい。
 また、一実施形態に係るPETスキャナは、第1検出器と、第2検出器とを備える。第1検出器は、被検体を囲む円周の中心に対して第1角度の範囲に配置され、複数の第1検出器素子を含む。第2検出器は、第1検出器に対向する第2角度の範囲に、円周方向(若しくは円周の接線方向)及び円周の半径方向のうち少なくとも一方向に可動に配置され、第1検出器素子とは異なる種類の複数の第2検出器素子を含む。
 ここで、例えば、第1検出器素子それぞれは、光電子増倍管(PMT(Photomultiplier Tube)を含み、第2検出器素子それぞれは、第1検出器素子とは異なる種類の光センサを含む。例えば、第1検出器素子それぞれは、第1厚みと第1表面領域とを有するシンチレーション結晶を含む。例えば、第2検出器素子それぞれは、第1厚みとは異なる第2厚みを有するシンチレーション結晶を含む。また、例えば、第2検出器素子それぞれは、第1表面領域とは異なる第2表面領域を有するシンチレーション結晶を含む。また、例えば、第2検出器素子それぞれは、半導体(solid-state)光センサを含む。また、例えば、第2検出器素子それぞれは、シリコン光電子増倍管を含む。また、例えば、第2検出器素子それぞれは、APD(Avalanche Photodiode)を含む。
 すなわち、例えば、第1検出器素子それぞれは、光電子増倍管を含み、第2検出器素子のそれぞれは、第1検出器素子の光電子増倍管とは異なる種類の光センサを含む。例えば、第2検出器素子のそれぞれは、シリコン光電子増倍管や、半導体光センサ、あるいは、APDを含む。
 また、一実施形態に係るPETスキャナは、第1検出器と、第2検出器とを備える。第1検出器は、被検体を囲む円周の中心に対して第1角度の範囲に配置され、複数の第1検出器素子を含む。第2検出器は、第1検出器に対向する第2角度の範囲に、円周方向(若しくは円周の接線方向)及び円周の半径方向のうち少なくとも一方向に可動に配置され、第1検出器素子とは異なる種類の複数の第2検出器素子を含む。第2検出器素子それぞれは、第1検出器素子とは異なる特性を有する。
 例えば、第2検出器素子それぞれは、時間分解能、エネルギー分解能、及び感度のうち、少なくとも1つが、第1検出器素子とは異なる。
 また、一実施形態に係るPETスキャナは、第1検出器と、第2検出器とを備える。第1検出器は、被検体を囲む円周の中心に対して第1角度の範囲に配置される。第2検出器は、第1検出器に対向する第2角度の範囲に、円周方向(若しくは円周の接線方向)及び円周の半径方向のうち少なくとも一方向に可動に配置される。また、第1検出器のエネルギーウィンドウと第2検出器のエネルギーウィンドウとは異なる。
 また、一実施形態に係る医用画像診断装置は、第1検出器と、第2検出器と、データ収集部とを備える。第1検出器は、被検体を囲む円周の中心に対して第1角度の範囲に配置され、複数の第1検出器素子を含む。第2検出器は、第1検出器に対向する第2角度の範囲に、円周方向(若しくは円周の接線方向)及び円周の半径方向のうち少なくとも一方向に可動に配置され、第1検出器素子とは異なる種類の複数の第2検出器素子を含む。データ収集部は、第1検出器から第1イベントデータを収集し、第2検出器から第2イベントデータを収集し、第1イベントデータと第2イベントデータとを、イベントデータの処理を行うデータ処理部に送信する。例えば、データ処理部は、イベントデータの分析や再構成を行う。
 また、一実施形態に係る医用画像診断装置は、画像取得部と、制御部とを更に備える。画像取得部は、被検体の画像を取得する。例えば、画像取得部は、被検体に対してスキャンを行い、CT画像データを取得するCTスキャナを含む。制御部は、画像に基づき関心領域を特定し、特定した関心領域に基づき、第2検出器を円周方向(若しくは円周の接線方向)及び円周の半径方向のうち少なくとも一方向に移動させる。例えば、制御部は、CT画像データから得られる投影データに基づき、関心領域の被検体の体軸方向の広がりを特定する。また、例えば、制御部は、CT画像データから得られる断面画像に基づき、関心領域の位置を特定する。そして、例えば、制御部は、特定した体軸方向の広がりに応じて被検体が載置される寝台を長手方向に移動させ、特定した位置に応じて第2検出器を円周方向及び円周の半径方向のうち少なくとも一方向に移動させる。
 また、例えば、制御部は、寝台及び第2検出器の移動後に、被検体に対してPETによるスキャンを行い、イベントデータを収集する。
 また、例えば、医用画像診断装置は、制御部からの制御信号に応じて寝台を移動する寝台移動機構を更に備える。また、例えば、医用画像診断装置は、制御部からの制御信号に応じて第2検出器を移動する検出器移動機構を更に備える。また、例えば、PET/CTシステムは、第3検出器を更に備えてもよい。第3検出器は、第1検出器に対向する第2角度の範囲に、円周方向(若しくは円周の接線方向)及び円周の半径方向のうち少なくとも一方向に可動に配置され、第1検出器素子とは異なる種類の複数の第3検出器素子を含む。この場合、データ収集部は、第3検出器から第3イベントデータを更に収集し、第1イベントデータと第2イベントデータと第3イベントデータとをデータ処理部に送信する。
 また、一実施形態に係る制御方法は、医用画像診断装置によって実行される制御方法である。制御方法は、第1検出器から第1イベントデータを収集し、第2検出器から第2イベントデータを収集し、第1イベントデータと第2イベントデータとをデータ処理部に送信する。第1検出器は、被検体を囲む円周の中心に対して第1角度の範囲に配置され、複数の第1検出器素子を含む。第2検出器は、第1イベントデータを収集し、第1検出器に対向する第2角度の範囲に、円周方向(若しくは円周の接線方向)及び円周の半径方向のうち少なくとも一方向に可動に配置され、第1検出器素子とは異なる種類の複数の第2検出器素子を含む。データ処理部は、イベントデータの処理を行う。
 また、例えば、制御方法は、被検体の画像を取得し、取得した画像に基づき関心領域を特定し、特定した関心領域に基づき、第2検出器を円周方向及び円周の半径方向のうち少なくとも一方向に移動させる。
 また、一実施形態に係る医用画像診断装置は、被検体に対してスキャンを行い、CT画像データを取得するCTスキャナを含む。また、制御方法は、被検体のCT画像データを取得し、取得したCT画像データから得られる投影データに基づき、関心領域の被検体の体軸方向の広がりを特定し、CT画像データから得られる断面画像に基づき、関心領域の位置を特定する。そして、制御方法は、特定した体軸方向の広がりに応じて被検体が載置される寝台を長手方向に移動させ、特定した位置に応じて第2検出器を円周方向及び円周の半径方向のうち少なくとも一方向に移動させる。
 図1は、従来のフルリング(full-ring)PETスキャナを示す図である。PETイメージングシステムは、被検体から放射されるガンマ線を検出するために、互いに対向する位置に配置された検出器を使用する。あらゆる角度から飛来するガンマ線を検出するために、一般的に検出器リングを使用する。したがって、PETスキャナは、できるだけ多くの放射線を収集できるように、一般的にほぼ円筒形状であり、当然のことながら、等方性である。欠けている角度を捕えるために部分リングを使用したり、検出器を回転させたりすることもまた可能であるが、これらの手法は、スキャナの全体的な感度に対して過酷な結果をもたらす。平面に含まれる全てのガンマ線が検出器と相互に作用する機会を有する円筒形の形状では、軸線方向の寸法を増加させることは、放射線を捕獲する感度すなわち能力に非常に有利な影響をもたらす。したがって、最高の構造は、全てのガンマ線が検出される機会を有する球体構造である。もちろん、人間に適用するためには、球面構造は、非常に大きくしなければならなので、非常に高価になる。したがって、円筒形の形状は、検出器の軸線領域が可変であることから、現代のPETスキャナの構造の現実的な出発点である。
 PETスキャナの全体的な形状が明らかになると、次の課題は、できるだけ多くのシンチレーション材料をガンマ線経路内に配置して、できるだけ多くのガンマ線を光に変換することである。必要なことは、このプロセスにおいて最適化の2つの重要性を考慮することである。一方では、「面内(in-plane)」感度には、検出器の円周の周りにできるだけ多くの結晶(結晶の厚み)が必要になる。他方では、所与の結晶の厚みに対して、検出器シリンダーの軸線長が、総システム感度を決定する。その感度は、軸線長の二乗(シリンダーの中央の点によって範囲が定まる立体角)にほぼ比例する。実際的なコストの検討が、不可避的に最適化プロセスの一部となる。結晶及び関連するセンサの最適分布は、全システムコストの中核を成す。それは、一般的にPETイメージングシステムの全コストの最高3分の2に相当する。
 従来、円筒形の形状は、PETスキャナのために選択する構造である。図1に示すように、円筒形の形状は、横断面で全てのイベントを捕えることができる。検出器の軸線方向範囲によって、どれだけ多くのそのような平面を定義できるか、並びにどれだけ多くの傾斜平面を利用できるかが決まる。
 図1に示すように、PETスキャナは、検出器素子を表す一連の小さなブロックによって形成される。単純にするために、2、3ダースの検出器素子だけを示す。実際は、形状を適切に抽出するために数百ピクセルが必要である。軸線方向についても同じことが言える。検出器素子は、一般的に両方向とも同じ所定の大きさであるが、両方の寸法が異なる大きさであってもよい。被検体が、スキャナ被検体パレット(寝台)に載っている場合、被検体の横断面は、胸部、肺、心臓、及び脊椎を示す。更に、図1は、「心臓」から円周方向及び軸線方向の両方に発し、PETスキャナ上の幾多の点で収集されるポジトロン消滅イベントを表す2、3の推定されるLORを示す。
 PETスキャナの全体的な寸法は、全人体を網羅するように、一般的に、直径70cmから90cmまで多様である。軸方向の寸法は、もっと変更できる。従来のPETスキャナには、少なくとも15cmの軸方向の有効範囲(少なくとも心臓を網羅する)があるが、より大きな規模が可能でありかつ望ましい。
 更に、現在の臨床診療では、被検体をおおよそPETスキャナの中央に置く。被検体が、一般的にPETスキャナ直径の50%以下を占めるとすると、被検体を中心よりわずかに低く置くことも望ましく、PETスキャナ開口部内に被検体のためのより広い「呼吸」空間を設けられる。
 それでも、PETスキャナの目標は、アキシャル面及び横断面の両方で、被検者からできるだけ多くのLORを収集することである。
 従来の構造は、ポジトロン消滅イベントの収集に効率的な形状を提供する一方で、PETスキャナを製造するための厳格な規則も定めている。したがって、そのコストを抑えるための選択肢はほとんど提供されていない。
 PETスキャナの軸方向範囲を増やす試みは提案されてきたが、横断面での完全な抽出に対する規則は変更されてこなかった。
 検出器素子の非常に高い相対的コストが与えられるならば、PETスキャナ開口部(すなわち、より大きな直径)又はその軸方向範囲を増やすあらゆる試みに著しいコスト増加が必要となる。85cm又はそれ以上であることが必要な治療用位置決め(固定化)ツール(放射線治療ユニットに合致)を収容し、更に、いまだに多くの被検体が経験する閉所恐怖的なストレスを低減して被検体の快適性を改善するために、PETスキャナの直径を大きくすることが望ましい。感度(収集されるイベントの数)を上げるため、また、より大きな器官又は身体部分を網羅するために、PETスキャナの軸方向範囲を延ばすことが望ましい。例えば、肺全体は、一般的に最高25~30cmにわたり、頭部及び首部は、少なくとも30cmを必要とする。
 したがって、PETスキャナ設計者が直面している現実的課題は、PETスキャナの主たるコストを表す検出器材料の量が一定である場合、どのような形状にすればイベントカウントの数を最適化すると同時に、再構成のための適切な抽出を実現できるかということである。
 その上、従来の設計では、被検体の特定器官又は対象部位をスキャンするPETスキャナを変更又は最適化する方法が提供されず、最適化されるべき被検体又は被検体の部位に関係なく、全ての画像が同一の方法で取得される。
 図2は、一実施形態に係るPETスキャナの構造を示す図である。図2に示すように、一実施形態に係るPETスキャナは、ポジトロン消滅イベントの収集を最適化するために新しい形状を有する。具体的には、一実施形態に係るPETスキャナは、図2に示すように、分割された2つの検出器、すなわち、第1検出器10と第2検出器20とを備え、図2においては図示を省略しているが、その他、制御回路や支持物などを適宜含む構造物である。第1検出器10は、被検体Pを囲む円周のうち概ね上半分の範囲をカバーするように配置され、第2検出器20は、第1検出器10に対向し、概ね下半分の範囲をカバーするように配置される。一実施形態に係るPETスキャナは、いわばツーハーフスキャナ(two-half scanner)である。ここで、図2に示すように、PETスキャナの下半分(第2検出器20)は、被検体Pの寸法に合わせるために縮小されている。言い換えると、第2検出器20は、第1検出器10の曲率半径より小さい曲率半径を有する。一般に、被検体Pの寸法は、PETスキャナの直径(例えば、図2において第1検出器10の直径)の略半分である。図1に示す従来の構造と比較すると、被検体パレットaの下の空間は無用の空間であり、被検体Pの快適性にも役立っていない。
 なお、図2に示すように、図1に示す従来の構造で収集されたであろうLORは、全て依然としてPETスキャナのより小さな下半分(第2検出器20)によって収集される。更に、検出器リングの上半分(第1検出器10)と、第1検出器10及び第2検出器20の隙間とを通るLORは、被検体Pを横切らないので、被検体Pのスキャンにおいて収集される必要はない。第2に、直径の減少に比例してより小さくなる比較的小さな検出器素子を第2検出器20に用いることによって、第1検出器10と第2検出器20との間には、推測されるLORが同数存在する。注目点としては、新しいツーハーフスキャナは、従来のフルリングスキャナと同じ横断方向の感度と同じ抽出能力とを有し、その一方で、検出器のコストを最高20~25%の節約を実現する点である。その上、ツーハーフスキャナの底の部分は、被検体Pに近接している。したがって、軸方向の立体角(3D)の増加、そして、性能の改善や結晶の厚みの量の低減に有益となる感度の増加、そして、更なるコストの節約が実現する。
 図3A~3Cは、図2に示す実施形態の感度増大を示す図である。なお、図3A~3C及び以下において、第1検出器10の一部を「第1検出器10´」と表現し、第2検出器20の一部を「第2検出器20´」と表現することがある。本実施形態の感度の増加は、図3A~3Cについてアキシャル面を観察することによって明白となる。PETスキャナ(第1検出器10´及び第2検出器20´)の中央の点光源は、従来のリングに比較してより多くの同時発生イベントを生成することはない(図3Aにおいて正方形パターン部分で示した)。その理由は、その点光源からの更なるLORは、上部検出器(第1検出器10´)の範囲から外れるので、そのような更なるLORを引くために、より近い検出器(第2検出器20´)からの更なる立体角を使用できないからである(図3Aにおいて水平線パターンで示した)。しかし、他の放射点については、図3B及び図3Cの垂直線パターン部分に示すように、感度は、かなり増加する可能性がある。しかし、「ボリューム感度」の正確な計算には、より複雑なモデルツールが必要である。
 図4は、ツーハーフスキャナの軸方向の感度を示す図である。取得されたカウントの分布はまた、図2に示すツーハーフスキャナによって明らかに影響を受ける。従来の中央リング形状では、線源の軸方向の感度特性は、三角形である。これは、PETスキャナの軸方向の中心からFOV(Field Of View)の端部の方へ行くにつれて、図4の左側に示すように、同時発生イベントをつくる機会がだんだん少なくなるということを表している。全システム感度が、FOVの端部でゼロになるという事実は、再構成に問題を引き起こし、特に、一定の統計的特性を阻む。
 図4の右側に示した極端なケースでは、線、及び、光源と下部検出器(第2検出器20´)との間のゼロ距離によって、下方に進むガンマ線は、全て検出される。したがって、全システム感度は、単に上部検出器(第1検出器10´)の立体角であり、アキシャルFOVの中央にわずかな隆起だけを示す。中間の場合は、三角形形状からほとんど平坦な分布の方へ漸進的にそれていくと考えられる。
 更に、一定の数の推定されるLORは、適切な断層撮影の再構成を保証する。更に、より小さな検出器素子は、より小さな(すなわち、より良好な)最終の空間的分解能に対応する。空間的分解能は、「応答チューブ(tube of response)」、すなわち、2つの検出器素子の表面に隣接する容積(2つの検出器素子の中心に隣接する無次元の線とは対照的に)に多少比例している反復再構成を伴うモデルに基づいている。更に、より良好な空間的分解能を利用すれば、イメージング性能を改善できる。又は、より良好な空間的分解能を利用すれば、より少なく、より大きな結晶素子を用いることで、PETスキャナの上下両部品として、わずかに大きな検出器素子を利用できる。
 図5~9は、ツーハーフスキャナの他の実施形態を示す図である。他の実施形態においては、図5に示すように、ツーハーフスキャナの分割比率は、必ずしも等しくない。例えば、第1検出器10は、第1検出器10の円周の中心に対して、180度以上360度未満の広い範囲の角度をカバーするように配置される。一方、第2検出器20は、180度未満の角度をカバーするように配置される。この場合、第2検出器20は、被検体の幅や被検体パレットの幅などに鑑みて、例えば30度以上の範囲をカバーするように配置されるのが望ましい。このように、被検体パレットの周りにより大きな開口部を提供するために、異なる比率を実施することもできる。図6に示すように、LORは、この新しい形状によっても、やはり全て捕獲される。所与のツーハーフ構造による「節約」量の効果は、上記方法で推定できる。
 ここで、図5に示すように、例えば、第2検出器20は、第1検出器10に比較して、被検体パレットにより近い位置に配置される。また、例えば、第2検出器20は、第1検出器10が設けられる円周と中心との距離に比較して、10%以上近い位置に配置される。すなわち、第2検出器は、第1検出器に比較して、第1検出器の半径の少なくとも10%分、中心軸線により近接して設けられる。
 別の実施形態において、より小さなリング部分(第2検出器20)は、図6において、湾曲したパレット(左側)や平坦なパレット(右側)として示すように、被検体パレットに接触でき、より一層高い感度/幾何学的な増加を提供できる。これらのパレットは両方とも、PETイメージング、特に、放射線療法で一般的に使用されるものである。
 2つの部分に分割されたリングが上下対称形である場合、上述した実施形態においては、より小さな第2検出器20が下半分の範囲をカバーし、被検体パレットに近接して配置された。これに対し、図7の左側に示すように、より小さな第2検出器20が上半分の範囲をカバーするように配置される場合、若干のLOR(例えば、図7に示す5本のLORのうち、最も右側の1本のLOR)は、形状によって捕獲されない。したがって、図7の右側に示すように、より小さな第2検出器20を上部に置く場合、ツーハーフの垂直位置には制約がある。
 図7の右側は、技術的には許容できる形状を示しているが、実際には、より小さな上部部分(第2検出器20)を下降させ(又は被検体パレットを同等に上昇させ)被検体に近付けることは、被検体に対して不快な状況を作り出すことになるであろう。それは特に、図7が検出器システムの残りの部分(光電子増倍管、電子機器回路、支持物、ケーブル、その他)を省略して検出器素子のみを示していることを認識すると明らかである。
 しかし、他の実施形態では、上部により小さな部分を有することは可能である。まず、検出器は、シリコン光電子倍増管(SiPM(Silicon Photomultiplier)又はアバランシェフォトダイオード(APD(Avalanche Photodiode))などの半導体センサで構成できる。そのようなセンサを用いれば、検出器の小型化によって目立たない大きさの検出器の使用が可能になるであろう。第2には、半導体ベースの検出器は、(リングの残部と異なり)可動であり、被検体Pをまず位置決めしてから、上部の検出器をイメージング位置に持ってくることが可能になる。第3には、リングの上部分は、実際、複数の部品に更に区分けでき、位置決めを容易にでき、イメージングしないときは格納できる。最後に、図7に示す実施形態に類似して、図8に示すように、検出器素子のいくつかを、1つ又は複数の平坦な線形部分に配置できる。
 例えば、図8に示すように、PETスキャナは、第1検出器10と、第2検出器20と、第3検出器30とを備えてもよい。第1検出器10は、円周に沿って設けられ、下半分の範囲をカバーするように配置される。また、第1検出器10は、被検体パレットに近接するように配置される。一方、第2検出器20及び第3検出器30は、平坦であり、上半分の範囲をカバーするように配置される。また、第2検出器20及び第3検出器30も、被検体パレットに近接するように配置されるが、上述したように、例えば半導体ベースの検出器を用いれば、検出器を小型化することができる。なお、「半分」とは、必ずしも180度の厳密な範囲を意味するものではない。他の実施形態においても同様である。
 また、注目すべき点は、上/下反転対称性を含む上記ツーパートスキャナの幾多の実施形態は、回転に関しては一様である点である。実際には、心臓、又は右(又は左)胸部などの局部イメージングを除いて、一般に、水平軸線の周りでは、対称性の他に(上/下分割及び反転)何も選択する理由はない。これらの場合、対象部位又は器官の近くでより良い空間的分解能の検出器を入手できれば、活用できる。
 上記PETスキャナの実施形態のそれぞれにおいては、実質的に(全く同じではないにしても)フルリング形状と同じ時間内に同じ画像が生成されるが、その結果、検出のための材料は20%~50%の低減となる。そのような低減は、同じコストでシステム性能を改善する、又は同じイメージング性能に対してコストを下げるために重要なものである。
 注目点としては、上記ツーパート形状のそれぞれで、LORは、より大きな入射角(入射面に対して直角をなさない)でより小さな部分の検出器素子に入るので、更なる視差誤差によってより高い空間的不鮮明さをつくるという点がある。しかし、より高い視差誤差は、少なくとも部分的に、被検体に対してより小さなリング部分によって形成される非常に高い立体角のせいで結晶の厚みの低減によって補償される可能性があろう。
 同じ原理を用いてPETイメージングを最適化できるが、一方で、完全な抽出からの若干の逸脱が認められる。TOF情報は、若干の対象部位の準完全なイメージング状態及び再構成に対応する十分な「局部」特性を提供できるが、その一方で、イメージングは、部位から離れる方向に漸進的に劣化することになる。図10A及び10Bは、平坦な上部スキャナが、スキャンされるべき関心領域(region of interest、又は、対象部位)に基づいて位置決めされる実施形態を示す図である。例えば、いくつかの重要なイメージング作業、例えば、心臓又は胸部イメージングは、図10A及び図10Bに示すように、身体の比較的小さな部位から集まる情報に明らかに集中する。
 図10Aは、例示のように位置決めされた2つの平坦な上部検出器(第2検出器20及び第3検出器30)により、心臓が、ほとんど完全な角度抽出を受け入れ、最適又は準最適な再構成のための充分な情報を提供することを示す図である。図10Bに示すように、身体の対称的に反対側に位置する点は、著しく少ないLORしか受けず、この形状ではこの点にとって、右側の検出器(第3検出器30)は完全に無用であり、下の検出器(第1検出器10)の小さな部分しか使われ得ないことを示している。しかし、TOFイメージングは、本質的に2つの部位のより良い隔離を可能にする。更に、そのようなPETスキャナは、複合型PET/CTシステム又はPET/MR(Magnetic Resonance)システムの一部であるとき、CT又はMRの画像は、対象の部位又は器官の識別と、PET検出器の位置決めの最適化とに使用できる。
 別の実施形態では、1種類の検出器だけにTOFの能力がある。まず、注目点としては、不完全な抽出の場合、再構成のための十分な時間情報を得て、その付加的情報から利益を得るために、両方の検出器が明らかに必要である点である。しかし、完全な抽出の場合、大部分のイベントは、混交した検出器から来ることが分かる。
 例えば、有用なTOF情報を得るための最小限の総時間分解能を1nsであると想定する(商用システムは、現在、500~600psを達成している)。システムが、2種類の検出器構造、すなわち、(1)300psの時間分解能の能力があるタイプAの検出器(検出器Aを、完全な、又は少なくとも極めて速い検出器とみなして測定した場合)と、(2)2ns(2000ps)の能力しかないタイプBの検出器とで構成されている場合、タイプAの検出器だけで構築されたシステムは、SQRT(300+300)又はおよそ425psの総システム時間分解能(古典的な二次組成を使って)を有するであろう。タイプBの検出器だけで構築されたシステムは、SQRT(2000+2000)又は2.8ns又は2,800psの総システム時間分解能を有するであろう。しかし、大部分のイベントがタイプA及びタイプBの複合型であるシステムは、実質的にタイプBの検出器によって2nsで制御され、前置の検出器電子機器回路及び画像品質に有用な利点を提供する。
 異なるタイプの検出器を使う場合、大部分の性能は、同じ二次組成に従う。しかし、エネルギー分解能の場合では、2つのタイプの違いが十分に大きい場合、異なる処理(例えば、受入ウィンドウ)を、異なる取得チェーンに適用しなければならないだろう。エネルギーウィンドウ調整は、2つのタイプの検出器の感度を調節する際の重要な要因である。それぞれの検出器の固有の挙動に合致するエネルギーウィンドウもまた、両方の検出器からの散乱受け入れが均衡していることを確認するために必要である。すなわち、第1検出器10のエネルギーウィンドウと第2検出器20のエネルギーウィンドウとは異なる場合がある。
 最後に、当業者には自明であるが、システム上で典型的なキャリブレーション作業を実行するためには、重要な修正が必要となるであろう。タイミング及びエネルギー分解能、並びにシステム正規化は、より複雑になるであろう。
 上述の実施形態によると、PETスキャナは、被検体パレットの周囲で円周方向に設けられた第1検出器と、第1検出器から切り離され、且つ対向して設けられた第2検出器とを含む。第1検出器は、複数の第1検出器素子を含むが、更に第2検出器部は、複数の第2検出器素子を含む。上で検討したように、第2検出器素子は、第1検出器素子とは異なる種類(type)のものであってもよい。
 例えば、一実施形態では、第1検出器素子のそれぞれは、光電子増倍管と、第1厚み及び第1画素表面領域(pixel surface area)を有するシンチレーション結晶とを含むが、その一方で、第2検出器素子のそれぞれは、第1厚みと異なる第2厚みと、第1画素表面領域と異なる第2画素表面領域とを有するシンチレーション結晶を有する。
 更に、一実施形態では、第2検出器素子のそれぞれは、第1検出器素子の光電子増倍管と異なる光センサを含む。例えば、一実施形態では、第2検出器素子のそれぞれは、シリコン光電子増倍管などの半導体光センサを含む。
 更に、第2検出器は、第1検出器とは異なるイメージング特性を有するように構成されるものである。例えば、一実施形態では、第1検出器及び第2検出器は、異なるエネルギー及び時間分解能を有する。更に、別の実施形態では、第1検出器のためのエネルギーウィンドウ(event acceptance window)は、第2検出器のためのエネルギーウィンドウとは異なる。
(PET/CTシステム)
 次に、実施形態に係る医用画像診断装置の一例として、PET/CTシステムを説明する。図11、図12B及び12Cは、ツーハーフスキャナが組み込まれたPET/CTシステムの実施形態を示す図である。上述したツーハーフ形状(two-half geometries)は、いくつかの方法によって既存のCTシステムに組み込むことができる。ある実施形態においては、図11に示すように、より小型、可動、半導体検出器を被検体パレットの上部に設け、既存のCTシステムの増設機器として一体型PET/CT装置を形成できる。上で検討したように、2台の上部検出器は可動であり、例えば、神経学的スキャン又は心血管スキャンの用途で、被検体の周りの、画像化される被検体の対象部位(「関心領域(region of interest)」とも称する)に依存する位置に配置できる。
 大口径PETシステムを造ることは、高価であるが、上記検出器形状によれば、新しい大口径システムを造ることができ、更に許容できる費用構成を維持できる。特に、同じ量の検出器材料が、様々に、かつ、より効率的に配分される。
 例えば、図12Aは、従来の手法を示す図であり、図12Bは、上の部分(第1検出器10)が、より大きな直径を有するリングの半分である一方、下の部分(第2検出器20)が、縮小された直径を有する実施形態を示す図である。図12Cに示す他の実施形態では、下部の検出器部分は平坦(第2検出器20)である。
 上述した実施形態においては、実質的に(全くではないにしても)フルリング形状と同じ時間内に同じ画像を生成するが、その結果、検出器材料の20%~50%が削減される。この増大した効率を使用すれば、同じコストでシステム性能を向上させることか、同じイメージング性能に対してコストを削減することが可能になる。
 図13は、実施形態に係るPET/CTシステムによって実行される制御方法のステップを示すフローチャートである。すなわち、図13は、一実施形態において、CTスキャナとPETスキャナとを用いて、被検体パレット上に設けられた被検体のイメージングデータを取得する方法を示す図である。CTスキャナは、被検体をスキャンするように構成される。PETスキャナは、被検体パレットの周りで円周方向に設けられた第1検出器であって、所定の軸方向範囲を有し、スキャナの中心軸線に対して360度を下回る範囲を横断方向に定める第1検出器と、第1検出器から切り離され、且つ対向して設けられた第2検出器とを含む。ここで、第2検出器は、被検体の周りで半径方向及び円周方向に移動できるように構成される。
 ステップS1301では、PET/CTシステム1400の画像取得部(例えば、後述するCT装置1406)が、被検体のCT画像データを、CTスキャナを制御して取得する。あるいは、画像取得部は、前回取得されたCT画像データを記憶部(例えば、後述する記憶部1410)から取り出してもよい。
 ステップS1302では、制御部(例えば、後述するコントローラ1407)が、関心領域(例えば、被検体の心臓、胸部、又は他の器官など)の軸方向の広がりを、取得されたCT画像データから得られた投影画像に基づいて特定する。例えば、制御部は、サジタル又はコロナルのCT画像を使って、関心領域の軸方向(例えば、被検体の体軸方向)の範囲を特定する。
 ステップS1303では、制御部(例えば、後述するコントローラ1407)が、関心領域の位置(例えば、中心のxy座標)を、取得されたCT画像データから得られた横断CT画像に基づいて特定する。
 注目点としては、ステップS1302及び1303を、操作者が手動で実行できること、又はデータ処理部上で動作する画像処理ソフトウェアによって自動的に実行できることである。
 ステップS1304では、制御部(例えば、後述するコントローラ1407)が、ステップS1302において特定された関心領域の軸方向の広がりと、被検体パレット上の被検体の現在位置とに基づいて、被検体パレットを、長手方向に自動的に位置決めする。例えば、制御部は、関心領域の軸方向の中心が、検出器の軸方向の中心あたりに位置付けられるように、被検体パレットを、長手方向に自動的に位置決めする。そして、以下で検討するように、コントローラ1407が、命令(制御信号)を寝台移動機構(機械サブシステムであるパレット及びパレット位置決め部1402)に送信し、寝台移動機構が、被検体パレットを長手方向に移動させて、PETスキャンによる関心領域の良好な画像化を行うことができる。
 ステップS1305では、制御部(例えば、後述するコントローラ1407)が、ステップS1303において特定された関心領域の位置に基づいて、第2検出器20及び第3検出器30を、自動的に半径方向及び円周方向のうちの少なくとも一方に移動させる。そして、コントローラ1407が、命令(制御信号)を検出器移動機構(後述するPET検出器位置決め部1403)に送信し、検出器移動機構が、第2検出器20及び第3検出器30を移動させる。図9及び図10Aを参照。例えば、図9に示す例の場合、制御部は、第2検出器20及び第3検出器30を、被検体Pに近付くように半径方向に移動させるとともに、関心領域である心臓の部位に近付くように円周方向(又は、円周の接線方向)に沿って右側に移動させる。また、制御部は、第1検出器10についても、図9に示すように、円周方向に回転移動させてもよい。この場合、制御部は、例えば、第1検出器10と、移動後の第2検出器20及び第3検出器30とが対向するように、第1検出器10を円周方向に回転移動させればよい。どの器官をPETスキャンによって画像化するか、すなわち、関心領域の位置によって、制御部は、第2及び第3の検出器部の両方又は一方の再位置決めを行う。
 ステップS1306では、被検体パレットが長手方向に位置決めされ、第2検出器20及び第3検出器30が半径方向及び円周方向のうちの少なくとも一方に移動された後、データ収集部(例えば、後述するデータ取得システム1404)が、被検体のPETスキャンを実行して、第1検出器10から第1イベントデータ、第2検出器20から第2イベントデータ、及び第3検出器部30から第3イベントデータの全て又はいずれかを取得する。
 ステップS1307では、データ収処理部(例えば、後述するデータ処理部1405)が、被検体の対象部位のPET画像を、取得された第1、第2、及び第3イベントデータの全て又はいずれかに基づいて再構成する。
 図14は、一実施形態におけるPET/CTシステム1400の構成を示す図である。PET/CTシステム1400は、CT装置1406と、PET検出器装置1401とを備える。
 PET検出器装置1401は、例えば、図11、図12B、及び図12Cに示す検出器アレイを含む。更に、PET/CTシステム1400は、パレット位置決め部(寝台移動機構)を含む可動被検体パレット1402を含む。可動被検体パレット1402は、例えば、コントローラ1407から受信した命令(制御信号)に基づいて、PET検出器装置1401及びCT装置1406の内部に被検体パレットを位置決めするように構成される。
 コントローラ1407は、パレット位置決め部1402による被検体パレットの位置制御を含むPET/CTシステム1406の全機能を制御する。パレット位置決め部1402は、被検体パレットを少なくとも長手方向に移動させるように構成された機構を含む。
 コントローラ1407はまた、パレット上の被検体の周りで1つ又は複数のPET検出器部を位置決めするPET検出器位置決め部1403も制御する。例えば、図11に示すように、PET検出器位置決め部1403は、画像化される被検体の関心領域に基づいて、被検体の周りで円周方向及び半径方向の両方向に1つ又は複数の「上部」検出器アレイを移動させるように構成された機構を含む。
 上述した図13のフローチャートに示すように、コントローラ1407は、命令(制御信号)をパレット位置決め部1402及びPET検出器位置決め部1403へ送信し、被検体のCTスキャンから得られた位置決め情報と、パレット及び検出器の現在位置とに基づいて、PETスキャンより先に、パレットと検出器とを位置決めする。
 データ取得システム1404は、PETスキャンの間にPET検出器装置1401からPETイベントデータを得て、イベントデータをデータ処理部1405に送信して、PET画像の再構成を行う。データ取得システム1404は、データ処理部1405による処理より先に、PETイベントデータを記憶ユニット1410に格納もできる。
 操作者インタフェース部1408は、例えば、CTスキャン又はPETスキャンを開始する、又はCT画像上に関心領域を設定する操作者命令の受信、及びスキャンに関連するパラメータの受信の両方又は一方を行うように構成される。被検者のPET画像及びCT画像、並びにスキャンに関連する動作パラメータは、表示部1409に表示される。
 当業者には自明であるが、コントローラ1407及びデータ処理部1405は、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又は他のCPLD(Complex Programmable Logic Device)のような不連続論理ゲートとして実装可能であるCPU(Central Processing Unit)を含むことができる。FPGA又はCPLDの実装は、VHDL(Very High Speed Integrated Circuit Hardware Description Language)、Verilog、又は他の任意のハードウェア記述言語にコード化してもよく、コードはFPGA又はCPLD内で電子メモリに直接格納してもよい、又は、別個の電子メモリとして格納してもよい。更に、記憶部1410は、ROM(Read-Only Memory)、EPROM(Erasable Programmable Read-Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、又はフラッシュメモリなどの不揮発性であってもよい。また、記憶部1410は、スタティックRAM(Random-Access Memory)又はダイナミックラムなどの揮発性であってもよい。マイクロコントローラ又はマイクロプロセッサなどのプロセッサを設けて、電子メモリや、FPGA又はCPLDと記憶ユニットとの間の相互作用を管理するとよい。
 あるいは、コントローラ1407又はデータ処理部1405内のCPUは、本明細書に記載の機能を実行する一組のコンピュータ可読命令を含むコンピュータープログラムを実行できる。ここで、プログラムは、任意の上記の非一過性電子メモリ及びハードディスク装置、CD(Compact Disc)、DVD(Digital Versatile Disc)、フラッシュドライブ(FLASH drive)又は他の任意の既知の記憶媒体の両方又は一方に格納されるものである。更に、コンピュータ可読命令を、アメリカのインテル社のキセノンプロセッサ(登録商標)、又はアメリカのAMD社(Advanced Micro Devices,Inc.)のオプテロンプロセッサ(登録商標)などのプロセッサ、及びマイクロソフトVISTA(登録商標)、UNIX(登録商標)、Solaris(登録商標)、LINUX(登録商標)、Apple(登録商標)、MAC-OS(登録商標)などのオペレーティングシステム、及び当業者には周知の他のオペレーティングシステムとともに動作する実用向けアプリケーション、バックグラウンドデーモン、又はオペレーティングシステムの構成素子、又はそれらの組合せとして準備してもよい。
 一旦データ処理部1405で処理されたならば、処理された信号は、記憶部1410への格納、及び表示部1409での表示の両方又は一方が行われる。当業者には自明であるが、記憶部1410は、ハードディスク装置、CD-ROM装置、DVD装置、フラッシュ(FLASH)装置、RAM、ROM、又は当業界で周知の他の任意の電子格納装置であってよい。表示ユニット1409は、LCD(Liquid Crystal Display)表示装置、CRT(Cathode Ray Tube)表示装置、プラズマ表示装置、有機発光ダイオード(OLED(Organic Light Emitting Diode))、発光ダイオード(LED(Light Emitting Diode))、又は当業界で周知の任意の他の表示装置として実装してよい。そのように、本明細書に提供した記憶部1410及び表示部1409の記載は、単なる具体例であり、本提案の範囲を限定するものではない。
 なお、上述した実施形態は、PET/CTシステムに限られず、PET装置とMRI(Magnetic Resonance Imaging)装置との複合であるPET/MRシステムにも同様に適用することができる。この場合、制御部は、収集した磁気共鳴信号から再構成されたMR画像データに基づき、関心領域の被検体の体軸方向の広がりを特定すればよい。また、例えば、制御部は、同じくMR画像データに基づき、関心領域の位置を特定すればよい。そして、例えば、制御部は、特定した体軸方向の広がりに応じて被検体が載置される寝台を長手方向に移動させ、特定した位置に応じて検出器を円周方向及び円周の半径方向のうち少なくとも一方向に移動させればよい。なお、例えば、撮像に先行してシステムに入力される撮像条件などから対象部位が明らかになる場合、制御部は、画像からではなく、入力された撮像条件に基づいて、寝台や検出器を移動制御してもよい。
 以上述べた少なくとも一つの実施形態の医用画像診断装置及び制御方法によれば、PET画像データを適切に収集することができる。
 また、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (10)

  1.  被検体を囲む円周の中心に対して第1角度の範囲に配置され、複数の第1検出器素子を含む第1検出器と、
     前記第1検出器に対向する第2角度の範囲に、前記円周方向及び前記円周の半径方向のうち少なくとも一方向に可動に配置され、前記第1検出器素子とは異なる種類の複数の第2検出器素子を含む第2検出器と、
     前記第1検出器から第1イベントデータを収集し、前記第2検出器から第2イベントデータを収集し、該第1イベントデータと該第2イベントデータとをイベントデータの処理を行うデータ処理部に送信するデータ収集部と
     を備える、医用画像診断装置。
  2.  前記被検体の画像を取得する画像取得部と、
     前記画像に基づき関心領域を特定し、特定した関心領域に基づき前記第2検出器を前記円周方向及び前記円周の半径方向のうち少なくとも一方向に移動させる制御部と
     を更に備える、請求項1に記載の医用画像診断装置。
  3.  前記画像取得部は、前記被検体に対してスキャンを行い、CT(Computed Tomography)画像データを取得するCTスキャナを含み、
     前記制御部は、前記CT画像データから得られる投影データに基づき、前記関心領域の前記被検体の体軸方向の広がりを特定し、前記CT画像データから得られる断面画像に基づき、前記関心領域の位置を特定し、特定した前記体軸方向の広がりに応じて前記被検体が載置される寝台を長手方向に移動させ、特定した前記位置に応じて前記第2検出器を前記円周方向及び前記円周の半径方向のうち少なくとも一方向に移動させる、請求項2に記載の医用画像診断装置。
  4.  前記制御部は、前記寝台及び前記第2検出器の移動後に、前記被検体に対してPET(Positron Emission Tomography)によるスキャンを行い、イベントデータを収集する、請求項3に記載の医用画像診断装置。
  5.  前記制御部からの制御信号に応じて前記寝台を移動する寝台移動機構を更に備える、請求項3に記載の医用画像診断装置。
  6.  前記制御部からの制御信号に応じて前記第2検出器を移動する検出器移動機構を更に備える、請求項3に記載の医用画像診断装置。
  7.  前記第1検出器に対向する第2角度の範囲に、前記円周方向及び前記円周の半径方向のうち少なくとも一方向に可動に配置され、前記第1検出器素子とは異なる種類の複数の第3検出器素子を含む第3検出器を更に備え、
     前記データ収集部は、前記第3検出器から第3イベントデータを更に収集し、前記第1イベントデータと前記第2イベントデータと該第3イベントデータとを前記データ処理部に送信する、請求項1に記載の医用画像診断装置。
  8.  医用画像診断装置によって実行される制御方法であって、
     被検体を囲む円周の中心に対して第1角度の範囲に配置され、複数の第1検出器素子を含む第1検出器から、第1イベントデータを収集し、
     前記第1検出器に対向する第2角度の範囲に、前記円周方向及び前記円周の半径方向のうち少なくとも一方向に可動に配置され、前記第1検出器素子とは異なる種類の複数の第2検出器素子を含む第2検出器から、第2イベントデータを収集し、
     前記第1イベントデータと前記第2イベントデータとをイベントデータの処理を行うデータ処理部に送信する、
     ことを含む、制御方法。
  9.  前記被検体の画像を取得し、
     前記画像に基づき関心領域を特定し、
     特定した関心領域に基づき、前記第2検出器を前記円周方向及び前記円周の半径方向のうち少なくとも一方向に移動させる、
     ことを含む、請求項8に記載の制御方法。
  10.  前記医用画像診断装置は、前記被検体に対してスキャンを行い、CT画像データを取得するCTスキャナを含み、
     前記被検体のCT画像データを取得し、
     前記CT画像データから得られる投影データに基づき、前記関心領域の前記被検体の体軸方向の広がりを特定し、
     前記CT画像データから得られる断面画像に基づき、前記関心領域の位置を特定し、
     特定した前記体軸方向の広がりに応じて前記被検体が載置される寝台を長手方向に移動させ、
     特定した前記位置に応じて前記第2検出器を前記円周方向及び前記円周の半径方向のうち少なくとも一方向に移動させる、
     ことを含む、請求項9に記載の制御方法。
PCT/JP2012/060791 2011-04-21 2012-04-20 医用画像診断装置及び制御方法 WO2012144636A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280007728.6A CN103370636B (zh) 2011-04-21 2012-04-20 医用图像诊断装置以及控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/091,746 US8502154B2 (en) 2011-04-21 2011-04-21 Method and system for organ specific PET imaging
US13/091,746 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144636A1 true WO2012144636A1 (ja) 2012-10-26

Family

ID=47021857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060791 WO2012144636A1 (ja) 2011-04-21 2012-04-20 医用画像診断装置及び制御方法

Country Status (4)

Country Link
US (1) US8502154B2 (ja)
JP (1) JP2012225927A (ja)
CN (1) CN103370636B (ja)
WO (1) WO2012144636A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2534471A4 (en) 2010-02-12 2015-03-18 Univ Loma Linda Med SYSTEMS AND METHODOLOGIES OF TOMODENSITOMETRY WITH PROTONS
AU2012259403B2 (en) 2011-03-07 2016-08-04 Loma Linda University Medical Center Systems, devices and methods related to calibration of a proton computed tomography scanner
CN103961127B (zh) * 2013-02-05 2017-04-12 苏州瑞派宁科技有限公司 应用适应性的pet探测结构及系统
KR101542836B1 (ko) * 2013-05-27 2015-08-10 서강대학교산학협력단 양전자방출 단층촬영장치용 검출기 및 이를 이용한 양전자방출 단층촬영 시스템
CN104644201A (zh) * 2013-11-25 2015-05-27 北京大基康明医疗设备有限公司 开环pet设备
US9737274B2 (en) 2013-12-17 2017-08-22 Mediso Orvosi Berendezes Fejleszto es Szerviz Kft. Tomographic apparatus
JP2016107003A (ja) * 2014-12-10 2016-06-20 富士フイルム株式会社 医用画像処理装置及びその作動方法
WO2017053869A1 (en) * 2015-09-25 2017-03-30 Loma Linda University Medical Center Particle radiation computed tomography using partial scans
CN107067464A (zh) * 2017-04-07 2017-08-18 河南大学淮河医院 一种核医学成像方法及核医学成像装置
US11963813B2 (en) * 2018-12-13 2024-04-23 Cornell University Positron emission tomography system with adaptive field of view
US20230129006A1 (en) * 2020-02-24 2023-04-27 The Research Foundation For The State University Of New York High resolution and high sensitivity pet scanner with prism-pet detector modules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455856B1 (en) * 2000-06-02 2002-09-24 Koninklijke Philips Electronics N.V. Gamma camera gantry and imaging method
JP2005532571A (ja) * 2002-07-05 2005-10-27 ワシントン・ユニバーシティ Petスキャナーの空間的解像度を増加させる方法および装置
JP2007202976A (ja) * 2006-02-06 2007-08-16 Shimadzu Corp 放射線複合撮像装置
JP2008039776A (ja) * 2006-08-03 2008-02-21 General Electric Co <Ge> 小さい視野域を有する撮像検出器を用いた撮像のための方法及び装置
JP2009031306A (ja) * 2008-09-30 2009-02-12 Toshiba Corp 核医学診断装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798527A (en) 1996-10-21 1998-08-25 Ugm Laboratory, Inc. Tomographic emission scanner having curved element detectors
JPH1123718A (ja) * 1997-06-30 1999-01-29 Shimadzu Corp 多検出器型シングルフォトンect装置
JP2000221272A (ja) 1999-01-29 2000-08-11 Toshiba Corp 放射線検出システムおよび核医学診断装置
US7103233B2 (en) * 2002-10-31 2006-09-05 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for determining component alignment
US7653427B2 (en) 2004-11-12 2010-01-26 Intra-Medical Imaging LLC Method and instrument for minimally invasive sentinel lymph node location and biopsy
US8068896B2 (en) 2005-02-25 2011-11-29 Intramedical Imaging, Llc Detection of radiation labeled sites using a radiation detection probe or camera incorporating a solid state photo-multiplier
US7750311B2 (en) 2005-02-25 2010-07-06 Intramedical Imaging, Llc Positron emission detectors and configurations
US7629585B2 (en) 2005-03-08 2009-12-08 Van Dulmen Adrianus A Method and apparatus for imaging by SPECT
JP2007163373A (ja) 2005-12-15 2007-06-28 Shimadzu Corp 核医学診断装置
US7626171B2 (en) 2006-01-09 2009-12-01 Koninklijke Philips Electronics N.V. Method of constructing time-in-flight pet images
JP2007212295A (ja) 2006-02-09 2007-08-23 Shimadzu Corp 核医学診断装置
JP2010032214A (ja) * 2007-04-23 2010-02-12 Natl Inst Of Radiological Sciences エネルギーと位置情報を利用した放射線検出方法及び装置
US8143583B2 (en) 2009-09-11 2012-03-27 Kabushiki Kaisha Toshiba Positron emission tomography detector elements using different sizes of photomultiplier tubes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455856B1 (en) * 2000-06-02 2002-09-24 Koninklijke Philips Electronics N.V. Gamma camera gantry and imaging method
JP2005532571A (ja) * 2002-07-05 2005-10-27 ワシントン・ユニバーシティ Petスキャナーの空間的解像度を増加させる方法および装置
JP2007202976A (ja) * 2006-02-06 2007-08-16 Shimadzu Corp 放射線複合撮像装置
JP2008039776A (ja) * 2006-08-03 2008-02-21 General Electric Co <Ge> 小さい視野域を有する撮像検出器を用いた撮像のための方法及び装置
JP2009031306A (ja) * 2008-09-30 2009-02-12 Toshiba Corp 核医学診断装置

Also Published As

Publication number Publication date
JP2012225927A (ja) 2012-11-15
US8502154B2 (en) 2013-08-06
CN103370636A (zh) 2013-10-23
US20120271164A1 (en) 2012-10-25
CN103370636B (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
WO2012144636A1 (ja) 医用画像診断装置及び制御方法
JP6400265B2 (ja) PET(PositronEmissionTomography)スキャナ
US8575555B2 (en) Nuclear medicine imaging system and method using multiple types of imaging detectors
US9560970B2 (en) Systems and methods for integration of a positron emission tomography (PET) detector with a computed-tomography (CT) gantry
US8558181B2 (en) Positron emission tomography system with hybrid detection geometries and sampling
JP6400266B2 (ja) PET(PositronEmissionTomography)スキャナ
US10925554B2 (en) Outside-FOV activity estimation using surview and prior patient data in positron emission tomography
US9529100B2 (en) Positron emission tomography detector and positron emission tomography system using same
US10278657B2 (en) Method and system for performing an imaging scan of a subject
US20130009066A1 (en) Block Detector With Variable Microcell Size For Optimal Light Collection
US20150001402A1 (en) PET Scanner with Emission and Transmission Structures in a Checkerboard Configuration
US9031303B2 (en) Image processing method, nuclear medicine diagnosis apparatus, and storage medium
JP2016183962A (ja) Pet装置
WO2014051013A1 (ja) 核医学診断装置および医用データ処理装置
KR20150062642A (ko) Pet 검출기 및 양전자방출 단층촬영장치
JP6132477B2 (ja) 医用画像診断装置
WO2022073744A1 (en) System and method for automated patient and phantom positioning for nuclear medicine imaging
JP2004317140A (ja) 放射線検査方法及び放射線検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP