WO2012144494A1 - Method for producing led substrate - Google Patents

Method for producing led substrate Download PDF

Info

Publication number
WO2012144494A1
WO2012144494A1 PCT/JP2012/060357 JP2012060357W WO2012144494A1 WO 2012144494 A1 WO2012144494 A1 WO 2012144494A1 JP 2012060357 W JP2012060357 W JP 2012060357W WO 2012144494 A1 WO2012144494 A1 WO 2012144494A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
led
substrate
manufacturing
resin layer
Prior art date
Application number
PCT/JP2012/060357
Other languages
French (fr)
Japanese (ja)
Inventor
平松 靖二
井戸 義幸
渉 古市
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2012144494A1 publication Critical patent/WO2012144494A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics

Definitions

  • the present invention relates to a method for manufacturing an LED substrate.
  • Patent Document 1 discloses a base material, an insulating layer formed on the base material, a circuit formed on the insulating layer, a nickel layer or an aluminum layer formed on the circuit, an insulating layer, and a circuit.
  • An LED substrate having a white film formed thereon is disclosed.
  • an opening is formed in the white film.
  • a solder layer is formed in the exposed part of the nickel layer or aluminum layer of the circuit of the LED base by the opening.
  • the LED element is mounted on the LED substrate by solder provided in the opening.
  • a resin used for the white film an epoxy resin, an acrylic resin, and a resin using both an epoxy resin and an acrylic resin are disclosed.
  • the present invention provides a method capable of providing an opening in a white film without exposure and development processing.
  • the manufacturing method of the LED substrate according to the present invention is as follows: Forming a conductor layer on the substrate; Forming a silicone resin layer on the substrate having the conductor layer and covering the conductor layer and containing reflector particles; Forming an opening in the silicone resin layer by laser light irradiation; Removing the residue remaining in the opening of the silicone resin layer by blasting; including.
  • the silicone resin layer is preferably a solder resist.
  • a protective film is formed on the silicone resin layer, and in the laser light irradiation, the laser light penetrates the protective film and forms the opening in the silicone resin layer. It is preferable.
  • the residue contains silica (SiO 2 ).
  • the silicone resin layer covers the conductor layer before the laser beam irradiation, and the conductor layer is exposed at the opening of the silicone resin layer by the laser beam irradiation and the blast treatment. It is preferable.
  • the reflector particles are preferably made of titanium oxide.
  • the titanium oxide is preferably anatase type titanium oxide.
  • the silicone resin layer preferably contains at least one of zirconia, alumina, and silica as the reflector particles.
  • the light source of the laser light is preferably a CO 2 laser.
  • the abrasive grains used for the blasting treatment are water-soluble.
  • the average particle diameter of the abrasive grains used for the blast treatment is preferably in the range of 0.1 to 200 ⁇ m.
  • the LED substrate is preferably an LED substrate for a blue LED or an ultraviolet LED.
  • an opening is formed in the silicone resin layer by laser light irradiation.
  • An opening can be easily formed in the silicone resin layer by changing the predetermined portion of the silicone resin layer to an inorganic substance (silica and reflector particles) that can be easily removed by laser light irradiation. Furthermore, the reliability of connection between the conductor layer and the LED element can be improved by removing silica remaining in the opening of the silicone resin layer by blasting.
  • FIG. 10A with the energy dispersive X-ray analyzer. It is a figure for demonstrating the blasting process in the manufacturing method shown in FIG. It is a figure which shows the opening part of the silicone resin layer containing the reflector particle
  • a silicone resin that is stable to light is unlikely to turn yellow. Further, even when particles acting as an oxidation catalyst such as TiO 2 coexist with the silicone resin, the molecular chain of the silicone resin is difficult to cleave. Silicone resins are discolored (especially discolored to yellow) or deteriorated in properties (for example, electrical insulation, water resistance, heat resistance, etc.) even when exposed to LED light of blue to ultraviolet light of 500 nm or less. , Impact resistance, light resistance, dimensional stability, etc.) are less likely to occur. In the embodiment of the present invention, laser processing is employed to provide an opening in the silicone resin film without exposing the silicone resin. Thereby, it becomes possible to suppress the characteristic fall of a silicone resin.
  • arrows Z1 and Z2 indicate the thickness direction of the substrate corresponding to the normal direction of the main surface (front and back surfaces) of the substrate.
  • arrows X1, X2 and Y1, Y2 indicate the sides of the substrate orthogonal to the Z direction.
  • the main surface of the substrate is an XY plane.
  • the side surface of the substrate is an XZ plane or a YZ plane.
  • the two main surfaces of the substrate facing the opposite normal directions are referred to as a first surface (Z1 side surface) and a second surface (Z2 side surface). Directly below means the Z direction (Z1 side or Z2 side).
  • the conductor layer is a layer composed of one or more conductor patterns.
  • the conductor layer may include a conductor pattern that constitutes an electric circuit, for example, a wiring (including a ground), a pad, a land, or the like, or a planar conductor pattern that does not constitute an electric circuit.
  • Holes are not limited to through holes, but include non-through holes.
  • plating includes dry plating such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition).
  • Light is not limited to visible light.
  • light includes short-wave electromagnetic waves such as ultraviolet rays and X-rays and long-wave electromagnetic waves such as infrared rays.
  • FIG. 1 shows a schematic structure of an LED substrate 100 manufactured by the LED substrate manufacturing method according to this embodiment and a light emitting module 1000 using the LED substrate 100.
  • FIG. 1 is a cross-sectional view illustrating an LED substrate and a light emitting module according to an embodiment of the present invention.
  • the LED substrate 100 includes a resin substrate 10 (resin substrate), a conductor layer 21, and a silicone resin layer 11 containing reflector particles.
  • resin substrate 10 resin substrate
  • conductor layer 21 a conductor layer
  • silicone resin layer 11 containing reflector particles.
  • one of the front and back surfaces (two main surfaces) of the substrate 10 is referred to as a first surface F1, and the other is referred to as a second surface F2.
  • the LED substrate 100 becomes the light emitting module 1000 by mounting the LED element 200.
  • the LED element 200 is mounted on the first surface F1 side of the substrate 10.
  • the LED element 200 is, for example, a blue LED.
  • the present invention is not limited to this, and for example, the LED element 200 may be an ultraviolet LED or the like.
  • the wavelength of light is desirably 500 nm or less.
  • the substrate 10 of the present embodiment is an insulating resin substrate having a rectangular shape, for example.
  • substrate 10 consists of an epoxy resin containing the reinforcing material which consists of glass fiber (for example, glass cloth or a glass nonwoven fabric).
  • the substrate 10 is made of glass fiber impregnated with an epoxy resin (hereinafter referred to as glass epoxy).
  • the epoxy resin is a thermosetting resin.
  • the reinforcing material is a material having a smaller coefficient of thermal expansion than the main material (in the present embodiment, epoxy resin).
  • the material which comprises a reinforcing material is not restricted to glass fiber, It may replace with glass fiber and may use another inorganic material.
  • the reinforcing material which consists of an aramid fiber (for example, an aramid nonwoven fabric) or a silica filler.
  • the resin constituting the resin substrate is arbitrary.
  • polyester resin bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin.
  • a resin substrate is employed as the substrate 10. Since the base material made of resin becomes difficult to break due to its high flexibility, it is easy to make it thinner than a ceramic substrate made of alumina or AlN (aluminum nitride). In addition, compared with a ceramic substrate, a resin substrate is easily available at a low cost, and processing such as drilling is easy.
  • the conductor layer 21 is formed on the first surface F1 of the substrate 10.
  • the conductor layer 21 includes wiring patterns 21 c and 21 d that can function as wirings or pads of the LED element 200.
  • the wiring pattern 21c is electrically connected to the anode (or cathode) of the LED element 200, for example, and the wiring pattern 21d is electrically connected to the cathode (or anode) of the LED element 200, for example.
  • the conductor layer 21 is the outermost conductor layer on the first surface F1 side.
  • a silicone resin layer 11 containing reflector particles is formed on the first surface F1 and the conductor layer 21 of the substrate 10. Regardless of the color or material of the substrate 10, the reflectance can be increased by the silicone resin layer 11 containing the reflector particles.
  • the thickness of the silicone resin layer 11 containing the reflector particles is, for example, in the range of 10 to 500 ⁇ m. In the present embodiment, since the silicone resin layer 11 containing the reflective material particles can function as a solder resist, it is not necessary to separately form a solder resist.
  • An opening 11a is formed in the silicone resin layer 11 containing the reflector particles.
  • a corrosion-resistant layer 21 a is formed on the conductor layer 21, and portions exposed to the opening 11 a (the corrosion-resistant layer 21 a and the conductor layer 21) serve as pads on the surface of the LED substrate 100. This pad serves as an external connection terminal for electrical connection with the LED element 200, for example.
  • the silicone resin layer 11 is made of a silicone resin and contains anatase-type titanium oxide (for example, titanium dioxide).
  • anatase-type titanium oxide functions as reflector particles
  • a silicone resin functions as a binder. Titanium oxide makes it easy to obtain a high reflectance, and in particular, anatase-type titanium oxide makes it easy to obtain a high reflectance with respect to light having wavelengths in the blue region and the ultraviolet region.
  • the silicone resin is resistant to the photocatalytic action of titanium oxide and has high stability with respect to light having a wavelength in the blue region and the ultraviolet region, so that it is difficult to yellow.
  • the material of the silicone resin layer 11 containing the reflector particles is not limited to this.
  • anatase type titanium oxide instead of anatase type titanium oxide, at least one selected from rutile type titanium oxide, zirconia, alumina, or silica is used. May be included. Further, a mixture thereof (for example, mullite or steatite) may be used.
  • the corrosion-resistant layer 21a protects the conductor layer 21.
  • the corrosion resistant layer 21a is made of, for example, a Ni / Au film.
  • the material of the corrosion-resistant layer 21a is arbitrary.
  • the corrosion-resistant layer 21a is not an essential configuration, and may be omitted if not necessary.
  • FIG. 2 shows the shape of the conductor layer 21 (wiring patterns 21c and 21d) of the LED substrate 100 according to this embodiment.
  • FIG. 2 is a plan view showing the LED substrate and the light emitting module according to the embodiment of the present invention.
  • the rectangular wiring pattern 21c and the rectangular wiring pattern 21d are arranged with a predetermined interval.
  • the LED element 200 is disposed on the wiring patterns 21c and 21d.
  • the shape of the conductor layer 21 is not limited to this and is arbitrary.
  • the LED element 200 is mounted by a flip chip method. Thereby, the electrode of the LED element 200 is electrically connected to the wiring patterns 21c and 21d of the conductor layer 21 via the solder 200a.
  • the LED substrate 100 of this embodiment has flexibility.
  • the silicone resin layer 11 containing the reflector particles is composed of a silicone resin having a low elastic modulus.
  • the substrate 10 (resin substrate) has flexibility due to its thin thickness. For this reason, the LED substrate 100 tends to have flexibility.
  • the LED substrate 100 has flexibility, the LED substrate 100 is easily bent to absorb stress. For this reason, when an impact is applied by dropping or the like, the LED substrate 100 is hardly damaged.
  • the thickness of the substrate 10 is preferably in the range of 0.05 mm to 0.50 mm. If the thickness of the substrate 10 is less than 0.05 mm, the rigidity of the substrate 10 becomes low and the substrate 10 is easily deformed, and the LED element mounted on the surface and the solder etc. of the connection portion of the LED substrate are cracked. It becomes easy. For this reason, the power feeding portion to the LED element is easily disconnected. On the other hand, if the thickness of the substrate 10 exceeds 0.50 mm, it becomes difficult to dissipate the heat generated by the LED element to the back surface of the LED substrate, so that the LED element is easily exposed to high heat. Therefore, when the LED element becomes high temperature, the light emission efficiency of the LED element tends to decrease.
  • the substrate 10 is made of resin (for example, glass epoxy). Since the resin has higher flexibility than the ceramic, the flexibility of the LED substrate 100 can be easily obtained, and it is difficult to break even when dropped.
  • resin for example, glass epoxy
  • the light emitting module 1000 of the present embodiment emits light LT1 to LT3, for example, from the LED element 200 as shown in FIG. Any wavelength of light (or the type of LED element 200) can be adopted depending on the application of the light emitting module 1000.
  • the light of the light emitting module 1000 is white light, for example.
  • White light can be produced, for example, by combining a blue LED (LED element 200) and a phosphor. Specifically, white light can be produced by applying blue light emitted from a blue LED to a yellow phosphor.
  • the light emitting module 1000 that emits white light can be used for illumination (such as a light bulb or a car headlight) or a backlight of a liquid crystal display (such as a large display or a mobile phone display).
  • the light emitted from the LED element 200 includes, for example, light LT1 directed upward of the LED element 200, light LT2 directed laterally of the LED element 200, and light LT3 directly below the LED element 200.
  • the light LT2 and LT3 are each reflected by the silicone resin layer 11 containing the reflector particles. Thereby, it becomes difficult for the light of the LED element 200 to hit the substrate 10, and deterioration of the substrate 10 (particularly, deterioration of the resin) due to the light is suppressed.
  • a part of the silicone resin layer 11 containing the reflector particles is disposed directly under or near the LED element 200. For this reason, the light LT3, which is considered to deteriorate the substrate 10 in particular, is also reflected by the silicone resin layer 11 containing the reflector particles.
  • the light LT2 and LT3 are each reflected by the silicone resin layer 11 containing the reflector particles and become light in the same direction as the light LT1, so that the light emission efficiency of the light emitting module 1000 can be easily increased.
  • FIG. 3 is a flowchart showing a method for manufacturing the LED substrate 100 according to the embodiment of the present invention.
  • the flowchart of FIG. 3 shows a schematic content and procedure of the method for manufacturing the LED substrate 100.
  • steps S11 to S19 after manufacturing a large number of LED boards 100 with one panel (steps S11 to S19), they are cut out individually (step S20).
  • FIG. 4 is a view for explaining a step of preparing a resin substrate (substrate 10) in the manufacturing method shown in FIG.
  • FIG. 5A is a diagram for explaining a first step of forming the conductor layer 21 in the manufacturing method shown in FIG. 3.
  • FIG. 5B is a diagram for explaining a second step after the first step of FIG. 5A.
  • FIG. 5C is a diagram for explaining a third step after the second step of FIG. 5B.
  • FIG. 6 is a diagram for explaining a process of forming the silicone resin layer 11 containing the reflector particles in the manufacturing method shown in FIG.
  • FIG. 7 is a diagram for explaining a process of forming the protective film 1003 in the manufacturing method shown in FIG. FIG.
  • FIG. 8 is a view for explaining a laser irradiation step in the manufacturing method shown in FIG.
  • FIG. 9 is a view showing the opening 11a of the silicone resin layer 11 containing the reflector particles after the laser irradiation of FIG.
  • FIG. 11A is a diagram for explaining a blasting process in the manufacturing method shown in FIG. 3.
  • FIG. 11B is a diagram showing the opening 11a of the silicone resin layer 11 containing the reflector particles after the blasting process of FIG. 11A.
  • FIG. 12 is a diagram for explaining a process of removing the protective film 1003 in the manufacturing method shown in FIG.
  • FIG. 13 is a diagram for explaining a process of forming the corrosion-resistant layer 21a in the manufacturing method shown in FIG.
  • a resin substrate (substrate 10) is prepared as a starting material.
  • the substrate 10 is made of a glass epoxy that is completely cured.
  • a conductor layer 1001 (for example, a full pattern) is formed on the first surface F1 of the substrate 10.
  • the conductor layer 1001 is made of, for example, copper foil.
  • the conductor layer 1001 may be composed of an electrolytic plating film (upper layer) and a copper foil (lower layer).
  • the conductor layer 1001 may be made of an electrolytic plating film (upper layer), an electroless plating film (intermediate layer), and a copper foil (lower layer).
  • step S13 of the flowchart of FIG. 3 the conductor layer 1001 formed on the first surface F1 of the substrate 10 is patterned.
  • an etching resist 1002 having an opening 1002a is formed on the main surface (on the conductor layer 1001) on the first surface F1 side, for example, by lithography.
  • the opening 1002a has a pattern corresponding to the conductor layer 21 (FIG. 1).
  • etching resist 1002 is removed.
  • the conductor layer 1001 is patterned, and the conductor layer 21 that can function as the wiring of the LED element 200 is formed on the first surface F1 of the substrate 10.
  • the etching is not limited to wet, and may be dry.
  • the silicone resin layer 11 thicker than the conductor layer 21 is formed on the first surface F1 of the substrate 10 by screen printing, for example, as shown in FIG.
  • the silicone resin layer 11 contains reflector particles.
  • an anatase-type titanium oxide is mixed with an uncured silicone resin and printed on the first surface F1 of the substrate 10.
  • the uncured silicone resin is cured by holding at 100 to 150 ° C. for 10 to 60 minutes. Thereby, the silicone resin 11 containing anatase type titanium oxide as the reflector particles is obtained.
  • a protective film 1003 is formed on the silicone resin layer 11 containing the reflector particles.
  • the protective film 1003 is made of, for example, PET (polyethylene terephthalate).
  • PET polyethylene terephthalate
  • the present invention is not limited to this, and it is preferable to use a protective film 1003 made of an appropriate material depending on the conditions of laser irradiation, blasting, and the like.
  • the laser beam penetrates the protective film 1003 and forms the opening 11a in the silicone resin layer 11, but does not penetrate the conductor layer 21.
  • the laser beam irradiation is partially performed without using a light shielding mask. Specifically, the laser irradiation is stopped in the non-irradiated portion, and the laser beam is irradiated only on the portion to be irradiated.
  • the present invention is not limited to this, and a light shielding mask may be used (see FIGS. 14A and 14B described later).
  • the adjustment of the laser intensity is preferably performed by pulse control.
  • the number of shots (number of irradiations) is changed without changing the laser intensity per shot (one irradiation). That is, when a desired laser intensity cannot be obtained with one shot, the same irradiation position is irradiated with laser light again.
  • the time for changing the irradiation condition can be omitted, so that it is considered that the throughput is improved.
  • the method is not limited to this, and the laser intensity adjustment method is arbitrary.
  • the irradiation conditions may be determined for each irradiation position, and the number of irradiations may be fixed (for example, one shot for one irradiation position). Further, in the case of performing laser irradiation a plurality of times at the same irradiation position, the laser intensity may be changed for each shot.
  • a CO 2 laser is preferable. According to the CO 2 laser, laser light having energy necessary for penetrating the silicone resin layer 11 containing the protective film 1003 and the reflector particles can be easily obtained.
  • a residue 1004 is formed in the opening 11a after the laser light irradiation.
  • the residue 1004 has a thickness of about 0.5 ⁇ m, for example.
  • the inventor has confirmed that the residue 1004 is mainly composed of silica (SiO 2 ) and reflector particles.
  • FIG. 10A is a scanning electron microscope (SEM) photograph of the residue opened by irradiation of CO 2 laser light in the silicone resin layer containing anatase-type titanium oxide formed on the conductor layer.
  • FIG. 10B is a graph showing a spectrum obtained by analyzing the region shown in FIG. 10A with an energy dispersive X-ray analyzer.
  • FIG. 10B shows that silicon (Si) and oxygen (O) were detected on the surface of the conductor layer 21 (Cu) irradiated with the laser beam.
  • the residue 1004 is presumed that the silicone resin constituting the silicone resin layer 11 containing the reflector particles is changed by laser, and since it is an inorganic substance, in a general cleaning method using a potassium permanganate aqueous solution or the like, It is difficult to remove completely.
  • step S17 of the flowchart of FIG. 3 the residue 1004 remaining in the opening 11a is removed by blasting.
  • the silicone resin layer 11 containing the reflector particles covers the conductor layer 21 formed on the substrate 10 (base material) before the laser beam irradiation (step S16 in FIG. 3) (see FIG. 7).
  • Irradiation with laser light transforms the silicone resin into silica, which can be easily removed by blasting (step S17 in FIG. 3).
  • the residue 1004 can be removed by the impact.
  • FIG. 11B the conductor layer 21 is exposed at the opening 11a.
  • the abrasive grains used for the blast treatment are water-soluble. If water-soluble abrasive grains are used, the abrasive grains dissolve in water by washing with water after the blast treatment, and it becomes easy to completely remove the abrasive grains.
  • NaHCO 3 (bicarbonate)
  • silicone resin layer the silicone resin layer, the conductor layer, and the substrate constituting the LED substrate, and easily dissolves in water, and thus hardly remains on the LED substrate.
  • the average particle diameter of the abrasive grains used for the blast treatment is preferably in the range of 0.1 to 200 ⁇ m.
  • the average particle diameter of the abrasive grains is 0.1 ⁇ m or more, the kinetic energy of the abrasive grains can be increased, so that the residue 1004 can be easily removed.
  • the average particle diameter of the abrasive grains is 200 ⁇ m or less, the unevenness of the processed surface (white film of the LED substrate) can be reduced, and the white film of the LED substrate can be easily made smooth. If the white film of the LED substrate is not a smooth surface, the white film is liable to be chipped or cracked.
  • step S18 of the flowchart of FIG. 3 the protective film 1003 is removed as shown in FIG.
  • the silicone resin layer 11 containing the reflector particles is also covered with the protective film 1003 during the blasting process. Since the residue 1004 is composed of silica and reflector particles, it is more easily processed by blasting than the protective film 1003. For this reason, according to the blasting process, it becomes easy to remove only the residue 1004. As a result, damage to the silicone resin layer 11 due to the blast treatment is easily suppressed or prevented.
  • a corrosion resistant layer 21a made of, for example, a Ni / Au film is formed on the conductor layer 21 by electrolytic plating, electroless plating, sputtering, or the like. Thereby, the LED substrate 100 is completed.
  • preservatives) process refers to processes, such as an organic protective film, a heat-resistant water-soluble preflux, and a preflux).
  • step S20 of the flowchart of FIG. 3 each of the LED substrates 100 formed on the panel is subjected to outer shape processing to obtain individual LED substrates 100. After the inspection, only good products are used as products. Further, by mounting the LED element 200 on the LED substrate 100 thus obtained, the light emitting module 1000 as shown in FIG. 1 is completed.
  • the conductor layer 21 is formed on the substrate 10 (base material), and the silicone resin layer 11 that covers the conductor layer 21 and contains the reflector particles is formed on the substrate 10 having the conductor layer 21.
  • the residue 1004 (residue) remaining in the opening 11a of the silicone resin layer 11 containing the reflector particles can be suitably removed.
  • the LED substrate 100 and the LED element 200 are electrically connected to each other without the residue 1004, and thus the silicone resin layer 11 containing the reflector particles.
  • the reliability of the electrical connection between the LED substrate 100 and the LED element 200 in the opening 11a of the (solder resist) can be enhanced.
  • the manufacturing method of the present embodiment is suitable for manufacturing an LED substrate for a blue LED or an ultraviolet LED.
  • blue light or ultraviolet light is likely to damage a resin containing a C ⁇ C bond or a C—C bond. Therefore, a blue LED or an ultraviolet LED deteriorates a general carbon skeleton resin including an epoxy resin. Easy to do.
  • the manufacturing method of the present embodiment provides a method for processing an LED substrate that uses a silicone resin having a siloxane bond (Si—O unit) in the main chain and is less damaged by blue light or ultraviolet light.
  • the manufacturing method of the LED substrate suitable for use for ultraviolet or ultraviolet LED is obtained.
  • the present invention is not limited to the above embodiment.
  • the present invention can be modified as follows.
  • the laser beam is irradiated only to the portion to be irradiated without using the light shielding mask.
  • the present invention is not limited to this.
  • a light shielding mask 1005 for example, a metal mask
  • the opening 1005a has a pattern corresponding to the opening 11a (see FIG. 13).
  • the irradiated body When irradiating the entire surface of the irradiated body with laser light, for example, the irradiated body may be fixed and the laser light (strictly speaking) may be moved by a galvanometer mirror or the like. And the irradiated object may be moved by a conveyor or the like. Further, the laser beam may be changed to line light by a cylindrical lens or the like. A plurality of laser devices (two or more exposure heads) may be used.
  • the laser light is irradiated on the entire surface of the silicone resin layer 11 containing the reflector particles, but the light other than the laser light passing through the opening 1005a is shielded by the light shielding mask 1005.
  • the silicone resin layer 11 containing the reflector particles is not irradiated.
  • the light that has passed through the opening 1005a is applied to the silicone resin layer 11 containing the reflector particles to form the opening 11a (see FIG. 13). For this reason, the opening part 11a can be formed in a desired position also by such a method.
  • the protective film 1003 (refer FIG. 8) is not used, you may use the protective film 1003 if needed.
  • the conductor layer 21 is formed by the subtractive method, but the method of forming the conductor layer 21 is arbitrary. For example, any one of a panel plating method, a pattern plating method, a full additive method, a semi-additive (SAP) method, a subtractive method, a transfer method, and a tenting method, or a combination of any two or more thereof.
  • the conductor layer 21 may be formed.
  • FIG. 15A to 15D show an example in which the conductor layer 21 is formed by the SAP method.
  • FIG. 15A is a diagram for explaining a first step of forming a conductor layer according to another embodiment of the present invention.
  • FIG. 15B is a diagram for explaining a second step after the first step of FIG. 15A.
  • FIG. 15C is a diagram for explaining a third step after the second step of FIG. 15B.
  • FIG. 15D is a diagram for explaining a fourth step after the third step in FIG. 15C.
  • a substrate 10 is prepared, and an electroless plating film 2001 of, for example, copper is formed on the first surface F1 of the substrate 10 by a chemical plating method.
  • a plating resist 2002 having an opening 2002a is formed on the electroless plating film 2001 by lithography or printing.
  • the opening 2002a has a pattern corresponding to the conductor layer 21 (FIG. 1).
  • copper electroplating 2003 is formed in the opening 2002a of the plating resist 2002 by a pattern plating method. Specifically, copper, which is a material to be plated, is connected to the anode, and an electroless plating film 2001, which is a material to be plated, is connected to the cathode, and immersed in a plating solution. Then, a direct current voltage is applied between the two electrodes to pass a current, and copper is deposited on the surface of the electroless plating film 2001. Thereafter, as shown in FIG. 15D, the conductive layer 21 (see FIG. 5C) is formed by removing the plating resist 2002 using, for example, a predetermined stripping solution and then removing the unnecessary electroless plating film 2001. .
  • the seed layer for electrolytic plating is not limited to the electroless plating film, and a sputtered film or the like may be used as the seed layer instead of the electroless plating film 2001.
  • the configurations of the LED substrate 100 and the light emitting module 1000, and the types, performances, dimensions, materials, shapes, number of layers, and arrangements of the components are arbitrary within the scope of the present invention. Can be changed.
  • the mounting method of the LED element 200 is not limited to the flip chip and is arbitrary.
  • the LED element 200 may be mounted by wire bonding.
  • the shape and material of the substrate 10 are basically arbitrary.
  • the substrate 10 may be made of ceramic.
  • you may be comprised from the several layer which consists of a different material.
  • the LED substrate 100 is a printed wiring board having only one conductor layer (conductor layer 21).
  • a multilayer printed wiring board that is multilayered using the substrate 10 as a core substrate may be used.
  • each conductor layer is not limited to the above, and can be changed according to the application.
  • a metal material other than copper or a non-metal conductor material may be used as the material of the conductor layer.
  • the LED element 200 is not limited to a blue LED or an ultraviolet LED, but may be an LED having another wavelength.
  • the manufacturing process of the LED substrate 100 and the light emitting module 1000 is not limited to the order and contents shown in the flowchart of FIG. 3, and the order and contents can be arbitrarily changed without departing from the gist of the present invention. . Moreover, you may omit the process which is not required according to a use etc.
  • FIG. 16 is a flowchart showing a method of manufacturing an LED substrate in which the protective film is removed before blasting in another embodiment of the present invention.
  • the residue 1004 (see FIG. 9) is composed of, for example, inorganic substances (silica and reflector particles), and the silicone resin layer 11 contains, for example, reflector particles.
  • the residue 1004 is formed thinner than the silicone resin layer 11, for example. For this reason, the residue 1004 is more easily removed by blasting than the silicone resin layer 11. For this reason, as shown in FIG. 16, you may remove the protective film 1003 (refer FIG. 8) before a blast process. However, in order to reduce the damage of the silicone resin layer 11 due to the blast treatment, it is preferable to remove the protective film 1003 after the blast treatment.
  • the above embodiments and modifications can be arbitrarily combined. It is preferable to select an appropriate combination according to the application.
  • the laser irradiation mode shown in FIGS. 14A and 14B, the conductor layer forming method shown in FIGS. 15A to 15D, and the manufacturing method shown in FIG. 16 may be combined.
  • JP 2009-130234 A The contents of JP 2009-130234 A are incorporated in this specification.
  • the method for producing an LED substrate according to the present invention is suitable for producing an LED substrate for a blue LED or an ultraviolet LED, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Device Packages (AREA)

Abstract

This method for producing an LED substrate includes: forming (S12) a conductor layer on a substrate; forming (S14), on the substrate having the conductor layer, a silicone resin layer containing reflective particles and covering the conductor layer; forming (S16) an aperture in the silicone resin layer by means of laser light irradiation; and eliminating (S17) residue remaining at the aperture of the silicone resin layer by means of blasting processing.

Description

LED基板の製造方法LED substrate manufacturing method
 本発明は、LED基板の製造方法に関する。 The present invention relates to a method for manufacturing an LED substrate.
 LED(発光ダイオード)ライト、LED照明等に使われるLED素子を実装するための種々のLED基板が開発されている。特許文献1には、基材と、基材上に形成された絶縁層と、絶縁層上に形成された回路と、回路上に形成されたニッケル層又はアルミニウム層と、絶縁層上及び回路上に形成された白色膜と、を有するLED基板が開示されている。ここで、白色膜には、開口部が形成される。開口部によりLED基材の回路のニッケル層又はアルミニウム層の露出した部分に半田層が形成される。そして、開口部に設けられた半田により、LED基板にLED素子が実装される。白色膜に使用される樹脂としては、エポキシ樹脂、アクリル樹脂、及びエポキシ樹脂とアクリル樹脂を併用した樹脂が開示されている。 Various LED substrates for mounting LED elements used for LED (light emitting diode) lights, LED lighting, and the like have been developed. Patent Document 1 discloses a base material, an insulating layer formed on the base material, a circuit formed on the insulating layer, a nickel layer or an aluminum layer formed on the circuit, an insulating layer, and a circuit. An LED substrate having a white film formed thereon is disclosed. Here, an opening is formed in the white film. A solder layer is formed in the exposed part of the nickel layer or aluminum layer of the circuit of the LED base by the opening. Then, the LED element is mounted on the LED substrate by solder provided in the opening. As a resin used for the white film, an epoxy resin, an acrylic resin, and a resin using both an epoxy resin and an acrylic resin are disclosed.
特開2009-130234号公報JP 2009-130234 A
 しかし、この特許文献1に記載される方法では、紫外線硬化型のアクリル樹脂又はエポキシ樹脂を使用していることから、白色膜を紫外線で露光し、これを溶剤で現像処理して開口部を設けていると考えられる。しかしながら、LED素子では白色膜は、長時間にわたって光に曝露されるため、白色膜として感光性樹脂(例えば紫外線硬化型樹脂)を使用すると、硬化が進行しすぎて開口に寸法変化が生じ得る。あるいは、逆に分子鎖の結合が開裂して樹脂が劣化するなどの問題が生じ得る。 However, in the method described in Patent Document 1, since an ultraviolet curable acrylic resin or epoxy resin is used, the white film is exposed to ultraviolet light, and this is developed with a solvent to provide an opening. It is thought that. However, since the white film is exposed to light for a long time in the LED element, when a photosensitive resin (for example, an ultraviolet curable resin) is used as the white film, the curing progresses too much and a dimensional change may occur in the opening. Or conversely, problems such as degradation of the resin due to cleavage of molecular chain bonds may occur.
 本発明は、露光、現像処理を経ずして白色膜に開口部を設けることのできる方法を提供する。 The present invention provides a method capable of providing an opening in a white film without exposure and development processing.
 本発明に係るLED基板の製造方法は、
 基材に導体層を形成することと、
 前記導体層を有する基材に、前記導体層を覆い反射材粒子を含有するシリコーン樹脂層を形成することと、
 レーザ光の照射により、前記シリコーン樹脂層に開口部を形成することと、
 ブラスト処理により、前記シリコーン樹脂層の前記開口部に残った残留物を除去することと、
 を含む。
The manufacturing method of the LED substrate according to the present invention is as follows:
Forming a conductor layer on the substrate;
Forming a silicone resin layer on the substrate having the conductor layer and covering the conductor layer and containing reflector particles;
Forming an opening in the silicone resin layer by laser light irradiation;
Removing the residue remaining in the opening of the silicone resin layer by blasting;
including.
 前記シリコーン樹脂層は、ソルダーレジストである、ことが好ましい。 The silicone resin layer is preferably a solder resist.
 前記レーザ光の照射に先立ち、前記シリコーン樹脂層上に保護フィルムを形成し、前記レーザ光の照射では、前記レーザ光が前記保護フィルムを貫通して前記シリコーン樹脂層に前記開口部を形成する、ことが好ましい。 Prior to the laser light irradiation, a protective film is formed on the silicone resin layer, and in the laser light irradiation, the laser light penetrates the protective film and forms the opening in the silicone resin layer. It is preferable.
 前記ブラスト処理後に前記保護フィルムを除去する、ことが好ましい。 It is preferable to remove the protective film after the blast treatment.
 前記残留物は、シリカ(SiO)を含む、ことが好ましい。 It is preferable that the residue contains silica (SiO 2 ).
 前記シリコーン樹脂層は、前記レーザ光の照射前においては、前記導体層を覆っており、前記レーザ光の照射及び前記ブラスト処理により、前記シリコーン樹脂層の前記開口部で前記導体層が露出する、ことが好ましい。 The silicone resin layer covers the conductor layer before the laser beam irradiation, and the conductor layer is exposed at the opening of the silicone resin layer by the laser beam irradiation and the blast treatment. It is preferable.
 前記反射材粒子は、酸化チタンからなる、ことが好ましい。 The reflector particles are preferably made of titanium oxide.
 前記酸化チタンは、アナターゼ型の酸化チタンである、ことが好ましい。 The titanium oxide is preferably anatase type titanium oxide.
 前記シリコーン樹脂層は、前記反射材粒子として、ジルコニア、アルミナ、シリカの少なくとも1つを含む、ことが好ましい。 The silicone resin layer preferably contains at least one of zirconia, alumina, and silica as the reflector particles.
 前記レーザ光の光源は、COレーザである、ことが好ましい。 The light source of the laser light is preferably a CO 2 laser.
 前記ブラスト処理に用いる砥粒は、水溶性である、ことが好ましい。 It is preferable that the abrasive grains used for the blasting treatment are water-soluble.
 前記ブラスト処理に用いる砥粒の平均粒子直径は、0.1~200μmの範囲にある、ことが好ましい。 The average particle diameter of the abrasive grains used for the blast treatment is preferably in the range of 0.1 to 200 μm.
 前記LED基板は、青色LED用又は紫外LED用のLED基板である、ことが好ましい。 The LED substrate is preferably an LED substrate for a blue LED or an ultraviolet LED.
 本発明では、レーザ光の照射により、シリコーン樹脂層に開口部を形成する。レーザ光の照射により、シリコーン樹脂層の所定の部分を除去しやすい無機物(シリカ及び反射材粒子)に変化させることで、容易にシリコーン樹脂層に開口部を形成することができる。さらに、ブラスト処理により、シリコーン樹脂層の開口部に残ったシリカを除去することで、導体層とLED素子との接続信頼性を高めることができる。 In the present invention, an opening is formed in the silicone resin layer by laser light irradiation. An opening can be easily formed in the silicone resin layer by changing the predetermined portion of the silicone resin layer to an inorganic substance (silica and reflector particles) that can be easily removed by laser light irradiation. Furthermore, the reliability of connection between the conductor layer and the LED element can be improved by removing silica remaining in the opening of the silicone resin layer by blasting.
本発明の実施形態に係るLED基板及び発光モジュールを示す断面図である。It is sectional drawing which shows the LED board and light emitting module which concern on embodiment of this invention. 本発明の実施形態に係るLED基板及び発光モジュールを示す平面図である。It is a top view which shows the LED board and light emitting module which concern on embodiment of this invention. 本発明の実施形態に係るLED基板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the LED board which concerns on embodiment of this invention. 図3に示す製造方法における樹脂基板を準備する工程を説明するための図である。It is a figure for demonstrating the process of preparing the resin substrate in the manufacturing method shown in FIG. 図3に示す製造方法における導体層を形成する第1の工程を説明するための図である。It is a figure for demonstrating the 1st process of forming the conductor layer in the manufacturing method shown in FIG. 図5Aの第1の工程の後の第2の工程を説明するための図である。It is a figure for demonstrating the 2nd process after the 1st process of FIG. 5A. 図5Bの第2の工程の後の第3の工程を説明するための図である。It is a figure for demonstrating the 3rd process after the 2nd process of FIG. 5B. 図3に示す製造方法における反射材粒子を含有するシリコーン樹脂層を形成する工程を説明するための図である。It is a figure for demonstrating the process of forming the silicone resin layer containing the reflector particle | grains in the manufacturing method shown in FIG. 図3に示す製造方法における保護フィルムを形成する工程を説明するための図である。It is a figure for demonstrating the process of forming the protective film in the manufacturing method shown in FIG. 図3に示す製造方法におけるレーザ照射工程を説明するための図である。It is a figure for demonstrating the laser irradiation process in the manufacturing method shown in FIG. 図8のレーザ照射後における反射材粒子を含有するシリコーン樹脂層の開口部を示す図である。It is a figure which shows the opening part of the silicone resin layer containing the reflector particle | grains after the laser irradiation of FIG. 導体層上に形成されたアナターゼ型酸化チタンを含むシリコーン樹脂層にCOレーザ光の照射により開口された、残渣の走査電子顕微鏡(SEM)写真である。It is opened by irradiation of CO 2 laser light to the silicone resin layer containing an anatase type titanium oxide is formed on the conductive layer, the residue of a scanning electron microscope (SEM) photographs. 図10Aに示される領域をエネルギー分散型X線分析装置で分析したスペクトルを示すグラフである。It is a graph which shows the spectrum which analyzed the area | region shown by FIG. 10A with the energy dispersive X-ray analyzer. 図3に示す製造方法におけるブラスト処理工程を説明するための図である。It is a figure for demonstrating the blasting process in the manufacturing method shown in FIG. 図11Aのブラスト処理後における反射材粒子を含有するシリコーン樹脂層の開口部を示す図である。It is a figure which shows the opening part of the silicone resin layer containing the reflector particle | grains after the blast process of FIG. 11A. 図3に示す製造方法における保護フィルムを除去する工程を説明するための図である。It is a figure for demonstrating the process of removing the protective film in the manufacturing method shown in FIG. 図3に示す製造方法における耐食層を形成する工程を説明するための図である。It is a figure for demonstrating the process of forming the corrosion-resistant layer in the manufacturing method shown in FIG. 本発明の他の実施形態において、異なるレーザ照射態様を示す平面図である。In other embodiment of this invention, it is a top view which shows a different laser irradiation aspect. 図14Aの断面図である。It is sectional drawing of FIG. 14A. 本発明の他の実施形態に係る導体層を形成する第1の工程を説明するための図である。It is a figure for demonstrating the 1st process of forming the conductor layer which concerns on other embodiment of this invention. 図15Aの第1の工程の後の第2の工程を説明するための図である。It is a figure for demonstrating the 2nd process after the 1st process of FIG. 15A. 図15Bの第2の工程の後の第3の工程を説明するための図である。It is a figure for demonstrating the 3rd process after the 2nd process of FIG. 15B. 図15Cの第3の工程の後の第4の工程を説明するための図である。It is a figure for demonstrating the 4th process after the 3rd process of FIG. 15C. 本発明の他の実施形態において、ブラスト処理の前に保護フィルムを除去するLED基板の製造方法を示すフローチャートである。In other embodiment of this invention, it is a flowchart which shows the manufacturing method of the LED board which removes a protective film before a blast process.
 光に対して安定性があるシリコーン樹脂は、黄色に変色しにくい。また、TiOのような酸化触媒として作用する粒子がシリコーン樹脂と共存しても、シリコーン樹脂の分子鎖は開裂しにくい。シリコーン樹脂は、500nm以下の青色~紫外光のLED光に曝露されても、有機樹脂に比べて、変色(特に、黄色への変色)又は特性の劣化(例えば電気絶縁性、耐水性、耐熱性、耐衝撃性、耐光性、寸法安定性等の低下)が生じにくい。本発明の実施形態では、シリコーン樹脂を感光させずにシリコーン樹脂膜に開口部を設けるために、レーザ加工を採用する。これにより、シリコーン樹脂の特性低下を抑制することが可能になる。また、シリコーン樹脂膜にレーザ光を照射すると、シリコーン樹脂膜に形成される開口部の底面にSiOが残渣として残ることを知見し、これをブラスト処理で除去することで、電気的な導通を妨げない開口部を形成する。 A silicone resin that is stable to light is unlikely to turn yellow. Further, even when particles acting as an oxidation catalyst such as TiO 2 coexist with the silicone resin, the molecular chain of the silicone resin is difficult to cleave. Silicone resins are discolored (especially discolored to yellow) or deteriorated in properties (for example, electrical insulation, water resistance, heat resistance, etc.) even when exposed to LED light of blue to ultraviolet light of 500 nm or less. , Impact resistance, light resistance, dimensional stability, etc.) are less likely to occur. In the embodiment of the present invention, laser processing is employed to provide an opening in the silicone resin film without exposing the silicone resin. Thereby, it becomes possible to suppress the characteristic fall of a silicone resin. In addition, when the silicone resin film is irradiated with laser light, it is found that SiO 2 remains as a residue on the bottom surface of the opening formed in the silicone resin film, and this is removed by a blasting process, so that electrical conduction is achieved. An opening that does not interfere is formed.
 以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。なお、図中、矢印Z1、Z2は、それぞれ基板の主面(表裏面)の法線方向に相当する基板の厚み方向を指す。一方、矢印X1、X2及びY1、Y2は、それぞれZ方向に直交する基板の側方を指す。基板の主面は、X-Y平面となる。また、基板の側面は、X-Z平面又はY-Z平面となる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, arrows Z1 and Z2 indicate the thickness direction of the substrate corresponding to the normal direction of the main surface (front and back surfaces) of the substrate. On the other hand, arrows X1, X2 and Y1, Y2 indicate the sides of the substrate orthogonal to the Z direction. The main surface of the substrate is an XY plane. The side surface of the substrate is an XZ plane or a YZ plane.
 相反する法線方向を向いた基板の2つの主面を、第1面(Z1側の面)、第2面(Z2側の面)という。直下とは、Z方向(Z1側又はZ2側)を意味する。 The two main surfaces of the substrate facing the opposite normal directions are referred to as a first surface (Z1 side surface) and a second surface (Z2 side surface). Directly below means the Z direction (Z1 side or Z2 side).
 導体層は、一乃至複数の導体パターンで構成される層である。導体層は、電気回路を構成する導体パターン、例えば配線(グランドも含む)、パッド、又はランド等を含む場合もあれば、電気回路を構成しない面状の導体パターン等を含む場合もある。 The conductor layer is a layer composed of one or more conductor patterns. The conductor layer may include a conductor pattern that constitutes an electric circuit, for example, a wiring (including a ground), a pad, a land, or the like, or a planar conductor pattern that does not constitute an electric circuit.
 孔は貫通孔に限られず、非貫通の孔も含めて、孔という。 孔 Holes are not limited to through holes, but include non-through holes.
 めっきには、電解めっき等の湿式めっきのほか、PVD(Physical Vapor Deposition)及びCVD(Chemical Vapor Deposition)等の乾式めっきも含まれる。 In addition to wet plating such as electrolytic plating, plating includes dry plating such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition).
 光は、可視光に限られない。光には、可視光のほか、紫外線及びX線等の短い波長の電磁波及び赤外線等の長い波長の電磁波も含まれる。 * Light is not limited to visible light. In addition to visible light, light includes short-wave electromagnetic waves such as ultraviolet rays and X-rays and long-wave electromagnetic waves such as infrared rays.
 図1に、本実施形態に係るLED基板の製造方法により製造されるLED基板100、及びLED基板100を用いた発光モジュール1000の概略構造を示す。図1は、本発明の実施形態に係るLED基板及び発光モジュールを示す断面図である。 FIG. 1 shows a schematic structure of an LED substrate 100 manufactured by the LED substrate manufacturing method according to this embodiment and a light emitting module 1000 using the LED substrate 100. FIG. 1 is a cross-sectional view illustrating an LED substrate and a light emitting module according to an embodiment of the present invention.
 LED基板100は、図1に示すように、樹脂製の基板10(樹脂基板)と、導体層21と、反射材粒子を含有するシリコーン樹脂層11と、を有する。以下、基板10の表裏面(2つの主面)の一方を第1面F1、他方を第2面F2という。 As shown in FIG. 1, the LED substrate 100 includes a resin substrate 10 (resin substrate), a conductor layer 21, and a silicone resin layer 11 containing reflector particles. Hereinafter, one of the front and back surfaces (two main surfaces) of the substrate 10 is referred to as a first surface F1, and the other is referred to as a second surface F2.
 LED基板100は、LED素子200が実装されることで、発光モジュール1000となる。本実施形態では、LED素子200が、基板10の第1面F1側に実装される。LED素子200は、例えば青色LEDである。ただしこれに限られず、例えばLED素子200は、紫外LED等であってもよい。光の波長は、500nm以下が望ましい。 The LED substrate 100 becomes the light emitting module 1000 by mounting the LED element 200. In the present embodiment, the LED element 200 is mounted on the first surface F1 side of the substrate 10. The LED element 200 is, for example, a blue LED. However, the present invention is not limited to this, and for example, the LED element 200 may be an ultraviolet LED or the like. The wavelength of light is desirably 500 nm or less.
 本実施形態の基板10は、絶縁性を有する例えば矩形状の樹脂基板である。本実施形態では、基板10が、ガラス繊維(例えばガラス布又はガラス不織布)からなる補強材を含有するエポキシ樹脂からなる。詳しくは、基板10は、ガラス繊維にエポキシ樹脂を含浸させたもの(以下、ガラエポという)からなる。ここで、エポキシ樹脂は、熱硬化性樹脂である。補強材は、主材料(本実施形態ではエポキシ樹脂)よりも熱膨張率の小さい材料である。基板10にガラス繊維を含ませることで、基板10でのクラックを抑制することが可能になる。 The substrate 10 of the present embodiment is an insulating resin substrate having a rectangular shape, for example. In this embodiment, the board | substrate 10 consists of an epoxy resin containing the reinforcing material which consists of glass fiber (for example, glass cloth or a glass nonwoven fabric). Specifically, the substrate 10 is made of glass fiber impregnated with an epoxy resin (hereinafter referred to as glass epoxy). Here, the epoxy resin is a thermosetting resin. The reinforcing material is a material having a smaller coefficient of thermal expansion than the main material (in the present embodiment, epoxy resin). By including glass fiber in the substrate 10, it is possible to suppress cracks in the substrate 10.
 なお、補強材を構成する材料はガラス繊維に限られず、ガラス繊維に代えて、他の無機材料を用いてもよい。例えばアラミド繊維(例えばアラミド不織布)又はシリカフィラーからなる補強材を用いてもよい。 In addition, the material which comprises a reinforcing material is not restricted to glass fiber, It may replace with glass fiber and may use another inorganic material. For example, you may use the reinforcing material which consists of an aramid fiber (for example, an aramid nonwoven fabric) or a silica filler.
 また、樹脂基板を構成する樹脂も任意である。例えばエポキシ樹脂に代えて、ポリエステル樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、イミド樹脂(ポリイミド)、フェノール樹脂、又はアリル化フェニレンエーテル樹脂(A-PPE樹脂)等を用いてもよい。 Also, the resin constituting the resin substrate is arbitrary. For example, polyester resin, bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin.
 本実施形態では、基板10として樹脂基板を採用している。樹脂からなる基材は、その高い柔軟性により割れにくくなるため、アルミナ又はAlN(窒化アルミニウム)等からなるセラミック基板に比べて薄くし易い。また、セラミック基板に比べて、樹脂基板は、低コストで入手し易く、穴あけ等の加工が容易である。 In this embodiment, a resin substrate is employed as the substrate 10. Since the base material made of resin becomes difficult to break due to its high flexibility, it is easy to make it thinner than a ceramic substrate made of alumina or AlN (aluminum nitride). In addition, compared with a ceramic substrate, a resin substrate is easily available at a low cost, and processing such as drilling is easy.
 本実施形態では、基板10の第1面F1上に、導体層21が形成されている。導体層21は、LED素子200の配線又はパッドとして機能し得る配線パターン21c及び21dを含む。配線パターン21cは、例えばLED素子200のアノード(又はカソード)に電気的に接続され、配線パターン21dは、例えばLED素子200のカソード(又はアノード)に電気的に接続される。 In the present embodiment, the conductor layer 21 is formed on the first surface F1 of the substrate 10. The conductor layer 21 includes wiring patterns 21 c and 21 d that can function as wirings or pads of the LED element 200. The wiring pattern 21c is electrically connected to the anode (or cathode) of the LED element 200, for example, and the wiring pattern 21d is electrically connected to the cathode (or anode) of the LED element 200, for example.
 導体層21は、第1面F1側の最外の導体層となる。基板10の第1面F1上及び導体層21上には、反射材粒子を含有するシリコーン樹脂層11が形成される。反射材粒子を含有するシリコーン樹脂層11により、基板10の色や材質にかかわらず、反射率を高めることが可能になる。反射材粒子を含有するシリコーン樹脂層11の厚さは、例えば10~500μmの範囲にある。本実施形態では、反射材粒子を含有するシリコーン樹脂層11が、ソルダーレジストとして機能し得るので、別途ソルダーレジストを形成する必要が無い。 The conductor layer 21 is the outermost conductor layer on the first surface F1 side. On the first surface F1 and the conductor layer 21 of the substrate 10, a silicone resin layer 11 containing reflector particles is formed. Regardless of the color or material of the substrate 10, the reflectance can be increased by the silicone resin layer 11 containing the reflector particles. The thickness of the silicone resin layer 11 containing the reflector particles is, for example, in the range of 10 to 500 μm. In the present embodiment, since the silicone resin layer 11 containing the reflective material particles can function as a solder resist, it is not necessary to separately form a solder resist.
 反射材粒子を含有するシリコーン樹脂層11には、開口部11aが形成されている。開口部11aでは、導体層21上に耐食層21aが形成され、開口部11aに露出した部分(耐食層21a及び導体層21)が、LED基板100の表面でパッドとなる。このパッドは、例えばLED素子200と電気的に接続するための外部接続端子となる。 An opening 11a is formed in the silicone resin layer 11 containing the reflector particles. In the opening 11 a, a corrosion-resistant layer 21 a is formed on the conductor layer 21, and portions exposed to the opening 11 a (the corrosion-resistant layer 21 a and the conductor layer 21) serve as pads on the surface of the LED substrate 100. This pad serves as an external connection terminal for electrical connection with the LED element 200, for example.
 本実施形態では、シリコーン樹脂層11が、シリコーン樹脂から構成され、アナターゼ型の酸化チタン(例えば二酸化チタン)を含有する。また、本実施形態では、アナターゼ型の酸化チタンが反射材粒子として機能し、シリコーン樹脂が結合材として機能する。酸化チタンによれば、高い反射率が得られ易くなり、特にアナターゼ型の酸化チタンによれば、青色領域及び紫外領域の波長の光に対して高い反射率が得られ易くなる。また、シリコーン樹脂は、酸化チタンの光触媒作用に対して耐性を有し、青色領域及び紫外領域の波長の光に対して高い安定性を有するため、黄変しにくい。ただし、反射材粒子を含有するシリコーン樹脂層11の材質はこれに限られず、例えばアナターゼ型の酸化チタンに代えて、ルチル型の酸化チタン、または、ジルコニア、アルミナ、シリカから選ばれる少なくとも1つを含んでいてもよい。また、これらの混合物(例えばムライトやステアタイト)等を使用してもよい。 In the present embodiment, the silicone resin layer 11 is made of a silicone resin and contains anatase-type titanium oxide (for example, titanium dioxide). In this embodiment, anatase-type titanium oxide functions as reflector particles, and a silicone resin functions as a binder. Titanium oxide makes it easy to obtain a high reflectance, and in particular, anatase-type titanium oxide makes it easy to obtain a high reflectance with respect to light having wavelengths in the blue region and the ultraviolet region. In addition, the silicone resin is resistant to the photocatalytic action of titanium oxide and has high stability with respect to light having a wavelength in the blue region and the ultraviolet region, so that it is difficult to yellow. However, the material of the silicone resin layer 11 containing the reflector particles is not limited to this. For example, instead of anatase type titanium oxide, at least one selected from rutile type titanium oxide, zirconia, alumina, or silica is used. May be included. Further, a mixture thereof (for example, mullite or steatite) may be used.
 耐食層21aは、導体層21を保護する。本実施形態では、耐食層21aが、例えばNi/Au膜からなる。ただしこれに限定されず、耐食層21aの材質は任意である。また、耐食層21aは必須の構成ではなく、必要がなければ割愛してもよい。 The corrosion-resistant layer 21a protects the conductor layer 21. In the present embodiment, the corrosion resistant layer 21a is made of, for example, a Ni / Au film. However, it is not limited to this, The material of the corrosion-resistant layer 21a is arbitrary. Moreover, the corrosion-resistant layer 21a is not an essential configuration, and may be omitted if not necessary.
 図2に、本実施形態に係るLED基板100の導体層21(配線パターン21c、21d)の形状を示す。図2は、本発明の実施形態に係るLED基板及び発光モジュールを示す平面図である。 FIG. 2 shows the shape of the conductor layer 21 ( wiring patterns 21c and 21d) of the LED substrate 100 according to this embodiment. FIG. 2 is a plan view showing the LED substrate and the light emitting module according to the embodiment of the present invention.
 図2に示されるように、本実施形態では、矩形状の配線パターン21cと矩形状の配線パターン21dとが、所定の間隔をあけて配置される。LED素子200は、配線パターン21c及び21d上に配置される。ただしこれに限られず、導体層21(配線パターン層)の形状は任意である。 As shown in FIG. 2, in the present embodiment, the rectangular wiring pattern 21c and the rectangular wiring pattern 21d are arranged with a predetermined interval. The LED element 200 is disposed on the wiring patterns 21c and 21d. However, the shape of the conductor layer 21 (wiring pattern layer) is not limited to this and is arbitrary.
 図1に示されるように、本実施形態の発光モジュール1000では、フリップチップ方式で、LED素子200が実装される。これにより、LED素子200の電極が、半田200aを介して、導体層21の配線パターン21c及び21dと電気的に接続される。 As shown in FIG. 1, in the light emitting module 1000 of the present embodiment, the LED element 200 is mounted by a flip chip method. Thereby, the electrode of the LED element 200 is electrically connected to the wiring patterns 21c and 21d of the conductor layer 21 via the solder 200a.
 本実施形態のLED基板100は、屈曲性を有する。詳しくは、本実施形態では、反射材粒子を含有するシリコーン樹脂層11が、弾性率の低いシリコーン樹脂から構成される。また、基板10(樹脂基板)は、厚さが薄いことにより屈曲性を有する。このため、LED基板100は、屈曲性を有し易い。 The LED substrate 100 of this embodiment has flexibility. Specifically, in the present embodiment, the silicone resin layer 11 containing the reflector particles is composed of a silicone resin having a low elastic modulus. Further, the substrate 10 (resin substrate) has flexibility due to its thin thickness. For this reason, the LED substrate 100 tends to have flexibility.
 LED基板100が屈曲性を有することで、LED基板100が曲がることによって応力を吸収し易くなる。このため、落下等により衝撃が加わった場合にLED基板100が破損しにくくなる。 When the LED substrate 100 has flexibility, the LED substrate 100 is easily bent to absorb stress. For this reason, when an impact is applied by dropping or the like, the LED substrate 100 is hardly damaged.
 基板10の厚さは、0.05mm~0.50mmの範囲にあることが好ましい。基板10の厚さが0.05mm未満であると、基板10の剛性が低くなって基板10が変形し易くなり、表面に実装したLED素子と、LED基板の接続部分のはんだ等に亀裂が入り易くなる。そのため、LED素子への給電部が断線しやすくなる。これに対し、基板10の厚さが0.50mmを超えると、LED素子が発する熱をLED基板裏面に放熱しにくくなるので、LED素子が高熱に曝されやすくなる。そのため、LED素子が高温になることで、LED素子の発光効率が低下し易くなる。 The thickness of the substrate 10 is preferably in the range of 0.05 mm to 0.50 mm. If the thickness of the substrate 10 is less than 0.05 mm, the rigidity of the substrate 10 becomes low and the substrate 10 is easily deformed, and the LED element mounted on the surface and the solder etc. of the connection portion of the LED substrate are cracked. It becomes easy. For this reason, the power feeding portion to the LED element is easily disconnected. On the other hand, if the thickness of the substrate 10 exceeds 0.50 mm, it becomes difficult to dissipate the heat generated by the LED element to the back surface of the LED substrate, so that the LED element is easily exposed to high heat. Therefore, when the LED element becomes high temperature, the light emission efficiency of the LED element tends to decrease.
 本実施形態では、基板10が、樹脂(例えばガラエポ)からなる。樹脂は、セラミックよりも高い柔軟性を有するため、LED基板100の屈曲性が得られ易く、落下しても割れにくい。 In the present embodiment, the substrate 10 is made of resin (for example, glass epoxy). Since the resin has higher flexibility than the ceramic, the flexibility of the LED substrate 100 can be easily obtained, and it is difficult to break even when dropped.
 本実施形態の発光モジュール1000は、図1に示すように、LED素子200より、例えば光LT1~LT3を発する。光の波長(又はLED素子200の種類)は、発光モジュール1000の用途によって、任意のものを採用することができる。発光モジュール1000の光は、例えば白色光である。白色光は、例えば青色LED(LED素子200)と蛍光体とを組み合わせることで、つくることができる。詳しくは、青色LEDが発した青色の光を黄色の蛍光体に当てることで、白色が出来る。白色光を発する発光モジュール1000は、照明(電球又は自動車のヘッドライト等)、又は液晶ディスプレイのバックライト(大型ディスプレイ又は携帯電話のディスプレイ等)などに用いることができる。 The light emitting module 1000 of the present embodiment emits light LT1 to LT3, for example, from the LED element 200 as shown in FIG. Any wavelength of light (or the type of LED element 200) can be adopted depending on the application of the light emitting module 1000. The light of the light emitting module 1000 is white light, for example. White light can be produced, for example, by combining a blue LED (LED element 200) and a phosphor. Specifically, white light can be produced by applying blue light emitted from a blue LED to a yellow phosphor. The light emitting module 1000 that emits white light can be used for illumination (such as a light bulb or a car headlight) or a backlight of a liquid crystal display (such as a large display or a mobile phone display).
 LED素子200から発せられる光は、例えばLED素子200上方への光LT1、LED素子200側方への光LT2、及びLED素子200直下への光LT3を含む。本実施形態の発光モジュール1000では、光LT2及びLT3がそれぞれ、反射材粒子を含有するシリコーン樹脂層11で反射される。これにより、LED素子200の光が基板10に当たりにくくなり、その光に起因した基板10の劣化(特に樹脂の劣化)が抑制される。また、本実施形態では、反射材粒子を含有するシリコーン樹脂層11の一部が、LED素子200の直下又はその近傍に配置される。このため、特に基板10を劣化させ易いと考えられる光LT3も、反射材粒子を含有するシリコーン樹脂層11で反射される。 The light emitted from the LED element 200 includes, for example, light LT1 directed upward of the LED element 200, light LT2 directed laterally of the LED element 200, and light LT3 directly below the LED element 200. In the light emitting module 1000 of the present embodiment, the light LT2 and LT3 are each reflected by the silicone resin layer 11 containing the reflector particles. Thereby, it becomes difficult for the light of the LED element 200 to hit the substrate 10, and deterioration of the substrate 10 (particularly, deterioration of the resin) due to the light is suppressed. In the present embodiment, a part of the silicone resin layer 11 containing the reflector particles is disposed directly under or near the LED element 200. For this reason, the light LT3, which is considered to deteriorate the substrate 10 in particular, is also reflected by the silicone resin layer 11 containing the reflector particles.
 また、光LT2及びLT3はそれぞれ、反射材粒子を含有するシリコーン樹脂層11で反射され、光LT1と同じ方向の光になるため、発光モジュール1000の発光効率を高め易くなる。 Also, the light LT2 and LT3 are each reflected by the silicone resin layer 11 containing the reflector particles and become light in the same direction as the light LT1, so that the light emission efficiency of the light emitting module 1000 can be easily increased.
 以下、図3等を参照して、LED基板100の製造方法について説明する。図3は、本発明の実施形態に係るLED基板100の製造方法を示すフローチャートであり、図3のフローチャートにより、LED基板100の製造方法の概略的な内容及び手順が示される。本実施形態では、1つのパネルで多数のLED基板100を製造した後(ステップS11~S19)、それらを個別に切り出す(ステップS20)こととする。 Hereinafter, a method for manufacturing the LED substrate 100 will be described with reference to FIG. FIG. 3 is a flowchart showing a method for manufacturing the LED substrate 100 according to the embodiment of the present invention. The flowchart of FIG. 3 shows a schematic content and procedure of the method for manufacturing the LED substrate 100. In the present embodiment, after manufacturing a large number of LED boards 100 with one panel (steps S11 to S19), they are cut out individually (step S20).
 図4は、図3に示す製造方法における樹脂基板(基板10)を準備する工程を説明するための図である。図5Aは、図3に示す製造方法における導体層21を形成する第1の工程を説明するための図である。図5Bは、図5Aの第1の工程の後の第2の工程を説明するための図である。図5Cは、図5Bの第2の工程の後の第3の工程を説明するための図である。図6は、図3に示す製造方法における反射材粒子を含有するシリコーン樹脂層11を形成する工程を説明するための図である。図7は、図3に示す製造方法における保護フィルム1003を形成する工程を説明するための図である。図8は、図3に示す製造方法におけるレーザ照射工程を説明するための図である。図9は、図8のレーザ照射後における反射材粒子を含有するシリコーン樹脂層11の開口部11aを示す図である。図11Aは、図3に示す製造方法におけるブラスト処理工程を説明するための図である。図11Bは、図11Aのブラスト処理後における反射材粒子を含有するシリコーン樹脂層11の開口部11aを示す図である。図12は、図3に示す製造方法における保護フィルム1003を除去する工程を説明するための図である。図13は、図3に示す製造方法における耐食層21aを形成する工程を説明するための図である。 FIG. 4 is a view for explaining a step of preparing a resin substrate (substrate 10) in the manufacturing method shown in FIG. FIG. 5A is a diagram for explaining a first step of forming the conductor layer 21 in the manufacturing method shown in FIG. 3. FIG. 5B is a diagram for explaining a second step after the first step of FIG. 5A. FIG. 5C is a diagram for explaining a third step after the second step of FIG. 5B. FIG. 6 is a diagram for explaining a process of forming the silicone resin layer 11 containing the reflector particles in the manufacturing method shown in FIG. FIG. 7 is a diagram for explaining a process of forming the protective film 1003 in the manufacturing method shown in FIG. FIG. 8 is a view for explaining a laser irradiation step in the manufacturing method shown in FIG. FIG. 9 is a view showing the opening 11a of the silicone resin layer 11 containing the reflector particles after the laser irradiation of FIG. FIG. 11A is a diagram for explaining a blasting process in the manufacturing method shown in FIG. 3. FIG. 11B is a diagram showing the opening 11a of the silicone resin layer 11 containing the reflector particles after the blasting process of FIG. 11A. FIG. 12 is a diagram for explaining a process of removing the protective film 1003 in the manufacturing method shown in FIG. FIG. 13 is a diagram for explaining a process of forming the corrosion-resistant layer 21a in the manufacturing method shown in FIG.
 図3のフローチャートのステップS11では、図4に示すように、出発材料として樹脂基板(基板10)を用意する。本実施形態では、この段階において、基板10が、完全に硬化した状態のガラエポからなる。 In step S11 of the flowchart of FIG. 3, as shown in FIG. 4, a resin substrate (substrate 10) is prepared as a starting material. In this embodiment, at this stage, the substrate 10 is made of a glass epoxy that is completely cured.
 続けて、図3のフローチャートのステップS12で、図5Aに示すように、基板10の第1面F1上に、導体層1001(例えば全面パターン)を形成する。導体層1001は、例えば銅箔からなる。ただしこれに限られず、導体層1001は、電解めっき膜(上層)及び銅箔(下層)からなってもよい。また、導体層1001は、電解めっき膜(上層)及び無電解めっき膜(中間層)及び銅箔(下層)からなってもよい。 Subsequently, in step S12 of the flowchart of FIG. 3, as shown in FIG. 5A, a conductor layer 1001 (for example, a full pattern) is formed on the first surface F1 of the substrate 10. The conductor layer 1001 is made of, for example, copper foil. However, the present invention is not limited to this, and the conductor layer 1001 may be composed of an electrolytic plating film (upper layer) and a copper foil (lower layer). The conductor layer 1001 may be made of an electrolytic plating film (upper layer), an electroless plating film (intermediate layer), and a copper foil (lower layer).
 続けて、図3のフローチャートのステップS13で、基板10の第1面F1上に形成された導体層1001のパターニングを行う。 Subsequently, in step S13 of the flowchart of FIG. 3, the conductor layer 1001 formed on the first surface F1 of the substrate 10 is patterned.
 具体的には、図5Bに示すように、例えばリソグラフィ技術により、第1面F1側の主面(導体層1001上)に、開口部1002aを有するエッチングレジスト1002を形成する。開口部1002aは、導体層21(図1)に対応したパターンを有する。 Specifically, as shown in FIG. 5B, an etching resist 1002 having an opening 1002a is formed on the main surface (on the conductor layer 1001) on the first surface F1 side, for example, by lithography. The opening 1002a has a pattern corresponding to the conductor layer 21 (FIG. 1).
 続けて、例えばエッチング液を用いて、基板10の第1面F1上に形成された導体層1001の、エッチングレジスト1002で覆われない部分(開口部1002aで露出する部位)を除去する。その後、エッチングレジスト1002を除去する。これにより、図5Cに示すように、導体層1001がパターニングされ、基板10の第1面F1上に、LED素子200の配線として機能し得る導体層21が形成される。なお、エッチングは、湿式に限られず、乾式であってもよい。 Subsequently, a portion of the conductor layer 1001 formed on the first surface F1 of the substrate 10 that is not covered with the etching resist 1002 (portion exposed through the opening 1002a) is removed using, for example, an etching solution. Thereafter, the etching resist 1002 is removed. As a result, as shown in FIG. 5C, the conductor layer 1001 is patterned, and the conductor layer 21 that can function as the wiring of the LED element 200 is formed on the first surface F1 of the substrate 10. Note that the etching is not limited to wet, and may be dry.
 続けて、図3のフローチャートのステップS14で、例えばスクリーン印刷により、図6に示すように、基板10の第1面F1上に、導体層21よりも厚いシリコーン樹脂層11を形成する。シリコーン樹脂層11は、反射材粒子を含有している。具体的には、例えば未硬化のシリコーン樹脂にアナターゼ型の酸化チタンを混合し、基板10の第1面F1上に印刷する。続けて、例えば100~150℃、10~60分間保持して未硬化のシリコーン樹脂を硬化させる。これにより、反射材粒子としてアナターゼ型の酸化チタンを含有するシリコーン樹脂11が得られる。 Subsequently, in step S14 of the flowchart of FIG. 3, the silicone resin layer 11 thicker than the conductor layer 21 is formed on the first surface F1 of the substrate 10 by screen printing, for example, as shown in FIG. The silicone resin layer 11 contains reflector particles. Specifically, for example, an anatase-type titanium oxide is mixed with an uncured silicone resin and printed on the first surface F1 of the substrate 10. Subsequently, for example, the uncured silicone resin is cured by holding at 100 to 150 ° C. for 10 to 60 minutes. Thereby, the silicone resin 11 containing anatase type titanium oxide as the reflector particles is obtained.
 続けて、図3のフローチャートのステップS15で、図7に示すように、反射材粒子を含有するシリコーン樹脂層11上に、保護フィルム1003を形成する。このように、後述のレーザ光の照射(図3のステップS16)に先立って保護フィルム1003を形成することで、レーザ光の照射によるシリコーン樹脂層11の汚れ(黒点など)を抑制又は防止することができる。保護フィルム1003は、例えばPET(ポリ・エチレン・テレフタレート)からなる。ただしこれに限られず、レーザ照射の条件及びブラスト処理の条件等に応じて、適切な材質の保護フィルム1003を用いることが好ましい。 Subsequently, in step S15 of the flowchart of FIG. 3, as shown in FIG. 7, a protective film 1003 is formed on the silicone resin layer 11 containing the reflector particles. Thus, by forming the protective film 1003 prior to laser light irradiation (step S16 in FIG. 3), which will be described later, contamination (black spots, etc.) of the silicone resin layer 11 due to laser light irradiation is suppressed or prevented. Can do. The protective film 1003 is made of, for example, PET (polyethylene terephthalate). However, the present invention is not limited to this, and it is preferable to use a protective film 1003 made of an appropriate material depending on the conditions of laser irradiation, blasting, and the like.
 続けて、図3のフローチャートのステップS16で、図8に示すように、レーザ光の照射により、反射材粒子を含有するシリコーン樹脂層11に開口部11aを形成する。レーザ光は、保護フィルム1003を貫通してシリコーン樹脂層11に開口部11aを形成するが、導体層21は貫通しない。 Subsequently, in step S16 of the flowchart of FIG. 3, as shown in FIG. 8, an opening 11a is formed in the silicone resin layer 11 containing the reflector particles by irradiation with laser light. The laser beam penetrates the protective film 1003 and forms the opening 11a in the silicone resin layer 11, but does not penetrate the conductor layer 21.
 ここで、レーザ光の照射は、遮光マスクを用いずに部分的に行われる。詳しくは、非照射部分においてはレーザ照射を止めて、照射すべき部位のみにレーザ光を照射する。ただしこれに限定されず、遮光マスクを用いてもよい(後述の図14A及び図14B参照)。 Here, the laser beam irradiation is partially performed without using a light shielding mask. Specifically, the laser irradiation is stopped in the non-irradiated portion, and the laser beam is irradiated only on the portion to be irradiated. However, the present invention is not limited to this, and a light shielding mask may be used (see FIGS. 14A and 14B described later).
 レーザ強度(光量)の調整は、パルス制御で行うことが好ましい。具体的には、例えばレーザ強度を変更する場合には、1ショット(1回の照射)あたりのレーザ強度は変えずに、ショット数(照射回数)を変更するようにする。すなわち、1ショットでは所望のレーザ強度が得られない場合には、同じ照射位置に、再度レーザ光を照射する。こうした制御方法によれば、照射条件を変える時間を省略できるため、スループットが向上すると考えられる。ただしこれに限られず、レーザ強度の調整方法は任意である。例えば照射位置ごとに照射条件を決め、照射回数を一定(例えば1つの照射位置につき1ショット)にしてもよい。また、同じ照射位置に複数回のレーザ照射を行う場合において、ショットごとにレーザ強度を変えてもよい。 The adjustment of the laser intensity (light quantity) is preferably performed by pulse control. Specifically, for example, when changing the laser intensity, the number of shots (number of irradiations) is changed without changing the laser intensity per shot (one irradiation). That is, when a desired laser intensity cannot be obtained with one shot, the same irradiation position is irradiated with laser light again. According to such a control method, the time for changing the irradiation condition can be omitted, so that it is considered that the throughput is improved. However, the method is not limited to this, and the laser intensity adjustment method is arbitrary. For example, the irradiation conditions may be determined for each irradiation position, and the number of irradiations may be fixed (for example, one shot for one irradiation position). Further, in the case of performing laser irradiation a plurality of times at the same irradiation position, the laser intensity may be changed for each shot.
 レーザ光の光源としては、COレーザが好ましい。COレーザによれば、保護フィルム1003及び反射材粒子を含有するシリコーン樹脂層11を貫通するために必要なエネルギーを有するレーザ光が容易に得られる。 As a laser light source, a CO 2 laser is preferable. According to the CO 2 laser, laser light having energy necessary for penetrating the silicone resin layer 11 containing the protective film 1003 and the reflector particles can be easily obtained.
 上記レーザ光の照射後の開口部11aには、図9に示すように、残留物1004が形成される。残留物1004は、例えば約0.5μmの厚さを有する。発明者により、残留物1004は、主にシリカ(SiO)及び反射材粒子とからなることが確認されている。 As shown in FIG. 9, a residue 1004 is formed in the opening 11a after the laser light irradiation. The residue 1004 has a thickness of about 0.5 μm, for example. The inventor has confirmed that the residue 1004 is mainly composed of silica (SiO 2 ) and reflector particles.
 図10Aは、導体層上に形成されたアナターゼ型酸化チタンを含むシリコーン樹脂層にCOレーザ光の照射により開口された、残渣の走査電子顕微鏡(SEM)写真である。図10Bは、図10Aに示される領域をエネルギー分散型X線分析装置で分析したスペクトルを示すグラフである。 FIG. 10A is a scanning electron microscope (SEM) photograph of the residue opened by irradiation of CO 2 laser light in the silicone resin layer containing anatase-type titanium oxide formed on the conductor layer. FIG. 10B is a graph showing a spectrum obtained by analyzing the region shown in FIG. 10A with an energy dispersive X-ray analyzer.
 図10Bより、レーザ光の照射された導体層21(Cu)の表面に、シリコン(Si)及び酸素(O)が検出されたことが分かる。残留物1004は、反射材粒子を含有するシリコーン樹脂層11を構成するシリコーン樹脂がレーザで変化したものであると推察され、無機物であるため過マンガン酸カリウム水溶液等による一般的な洗浄方法では、完全に除去することは困難である。 FIG. 10B shows that silicon (Si) and oxygen (O) were detected on the surface of the conductor layer 21 (Cu) irradiated with the laser beam. The residue 1004 is presumed that the silicone resin constituting the silicone resin layer 11 containing the reflector particles is changed by laser, and since it is an inorganic substance, in a general cleaning method using a potassium permanganate aqueous solution or the like, It is difficult to remove completely.
 そこで、本実施形態では、図3のフローチャートのステップS17で、図11Aに示すように、ブラスト処理により、開口部11aに残った残留物1004を除去する。反射材粒子を含有するシリコーン樹脂層11は、レーザ光の照射(図3のステップS16)前においては、基板10(基材)上に形成された導体層21を覆っている(図7参照)。レーザ光の照射によって、シリコーン樹脂がシリカに変質し、ブラスト処理(図3のステップS17)により容易に除去できるようになる。ブラスト処理によりショットされた砥粒を残留物1004(SiO及び反射材粒子)にぶつけることで、その衝撃により残留物1004を除去することができる。こうして図11Bに示すように、開口部11aで導体層21が露出する。 Therefore, in the present embodiment, in step S17 of the flowchart of FIG. 3, as shown in FIG. 11A, the residue 1004 remaining in the opening 11a is removed by blasting. The silicone resin layer 11 containing the reflector particles covers the conductor layer 21 formed on the substrate 10 (base material) before the laser beam irradiation (step S16 in FIG. 3) (see FIG. 7). . Irradiation with laser light transforms the silicone resin into silica, which can be easily removed by blasting (step S17 in FIG. 3). By hitting the abrasive grains shot by the blast treatment against the residue 1004 (SiO 2 and reflector particles), the residue 1004 can be removed by the impact. Thus, as shown in FIG. 11B, the conductor layer 21 is exposed at the opening 11a.
 ブラスト処理に用いる砥粒は、水溶性である、ことが好ましい。水溶性の砥粒を使用すれば、ブラスト処理後、水洗することにより砥粒が水に溶けて、砥粒を完全に除去し易くなる。 It is preferable that the abrasive grains used for the blast treatment are water-soluble. If water-soluble abrasive grains are used, the abrasive grains dissolve in water by washing with water after the blast treatment, and it becomes easy to completely remove the abrasive grains.
 ブラスト処理に用いる砥砥粒は、例えばNaHCO(重曹)を利用することができる。NaHCO(重曹)は、LED基板を構成するシリコーン樹脂層、導体層、基板と反応しにくい上に、容易に水に溶解するので、LED基板に残留しにくい。 As the abrasive grains used for the blasting treatment, for example, NaHCO 3 (bicarbonate) can be used. NaHCO 3 (soda) does not easily react with the silicone resin layer, the conductor layer, and the substrate constituting the LED substrate, and easily dissolves in water, and thus hardly remains on the LED substrate.
 ブラスト処理に用いる砥粒の平均粒子直径は、0.1~200μmの範囲にある、ことが好ましい。砥粒の平均粒子直径が0.1μm以上であると、砥粒の運動エネルギーを大きくできるので、残留物1004を除去し易くなる。砥粒の平均粒子直径が200μm以下であると、加工面(LED基板の白色膜)の凹凸を小さくでき、LED基板の白色膜を平滑な面にし易い。LED基板の白色膜が平滑な面でないと、白色膜に欠け・ひびが発生し易くなる。 The average particle diameter of the abrasive grains used for the blast treatment is preferably in the range of 0.1 to 200 μm. When the average particle diameter of the abrasive grains is 0.1 μm or more, the kinetic energy of the abrasive grains can be increased, so that the residue 1004 can be easily removed. When the average particle diameter of the abrasive grains is 200 μm or less, the unevenness of the processed surface (white film of the LED substrate) can be reduced, and the white film of the LED substrate can be easily made smooth. If the white film of the LED substrate is not a smooth surface, the white film is liable to be chipped or cracked.
 続けて、図3のフローチャートのステップS18で、図12に示すように、保護フィルム1003を除去する。本実施形態では、ブラスト処理後に保護フィルム1003を除去するため、ブラスト処理の際にも、反射材粒子を含有するシリコーン樹脂層11が保護フィルム1003で覆われていることになる。残留物1004は、シリカ及び反射材粒子で構成されているので保護フィルム1003よりもブラスト処理により加工され易い。このため、ブラスト処理によれば、残留物1004のみを除去し易くなる。その結果、ブラスト処理によるシリコーン樹脂層11のダメージが抑制又は防止され易くなる。 Subsequently, in step S18 of the flowchart of FIG. 3, the protective film 1003 is removed as shown in FIG. In this embodiment, since the protective film 1003 is removed after the blasting process, the silicone resin layer 11 containing the reflector particles is also covered with the protective film 1003 during the blasting process. Since the residue 1004 is composed of silica and reflector particles, it is more easily processed by blasting than the protective film 1003. For this reason, according to the blasting process, it becomes easy to remove only the residue 1004. As a result, damage to the silicone resin layer 11 due to the blast treatment is easily suppressed or prevented.
 続けて、図3のフローチャートのステップS19で、図13に示すように、電解めっき又は無電解めっき又はスパッタリング等により、導体層21上に、例えばNi/Au膜からなる耐食層21aを形成する。これにより、LED基板100が完成する。なお、OSP(Organic Solderability Preservatives)処理(有機保護膜、耐熱水溶性プリフラックス、プリフラックス等の処理のことをいう)を行うことにより、有機保護膜からなる耐食層21aを形成してもよい。 Subsequently, in step S19 of the flowchart of FIG. 3, as shown in FIG. 13, a corrosion resistant layer 21a made of, for example, a Ni / Au film is formed on the conductor layer 21 by electrolytic plating, electroless plating, sputtering, or the like. Thereby, the LED substrate 100 is completed. In addition, you may form the corrosion-resistant layer 21a which consists of an organic protective film by performing OSP (Organic | Solderability | preservatives) process (refers to processes, such as an organic protective film, a heat-resistant water-soluble preflux, and a preflux).
 その後、図3のフローチャートのステップS20で、パネルに形成されたLED基板100の各々について外形加工を行い、個別のLED基板100を得る。そして、検査後、良品のみを製品とする。また、こうして得られたLED基板100にLED素子200を実装することで、図1に示したような発光モジュール1000が完成する。 Thereafter, in step S20 of the flowchart of FIG. 3, each of the LED substrates 100 formed on the panel is subjected to outer shape processing to obtain individual LED substrates 100. After the inspection, only good products are used as products. Further, by mounting the LED element 200 on the LED substrate 100 thus obtained, the light emitting module 1000 as shown in FIG. 1 is completed.
 本実施形態の製造方法は、基板10(基材)に導体層21を形成することと、導体層21を有する基板10に、導体層21を覆い反射材粒子を含有するシリコーン樹脂層11を形成することと、レーザ光の照射により、反射材粒子を含有するシリコーン樹脂層11(シリコーン樹脂層)に開口部11aを形成することと、ブラスト処理により、開口部11aに残った残留物1004を除去することと、を含む。これにより、反射材粒子を含有するシリコーン樹脂層11の開口部11aに残った残留物1004(残渣)を好適に除去することができる。また、残留物1004が除去されることで、LED基板100とLED素子200とが残留物1004を介さずに互いに電気的に接続されるようになるため、反射材粒子を含有するシリコーン樹脂層11(ソルダーレジスト)の開口部11aにおけるLED基板100とLED素子200との電気的接続の信頼性を高めることができる。 In the manufacturing method of this embodiment, the conductor layer 21 is formed on the substrate 10 (base material), and the silicone resin layer 11 that covers the conductor layer 21 and contains the reflector particles is formed on the substrate 10 having the conductor layer 21. Forming the opening 11a in the silicone resin layer 11 (silicone resin layer) containing the reflector particles by irradiating with laser light, and removing the residue 1004 remaining in the opening 11a by blasting And including. Thereby, the residue 1004 (residue) remaining in the opening 11a of the silicone resin layer 11 containing the reflector particles can be suitably removed. Further, since the residue 1004 is removed, the LED substrate 100 and the LED element 200 are electrically connected to each other without the residue 1004, and thus the silicone resin layer 11 containing the reflector particles. The reliability of the electrical connection between the LED substrate 100 and the LED element 200 in the opening 11a of the (solder resist) can be enhanced.
 本実施形態の製造方法は、青色LED用又は紫外LED用のLED基板の製造に適している。詳しくは、青色光又は紫外光は、C=C結合又はC-C結合を含む樹脂にダメージを与え易いため、青色LED又は紫外LEDは、エポキシ樹脂を含め、一般的な炭素骨格の樹脂を劣化させ易い。この点、本実施形態の製造方法は、シロキサン結合(Si-O単位)を主鎖に持つシリコーン樹脂を使用した青色光又は紫外光によるダメージが少ないLED基板の加工方法を提供するので、青色LED用又は紫外LED用に適したLED基板の製造方法が得られる。 The manufacturing method of the present embodiment is suitable for manufacturing an LED substrate for a blue LED or an ultraviolet LED. Specifically, blue light or ultraviolet light is likely to damage a resin containing a C═C bond or a C—C bond. Therefore, a blue LED or an ultraviolet LED deteriorates a general carbon skeleton resin including an epoxy resin. Easy to do. In this respect, the manufacturing method of the present embodiment provides a method for processing an LED substrate that uses a silicone resin having a siloxane bond (Si—O unit) in the main chain and is less damaged by blue light or ultraviolet light. The manufacturing method of the LED substrate suitable for use for ultraviolet or ultraviolet LED is obtained.
 本発明は、上記実施形態に限定されない。例えば以下のように変形して実施することもできる。 The present invention is not limited to the above embodiment. For example, the present invention can be modified as follows.
 上記実施形態では、遮光マスクを用いずに、照射すべき部位にだけにレーザ光の照射を行うようにしたが、これに限定されない。例えば図3のフローチャートのステップS16においては、図14A及び図14Bに示すように、開口部1005aを有する遮光マスク1005(例えばメタルマスク)を、反射材粒子を含有するシリコーン樹脂層11のZ1側に設置して、全面にレーザ光を照射してもよい。開口部1005aは、開口部11a(図13参照)に対応したパターンを有する。なお、レーザ光を被照射体の全面に照射する場合には、例えば被照射体を固定して、ガルバノミラー等によりレーザ光(厳密にはその照準)を移動させてもよく、逆にレーザ光を固定して、コンベア等により被照射体を移動させてもよい。また、シリンドリカルレンズ等によりレーザ光をライン光にしてもよい。また、複数のレーザ装置(2以上の露光ヘッド)を用いてもよい。 In the above embodiment, the laser beam is irradiated only to the portion to be irradiated without using the light shielding mask. However, the present invention is not limited to this. For example, in step S16 of the flowchart of FIG. 3, as shown in FIGS. 14A and 14B, a light shielding mask 1005 (for example, a metal mask) having an opening 1005a is placed on the Z1 side of the silicone resin layer 11 containing the reflector particles. It may be installed and the entire surface may be irradiated with laser light. The opening 1005a has a pattern corresponding to the opening 11a (see FIG. 13). When irradiating the entire surface of the irradiated body with laser light, for example, the irradiated body may be fixed and the laser light (strictly speaking) may be moved by a galvanometer mirror or the like. And the irradiated object may be moved by a conveyor or the like. Further, the laser beam may be changed to line light by a cylindrical lens or the like. A plurality of laser devices (two or more exposure heads) may be used.
 図14A及び図14Bに示す方法によれば、レーザ光が反射材粒子を含有するシリコーン樹脂層11の全面に照射されるが、開口部1005aを通過するレーザ光以外は、遮光マスク1005で遮光され、反射材粒子を含有するシリコーン樹脂層11に照射されない。一方、開口部1005aを通過した光は、反射材粒子を含有するシリコーン樹脂層11に照射され、開口部11a(図13参照)を形成する。このため、こうした方法によっても、所望の位置に、開口部11aを形成することができる。なお、図14A及び図14Bの例では、保護フィルム1003(図8参照)を用いていないが、必要があれば、保護フィルム1003を用いてもよい。 According to the method shown in FIGS. 14A and 14B, the laser light is irradiated on the entire surface of the silicone resin layer 11 containing the reflector particles, but the light other than the laser light passing through the opening 1005a is shielded by the light shielding mask 1005. The silicone resin layer 11 containing the reflector particles is not irradiated. On the other hand, the light that has passed through the opening 1005a is applied to the silicone resin layer 11 containing the reflector particles to form the opening 11a (see FIG. 13). For this reason, the opening part 11a can be formed in a desired position also by such a method. In addition, in the example of FIG. 14A and FIG. 14B, although the protective film 1003 (refer FIG. 8) is not used, you may use the protective film 1003 if needed.
 上記実施形態では、サブトラクティブ法で導体層21を形成したが、導体層21の形成方法は任意である。例えばパネルめっき法、パターンめっき法、フルアディティブ法、セミアディティブ(SAP)法、サブトラクティブ法、転写法、及びテンティング法のいずれか1つ、又はこれらの2以上を任意に組み合わせた方法で、導体層21を形成してもよい。 In the above embodiment, the conductor layer 21 is formed by the subtractive method, but the method of forming the conductor layer 21 is arbitrary. For example, any one of a panel plating method, a pattern plating method, a full additive method, a semi-additive (SAP) method, a subtractive method, a transfer method, and a tenting method, or a combination of any two or more thereof. The conductor layer 21 may be formed.
 図15A~図15Dに、導体層21をSAP法で形成する場合の一例を示す。図15Aは、本発明の他の実施形態に係る導体層を形成する第1の工程を説明するための図である。図15Bは、図15Aの第1の工程の後の第2の工程を説明するための図である。図15Cは、図15Bの第2の工程の後の第3の工程を説明するための図である。図15Dは、図15Cの第3の工程の後の第4の工程を説明するための図である。 15A to 15D show an example in which the conductor layer 21 is formed by the SAP method. FIG. 15A is a diagram for explaining a first step of forming a conductor layer according to another embodiment of the present invention. FIG. 15B is a diagram for explaining a second step after the first step of FIG. 15A. FIG. 15C is a diagram for explaining a third step after the second step of FIG. 15B. FIG. 15D is a diagram for explaining a fourth step after the third step in FIG. 15C.
 この例では、図15Aに示すように、まず、基板10を用意し、化学めっき法により、基板10の第1面F1上に、例えば銅の無電解めっき膜2001を形成する。続けて、図15Bに示すように、リソグラフィ技術又は印刷等により、無電解めっき膜2001上に、開口部2002aを有するめっきレジスト2002を形成する。開口部2002aは、導体層21(図1)に対応したパターンを有する。 In this example, as shown in FIG. 15A, first, a substrate 10 is prepared, and an electroless plating film 2001 of, for example, copper is formed on the first surface F1 of the substrate 10 by a chemical plating method. Subsequently, as shown in FIG. 15B, a plating resist 2002 having an opening 2002a is formed on the electroless plating film 2001 by lithography or printing. The opening 2002a has a pattern corresponding to the conductor layer 21 (FIG. 1).
 続けて、図15Cに示すように、パターンめっき法により、めっきレジスト2002の開口部2002aに、例えば銅の電解めっき2003を形成する。具体的には、陽極にめっきする材料である銅を接続し、陰極に被めっき材である無電解めっき膜2001を接続して、めっき液に浸漬する。そして、両極間に直流の電圧を印加して電流を流し、無電解めっき膜2001の表面に銅を析出させる。その後、図15Dに示すように、例えば所定の剥離液により、めっきレジスト2002を除去し、続けて不要な無電解めっき膜2001を除去することにより、導体層21(図5C参照)が形成される。 Subsequently, as shown in FIG. 15C, for example, copper electroplating 2003 is formed in the opening 2002a of the plating resist 2002 by a pattern plating method. Specifically, copper, which is a material to be plated, is connected to the anode, and an electroless plating film 2001, which is a material to be plated, is connected to the cathode, and immersed in a plating solution. Then, a direct current voltage is applied between the two electrodes to pass a current, and copper is deposited on the surface of the electroless plating film 2001. Thereafter, as shown in FIG. 15D, the conductive layer 21 (see FIG. 5C) is formed by removing the plating resist 2002 using, for example, a predetermined stripping solution and then removing the unnecessary electroless plating film 2001. .
 なお、電解めっきのためのシード層は無電解めっき膜に限られず、無電解めっき膜2001に代えて、スパッタ膜等をシード層として用いてもよい。 Note that the seed layer for electrolytic plating is not limited to the electroless plating film, and a sputtered film or the like may be used as the seed layer instead of the electroless plating film 2001.
 その他の点についても、上記LED基板100及び発光モジュール1000の構成、及びその構成要素の種類、性能、寸法、材質、形状、層数、又は配置等は、本発明の趣旨を逸脱しない範囲において任意に変更することができる。 With respect to other points as well, the configurations of the LED substrate 100 and the light emitting module 1000, and the types, performances, dimensions, materials, shapes, number of layers, and arrangements of the components are arbitrary within the scope of the present invention. Can be changed.
 LED素子200の実装方法は、フリップチップに限られず任意である。例えばワイヤボンディングにより、LED素子200が実装されてもよい。 The mounting method of the LED element 200 is not limited to the flip chip and is arbitrary. For example, the LED element 200 may be mounted by wire bonding.
 基板10の形状及び材料は、基本的に任意である。例えば基板10は、セラミックからなってもよい。また、異種材料からなる複数の層から構成されていてもよい。 The shape and material of the substrate 10 are basically arbitrary. For example, the substrate 10 may be made of ceramic. Moreover, you may be comprised from the several layer which consists of a different material.
 上記実施形態では、LED基板100が1つの導体層(導体層21)のみ有するプリント配線板であったが、基板10をコア基板にして多層化された多層プリント配線板にしてもよい。 In the above embodiment, the LED substrate 100 is a printed wiring board having only one conductor layer (conductor layer 21). However, a multilayer printed wiring board that is multilayered using the substrate 10 as a core substrate may be used.
 また、各導体層の材料は、上記のものに限定されず、用途等に応じて変更可能である。例えば導体層の材料として、銅以外の金属又は非金属の導体材料を用いてもよい。 Moreover, the material of each conductor layer is not limited to the above, and can be changed according to the application. For example, a metal material other than copper or a non-metal conductor material may be used as the material of the conductor layer.
 LED素子200は、青色LEDや紫外LEDに限られず、他の波長のLEDであってもよい。 The LED element 200 is not limited to a blue LED or an ultraviolet LED, but may be an LED having another wavelength.
 LED基板100及び発光モジュール1000の製造工程は、図3のフローチャートに示した順序や内容に限定されるものではなく、本発明の趣旨を逸脱しない範囲において任意に順序や内容を変更することができる。また、用途等に応じて、必要ない工程を割愛してもよい。 The manufacturing process of the LED substrate 100 and the light emitting module 1000 is not limited to the order and contents shown in the flowchart of FIG. 3, and the order and contents can be arbitrarily changed without departing from the gist of the present invention. . Moreover, you may omit the process which is not required according to a use etc.
 図16は、本発明の他の実施形態において、ブラスト処理の前に保護フィルムを除去するLED基板の製造方法を示すフローチャートである。残留物1004(図9参照)は、例えば無機物(シリカ及び反射材粒子)で構成され、シリコーン樹脂層11は、例えば反射材粒子を含有する。残留物1004は、例えばシリコーン樹脂層11よりも薄く形成される。このため、残留物1004は、シリコーン樹脂層11よりも、ブラスト処理で除去され易い。このため、図16に示すように、ブラスト処理の前に保護フィルム1003(図8参照)を除去してもよい。ただし、ブラスト処理によるシリコーン樹脂層11のダメージを小さくするためには、ブラスト処理後に保護フィルム1003を除去することが好ましい。 FIG. 16 is a flowchart showing a method of manufacturing an LED substrate in which the protective film is removed before blasting in another embodiment of the present invention. The residue 1004 (see FIG. 9) is composed of, for example, inorganic substances (silica and reflector particles), and the silicone resin layer 11 contains, for example, reflector particles. The residue 1004 is formed thinner than the silicone resin layer 11, for example. For this reason, the residue 1004 is more easily removed by blasting than the silicone resin layer 11. For this reason, as shown in FIG. 16, you may remove the protective film 1003 (refer FIG. 8) before a blast process. However, in order to reduce the damage of the silicone resin layer 11 due to the blast treatment, it is preferable to remove the protective film 1003 after the blast treatment.
 上記実施形態や変形例等は、任意に組み合わせることができる。用途等に応じて適切な組み合わせを選ぶことが好ましい。例えば図14A及び図14Bに示すレーザ照射態様と、図15A~図15Dに示す導体層の形成方法と、図16に示す製造方法と、を組み合わせてもよい。 The above embodiments and modifications can be arbitrarily combined. It is preferable to select an appropriate combination according to the application. For example, the laser irradiation mode shown in FIGS. 14A and 14B, the conductor layer forming method shown in FIGS. 15A to 15D, and the manufacturing method shown in FIG. 16 may be combined.
 以上、本発明の実施形態について説明したが、設計上の都合やその他の要因によって必要となる様々な修正や組み合わせは、「請求項」に記載されている発明や「発明を実施するための形態」に記載されている具体例に対応する発明の範囲に含まれると理解されるべきである。 The embodiment of the present invention has been described above. However, various modifications and combinations required for design reasons and other factors are not limited to the invention described in the “claims” or the “mode for carrying out the invention”. It should be understood that it is included in the scope of the invention corresponding to the specific examples described in the above.
 本明細書中には、特開2009-130234号公報の内容が取り込まれる。 The contents of JP 2009-130234 A are incorporated in this specification.
 本出願は、2011年4月18日に出願された日本国特許出願第2011-92523号に基づいて優先権を主張し、本出願の明細書中には、日本国特許出願第2011-92523号の明細書、特許請求の範囲、及び図面の内容が取り込まれる。 This application claims priority based on Japanese Patent Application No. 2011-92523 filed on April 18, 2011, and Japanese Patent Application No. 2011-92523 is included in the specification of this application. The contents of the description, claims and drawings are incorporated.
 本発明に係るLED基板の製造方法は、例えば青色LED用又は紫外LED用のLED基板の製造に適している。 The method for producing an LED substrate according to the present invention is suitable for producing an LED substrate for a blue LED or an ultraviolet LED, for example.
 10 基板
 10b フィルド導体
 11 反射材粒子を含有するシリコーン樹脂層
 11a 開口部
 21 導体層
 21a 耐食層
 21c 配線パターン
 21d 配線パターン
 100 LED基板
 200 LED素子
 200a 半田
 1000 発光モジュール
 1001 導体層
 1002 エッチングレジスト
 1002a 開口部
 1003 保護フィルム
 1004 残留物
 1005 遮光マスク
 1005a 開口部
 2001 無電解めっき膜
 2002 めっきレジスト
 2002a 開口部
 2003 電解めっき
DESCRIPTION OF SYMBOLS 10 Board | substrate 10b Filled conductor 11 Silicone resin layer containing reflector particle | grains 11a Opening part 21 Conductive layer 21a Corrosion-resistant layer 21c Wiring pattern 21d Wiring pattern 100 LED board 200 LED element 200a Solder 1000 Light emitting module 1001 Conductive layer 1002 Etching resist 1002a Opening part 1003 Protective film 1004 Residue 1005 Shading mask 1005a Opening 2001 Electroless plating film 2002 Plating resist 2002a Opening 2003 Electrolytic plating

Claims (13)

  1.  基材に導体層を形成することと、
     前記導体層を有する基材に、前記導体層を覆い反射材粒子を含有するシリコーン樹脂層を形成することと、
     レーザ光の照射により、前記シリコーン樹脂層に開口部を形成することと、
     ブラスト処理により、前記シリコーン樹脂層の前記開口部に残った残留物を除去することと、
     を含む、
     ことを特徴とするLED基板の製造方法。
    Forming a conductor layer on the substrate;
    Forming a silicone resin layer on the substrate having the conductor layer and covering the conductor layer and containing reflector particles;
    Forming an opening in the silicone resin layer by laser light irradiation;
    Removing the residue remaining in the opening of the silicone resin layer by blasting;
    including,
    A method for manufacturing an LED substrate.
  2.  前記シリコーン樹脂層は、ソルダーレジストである、
     ことを特徴とする請求項1に記載のLED基板の製造方法。
    The silicone resin layer is a solder resist,
    The manufacturing method of the LED board of Claim 1 characterized by the above-mentioned.
  3.  前記レーザ光の照射に先立ち、前記シリコーン樹脂層上に保護フィルムを形成し、
     前記レーザ光の照射では、前記レーザ光が前記保護フィルムを貫通して前記シリコーン樹脂層に前記開口部を形成する、
     ことを特徴とする請求項1又は2に記載のLED基板の製造方法。
    Prior to the laser light irradiation, a protective film is formed on the silicone resin layer,
    In the laser light irradiation, the laser light penetrates the protective film to form the opening in the silicone resin layer.
    The manufacturing method of the LED board of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記ブラスト処理後に前記保護フィルムを除去する、
     ことを特徴とする請求項3に記載のLED基板の製造方法。
    Removing the protective film after the blast treatment;
    The manufacturing method of the LED board of Claim 3 characterized by the above-mentioned.
  5.  前記残留物は、シリカ(SiO)を含む、
     ことを特徴とする請求項1乃至4のいずれか一項に記載のLED基板の製造方法。
    The residue includes silica (SiO 2 ),
    The manufacturing method of the LED substrate as described in any one of Claims 1 thru | or 4 characterized by the above-mentioned.
  6.  前記シリコーン樹脂層は、前記レーザ光の照射前においては、前記導体層を覆っており、
     前記レーザ光の照射及び前記ブラスト処理により、前記シリコーン樹脂層の前記開口部で前記導体層が露出する、
     ことを特徴とする請求項1乃至5のいずれか一項に記載のLED基板の製造方法。
    The silicone resin layer covers the conductor layer before the laser light irradiation,
    The conductor layer is exposed at the opening of the silicone resin layer by the laser light irradiation and the blast treatment.
    The method for manufacturing an LED substrate according to claim 1, wherein:
  7.  前記反射材粒子は、酸化チタンからなる、
     ことを特徴とする請求項1乃至6のいずれか一項に記載のLED基板の製造方法。
    The reflector particles are made of titanium oxide.
    The manufacturing method of the LED substrate as described in any one of Claims 1 thru | or 6 characterized by the above-mentioned.
  8.  前記酸化チタンは、アナターゼ型の酸化チタンである、
     ことを特徴とする請求項7に記載のLED基板の製造方法。
    The titanium oxide is anatase type titanium oxide.
    The manufacturing method of the LED board of Claim 7 characterized by the above-mentioned.
  9.  前記シリコーン樹脂層は、前記反射材粒子として、ジルコニア、アルミナ、シリカの少なくとも1つを含む、
     ことを特徴とする請求項1乃至6のいずれか一項に記載のLED基板の製造方法。
    The silicone resin layer contains at least one of zirconia, alumina, and silica as the reflector particles.
    The manufacturing method of the LED substrate as described in any one of Claims 1 thru | or 6 characterized by the above-mentioned.
  10.  前記レーザ光の光源は、COレーザである、
     ことを特徴とする請求項1乃至9のいずれか一項に記載のLED基板の製造方法。
    The light source of the laser light is a CO 2 laser.
    The method for manufacturing an LED substrate according to any one of claims 1 to 9, wherein:
  11.  前記ブラスト処理に用いる砥粒は、水溶性である、
     ことを特徴とする請求項1乃至10のいずれか一項に記載のLED基板の製造方法。
    The abrasive used for the blast treatment is water-soluble.
    The manufacturing method of the LED substrate as described in any one of Claims 1 thru | or 10 characterized by the above-mentioned.
  12.  前記ブラスト処理に用いる砥粒の平均粒子直径は、0.1~200μmの範囲にある、
     ことを特徴とする請求項1乃至11のいずれか一項に記載のLED基板の製造方法。
    The average particle diameter of the abrasive grains used for the blast treatment is in the range of 0.1 to 200 μm.
    The method for manufacturing an LED substrate according to claim 1, wherein:
  13.  前記LED基板は、青色LED用又は紫外LED用のLED基板である、
     ことを特徴とする請求項1乃至12のいずれか一項に記載のLED基板の製造方法。
    The LED substrate is a blue LED or ultraviolet LED LED substrate,
    The manufacturing method of the LED substrate as described in any one of Claims 1 thru | or 12 characterized by the above-mentioned.
PCT/JP2012/060357 2011-04-18 2012-04-17 Method for producing led substrate WO2012144494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011092523A JP5791947B2 (en) 2011-04-18 2011-04-18 LED substrate manufacturing method
JP2011-092523 2011-04-18

Publications (1)

Publication Number Publication Date
WO2012144494A1 true WO2012144494A1 (en) 2012-10-26

Family

ID=47041600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060357 WO2012144494A1 (en) 2011-04-18 2012-04-17 Method for producing led substrate

Country Status (2)

Country Link
JP (1) JP5791947B2 (en)
WO (1) WO2012144494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396253B2 (en) 2017-03-31 2019-08-27 Nichia Corporation Method for manufacturing light-emitting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585336B2 (en) * 2014-06-19 2019-10-02 三菱電機株式会社 Light source substrate and lighting device
US20190364669A1 (en) * 2018-05-25 2019-11-28 Nichia Corporation Method for manufacturing light emitting module
JP7444537B2 (en) * 2018-12-27 2024-03-06 デンカ株式会社 Method for manufacturing a phosphor substrate, method for manufacturing a light emitting substrate, and method for manufacturing a lighting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291743A (en) * 1992-04-14 1993-11-05 Nitto Denko Corp Manufacture of printed circuit board
JP2004165226A (en) * 2002-11-08 2004-06-10 Toyoda Gosei Co Ltd Method of manufacturing group iii nitride compound semiconductor light emitting device
JP2006210887A (en) * 2004-12-28 2006-08-10 Sharp Corp Light emitting device, and illumination apparatus and display apparatus using light emitting device
JP2007157798A (en) * 2005-11-30 2007-06-21 Kyocera Corp Light emitting device
JP2008258296A (en) * 2007-04-03 2008-10-23 Sony Corp Light-emitting device and light source device
WO2010150880A1 (en) * 2009-06-26 2010-12-29 株式会社朝日ラバー White color reflecting material and process for production thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347429A (en) * 2004-06-02 2005-12-15 Ktech Research Corp Manufacturing method of printed circuit board
JP5472726B2 (en) * 2009-02-24 2014-04-16 日立化成株式会社 Wiring board, electronic component package and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291743A (en) * 1992-04-14 1993-11-05 Nitto Denko Corp Manufacture of printed circuit board
JP2004165226A (en) * 2002-11-08 2004-06-10 Toyoda Gosei Co Ltd Method of manufacturing group iii nitride compound semiconductor light emitting device
JP2006210887A (en) * 2004-12-28 2006-08-10 Sharp Corp Light emitting device, and illumination apparatus and display apparatus using light emitting device
JP2007157798A (en) * 2005-11-30 2007-06-21 Kyocera Corp Light emitting device
JP2008258296A (en) * 2007-04-03 2008-10-23 Sony Corp Light-emitting device and light source device
WO2010150880A1 (en) * 2009-06-26 2010-12-29 株式会社朝日ラバー White color reflecting material and process for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396253B2 (en) 2017-03-31 2019-08-27 Nichia Corporation Method for manufacturing light-emitting device

Also Published As

Publication number Publication date
JP5791947B2 (en) 2015-10-07
JP2012227292A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP2012151191A (en) Wiring board for led, light emitting module, manufacturing method of the wiring board for the led, and manufacturing method of the light emitting module
JP5670250B2 (en) LED substrate, light emitting module, device having light emitting module, method for manufacturing LED substrate, method for manufacturing light emitting module, and method for manufacturing device having light emitting module
WO2012144492A1 (en) Led substrate, light-emitting module, method for producing led substrate, and method for producing light-emitting module
JP6116949B2 (en) WIRING BOARD FOR MOUNTING LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, MANUFACTURING METHOD FOR WIRING BOARD FOR LIGHT EMITTING ELEMENT MOUNTING, AND MANUFACTURING METHOD FOR LIGHT EMITTING DEVICE
TW201208513A (en) Method for manufacturing wiring board
CN1750737A (en) Printed circuit board having chip package mounted theron and method of fabricating same
JP5791947B2 (en) LED substrate manufacturing method
JP7457657B2 (en) Light emitting board and lighting device
CN109673109A (en) A kind of LED circuit board production method
KR101678337B1 (en) Printed circuit board sinking heat and reflection light for led
JP2018056456A (en) Printed board, light-emitting device, and methods for manufacturing the same
JP6556009B2 (en) Light emitting element substrate, module, and method for manufacturing light emitting element substrate
JP6572083B2 (en) Light emitting element substrate, module, and method for manufacturing light emitting element substrate
KR101780793B1 (en) Manufacturing method for reflection layer of substrate of flip chip type light emitting diode
US9837342B2 (en) Multilayer wiring board and method for manufacturing same
JP2017069546A (en) Light-emitting element substrate and module
US12040436B2 (en) Phosphor substrate, light emitting substrate, and lighting device
KR101125655B1 (en) Heat radiant rigid pcb and method for manufacturing the same
JP7054021B2 (en) Printed circuit boards and light emitting devices and their manufacturing methods
US20230335685A1 (en) Phosphor board, light-emitting substrate, and lighting apparatus
JP5186709B2 (en) LED board
US20220052233A1 (en) Phosphor substrate, light emitting substrate, and lighting device
US20140183565A1 (en) Light-Emitting Module Board and Manufacturing Method of the Light-Emitting Module Board
WO2020017124A1 (en) Printed circuit board and method for manufacturing same
JP2022029731A (en) Wiring board and component built-in wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774901

Country of ref document: EP

Kind code of ref document: A1