WO2012144451A1 - 照明装置および表示装置 - Google Patents

照明装置および表示装置 Download PDF

Info

Publication number
WO2012144451A1
WO2012144451A1 PCT/JP2012/060240 JP2012060240W WO2012144451A1 WO 2012144451 A1 WO2012144451 A1 WO 2012144451A1 JP 2012060240 W JP2012060240 W JP 2012060240W WO 2012144451 A1 WO2012144451 A1 WO 2012144451A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination
guide plate
exit surface
luminance
Prior art date
Application number
PCT/JP2012/060240
Other languages
English (en)
French (fr)
Inventor
滋規 田中
亮 荒木
良信 平山
柳 俊洋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012144451A1 publication Critical patent/WO2012144451A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Definitions

  • the present invention relates to an illumination device that can be used as a backlight of a liquid crystal display device.
  • the liquid crystal display device includes a display panel and an illumination device (backlight).
  • the image displayed on the liquid crystal panel is illuminated by the illumination light of the illumination device, so that the image can be viewed on the liquid crystal panel. Is done.
  • the display quality of the screen is worse when viewed from an angle than when viewed from the front. This is because, as shown in FIG. 18, the luminance of the illumination light of the illuminating device peaks in the front direction of the screen (viewing angle 0) and decreases in the oblique direction of the screen (direction in which the viewing angle increases). This is one factor.
  • FIG. 18 shows the relationship between the luminance of the lighting device and the viewing angle. The vertical axis represents relative luminance when the peak luminance is 100, and the horizontal axis represents the viewing angle.
  • Patent Document 1 As a liquid crystal display device that allows a person in the front direction of the screen and a person in an oblique direction of the screen to visually recognize an image with high display quality, the one described in Patent Document 1 is known.
  • the directivity of the luminance of the illumination light of the illuminating device is divided into a narrow directivity having a luminance peak in the front direction of the screen and a polarization directivity having a luminance peak in the diagonal direction on both sides of the screen.
  • JP 2008-123925 (published May 29, 2008)
  • Patent Document 1 since the directivity of the luminance of the illumination light of the illumination device is switched between narrow directivity and polarization directivity, it can be applied simultaneously to a person in the front direction of the screen and a person in the oblique direction of the screen. The image cannot be viewed with high display quality.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an illuminating device capable of simultaneously irradiating high-intensity illumination light over a wide range and a display device using the illuminating device. is there.
  • an illumination device includes a plurality of illumination units having different luminance peak directions of illumination light, and the plurality of illumination units emit illumination light so that the illumination lights overlap each other. It is characterized by injection.
  • the illumination light is emitted from a plurality of illumination means having different luminance peak directions of the illumination light so that the illumination lights overlap each other. Therefore, the illumination light of this illuminating device becomes illumination light having a plurality of luminance peak directions, and becomes illumination light having high luminance simultaneously over a wide range.
  • the illumination light of a plurality of illuminating means is overlapped as in the above configuration, thereby eliminating the bias in the luminance peak direction and illuminating with a wide luminance viewing angle. Realizing light.
  • the illumination device includes a plurality of illumination units having different luminance peak directions of illumination light, and the plurality of illumination units emit illumination light so that the illumination light overlaps.
  • FIG. 1 is a schematic configuration diagram illustrating an overall configuration of a liquid crystal display device 100 according to Embodiment 1.
  • FIG. (A), (b) is the schematic block diagram of BL unit 20, (a) shows the case where the diffusion sheet 1a is used as the optical sheet 10 of FIG. 1, (b) shows the optical of FIG. A case where a lens sheet (prism sheet) 1b is used as the sheet 10 is shown. It is the figure which showed an example of the brightness
  • FIG. 6 is a diagram showing an example of luminance directivity characteristics of the BL unit 20 (a diagram in the case of P> Q).
  • FIG. 10 is a diagram showing still another example of the luminance directivity characteristic of the BL unit 20 (a diagram in the case of P ⁇ Q). It is a schematic block diagram which shows the whole structure of the liquid crystal display device 100B which concerns on Embodiment 2.
  • FIG. It is a figure explaining the structure of the lens sheet 10a used as the optical sheet 10 of FIG. It is a figure explaining the structure of the micro lens array 10b used as the optical sheet 10 of FIG. It is a figure explaining the structure of the diffusion sheet 10c used as the optical sheet 10 of FIG.
  • FIG. It is a schematic block diagram which shows the whole structure of the liquid crystal display device 100B which concerns on Embodiment 3.
  • FIG. It is a figure explaining the modification of 10 C of optical sheets of FIG. It is a figure explaining the characteristic of the liquid crystal display device 100B which concerns on Embodiment 4.
  • FIG. It is a figure explaining the characteristic of the liquid crystal display device 100E which concerns on Embodiment 5.
  • FIG. It is a schematic block diagram which shows the whole structure of the liquid crystal display device 100F which concerns on Embodiment 6.
  • FIG. It is a schematic block diagram which shows the whole structure of the liquid crystal display device 100G which concerns on Embodiment 7.
  • FIG. It is the figure which showed an example of the luminance directivity characteristic of the illumination light of the conventional illuminating device.
  • FIGS. 1 to 7 The first embodiment of the present invention will be described with reference to FIGS. 1 to 7 as follows. Descriptions of configurations other than those described in the following specific items may be omitted as necessary. However, in the case where they are described in other items, the configurations are the same. For convenience of explanation, members having the same functions as those shown in each item are given the same reference numerals, and the explanation thereof is omitted as appropriate.
  • FIG. 1 is a schematic configuration diagram showing an overall configuration of a liquid crystal display device 100 according to the present embodiment.
  • the liquid crystal display device 100 includes a liquid crystal panel 5 and a backlight unit 20 (hereinafter referred to as a BL unit 20) (illumination device) that illuminates the liquid crystal panel 5.
  • a BL unit 20 backlight unit 20
  • the upper left and lower sides of the display screen of the liquid crystal panel 5 are referred to as “A side”, “B side”, “C side”, and “D side”, respectively.
  • the liquid crystal panel 5 has, for example, a rectangular display area 5a on the front surface SUFO, and displays an image on the display area 5a based on image data input from the outside.
  • the liquid crystal panel 5 can be configured as, for example, a dot matrix type liquid crystal panel in which a large number of pixels are arranged in a lattice pattern.
  • the liquid crystal panel 5 is disposed on the light emission surface SUF2 side of the BL unit 20, and the display area 5a is illuminated by the backlight light (illumination light) L emitted from the BL unit 20, so that the display area 5a is illuminated.
  • the displayed image is displayed so as to be visible.
  • the BL unit 20 is disposed, for example, on the back surface (the surface opposite to the front surface SUF0) SUF3 of the liquid crystal panel 5, and irradiates the liquid crystal panel 5 with the backlight light L to display an image displayed on the liquid crystal panel 5. It illuminates.
  • the BL unit 20 includes a plurality of (for example, two) illumination units 20a and 20b (illumination means) having different luminance peak directions, and backlight light emitted from the illumination units 20a and 20b.
  • the liquid crystal panel 5 is irradiated with the backlight light L in which La and Lb are superimposed.
  • the backlight light L is generated by superimposing the plurality of backlight lights La and Lb having different luminance peaks, so that the backlight light L has high luminance simultaneously over a wide range. It becomes.
  • the lighting units 20a and 20b are arranged so as to overlap each other so that the normal directions of the light emitting surfaces are aligned in the same direction.
  • the illumination units 20a and 20b are arranged so as to overlap each other when the liquid crystal panel 5 is viewed in plan (in plan view).
  • the illumination unit 20a is, for example, a surface-emitting type, and has a luminance peak in a direction different from the normal direction of the light-emitting surface (light emission surface) SUF2 (for example, two directions inclined at a predetermined angle on both sides of the AB from the normal direction). It is a lighting unit.
  • the lighting unit 20a is disposed on the back side of the liquid crystal panel 5.
  • the lighting unit 20a includes a light guide plate 2 (first light guide plate), light sources 4A and 4B (first light sources) respectively disposed on end surfaces 2a and 2b on both sides of the light guide plate 2, for example, and a front surface SUF4 of the light guide plate 2. And an optical sheet 1 disposed on the side.
  • the light guide plate 2 is a member that receives the light L4A and L4B emitted from each of the two light sources 4A and 4B and guides the received light from the light emitting surface SUF4 to the light incident surface SUF1 of the optical sheet 1.
  • the light guide plate 2 is formed in a plate shape having a rectangular shape in plan view by a transparent member, and is disposed so that one main surface SUF4 faces the liquid crystal panel 5 side.
  • the end surface 2a on the A side of the light guide plate 2 is a light incident surface on which the light L4A from the light source 4A is incident (hereinafter also referred to as the light incident surface 2a).
  • the B-side end surface 2b of the light guide plate 2 is a light incident surface on which the light L4B from the light source 4B is incident (hereinafter also referred to as the light incident surface 2b).
  • the front surface SUF4 of the light guide plate 2 is a light emitting surface that emits light Lt (hereinafter also referred to as a light emitting surface SUF4).
  • the back surface SUF5 of the light guide plate 2 is a light incident surface on which the backlight light Lb from the illumination unit 20b is incident (hereinafter also referred to as a light incident surface SUF5).
  • the light guide plate 2 has a plate shape in the present embodiment, but various shapes such as a wedge shape and a ship shape can be used. Moreover, as a constituent material of the light guide plate 2, a synthetic resin having a high transmittance such as a methacrylic resin, an acrylic resin, a polycarbonate resin, a polyester resin, or a vinyl chloride resin can be used. As the light guide plate 2, it is possible to use a light output surface SUF4 having a mirror surface, for example, and the other back surface SUF5 having a rough surface, for example.
  • the light guide plate 2 is located near the light sources 4A and 4B (from both ends 2a and 2b side of the light guide plate 2) toward a place far from the light sources 4A and 4B so as to become a uniform surface light source. ) Is a surface with concavo-convex sparseness, and the distant portion (near the center of the light guide plate 2) is densely concavo-convex so that light is emitted uniformly from the light exit surface SUF4 to the upper right or upper left. It may be.
  • a method of forming the unevenness on the back surface SUF5 of the light guide plate 2 a method of forming the light guide plate 2 by injection molding using an uneven mold, or a light guide member having a flat surface in advance is used.
  • the method include molding by injection molding or cast method, and printing dedicated ink so as to make projections by screen printing.
  • the light source 4 ⁇ / b> A is provided at a position where the light L ⁇ b> 4 ⁇ / b> A is emitted from the A side to the light guide plate 2 (that is, the front surface of the end surface 2 a of the light guide plate 2).
  • the light source 4B is provided at a position where the light L4B is emitted from the B side to the light guide plate 2 (that is, the front surface of the end surface 2b of the light guide plate 2). That is, the light sources 4A and 4B are arranged to face each other in the left-right direction with respect to the paper surface, as shown in FIG.
  • the direction in which the light L4A from the light source 4A is emitted is the right direction (B side), and the direction in which the light L4B from the light source 4B is emitted is the left direction (A side).
  • the luminance directivity of the backlight light La from the illumination unit 20a can be made symmetrical.
  • the light sources 4A and 4B LEDs (Light-Emitting-Diodes) are used in the present embodiment, but a CCFT (Cold-Cathode-Fluorescent Tube) or a surface light source such as electroluminescence is used. Also good.
  • the light sources 4A and 4B are assumed to be at least two independent LEDs.
  • the light sources 4A and 4B are CCFT, a U-shaped fluorescent tube may be used, and the single light tube in which the light source 4A and the light source 4B are connected to each other may be used.
  • two L-shaped fluorescent tubes may be used in combination.
  • the light sources 4A and 4B may include a reflector (not shown).
  • the inner surface of the reflector has a parabolic shape, and the light sources 4A and 4B are arranged at the focal position.
  • the optical sheet 1 changes the optical path of the outgoing light Lt from the light guide plate 2 depending on its optical characteristics. That is, by adjusting the optical characteristics of the optical sheet 1, the directions of the luminance peaks in the two directions of the illumination unit 20a can be adjusted (changed).
  • the optical sheet 1 is disposed on the light emitting surface SUF4 side of the light guide plate 2.
  • the optical sheet 1 includes a light incident surface SUF1 on which the emitted light Lt from the light emitting surface SUF4 of the light guide plate 2 is incident, and a light emitting surface SUF2 on which the light Lt incident from the light incident surface SUF1 is emitted. And have. Further, the light incident surface SUF1 and the light emitting surface SUF2 face each other in the vertical direction with respect to the paper surface.
  • the optical sheet 1 has, for example, an emission angle ⁇ of the light La emitted from the light emission surface SUF2 and an incident angle of the incident light Lt incident on the light incidence surface SUF1 (that is, the light guide plate).
  • 2 has an optical characteristic ( ⁇ ⁇ ) that is smaller than the angle L of light Lt emitted from the light exit surface SUF2.
  • the light Lt is light that is emitted from the light exit surface SUF4 of the light guide plate 6 while the light L4A and L4B emitted from the light sources 4A and 4B propagates through the light guide plate 6.
  • the present invention is not limited to this, and the optical sheet 1 has optical characteristics satisfying ⁇ ⁇ ⁇ . There may be.
  • optical sheet 1 having such optical characteristics include a diffusion sheet 1a shown in FIG. 2 (a) or a lens sheet 1b as a prism sheet shown in FIG. 2 (b).
  • FIG. 2A shows a configuration of a BL unit 20 using the diffusion sheet 1a as the optical sheet 1 (hereinafter, the BL unit 20 is referred to as a BL unit 20A), and FIG. 2B shows the optical sheet.
  • 1 shows a configuration of a BL unit 20 using a lens sheet 1b as 1 (hereinafter, the BL unit 20 is referred to as a BL unit 20B).
  • a diffusion sheet 1a shown in FIG. 2A is configured by mixing a fine uneven shape on the sheet surface (light incident surface SUF1 or light emitting surface SUF2) and a scattering substance inside.
  • the diffusion sheet 1a is composed of a transparent resin as a base material (base material) and a light scattering agent (scattering fine particles) dispersed in the transparent resin.
  • thermoplastic resin As said transparent resin used for the diffusion sheet 1a, a thermoplastic resin, a thermosetting resin, etc. can be used, for example, for example, a polycarbonate resin, an acrylic resin, a fluorine-type acrylic resin, a silicone type acrylic resin, an epoxy
  • An acrylate resin, polystyrene resin, cycloolefin polymer, methylstyrene resin, fluorene resin, polyethylene terephthalate (PET), polypropylene, acrylonitrile styrene copolymer, acrylonitrile polystyrene copolymer, or the like can be used.
  • the light scattering agent scattering fine particles
  • transparent fine particles made of an inorganic substance or a resin can be used.
  • transparent fine particles made of the inorganic material include fine particles made of oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), magnesium oxide (MgO), and titania, or calcium carbonate and barium sulfate. Other particulates can be used.
  • transparent fine particles made of the above resin examples include acrylic resin, styrene resin, acrylic styrene resin or a cross-linked product thereof; melamine formaldehyde resin; polytetrafluoroethylene, perfluoroalkoxy resin, tetrafluoroethylene-hexafluoropropylene copolymer, poly Fluororesin such as fluorovinylidene and ethylenetetrafluoroethylene copolymer; or particles made of silicone resin can be used.
  • the scattering fine particles having an average particle diameter (particle diameter) of the same order as the wavelength of visible light can contribute to light scattering.
  • the particle size of the scattering fine particles needs to be 100 nm or more.
  • the particle diameter of each scattering fine particle is preferably on the order of larger than the wavelength of visible light, and is preferably 1 ⁇ m or more. Therefore, the average particle diameter of the scattering fine particles is preferably 1 ⁇ m or more, and more preferably about 2 ⁇ m.
  • the scattering fine particles for expressing the light scattering property are mixed in the transparent resin by about 5% by mass.
  • the mixing ratio of the scattering fine particles is slightly different depending on the desired degree of light scattering property (for example, defined by the haze value), but if it greatly exceeds 5% by mass, the haze value increases unnecessarily. The distance that light propagates through the diffusion sheet 1a is extended, and the transmittance is extremely reduced.
  • the thickness of the diffusion sheet 1a is preferably 0.1 to 5 mm.
  • the thickness of the diffusion sheet 1a is 0.1 to 5 mm, optimal light scattering properties and luminance can be obtained, which is preferable in terms of optical characteristics.
  • the thickness is less than 0.1 mm, the desired light scattering property cannot be exhibited.
  • the thickness exceeds 5 mm, the amount of resin is large, and thus the luminance is lowered due to absorption.
  • the diffusion sheet 1a of the present embodiment has a haze value of 75% and a total light transmittance of 86%, but a haze value of 70% or more and a total light transmittance of 50% or more. It is preferable that
  • thermoplastic resin When a thermoplastic resin is used as the transparent resin, air bubbles may be used as the light scattering agent.
  • the internal surface of the bubble formed inside the thermoplastic resin causes diffused reflection of light, and light scattering properties equivalent to or higher than when scattering particles are dispersed can be exhibited. Therefore, the film thickness of the diffusion sheet 1a can be made thinner.
  • Examples of such a diffusion sheet 1a include white PET and white PP.
  • White PET is a resin that is incompatible with PET, fillers such as titanium oxide (TiO 2 ), barium sulfate (BaSO 4 ), and calcium carbonate are dispersed in PET, and then the PET is stretched by a biaxial stretching method. By doing so, bubbles are generated around the filler to form.
  • the diffusion sheet 1a made of a thermoplastic resin only needs to be stretched in at least one axial direction. This is because bubbles can be generated around the filler by stretching in at least one axial direction.
  • thermoplastic resin examples include acrylonitrile polystyrene copolymer, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, cyclohexanedimethanol copolymer polyester resin, isophthalic acid copolymer polyester resin.
  • Polyester resins such as sporoglycol copolymer polyester resin and fluorene copolymer polyester resin, polyolefin resins such as polyethylene, polypropylene, polymethylpentene and alicyclic olefin copolymer resins, acrylic resins such as polymethyl methacrylate, polycarbonate , Polystyrene, polyamide, polyether, polyesteramide, polyetherester, polyvinyl chloride, cycloolefin poly Chromatography, and copolymers and these ingredients, also it can be used like a mixture of these resins are not particularly limited.
  • the thickness of the diffusion sheet 1a is preferably 25 to 500 ⁇ m.
  • the thickness of the diffusion sheet 1a is less than 25 ⁇ m, it is not preferable because the sheet is insufficiently squeezed and wrinkles are easily generated in the manufacturing process. Further, when the thickness of the diffusion sheet 1a exceeds 500 ⁇ m, there is no particular problem with the optical characteristics, but the rigidity is increased, so that it is difficult to process into a roll shape, and the slit cannot be easily formed. This is not preferable because the advantage of the thinness obtained is reduced.
  • the diffusion sheet 1a may have a fine concavo-convex structure formed on the light incident surface SUF1 or the light emitting surface SUF2.
  • a method of forming this fine concavo-convex structure when forming the diffusion sheet 1a, by applying pressure to a mold for shaping the fine concavo-convex structure by a coextrusion forming method or an injection molding method, And a method of transferring the fine concavo-convex structure to the diffusion sheet 1a.
  • the fine concavo-convex structure there is a method in which the light incident surface SUF1 or the light exit surface SUF2 of the diffusion sheet 1a is molded using a radiation curable resin such as UV (Ultra Violet) curable resin. More specifically, after the diffusion sheet 1a is formed as a plate-like member by the coextrusion forming method, a fine uneven structure is formed by UV forming the uneven shape on the light incident surface SUF1 or the light exit surface SUF2 of the diffusion sheet 1a. can do.
  • a radiation curable resin such as UV (Ultra Violet) curable resin.
  • the surface state of the light incident surface SUF1 or the light exit surface SUF2 is often expressed by roughness as roughness, but here, the surface state is defined as haze value and unevenness spacing Sm value (hereinafter referred to as “Sm value”). It shows with.
  • the haze value is defined by JIS K 7136, and is represented by an average value when measured five times using a haze meter.
  • the Sm value is defined by the surface roughness standard JIS B0601-2001, and is a contact type surface roughness meter. Means an average value when measured under the condition of a cut-off value of 2.0 mm.
  • the unevenness interval is fine but the unevenness roughness is insufficient, and the light surface scattering becomes weak. If it exceeds 900 ⁇ m, the unevenness interval is wide and the roughness becomes rough. Scattering becomes stronger, but it leads to lower front luminance.
  • the surface roughness of the light incident surface SUF1 or the light exit surface SUF2 is regular, it is advantageous in obtaining a certain scattering effect as compared with the case where the surface roughness is irregular. It becomes easy.
  • the surface condition of the mold is adjusted and transferred in-line at the time of injection molding or extrusion molding. And a method of blasting an abrasive. Further, when the light scattering agent is bleed out under the extrusion conditions, the concentration and particle diameter of the scattering fine particles and the thickness of the scattering layer are adjusted.
  • a thermoplastic resin is heated and melted with an extruder, extruded from a T-die, and formed into a plate shape.
  • the coextrusion forming method is used when the diffusion sheet 1a is a laminated plate.
  • lamination extrusion is performed from a lamination die such as a feed block die or a manifold die, and the diffusion sheet 1a is formed into a multilayer plate shape. Mold.
  • the diffusion sheet 1a can adjust the degree of diffusing action of the diffusion sheet 1a by adjusting the density of scattering particles in the diffusion sheet 1a or the density of fine irregularities on the surface of the diffusion sheet 1a. Then, by adjusting the degree of the diffusion action of the diffusion sheet 1a, the magnitude of the emission angle ⁇ of the light La emitted from the light emission surface SUF2 of the diffusion sheet 1a (and hence the luminance peak direction of the light La) is adjusted. Can do.
  • a plurality of prism rows 1c are formed on the light emission surface SUF2 side of the sheet base material 1d, and the ridge lines (prisms) of the prism row 1c of the present embodiment. Is arranged perpendicular to the opposing direction of the light sources 4A and 4B (that is, parallel to both end faces 2a and 2b of the light guide plate 2).
  • the size of the outgoing angle La of the outgoing light La when the light Lt is emitted from the light outgoing surface SUF2 side is determined by the refraction action at the prism row 1c to the light incident surface SUF1 of the lens sheet 1b.
  • the incident angle is smaller than the incident angle of the incident light Lt (that is, the outgoing angle of the outgoing light Lt from the light outgoing surface SUF4 of the light guide plate 2) ⁇ .
  • the luminance peak direction of the light La can be adjusted by adjusting the refracting action in the prism row 1c.
  • the cross section of the prism row 1c is an isosceles triangle, the apex angle (prism apex angle) is 80 to 100 degrees, and the refractive index is 1. 5.
  • the emission angle ⁇ approaches 0 degrees.
  • the lens sheet 1b can also adjust the magnitude
  • the optical sheet 1 makes the light Lt incident on the light incident surface SUF1 with the emission angle ⁇ of the light La emitted from the light emission surface SUF2 with respect to the facing direction of the light sources 4A and 4B.
  • the optical characteristic is made smaller than the incident angle ⁇ (that is, the emission angle ⁇ of the light Lt emitted from the light emission surface SUF4).
  • Light is emitted as LaB.
  • the backlight light La of the illumination unit 20a is directed from the light exit surface SUF2 in a direction different from the normal direction of the light exit surface SUF2 (here, from the normal direction to both sides of the AB).
  • the backlight light has a luminance peak in two directions inclined at a predetermined angle ( ⁇ A).
  • FIG. 3 is a graph in which the vertical axis represents the relative luminance of the backlight light La of the illumination unit 20a (the luminance with the peak luminance being 100) and the horizontal axis represents the viewing angle (that is, the luminance direction of the backlight light La). It is a graph showing the characteristics).
  • the backlight light La has a relative luminance of peak luminance at a viewing angle ⁇ P, and a relative luminance of X at a viewing angle of 0.
  • the viewing angle when the liquid crystal panel 5 is viewed from the frontal direction (normal direction of the light emitting surface SUF2), the viewing angle is 0 degree, and when the viewing angle is inclined from 0 degree to the A side, Is ⁇ , and when the viewing angle is inclined from 0 ° to the B side, the angle is +.
  • the illumination unit 20b is, for example, a surface emission type, and is an illumination unit having a luminance peak in the normal direction of the light emitting surface (light emitting surface) SUF6. As shown in FIG. 1, the illumination unit 20b is arranged on the back side of the illumination unit 20a.
  • the illumination unit 20 b includes a diffusion plate 6, one or more (for example, a plurality) light sources 7 (second light sources) disposed on the back side of the diffusion plate 6, and a reflection member 8 disposed on the back side of the light source 7. It has.
  • the diffusing plate 6 is a light having a luminance peak in the normal direction of the light emitting surface SUF6 of the illumination unit 20b, and the light change from the light source 7 is moderate with respect to the deviation from the luminance peak direction.
  • the light is converted into light (in other words, light with reduced luminance unevenness) Lb.
  • the diffusing plate 6 is formed in a rectangular plate shape in plan view by a transparent member, and is disposed so that one main surface UF6 faces the light guide plate 2 side.
  • the back surface SUF7 of the diffuser plate 6 is a light incident surface on which the light L7 from each light source 7 is incident (hereinafter also referred to as the light incident surface SUF7), and the front surface SUF6 of the diffuser plate 6 emits the light Lb. It is a light exit surface (hereinafter also referred to as a light exit surface SUF6).
  • the diffusing plate 6 has a transparent resin as a base material, and a fine concavo-convex shape is formed on the surface (light incident surface SUF7 or light emitting surface SUF6) of the base material, or A scattering material is mixed inside the base material.
  • the material of the base material for example, the same material as the base material of the diffusion sheet 1a can be used.
  • said scattering material the same thing as the said scattering material of the diffusion sheet 1a can be used, for example.
  • Each light source 7 is arranged on the light incident surface SUF7 side of the diffusing plate 6 so as to be evenly distributed, for example. Moreover, as each light source 7, the light source comprised similarly to each light source 4A, 4B of the illumination unit 20a can be used.
  • the reflection member 8 is disposed on the back side of the light source 7.
  • the reflecting member 8 reflects the light leaking from the light incident surface SUF7 of the diffusing plate 6.
  • the surface shape of the reflecting member 8 is a flat shape.
  • a film made of a polyester resin or a polyolefin resin, or a white film is used as a constituent material of the reflecting member 8.
  • a pigment such as titanium oxide, barium sulfate, calcium carbonate, aluminum hydroxide, magnesium carbonate, aluminum oxide is added to the plastic resin so as to be white. It is formed into a film or sheet. It is also possible to use a resin in which an inorganic filler such as calcium carbonate or titanium oxide is contained, a film is formed, and this is stretched to form a large number of microvoids.
  • the light L7 emitted from the light source 7 enters the diffusion plate 6 from the light incident surface SUF7, and is scattered by the diffusion plate 6 (more specifically, the scattering material or diffusion in the diffusion plate 6). Scattered by the fine uneven shape on the surface of the plate 6) and emitted from the light exit surface SUF6 as light Lb. Due to the scattering action of the diffusing plate 6, the outgoing light Lb emitted from the light outgoing surface SUF6 is more likely to be emitted in the normal direction of the light outgoing surface SUF6 on average. In this way, the backlight light Lb of the illumination unit 20b becomes backlight light having a luminance peak from the light exit surface SUF6 to the normal direction of the light exit surface SUF6, as shown in FIG.
  • the backlight light Lb has a relative luminance of peak luminance at a viewing angle of 0, and a relative luminance of X at a viewing angle of ⁇ Q.
  • the angle when the liquid crystal panel 5 is viewed from the front direction is set to a viewing angle of 0 degrees, and when the viewing angle is tilted from the 0 degree to the A side, the angle is set to ⁇ .
  • the angle is set to +.
  • the backlight light Lb emitted from the illumination unit 20b is transmitted through the illumination unit 20a (that is, transmitted through the light guide plate 2 and the optical sheet 1) and is emitted in front of the illumination unit 20a.
  • the backlight lights La and Lb of the illumination units 20a and 20b are overlapped with each other on the liquid crystal panel 5 side of the light exit surface SUF2 of the illumination unit 20a, and the overlapped backlight light is backlit by the BL unit 20.
  • Light is emitted from the light exit surface SUF2 as light L.
  • the backlight light L of the BL unit 20 becomes backlight light having the luminance directivity characteristics of the illumination units 20a and 20b, for example, as shown in FIG. 5 (that is, the method of the light emitting surface SUF2).
  • the backlight unit has a luminance peak in the linear direction (direction of viewing angle 0) and each direction inclined by a predetermined angle ( ⁇ P) on both sides of AB from the normal direction.
  • the BL unit is set so that the luminance of the backlight light L is simultaneously increased over a wide range (-A to + A).
  • FIG. 5 is a graph showing the luminance directivity characteristics of the backlight light L of the BL unit 20, where the vertical axis represents the relative luminance of the backlight light L and the horizontal axis represents the viewing angle.
  • the luminance directivity characteristics of the BL unit 20 shown in FIG. 5 are such that the luminance of the backlight light L is a peak luminance at a viewing angle of 0, and the luminance of the backlight light L is slightly lower than the peak luminance at a viewing angle of ⁇ P. However, this is a case where there is a relationship of viewing angle P> viewing angle Q.
  • the luminance directivity characteristic of BL unit 20 has a peak luminance of backlight light in the range of viewing angle ⁇ P to + P.
  • the luminance directivity characteristic of the BL unit 20 is such that the luminance of the backlight light L becomes the peak luminance at the viewing angle ⁇ P, and the backlight at the viewing angle 0.
  • the brightness of the light beam L becomes a brightness Z slightly lower than the peak brightness.
  • the viewing angle characteristics of the liquid crystal panel 5 are shown in FIG. 6 by determining the angle P and the luminance Z in consideration of the relationship between the liquid crystal transmittance of the liquid crystal panel 5 and the viewing angle characteristics. Can be.
  • the luminance (relative luminance) of the backlight light L is the viewing angle within the luminance half value (that is, the luminance range between the peak luminance and the half value of the peak luminance).
  • the graph has no inflection points. Therefore, the backlight light L with high luminance can be secured over a wide viewing angle range. Note that it is desirable that the luminance of the backlight light L does not have an inflection point when the viewing angle is in the range of ⁇ 60 ° to 60 °.
  • the luminance of the backlight light L has an inflection point with respect to the viewing angle within the luminance half value, but in a state where the liquid crystal panel 5 is irradiated and emitted from the liquid crystal panel 5. Due to the characteristics of the liquid crystal panel 5, there is no inflection point in at least one of the viewing angle range within the luminance half-value in that state and the viewing angle range of ⁇ 60 ° to 60 °. .
  • the backlight unit having the characteristics shown in FIG. 7 is one in which the backlight unit alone has an inflection point in consideration of the transmittance-viewing angle characteristics of the liquid crystal panel 5.
  • the display device does not have an inflection point in combination with the transmittance-viewing angle characteristics of the liquid crystal panel 5.
  • backlight light having a luminance peak in the viewing angle 0 direction (hereinafter referred to as first backlight light), for example, a luminance peak in the viewing angle ⁇ 45 ° direction.
  • Backlight light (hereinafter referred to as “second backlight light”) having the first and second backlight lights overlapped with each other at a viewing angle within the luminance half-value. On the other hand, it has an inflection point.
  • the first backlight light has a narrow directivity (that is, the luminance directivity has an extremely steep mountain shape with a viewing angle of 0).
  • the luminance peak direction (viewing angle 0) of the first backlight light and the luminance peak direction (eg viewing angle ⁇ 45) of the second backlight light for example, viewing angles 20 to 25.
  • a viewing angle having extremely low luminance that is, luminance lower than a half value of the peak luminance
  • a lens sheet or a prism sheet for intentionally increasing the directivity of light is not used. Therefore, the backlight light Lb of the illumination unit 20b is prevented from becoming narrow directivity. Furthermore, the narrow directivity of the backlight light Lb of the illumination unit 20b is further reduced by the optical sheet 1 and the diffusion plate 6. Therefore, as described above, the backlight light L does not have an inflection point with respect to the viewing angle within the luminance half value.
  • the BL unit 20 is composed of two illumination units 20a and 20b, but may be composed of three or more illumination units.
  • the BL unit 20 can be configured as the following configurations 1 and 2.
  • the BL unit 20 is configured by arranging the illumination unit 20a, the illumination unit 20as (the configuration is described below, not shown), and the illumination unit 20b in the order of 20a, 20as, and 20b from the display panel 5 side.
  • the illumination unit 20as is obtained by omitting the optical sheet 1 in the illumination unit 20a and changing the luminance peak direction to a direction different from the luminance peak direction of each of the illumination units 20a and 20b.
  • the lighting unit 20aB (the configuration is explained below, not shown), the lighting unit 20aA (the configuration is explained below, not shown), and the lighting unit 20b are arranged in the order of 20aB, 20aA, 20b from the display panel 5 side.
  • the BL unit 20 is configured.
  • the liquid crystal display device 100B according to the present embodiment is obtained by adding an optical sheet between the light guide plate 2 and the diffusion plate 6 in the first embodiment.
  • the liquid crystal display device 100B will be described with reference to FIGS.
  • FIG. 8 is a block diagram illustrating an overall configuration of the liquid crystal display device 100B
  • FIG. 9 is a diagram illustrating an example of the optical sheet 10 of FIG.
  • the illumination unit 20bB of the present embodiment has a configuration in which the optical sheet 10 is further provided on the light exit surface SUF6 side of the diffusion plate 6 in the illumination unit 20b of the first embodiment.
  • the optical sheet 10 has a function of emitting the light Lb emitted from the light emitting surface SUF6 of the diffusion plate 6 from the light emitting surface SUF9 in the normal direction of the light emitting surface SUF9.
  • the optical sheet 10 is configured as the lens sheet 10a shown in FIG. Similarly to the lens sheet 1c of FIG. 2B, the lens sheet 10a has a transparent sheet base material 10d, and a plurality of prism rows 10e are formed on the light exit surface UF9 side of the sheet base material 10d. Has been configured.
  • the lens sheet 10a is disposed on the light exit surface SUF6 side of the diffuser plate 6 with the light incident surface SUF10 facing the diffuser plate 6 side.
  • the lens sheet 10a is inclined at the light incident surface SUF10 from the normal direction of the light incident surface SUF10 to the facing direction of the light sources 4A and 4B (arrangement direction of each prism column 10c).
  • the incident light Lb undergoes optical path conversion so as to be directed in the normal direction of the light exit surface SUF9, and is emitted from the light exit surface SUF9 as light LbB.
  • the apex angle of the prism array 10e and the refractive index of the prism array 10e are set so that the light Lb emitted from the light exit surface SUF6 of the diffusion plate 6 is directed in the normal direction of the light exit surface SUF. .
  • the luminance directivity characteristic of the illumination unit 20bB has a mountain shape that changes more rapidly than the luminance directivity characteristic of the illumination unit 20b of the first embodiment.
  • the backlight light LbB of the illumination unit 20bB passes through the light guide plate 2 and the optical sheet 1 and is superimposed on the backlight light La of the illumination unit 20a, as in the case of the first embodiment. Is emitted in front of the optical sheet 1.
  • Modification 1 This modification is a modification of the second embodiment.
  • the lens sheet 10 a is used as the optical sheet 10.
  • the microlens array 10 b illustrated in FIG. 10 is used as the optical sheet 10.
  • the microlens array 10b has a transparent sheet base material 10f, and a plurality of hemispherical microlenses 10g are arranged vertically and horizontally on the light exit surface SUF9 side of the sheet base material 10f. Has been configured.
  • the microlens array 10b is arranged on the light exit surface SUF6 side of the diffuser plate 6 with the light incident surface SUF10 facing the diffuser plate 6 side.
  • the microlens array 10b has an optical path so that light Lb incident on the light incident surface SUF10 is inclined from the normal direction of the light incident surface SUF10 and is directed to the normal direction of the light output surface SUF9.
  • the light is converted and emitted as light LbB from the light emitting surface SUF9.
  • the radius of curvature and the refractive index of the microlens 10g are set so that the light Lb emitted from the light exit surface SUF6 of the diffusion plate 6 is directed in the normal direction of the light exit surface SUF9 of the microlens 10g. .
  • Modification 2 This modification is a modification of the second embodiment.
  • the lens sheet 10 a is used as the optical sheet 10
  • the diffusion sheet 10 c illustrated in FIG. 11 is used as the optical sheet 10.
  • the diffusion sheet 10c has a transparent sheet base 10h, and is configured such that scattering particles (for example, optical beads 10i) are contained inside the sheet base 10h.
  • scattering particles for example, optical beads 10i
  • optical bead 10i for example, a spherical bead formed of a transparent material such as resin or glass can be used.
  • beads having different radii are used as the optical beads 10i.
  • the diffusion sheet 10c is arranged on the light exit surface SUF6 side of the diffusion plate 6 with the light incident surface SUF12 facing the diffusion plate 6 side.
  • the diffusion sheet 10 c is configured such that the light Lb incident on the light incident surface SUF ⁇ b> 10 is inclined from the normal direction of the light incident surface SUF ⁇ b> 10 in the normal direction of the light emitting surface SUF ⁇ b> 9.
  • the light path is changed so as to face, and the light is emitted as light LbB from the light emission surface UF9.
  • the radius and refractive index of the beads are set so that the light Lb emitted from the light exit surface SUF6 of the diffusion plate 6 is directed on the normal direction of the light exit surface SUF9 on an average.
  • the diffusion sheet 10c according to the present modification has the light emitted from the light exit surface SUF9 in the normal direction of the light exit surface SUF9 as compared to the lens sheet 10a according to the second embodiment and the microlens array 10b according to Modification 1.
  • the effect on is weakest. That is, the luminance directivity characteristic of the light Lb has a mountain shape that changes more gently from the luminance peak in the case of the diffusion sheet 10c than in the case of the lens sheet 10a and the microlens array 10b.
  • a liquid crystal display device 100C according to the present embodiment is a modification of the second embodiment.
  • the diffusion plate 6 and the light source 7 of the illumination unit 20bB are omitted, and instead, the light guide plate 11 similar to the light guide plate 2 of the illumination unit 20a and the light sources similar to the light sources 4A and 4B. 7A and 7B.
  • the optical sheet 10 of the second embodiment is only one, but the optical sheet 10C of the present embodiment is configured by laminating a plurality (for example, three) of optical sheets 10C1, 10C2, and 10C3. Has been.
  • liquid crystal display device 100C will be described with reference to FIG.
  • the same parts as those of the second embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the illumination unit 20bC includes light sources 7A and 7B (second light guide plates) and light sources 7A and 7B (second light guide plates 11) disposed on end faces 11a and 11b on both sides of the light guide plate 11, for example. 2nd light source), 10 C of optical sheets arrange
  • the light guide plate 11 emits light L7A and L7B from the light sources 7A and 7B incident on the end surfaces 11a and 11b from the light exit surface SUF11 of the light guide plate 11, and the light guide plate 2 of the second embodiment. It is formed similarly.
  • the light sources 7A and 7B are configured in the same manner as the light sources 4A and 4B of the second embodiment.
  • the reflecting member 8 reflects light leaked from the back surface SUF12 of the light guide plate 11, and is the same as the reflecting member 8 of the second embodiment.
  • the optical sheet 10C has a function of emitting the light L11 emitted from the light emitting surface SUF11 of the light guide plate 11 from the light emitting surface SUF15 toward the normal direction of the light emitting surface SUF15 of the optical sheet 10C.
  • the optical sheet 10C is configured by stacking a plurality of (for example, three) optical sheets 10C1, 10C2, and 10C3.
  • each of the optical sheets 10C1, 10C2, and 10C3 is laminated in the order of 10C1, 10C2, and 10C3 from the light guide plate 11 side.
  • the order of lamination is not limited to this.
  • the optical sheet 10C1 is configured as a diffusion sheet, for example. Hereinafter, it is also referred to as a diffusion sheet 10C1.
  • a diffusion sheet 10C1 for example, a sheet in which the diffusion plate 6 in FIG. 1 is adjusted to a suitable thickness or the same sheet as the diffusion sheet 1a in FIG. 2 (a) can be used.
  • Each of the optical sheets 10C2 and 10C3 is configured as a lens sheet. Hereinafter, they are also called lens sheets 10C2 and 10C3. As each of the lens sheets 10C2 and 10C3, for example, the lens sheet 10a of FIG. 9 can be used.
  • the lens sheets 10C2 and 10C3 are overlapped so that their prism rows are directed to the light guide plate 2 and their axes are orthogonal to each other.
  • the lights L7a and L7b from the light sources 7A and 7B are incident on the end surfaces 11a and 11b of the light guide plate 11, propagate through the light guide plate 11, and are emitted from the light exit surface SUF11. . Then, the emitted light L11 passes through the optical sheet 10C, is converted into light having a luminance peak in the normal direction of the light emitting surface SUF11, and is emitted as the backlight light LbC of the illumination unit 20bC.
  • the emitted light L11 from the light emitting surface SUF11 of the light guide plate 11 is light as the emitted light Lt (see FIG. 12) from the light emitting surface SUF11 of the light guide plate 6 of the illumination unit 20a. Since it has a luminance peak in a direction inclined from the normal direction of the emission surface SUF11, it is converted to light LbC having a luminance peak in the normal direction of the light emission surface SUF11 by transmitting through the optical sheet 10C.
  • the backlight light LbC of the illumination unit 20bC is transmitted through the light guide plate 2 and the optical sheet 1 and overlapped with the backlight light La of the illumination unit 20a in the same manner as in the second embodiment. Is emitted in front of the optical sheet 1.
  • the present embodiment has the same effects as those of the second embodiment.
  • Modification 1 This modification is a modification of the third embodiment.
  • the optical sheet 10C is configured by laminating a plurality of optical sheets 10C1, 10C2, and 10C3.
  • the optical sheet 10C is configured by one lens sheet.
  • it is also referred to as a lens sheet 10C.
  • the lens sheet 10C of this modification has a sheet base 10j having transparency, and a plurality of prism rows 10k are formed on the light incident surface SUF13 side of the sheet base 10j. Has been.
  • the lens sheet 10C of the present modification has the prism row 10k side directed to the light guide plate 11 side on the light emitting surface UF11 side of the light guide plate 11, and the axis of the prism row 10k is aligned. It arrange
  • the light L11 emitted from the light exit surface SUF11 of the light guide plate 11 is incident on the lens sheet 10C from the prism surface of the prism array 10k, and is refracted by the prism array 10k.
  • the light exit surface SUF14 ie, the surface opposite to the light entrance surface SUF13 is directed from the light exit surface SUF14 in the normal direction.
  • the output light L11 from the light output surface SUF11 of the light guide plate 11 tends to have a large output angle. Therefore, the incident angle of the incident light L11 on the light incident surface SUF13 of the lens sheet 10C is likely to increase. Therefore, the outgoing light L11 is made incident from the prism surface of the prism row 10k and refracted by the prism row 10k, so that the outgoing light LbC from the light outgoing surface SUF14 is easily directed in the normal direction of the light outgoing surface SUF14.
  • the liquid crystal display device 100D according to the present embodiment is different from the light sources 4A and 7A (that is, the light sources 4A, 4B, and 7A provided in the different light guide plates 2 and 11) in the third embodiment.
  • 7B, a set of adjacent light sources 4A, 7A) is integrated into a single light source 13A
  • the light sources 4B, 7B ie, the light sources 4A, 4B, 7A provided on different light guide plates 2, 11
  • , 7B, another set of adjacent light sources 4B, 7B) is integrated into one light source 13B. Since the other configuration of the liquid crystal display device 100D is the same as that of the third embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the number of light sources can be reduced as compared with the case of the third embodiment, so that the configuration of the liquid crystal display device 100D is simplified and the assembly work is simplified. Can be achieved.
  • the liquid crystal display device 100E in the first embodiment, not only the light sources 4A and 4B are disposed on the end surfaces 2a and 2b on both sides of the AB of the light guide plate 2, respectively.
  • the light sources 4C and 4D are also arranged on the respective end surfaces 2c and 2d on both sides of the CD of the optical plate 2 (that is, the light sources 4A, 4B and 4C are respectively disposed on all the end surfaces 2a, 2b, 2c and 2d of the light guide plate 2).
  • 4D is arranged). Since the other configuration of the liquid crystal display device 100E is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the light sources 4A, 4B, 4C, and 4D are disposed on the end faces 2a, 2b, 2c, and 2d of all four sides of the light guide plate 2, and thus the luminance peak of the illumination unit 20a.
  • the liquid crystal display device 100 ⁇ / b> F As shown in FIG. 16, the liquid crystal display device 100 ⁇ / b> F according to the present embodiment omits the diffusion plate 6 and the optical sheet 1 in the first embodiment (FIG. 1) and moves the light guide plate 2 to the light exit surface SUF ⁇ b> 4 side. A diffusion plate 15 is added.
  • the same thing as the diffusion plate 6 of Embodiment 1 can be used for the diffusion plate 15, for example.
  • the optical sheet 1 can also be used in the configuration of the present embodiment. In such a configuration, the present embodiment is equivalent to a configuration in which the arrangement of the diffusion plate 6 in the first embodiment is changed.
  • the illumination unit 20aF includes the light guide plate 2, the light sources 4A and 4B disposed on the end surfaces 2a and 2b on both sides of the light guide plate 2, and the diffusion disposed on the light exit surface SUF4 side of the light guide plate 2. And a plate 15. Further, the illumination unit 20bF includes one or more light sources 7 arranged on the light incident surface SUF5 side of the light guide plate 2, a reflection member 8 arranged on the rear side of the light source 7, and the light emission surface SUF4 of the light guide plate 2. And a diffusion plate 15 disposed on the side. That is, the diffusion plate 15 is shared by the respective lighting units 20aF and 20bF. Thereby, the number of parts can be reduced, and cost reduction, downsizing, and improvement of light utilization efficiency can be achieved.
  • the BL unit 20 of the present embodiment is configured by the lighting units 20aF and 20bF.
  • the illumination unit 20aF is obtained by changing the optical sheet 1 to the diffusion plate 15 in the illumination unit 20a of the first embodiment, and is substantially the same as the illumination unit 20a. Therefore, the emitted lights L4A and L4B from the respective light sources 4A and 4B of the illumination unit 20aF propagate in order through the light guide plate 2 and the diffusion plate 15 from the light emission surface 13 of the diffusion plate 15 as in the case of the illumination unit 20a. It is emitted as backlight light La. As in the case of the first embodiment, the backlight light La is backlight light having a luminance peak in a direction inclined to both sides of AB with respect to the normal direction of the light emitting surface 13.
  • the emitted light L7 from the light source 7 of the illumination unit 20bF propagates in order through the light guide plate 2 and the diffusion plate 15, and is emitted from the light emission surface 13 of the diffusion plate 15 as backlight light Lb.
  • the backlight light Lb is also backlight light having a luminance peak in the normal direction of the light exit surface 13.
  • the backlight lights La and Lb emitted from the light emission surface SUF13 are overlapped to become the backlight light L.
  • the backlight L is applied to the liquid crystal panel 5.
  • the liquid crystal display device 100G according to the present embodiment is obtained by arranging a plurality of light guide plates 2 (and corresponding light sources 4A and 4B) in the left-right direction in the first embodiment.
  • the two light guide plates 2L and 2R are arranged so as to be adjacent to each other in the horizontal direction (left and right direction, in other words, the direction parallel to the light exit surface SUF4) when the liquid crystal panel 5 is viewed in plan.
  • Each of the light guide plates 2L and 2R has the same configuration as that of the light guide plate 2 of the first embodiment.
  • Light sources 4A and 4B are disposed on both end surfaces 2a and 2b of the light guide plate 2L, respectively.
  • Light sources 4A and 4B are disposed on the end faces 2a and 2b, respectively.
  • the set including one light guide plate 2 and light sources 4A and 4B corresponding to the light guide plate 2 is not limited to two sets as shown in FIG. 17, and is configured with four sets or more depending on the size of the liquid crystal panel 5.
  • the so-called tiles may be arranged.
  • the size of each light guide plate can be reduced by arranging a plurality of light guide plates (light guide plates 2L and 2R in FIG. 17) side by side. The number of reflections of light at can be reduced. Therefore, the liquid crystal panel 5 can be enlarged without causing a change in color (variation) while realizing a reduction in the thickness of the BL unit 20d.
  • the illumination unit 20a in this Embodiment is applicable also to the backlight unit 20 in other embodiment mentioned above.
  • the luminance peak direction of at least one illumination means among the illumination means is a direction different from the normal direction of the light exit surface, and at least one of the remaining illumination means.
  • the luminance peak direction of each illuminating means is preferably a direction along the normal direction of the light exit surface.
  • At least the illumination light in the direction in which the luminance peak direction is different from the normal direction and the illumination light in the direction in which the luminance peak direction is along the normal direction are superimposed.
  • Illumination light having a luminance viewing angle in the direction can be realized.
  • the above-mentioned directions different from the normal direction are two directions symmetrical to the normal direction.
  • illumination light having a luminance viewing angle symmetrical to the normal direction can be realized.
  • the luminance of the illumination light in which the illumination lights of the plurality of illumination means overlap each other is ⁇ 60 degrees or more and 60 degrees when the normal direction of the light exit surface of the illumination means is 0 degree. It is desirable not to have an inflection point in the following ranges.
  • the illumination light in which the illumination lights of the plurality of illumination means are overlapped has a luminance peak direction of the illumination light and a luminance of the illumination light that is half the luminance in the luminance peak direction. It is desirable that there is no luminance inflection point between the emission direction.
  • the light emitting surfaces of the plurality of illumination means overlap in plan view.
  • the plurality of illuminating means are overlapped so that the normal directions of the respective light emitting surfaces are aligned in the same direction, and the luminance peak direction of the illuminating means is the light emission direction.
  • the illumination means having a direction different from the normal direction of the surface includes a first light guide plate in which the light exit surface is directed in the normal direction, and a direction substantially orthogonal to the normal direction in the first light guide plate.
  • a first light source disposed on an end surface, and in the first light guide plate, light from the first light source is incident from the end surface in a direction different from the normal direction from the light exit surface.
  • Illumination light of the illumination means that is emitted while having a luminance peak and is disposed on the back side opposite to the light exit surface of the first light guide plate is incident from the back surface of the first light guide plate and the light. It is desirable to inject from the injection surface.
  • the plurality of illumination means are overlapped so that the normal directions of the respective light exit surfaces are aligned in the same direction, and thus the illumination light is overlapped. Therefore, it is possible to superimpose the illumination light of each illumination means with a simple mechanism.
  • the illumination means whose luminance peak direction is different from the normal direction of the light exit surface thereof includes a first light guide plate, and is in the normal direction of the first light guide plate.
  • a first light source is disposed on an end face in a substantially orthogonal direction, and light from the first light source enters the end face of the first light guide plate and is emitted from the light exit surface of the first light guide plate. That is, the first light source is not disposed on the back surface of the first light guide plate opposite to the light exit surface.
  • the first light guide plate can transmit the illumination light of the illumination means arranged on the back side thereof to the light exit surface side without being blocked by the first light source.
  • the illumination light of each illumination means can be overlap
  • the first light source is disposed on both end faces of the light guide plate in a direction substantially orthogonal to the normal direction.
  • the luminance peak direction of the illumination means can be made symmetrical with respect to the normal direction.
  • the illuminating device is a diffusing plate whose light emission surface is oriented in the normal direction, the illumination means having a luminance peak direction along the normal direction of the light emission surface. And a second light source disposed on the back surface of the diffuser plate opposite to the light exit surface, and the diffuser plate receives light from the second light source from the back surface and emits the light exit surface. It is desirable to emit as illumination light.
  • luminance peak direction is a direction along the normal line direction of the light-projection surface among illumination means can be comprised by simple structure using a diffuser plate and a 2nd light source. .
  • the illuminating means whose luminance peak direction is a direction along a normal direction of the light emitting surface is a back surface of the light guide plate opposite to the light emitting surface. It is preferable that the light guide plate includes light from the second light source that is incident from the back surface and is emitted from the light exit surface.
  • the illumination means whose luminance peak direction is the direction along the normal direction of the light exit surface is configured by the second light source, the number of components can be reduced.
  • the illuminating device further includes a diffusion plate on the light exit surface side of the light guide plate, and the diffuser plate receives light emitted from the light exit surface of the light guide plate from the back surface and emits the light. It is desirable to emit as illumination light from the exit surface.
  • the diffusion plate since the diffusion plate is further provided on the light exit surface side of the light guide plate, the diffusion plate diffuses both the light from the first light source and the light from the second light source emitted from the light guide plate. can do. That is, since each light of the first light source and the second light source can be diffused with one diffusion plate, the number of components can be reduced.
  • the illumination means whose luminance peak direction is a direction along the normal direction of the light exit surface is the second one in which the light exit surface is directed in the normal direction.
  • the illumination means whose luminance peak direction is a direction along the normal direction of the light-projection surface among illumination means is substantially in the normal direction in a 2nd light guide plate and a 2nd light guide plate.
  • the basic configuration is the same as the configuration of the illumination means in which the luminance peak direction is different from the normal direction of the light exit surface. It is a configuration.
  • the configuration of the illumination means whose luminance peak direction is the direction along the normal direction of the light emission surface
  • the configuration of the illumination means whose luminance peak direction is different from the normal direction of the light emission surface is used. can do.
  • the illuminating means whose luminance peak direction is different from the normal direction of the light emitting surface thereof is on the light emitting surface side of the first light guide plate. It is desirable to further include an optical sheet that changes the luminance peak direction of the illumination light emitted from the light exit surface.
  • the luminance peak direction of the illumination light of the illumination unit is changed using the optical sheet, the luminance peak direction of the illumination light of the illumination unit can be changed with a simple configuration.
  • the illumination means whose luminance peak direction is a direction along the normal direction of the light exit surface is arranged on the light exit surface side of the second light guide plate. It is desirable to further include an optical sheet that changes the luminance peak direction of the illumination light emitted from the light exit surface of the second light guide plate to the normal direction.
  • the luminance peak direction of the illumination light of the illumination unit is changed to the illumination direction using the optical sheet, the luminance peak direction of the illumination light of the illumination unit is changed to the illumination direction with a simple configuration. Can be changed.
  • the illumination means includes a light guide plate, a light source is provided on an end surface of the light guide plate, and at least one pair of light sources provided on different light guide plates is adjacent. It is desirable that the light sources are integrally formed with each other.
  • the illuminating means has a rectangular light guide plate in plan view, and a light source is disposed on all end faces of the light guide plate.
  • the illumination unit has a rectangular light guide plate in plan view, and the light source is disposed on all end faces of the light guide plate. Can be contrasted for each of the horizontal and vertical directions.
  • the luminance peak direction is a direction along the normal direction of the light emission surface, and the luminance peak direction is the normal direction of the light emission surface. It is desirable that the illumination means in different directions are superimposed.
  • the display device is a display device using the illumination device, and preferably includes a liquid crystal panel and the illumination device that illuminates the liquid crystal panel.
  • a display device that exhibits the above effects can be configured.
  • the luminance of the illumination light emitted through the liquid crystal panel is in the range of ⁇ 60 degrees to 60 degrees when the normal direction of the light exit surface of the illumination unit is 0 degrees. In this case, it is desirable not to have an inflection point.
  • the illumination light emitted through the liquid crystal panel is emitted such that the luminance peak direction of the illumination light and the luminance of the illumination light are half the luminance in the luminance peak direction. It is desirable not to have an inflection point of luminance between the direction.
  • the emission characteristics of the illumination light are set to desired characteristics. Can be set.
  • the present invention can be used for a liquid crystal display device used for a TV, a monitor, a mobile phone with a one-segment function, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

広範囲に渡って同時に高輝度の照明光を照射できる照明装置を提供する。本発明に係るBLユニット(20)は、照明光の輝度ピーク方向が異なる複数の照明ユニット(20a・20b)を備えている。複数の照明ユニット(20a・20b)は、それらの照明光(La・Lb)が重なり合うように照明光を射出する。

Description

照明装置および表示装置
 本発明は、液晶表示装置のバックライトとして利用可能な照明装置に関する。
 近年、TV、モニタおよびワンセグ機能付き携帯電話等の表示画面は、多くの場合、液晶表示装置により構成されている。
 液晶表示装置は、表示パネルと照明装置(バックライト)とを備えており、照明装置の照明光により、液晶パネルに表示された画像が照らし出されることで、液晶パネルに画像が視認可能に表示される。
 液晶表示装置では、画面の表示品位は、正面から見た場合と比べて、斜めから見た場合は悪くなる。これは、照明装置の照明光の輝度が、図18に示すように、画面の正面方向(視野角0)でピークになり、画面の斜め方向(視野角が大きくなる方向)では小さくなることが1つの要因となっている。なお、図18は、照明装置の輝度と視野角との関係を示しており、縦軸にピーク輝度を100とした場合の相対輝度を取り、横軸に視野角を取っている。
 そのため、TV、モニタおよびワンセグ機能付き携帯電話等の表示画面を複数の人で同時に視認する場合は、画面の正面方向に居る人に比べて、視野角の大きい方向に居る人に対しては、表示品位は悪くなる。
 画面の正面方向に居る人および画面の斜め方向に居る人に、高い表示品位で画像を視認させることができる液晶表示装置として、特許文献1に記載されたものが知られている。
 特許文献1の液晶表示装置では、照明装置の照明光の輝度の指向性を、画面の正面方向に輝度ピークを有する狭指向性と、画面両側の斜め方向に輝度ピークを有する分極指向性とに切り替えることで、画面の正面方向に居る人および画面の斜め方向に居る人に、高い表示品位で画像を視認させている。
日本国公開特許公報「特開2008-123925号(2008年5月29日公開)」
 しかしながら、特許文献1では、照明装置の照明光の輝度の指向性を狭指向性と分極指向性とに切り替えるので、画面の正面方向に居る人および画面の斜め方向に居る人に対して、同時に、高い表示品位で画像を視認させることはできない。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、広範囲に渡って同時に高輝度の照明光を照射できる照明装置および該照明装置を用いた表示装置を提供することにある。
 本発明に係る照明装置は、上記の課題を解決するために、照明光の輝度ピーク方向が異なる複数の照明手段を備え、上記複数の照明手段は、それらの照明光が重なり合うように照明光を射出することを特徴としている。
 上記の構成によれば、照明光の輝度ピーク方向が異なる複数の照明手段から、それらの照明光が重なり合うように照明光が射出される。よって、この照明装置の照明光は、複数の輝度ピーク方向を有する照明光となり、広範囲に渡って同時に高輝度となる照明光になっている。
 即ち、単独の照明手段だけでは輝度ピーク方向に偏りが生じるので、上記の構成のように、複数の照明手段の照明光を重ね合わせることで、輝度ピーク方向の偏りを無くし、広い輝度視角の照明光を実現している。
 本発明に係る照明装置は、照明光の輝度ピーク方向が異なる複数の照明手段を備え、上記複数の照明手段は、それらの照明光が重なり合うように照明光を射出するものである。
 それゆえ、輝度ピーク方向の偏りを無くし、広い輝度視角の照明光を実現するという効果を奏する。
実施の形態1に係る液晶表示装置100の全体構成を示す概略構成図である。 (a),(b)共に、BLユニット20の概略構成図であり、(a)は、図1の光学シート10として拡散シート1aを用いた場合を示し、(b)は、図1の光学シート10としてレンズシート(プリズムシート)1bを用いた場合を示している。 照明ユニット20aの輝度指向特性の一例を示した図である。 照明ユニット20bの輝度指向特性の一例を示した図である。 BLユニット20の輝度指向特性の一例を示した図(P>Qの場合の図)である。 BLユニット20の輝度指向特性の他の一例を示した図(P=Qの場合の図)である。 BLユニット20の輝度指向特性の更に他の一例を示した図(P<Qの場合の図)である。 実施の形態2に係る液晶表示装置100Bの全体構成を示す概略構成図である。 図8の光学シート10として使用されるレンズシート10aの構成を説明する図である。 図8の光学シート10として使用されるマイクロレンズアレイ10bの構成を説明する図である。 図8の光学シート10として使用される拡散シート10cの構成を説明する図である。 実施の形態3に係る液晶表示装置100Bの全体構成を示す概略構成図である。 図12の光学シート10Cの変形例を説明する図である。 実施の形態4に係る液晶表示装置100Bの特徴を説明する図である。 実施の形態5に係る液晶表示装置100Eの特徴を説明する図である。 実施の形態6に係る液晶表示装置100Fの全体構成を示す概略構成図である。 実施の形態7に係る液晶表示装置100Gの全体構成を示す概略構成図である。 従来の照明装置の照明光の輝度指向特性の一例を示した図である。
 〔実施の形態1〕
 本発明の実施の形態1について図1~図7に基づいて説明すれば、次の通りである。以下の特定の項目で説明する構成以外の構成については、必要に応じて説明を省略する場合があるが、他の項目で説明されている場合は、その構成と同じである。また、説明の便宜上、各項目に示した部材と同一の機能を有する部材については、同一の符号を付し、適宜その説明を省略する。
 (構成)
 図1は、本実施の形態に係る液晶表示装置100の全体構成を示す概略構成図である。同図に示すように、液晶表示装置100(表示装置)は、液晶パネル5と、液晶パネル5を照らすバックライトユニット20(以後、BLユニット20と呼ぶ)(照明装置)とを備えている。
 なお、本実施の形態では、液晶パネル5の表示画面の左右下上の各側をそれぞれ「A側」「B側」「C側」および「D側」と称する。
 (液晶パネル5)
 液晶パネル5は、その前面SUF0に例えば矩形形状の表示領域5aを有しており、外部から入力される画像データに基づいて表示領域5a上に画像を表示するものである。液晶パネル5は、例えば、多数の画素を格子状に配列したドットマトリクス型の液晶パネルとして構成することができる。液晶パネル5は、BLユニット20の光出射面SUF2側に配置されており、表示領域5aがBLユニット20から出射されるバックライト光(照明光)Lにより照らし出されることで、表示領域5aに表示された画像を視認可能に表示する。
 (BLユニット20)
 BLユニット20は、例えば液晶パネル5の背面(前面SUF0の反対側の面)SUF3側に配置されており、液晶パネル5にバックライト光Lを照射して、液晶パネル5に表示された画像を照らし出すものである。
 具体的には、BLユニット20は、それぞれ輝度ピーク方向が異なる複数(例えば2つ)の照明ユニット20a,20b(照明手段)を備えており、各照明ユニット20a,20bから出射されたバックライト光La,Lbを重ね合わせたバックライト光Lを液晶パネル5に照射するものである。
 このように、異なる輝度ピークを有する複数のバックライト光La,Lbを重ね合わせてバックライト光Lが生成されることで、バックライト光Lは、広範囲に渡って同時に高輝度となるバックライト光となる。
 各照明ユニット20a,20bは、各々の光出射面の法線方向が同方向に揃うように重ね合わされて配置されている。すなわち、各照明ユニット20a,20bは、液晶パネル5を平面的に視て(平面視で)、互いに重なり合うように配されている。
 (照明ユニット20a)
 照明ユニット20aは、例えば面発光型で、その発光面(光出射面)SUF2の法線方向と異なる方向(例えば当該法線方向からAB両側に所定角度傾いた2つの方向)に輝度ピークを有する照明ユニットである。
 照明ユニット20aは、液晶パネル5の背面側に配置されている。照明ユニット20aは、導光板2(第1導光板)と、導光板2の例えばAB両側の端面2a,2bにそれぞれ配置された光源4A,4B(第1光源)と、導光板2の前面SUF4側に配置された光学シート1とを備えている。
 (導光板2)
 導光板2は、2つの光源4A,4Bのそれぞれから出射した光L4A,L4Bを受け、受けた光を光出射面SUF4から光学シート1の光入射面SUF1へ導光する部材である。導光板2は、透明性部材により平面視矩形状の板状に形成されており、一方の主面SUF4が液晶パネル5側を向くように配置されている。
 導光板2のA側の端面2aは、光源4Aからの光L4Aが入射する光入射面となっている(以後、光入射面2aとも呼ぶ)。導光板2のB側の端面2bは、光源4Bからの光L4Bが入射する光入射面となっている(以後、光入射面2bとも呼ぶ)。導光板2の前面SUF4は、光Ltを出射する光出射面となっている(以後、光出射面SUF4とも呼ぶ)。導光板2の背面SUF5は、照明ユニット20bからのバックライト光Lbが入射する光入射面になっている(以後、光入射面SUF5とも呼ぶ)。
 光源4Aから導光板2の端面2aに入射された光L4Aは、導光板2内を伝搬して、例えば視野角=+70度±5度に相当する角度で、導光板2の光出射面SUF4から出射される。一方、光源4Bから導光板2の端面2bに入射された光L4Bは、例えば視野角=-70度±5度に相当する角度で、導光板2の光出射面SUF4から出射される。
 導光板2は、本実施の形態では、板状であるが、楔形形状、船型形状などの種々の形状のものを使用できる。また、導光板2の構成材料としては、メタクリル樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂等の透過率の高い合成樹脂を使用できる。導光板2としては、光出射面SUF4が例えば鏡面で、他方の背面SUF5が例えば粗面になったものを使用することができる。
 なお、導光板2は、均一な面光源となるように、光源4A,4Bのそれぞれに近いところから遠いところに向けて、光源4A,4Bに近いところ(導光板2の両端面2a,2b側)は凹凸が疎な面とし、遠いところ(導光板2の中央付近)は凹凸が密となるようにして、光出射面SUF4から右斜め上方または左斜め上方に均一に光が出射されるようにしてもよい。
 なお、導光板2の背面SUF5に上記凹凸を形成する方法としては、凹凸をつけた金型を使用して射出成型により導光板2を成形する方法、または、あらかじめ表面がフラットな導光部材を射出成型またはキャスト方式で成形し、スクリーン印刷にて突起をつけるよう専用インクを印刷する等の方法を例示できる。
 (光源4A,4B)
 光源4Aは、A側から導光板2に光L4Aを出射する位置(即ち、導光板2の端面2aの正面)に設けられている。光源4Bは、B側から、導光板2に光L4Bを出射する位置(即ち、導光板2の端面2bの正面)に設けられている。即ち、光源4A,4Bは、図1に示すように、紙面に対して左右方向に互いに対向して配置される。また、光源4Aの光L4Aが出射される方向は、紙面右方向(B側)であり、光源4Bの光L4Bが出射される方向は、紙面左方向(A側)である。これにより、照明ユニット20aからのバックライト光Laの輝度指向性を左右対称にすることができる。
 また、光源4A,4Bとしては、本実施の形態では、LED(Light Emitting Diode)を用いているが、CCFT(Cold Cathode Fluorescent Tube:冷陰極蛍光管)や、エレクトロルミネッセンス等の面光源を用いても良い。光源4A,4Bは、ここでは、少なくとも2つの独立したLEDであるものとしている。しかしながら、光源4A,4Bが、CCFTの場合、コ字状の蛍光管を採用し、光源4Aと光源4Bとが互いに繋がった1つの蛍光管であっても良い。また、光源4A,4Bとして、L字状の蛍光管を2本組み合わせて使用しても良い。
 また、光源4A,4Bは、図示しないリフレクターを備えていても良い。リフレクターは、その内面は放物線状の形状をなし、その焦点位置に光源4A,4Bが配置される。
 (光学シート1)
 光学シート1は、その光学的特性により、導光板2からの出射光Ltの光路を変更するものである。即ち、光学シート1の光学的特性を調整することで、照明ユニット20aの上記2つの方向の輝度ピークの当該方向を調整(変更)することができる。光学シート1は、導光板2の光出射面SUF4側に配置されている。
 図1に示すように、光学シート1は、導光板2の光出射面SUF4からの出射光Ltが入射する光入射面SUF1と、光入射面SUF1から入射した光Ltが出射する光出射面SUF2とを有する。また、光入射面SUF1と光出射面SUF2とは、紙面に対して上下方向に互いに対向している。
 また、図1に示すように、光学シート1は、例えば、その光出射面SUF2から出射する光Laの出射角Φをその光入射面SUF1に入射する入射光Ltの入射角(即ち、導光板2の光出射面SUF2から出射する光Ltの出射角)θよりも小さくする光学的特性を有している(Φ<θ)。なお、光Ltは、光源4A,4Bから出射した光L4A,L4Bが導光板6を伝搬し、導光板6の出射面SUF4から出射した光である。
 なお、本実施の形態では、光学シート1が、Φ<θとなる光学的特性を有する場合について説明するが、このように限定するものではなく、Φ≧θとなる光学的特性を有するものであってもよい。
 このような光学的特性を有する光学シート1としては、図2の(a)に示す拡散シート1a、または、図2の(b)に示すプリズムシートとしてのレンズシート1bを例示することができる。
 図2の(a)は、光学シート1として拡散シート1aを用いたBLユニット20(以後、このBLユニット20をBLユニット20Aと呼ぶ)の構成を示し、図2の(b)は、光学シート1としてレンズシート1bを用いたBLユニット20(以後、このBLユニット20をBLユニット20Bと呼ぶ)の構成を示す。
 (拡散シート1a)
 図2の(a)に示す拡散シート1aは、シート表面(光入射面SUF1または光出射面SUF2)に微細な凹凸形状や内部に散乱物質が混入されて構成されている。
 より具体的には、拡散シート1aは、基材(母材)としての透明樹脂と、この透明樹脂の中に分散された光散乱剤(散乱微粒子)とから構成されている。
 拡散シート1aに使用される上記透明樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂などを用いることができ、例えば、ポリカーボネート樹脂、アクリル系樹脂、フッ素系アクリル樹脂、シリコーン系アクリル樹脂、エポキシアクリレート樹脂、ポリスチレン樹脂、シクロオレフィンポリマー、メチルスチレン樹脂、フルオレン樹脂、ポリエチレンテレフタレート(PET)、ポリプロピレン、アクリルニトリルスチレン共重合体、アクリロニトリルポリスチレン共重合体などを用いることができる。
 また、上記光散乱剤(散乱微粒子)としては、無機物または樹脂からなる透明微粒子を使用することができる。上記の無機物からなる透明微粒子としては、例えば、シリカ(SiO)、アルミナ(Al)、酸化マグネシウム(MgO)、チタニアなどの酸化物からなる微粒子、または、炭酸カルシウム及び硫酸バリウムなどの他の微粒子を使用することができる。
 上記の樹脂からなる透明微粒子としては、アクリル樹脂、スチレン樹脂、アクリルスチレン樹脂若しくはそれらの架橋体;メラミンホルムアルデヒド樹脂;ポリテトラフルオロエチレン、ペルフルオロアルコキシ樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリフルオロビニリデン及びエチレンテトラフルオロエチレン共重合体などのフッ素樹脂;またはシリコーン樹脂からなる粒子を使用することができる。
 ここで、可視光の波長が350nm~800nm程度であることから、平均粒子径(粒径)が可視光の波長と同じオーダー(すなわち100nmオーダー)である散乱微粒子は、光の散乱に寄与し得る。逆に言うと、光散乱性を発現するためには、散乱微粒子の粒径が100nm以上である必要がある。また、光散乱性を好適に発現させるためには、個々の散乱微粒子の粒径は、可視光の波長よりも大きなオーダーであることが好ましく、1μm以上であることが好ましい。従って、散乱微粒子の平均粒径は1μm以上であることが好ましく、2μm程度であることがより好ましい。
 また、拡散シート1aにおいて、光散乱性を発現するための上記散乱微粒子は、透明樹脂中に5質量%程度混入されている。勿論、散乱微粒子の混入比率は、所望する光散乱性の程度(例えばヘイズ値で規定される)によって多少異なるが、5質量%を大きく超えると、ヘイズ値が、いたずらに大きくなり、それに伴って光が拡散シート1a中を伝搬する距離が伸びて透過率が極端に低下してしまう。
 ここで、上記光散乱剤として散乱微粒子を用いた場合には、拡散シート1aの厚さが0.1~5mmであることが好ましい。拡散シート1aの厚みが0.1~5mmである場合には、最適な光散乱性と輝度を得ることができ、光学特性上好ましい。これに対し、厚みが0.1mm未満の場合には、所望の光散乱性を発揮することはできず、5mmを超える場合には、樹脂量が多いため吸収による輝度低下が生じ好ましくない。
 なお、本実施の形態の拡散シート1aは、ヘイズ値が75%であり、全光線透過率は86%であるが、ヘイズ値は、70%以上であり、全光線透過率は、50%以上であることが好ましい。
 これにより、導光板2の出射角θ=+70±5度のとき、拡散シート1aの出射角Φ=+45度を実現できる。
 (気泡)
 なお、上記透明樹脂として熱可塑性樹脂を用いた場合には、上記光散乱剤として気泡を用いても良い。熱可塑性樹脂の内部に形成された気泡の内部表面が光の乱反射を生じさせ、散乱微粒子を分散させた場合と同等以上の光散乱性を発現させることができる。そのため、拡散シート1aの膜厚をより薄くすることが可能となる。
 このような拡散シート1aとして、白色PETや白色PPなどを挙げることができる。白色PETは、PETと相溶性のない樹脂や酸化チタン(TiO)、硫酸化バリウム(BaSO)、炭酸カルシウムのようなフィラーをPETに分散させた後、該PETを2軸延伸法で延伸することにより、該フィラーの周りに気泡を発生させて形成する。
 なお、熱可塑性樹脂からなる拡散シート1aは、少なくとも1軸方向に延伸されていればよい。少なくとも1軸方向に延伸させれば、フィラーの周りに気泡を発生させることができるためである。
 上記熱可塑性樹脂としては、例えば、アクリロニトリルポリスチレン共重合体、ポリエチレンテレフタレート(PET)、ポリエチレン-2、6-ナフレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、シクロヘキサンジメタノール共重合ポリエステル樹脂、イソフタル酸共重合ポリエステル樹脂、スポログリコール共重合ポリエステル樹脂、フルオレン共重合ポリエステル樹脂等のポリエステル系樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン、脂環式オレフィン共重合樹脂等のポリオレフィン系樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリカーボネート、ポリスチレン、ポリアミド、ポリエーテル、ポリエステルアミド、ポリエーテルエステル、ポリ塩化ビニル、シクロオレフィンポリマー、およびこれらを成分とする共重合体、またこれら樹脂の混合物などを用いることができ、特に限定されることはない。
 上記光散乱剤として気泡を用いた場合には、拡散シート1aの厚さが25~500μmであることが好ましい。
 拡散シート1aの厚さが25μm未満の場合には、シートのこしが不足し、製造工程などでしわが発生しやすくなるので好ましくない。また、拡散シート1aの厚さが500μmを超える場合には、光学的特性については特に問題ないが、剛性が増すためロール状に加工しにくい、スリットが容易にできないなど、従来の拡散シートと比較して得られる薄さの利点が少なくなるので好ましくない。
 (微細凹凸構造)
 また、拡散シート1aは、その光入射面SUF1または光出射面SUF2に微細凹凸構造が形成されたものであってもよい。この微細凹凸構造を形成する方法としては、拡散シート1aを形成する際に、共押出形成法または出射成形法により微細凹凸構造を賦型するための金型に圧力をかけることで、当該金型を拡散シート1aに密着させて、微細凹凸構造を拡散シート1aに転写する方法が挙げられる。
 さらに、微細凹凸構造を形成する方法として、拡散シート1aの光入射面SUF1または光出射面SUF2に、UV(Ultra Violet)硬化樹脂等のような放射線硬化樹脂を用いて成形する手法も挙げられる。より具体的には、共押出形成法により拡散シート1aを板状部材として成形した後に、拡散シート1aの光入射面SUF1または光出射面SUF2に凹凸形状をUV成形することで微細凹凸構造を形成することができる。
 光入射面SUF1または光出射面SUF2の表面状態は、凹凸を粗さで数値化することが多いが、ここでは、表面状態をヘイズ値と凹凸間隔Sm値(以下、「Sm値」と呼ぶ)で示す。ヘイズ値は、JIS K 7136で定義され、ヘイズメータを用いて、5回測定した時の平均値で表され、Sm値は、表面粗さ規格JIS B0601-2001で定義され、接触式表面粗さ計を用いて、カットオフ値2.0mmの条件で測定したときの平均値を意味する。
 ヘイズ値は大きければ大きいほど、光入射面SUF1または光出射面SUF2での散乱が多くなり、逆に小さければ、表面散乱が少なくなる。同時にSm値は、小さければ、表面凹凸が細かくなる。ヘイズ値が20%未満であると、光の表面散乱が少なくなる。
 同様にSm値が300μm未満であると、凹凸間隔は細かいが凹凸粗さが不十分となり、光の表面散乱が弱くなり、900μmを超えると、凹凸間隔が広く粗さも粗くなるため、光の表面散乱は強くなるが正面輝度の低下につながる。
 さらには、光入射面SUF1または光出射面SUF2の表面粗さが規則的であると、表面粗さが不規則なものと比較して一定の散乱効果を得る上で有利となり、また、製造が容易となる。
 そのヘイズ値の調整方法は幾つかあり、凹凸を物理的に賦型する場合は、金型の表面状態を調整し、出射成形や押出し成形時にインラインで転写させる方法や、成形後オフラインで熱プレスや研磨剤のブラストを行う方法がある。また、押出条件で光散乱剤をブリードアウトさせる場合は、散乱微粒子の濃度や粒径および散乱層の厚さで調整を行う。
 押出形成法は押出機で熱可塑性樹脂を加熱溶融させ、Tダイから押出し、板状に成形する。共押出形成法は拡散シート1aが積層板の場合に用い、複数台の押出機を用い、フィードブロックダイやマニホールドダイなどの積層ダイから、積層押出しを行い、拡散シート1aを複層板状に成形する。
 拡散シート1aは、拡散シート1a中の散乱粒子の密度または拡散シート1aの表面上の微細な凹凸の密度を調整することで、拡散シート1aの拡散作用の度合いを調整することができる。そして、拡散シート1aの拡散作用の度合いを調整することで、拡散シート1aの光出射面SUF2から出射される光Laの出射角Φの大きさ(従って光Laの輝度ピーク方向)を調整することができる。
 (レンズシート1b)
 次に、図2の(b)に示すレンズシート1bは、シート基材1dの光出射面SUF2側に複数のプリズム列1cが形成されており、本実施の形態のプリズム列1cの稜線(プリズムの軸)は、光源4A,4Bの対向方向に対して垂直に(即ち導光板2の両端面2a,2bに平行に)配置されている。
 このため、光源4A,4Bから出射した光L4A,L4Bの伝搬方向に沿って所定の入射角θでレンズシート1bの光入射面SUF1に入射した光(即ち導光板2の光出射面SUF4から出射角θで出射した光)Ltが光出射面SUF2側から出射するときの出射光Laの出射角Φの大きさは、プリズム列1cでの屈折作用により、レンズシート1bの光入射面SUF1への入射光Ltの入射角(即ち導光板2の光出射面SUF4からの出射光Ltの出射角)θの大きさよりも小さくなる。即ち、プリズム列1cでの屈折作用を調整することで、光Laの輝度ピーク方向を調整することができる。
 なお、本実施の形態のレンズシート1bは、プリズム列1cの断面は、二等辺三角形状であり、その頂角(プリズム頂角)は、80度~100度であり、屈折率は、1.5である。これにより、導光板2の出射角θ=65±5度のとき、拡散シート1aの出射角Φ=45度を実現できる。なお、レンズシート1bの屈折率が大きくなるほど、出射角Φは0度に近づく。
 なお、レンズシート1bは、プリズム列1cの上記プリズム頂角の大きさを調整することでも、出射角Φの大きさ(従って光Laの輝度ピーク方向)を調整することができる。
 照明ユニット20aでは、上述したように、光学シート1が、光源4A,4Bの対向方向に対して、光出射面SUF2から出射する光Laの出射角Φを、光入射面SUF1に入射する光Ltの入射角θ(即ち、光出射面SUF4から出射する光Ltの出射角θ)よりも小さくする光学的特性を有している。
 このため、図1に示すように、光源4Aから発した光L4Aは、光出射面SUF2からその法線方向に対して右側に(B側、例えば、視野角=+45度)傾いた方向に輝度ピークを有するバックライト光LaAとして出射される。これと同時に、光源4Bから発した光L4Bは、光出射面SUF2からその法線方向に対して左側に(A側、例えば、視野角=-45度)傾いた方向に輝度ピークを有するバックライト光LaBとして出射される。そして、出射された各バックライト光LaA,LaBは、重なり合って、例えば視野角=±45°に輝度ピークを有するバックライト光Laとなる。
 このようにして、照明ユニット20aのバックライト光Laは、図3に示すように、光出射面SUF2から、光出射面SUF2の法線方向と異なる方向(ここでは当該法線方向からAB両側に所定角度(±A)傾いた2つの方向)に輝度ピークを有するバックライト光となる。
 なお、図3は、縦軸に照明ユニット20aのバックライト光Laの相対輝度(ピーク輝度を100とした輝度)を取り、横軸に視野角を取ったグラフ(即ちバックライト光Laの輝度指向特性を示したグラフ)である。図3では、バックライト光Laは、視野角±Pで相対輝度がピーク輝度となり、視野角0で相対輝度がXとなっている。
 なお、本願明細書では、液晶パネル5を真正面方向(光出射面SUF2の法線方向)から見る場合の角度を視野角0度とし、視野角0度からA側に傾斜している場合、角度を-としており、視野角0度からB側に傾斜している場合、角度を+としている。
 (照明ユニット20b)
 照明ユニット20bは、例えば面発光型で、その発光面(光出射面)SUF6の法線方向に輝度ピークを有する照明ユニットである。照明ユニット20bは、図1に示すように、照明ユニット20aの背面側に配置されている。照明ユニット20bは、拡散板6と、拡散板6の背面側に配置された1つ以上(例えば複数)の光源7(第2光源)と、光源7の背面側に配置された反射部材8とを備えている。
 (拡散板6)
 拡散板6は、各光源7からの光L7を、照明ユニット20bの光出射面SUF6の法線方向に輝度ピークを有する光であって、輝度ピーク方向からのずれに対して輝度変化が緩やかな光(換言すれば輝度ムラが低減された光)Lbに変換するものである。拡散板6は、透明性部材により平面視矩形状の板状に形成されており、一方の主面SUF6が導光板2側を向くように配置されている。拡散板6の裏面SUF7は、各光源7からの光L7が入射する光入射面となっており(以後、光入射面SUF7とも呼ぶ)、拡散板6の前面SUF6は、上記光Lbを出射する光出射面となっている(以後、光出射面SUF6とも呼ぶ)。
 より具体的には、拡散板6は、基材としての透明樹脂を有し、その基材の表面(光入射面SUF7または光出射面SUF6)に微細な凹凸形状が形成されるか、または、その基材の内部に散乱物質が混入されて構成されている。上記基材の材料としては、例えば、拡散シート1aの上記基材と同じ材料を使用することができる。また、上記散乱物質としては、例えば、拡散シート1aの上記散乱物質と同じものを使用することができる。
 (光源7)
 各光源7は、拡散板6の光入射面SUF7側において、例えば均等に分布するように配置されている。また、各光源7としては、照明ユニット20aの各光源4A,4Bと同様に構成された光源を使用することができる。
 (反射部材8)
 反射部材8は、光源7の背面側に配置されている。反射部材8は、拡散板6の光入射面SUF7から漏れた光を反射するものである。
 反射部材8の表面形状はフラットな形状である。また、反射部材8の構成材料としては、ポリエステル系樹脂もしくはポリオレフィン系樹脂からなるフィルム、または、白色フィルムを使用する。白色フィルムは、フィルムもしくはシート状に成形する前に、例えば、白色となるように、酸化チタン、硫酸バリウム、炭酸カルシウム、水酸化アルミニウム、炭酸マグネシウム、酸化アルミニウムなどの顔料をプラスチック樹脂に添加してフィルム、シートに成形したものである。樹脂に炭酸カルシウムや酸化チタン等の無機充填剤を含有させフィルムを成形し、これを延伸し多数のミクロボイドを形成させたものを使用することもできる。
 この照明ユニット20bでは、光源7から出射された光L7は、光入射面SUF7から拡散板6内に入射し、拡散板6により散乱され(より詳細には、拡散板6内の散乱物質または拡散板6の表面の微細な凹凸形状により散乱され)、光出射面SUF6から光Lbとして出射される。拡散板6の散乱作用により、光出射面SUF6から出射される出射光Lbは、より平均的に、光出射面SUF6の法線方向に出射されやすくなる。このようにして、照明ユニット20bのバックライト光Lbは、図4に示すように、光出射面SUF6から、光出射面SUF6の法線方向に輝度ピークを有するバックライト光となる。
 なお、図4は、縦軸に照明ユニット20bのバックライト光Lbの相対輝度(ピーク輝度を100とした輝度)をとり、横軸に視野角を取ったグラフ(即ちバックライト光Lbの輝度指向特性を示したグラフ)である。図4では、バックライト光Lbは、視野角0で相対輝度がピーク輝度となり、視野角±Qで相対輝度がXとなっている。なお、図4では、図3の場合と同様に、液晶パネル5を真正面方向から見る場合の角度を視野角0度とし、視野角0度からA側に傾斜している場合、角度を-としており、視野角0度からB側に傾斜している場合、角度を+としている。
 (BLユニットの輝度指向特性)
 BLユニット20では、照明ユニット20bから出射されたバックライト光Lbは、照明ユニット20aを透過して(即ち導光板2および光学シート1を透過して)、照明ユニット20aの前方に出射される。これにより、照明ユニット20aの光出射面SUF2の液晶パネル5側で、各照明ユニット20a,20bの各バックライト光La,Lbは互いに重ね合わされ、この重ね合わされたバックライト光がBLユニット20のバックライト光Lとして光出射面SUF2から出射される。
 このようにして、BLユニット20のバックライト光Lは、例えば図5に示すように、各照明ユニット20a,20bの輝度指向特性を兼ね備えたバックライト光となる(即ち、光出射面SUF2の法線方向(視野角0の方向)と、その法線方向からAB両側に所定角度(±P)傾いた各方向とに渡って輝度ピークを有するバックライト光となる。即ち、BLユニット20は、そのバックライト光Lの輝度が広範囲(-Aから+A)に渡って同時に高くなるように設定されたBLユニットである。
 なお、図5は、BLユニット20のバックライト光Lの輝度指向特性を示したグラフであり、縦軸にバックライト光Lの相対輝度を取り、横軸に視野角を取っている。
 図5に示したBLユニット20の輝度指向特性は、視野角0でバックライト光Lの輝度がピーク輝度となり、視野角±Pでバックライト光Lの輝度がピーク輝度から少し低下した輝度になるが、これは、視野角P>視野角Qの関係がある場合である。
 なお、視野角P=視野角Qの場合は、BLユニット20の輝度指向特性は、図6に示すように、視野角-Pから+Pの範囲でバックライト光の輝度はピーク輝度になる。また、視野角P<視野角Qの場合は、BLユニット20の輝度指向特性は、図7に示すように、視野角±Pでバックライト光Lの輝度がピーク輝度となり、視野角0でバックライト光Lの輝度はピーク輝度から少し低下した輝度Zとなる。
 なお、図7の場合では、液晶パネル5の液晶透過率と視野角特性との関係を考慮し、角度Pおよび輝度Zを決定することで、液晶パネル5の視野角特性を図6に示すようにすることができる。
 なお、図5および図6では、バックライト光Lの輝度(相対輝度)は、その輝度半減値内(即ちそのピーク輝度とそのピーク輝度の半減値との間の輝度範囲)において、視野角に対して変曲点を持たないグラフとなっている。よって、広い視野角範囲に渡って高い輝度のバックライト光Lを確保できる。なお、バックライト光Lの輝度は、視野角が-60°以上60°以下の範囲において変曲点を持たないことが望ましい。
 なお、図7については、バックライト光Lの輝度は、その輝度半減値内において、視野角に対して変曲点を持つが、液晶パネル5に照射されて液晶パネル5から射出された状態では、液晶パネル5の特性により、その状態における輝度半減値内の視野角範囲、および、視野角が-60°以上60°以下の範囲のうちの少なくとも何れか一方の範囲において変曲点を持たなくなる。
 すなわち、上記図7に特性を示すバックライトユニットは、液晶パネル5の透過率-視野角特性を考慮し、バックライトユニット単体にあえて変曲点を持たせたものである。そして、かかるバックライトユニットは、液晶パネル5と組み合わされると、液晶パネル5の透過率-視野角特性とあいまって、表示装置としては変曲点を持たなくなるものである。
 この点に関し、従来の構成(特許文献1)では、視野角0方向に輝度ピークを有するバックライト光(以後、第1バックライト光と呼ぶ)と、例えば視野角±45°方向に輝度ピークを有するバックライト光(以後、第2バックライト光と呼ぶ)とを同時点灯させて、それら第1および第2バックライト光を重ね合わせたバックライト光は、その輝度半減値内において、視野角に対して変曲点を持つ。
 これは、従来の構成では、上記第1バックライト光は、狭指向性である(即ち、輝度指向特性が視野角0で極端に急峻な山形になっている)ので、上記第2バックライト光と重ね合わせても、上記第1バックライト光の輝度ピーク方向(視野角0)と、上記第2バックライト光の輝度ピーク方向(例えば視野角±45)との間(例えば視野角20~25°の範囲)に、極端に低い輝度(即ちピーク輝度の半減値よりも低い輝度)となる視野角が発生し、この視野角に対する輝度が変曲点となるからである。
 本実施の形態では、光の指向性を意図的に高めるためのレンズシートやプリズムシート等を用いていない。そのため、照明ユニット20bのバックライト光Lbが狭指向性になることが防止されている。さらに、光学シート1および拡散板6により、照明ユニット20bのバックライト光Lbの狭指向性は、より低減されている。そのため、上述のように、バックライト光Lは、輝度半減値内において、視野角に対して変曲点を持たないようになっている。
 なお、本実施の形態では、BLユニット20は、2つの照明ユニット20a,20bで構成されるが、3つ以上の照明ユニットで構成してもよい。BLユニット20を例えば3つの照明ユニットで構成する場合は、BLユニット20を下記の構成1,2のように構成することができる。
 (構成1)
 照明ユニット20aと照明ユニット20as(下に構成を説明。図示省略。)と照明ユニット20bとを、表示パネル5側から20a,20as,20bの順に配置して、BLユニット20を構成する。
 照明ユニット20asは、照明ユニット20aにおいて光学シート1を省略して、輝度ピーク方向を各照明ユニット20a,20bの輝度ピーク方向と異なる方向に変更したものである。
 (構成2)
 照明ユニット20aB(下に構成を説明。図示省略。)と照明ユニット20aA(下に構成を説明。図示省略。)と照明ユニット20bとを、表示パネル5側から20aB,20aA,20bの順に配置して、BLユニット20を構成する。
 照明ユニット20aBは、照明ユニット20aにおいて光源4Bを省略して、輝度ピーク方向をB側(例えば視野角=+45°)に傾くように変更したものである。また、照明ユニット20aAは、照明ユニット20aにおいて光源4Aおよび光学シート1を省略して、輝度ピーク方向をA側(例えば視野角=-45°)に傾くように変更したものである。
 〔実施の形態2〕
 本実施の形態に係る液晶表示装置100Bは、実施の形態1において、導光板2と拡散板6との間に光学シートを追加したものである。以下、図8および図9を用いて液晶表示装置100Bについて説明する。図8は、液晶表示装置100Bの全体構成を示すブロック図であり、図9は、図8の光学シート10の一例を示した図である。
 本実施の形態の照明ユニット20bBは、実施の形態1の照明ユニット20bにおいて、拡散板6の光出射面SUF6側に、光学シート10を更に備えた構成になっている。
 光学シート10は、拡散板6の光出射面SUF6から出射された光Lbを、光出射面SUF9の法線方向に向けて光出射面SUF9から出射させる作用を有するものである。
 光学シート10は、図9に示したレンズシート10aとして構成されている。レンズシート10aは、図2の(b)のレンズシート1cと同様に、透明性を有するシート基材10dを有し、シート基材10dの光出射面SUF9側に、複数のプリズム列10eが形成されて構成されている。
 レンズシート10aは、拡散板6の光出射面SUF6側において、その光入射面SUF10を拡散板6側に向けて配置されている。
 この配置により、レンズシート10aは、図8に示すように、その光入射面SUF10において光入射面SUF10の法線方向から光源4A,4Bの対向方向(各プレズム列10cの配列方向)に傾いて入射する光Lbを、その光出射面SUF9の法線方向に向くように光路変換して、その光出射面SUF9から光LbBとして出射する。
 なお、プリズム列10eの頂角およびプリズム列10eの屈折率は、拡散板6の光出射面SUF6から出射される光Lbが、光出射面SUFの法線方向に向けられるように設定されている。
 この照明ユニット20bBでは、拡散板6の光出射面SUF6から出射された光Lbは、レンズシート10aを透過することで、レンズシート10aの光出射面SUF9から出射される際、プリズム列10eの配列方向に傾いた出射角が光出射面SUF9の法線方向に向けられて、バックライト光LbBとして出射される。従って、この照明ユニット20bBの輝度指向特性は、実施の形態1の照明ユニット20bの輝度指向特性よりも急峻に変化する山形になる。
 そして、照明ユニット20bBのバックライト光LbBは、実施の形態1の場合と同様に、導光板2および光学シート1を透過し、照明ユニット20aのバックライト光Laと重ね合わされて、バックライト光Lとして、光学シート1の前方に出射される。
 (変形例1)
 この変形例は実施の形態2の変形例である。実施の形態2では、光学シート10としてレンズシート10aを用いたが、この変形例では、光学シート10として、図10に示したマイクロレンズアレイ10bを用いる。
 マイクロレンズアレイ10bは、図10に示すように、透明性を有するシート基材10fを有し、シート基材10fの光出射面SUF9側に、複数の半球状のマイクロレンズ10gが縦横に配設されて構成されている。
 マイクロレンズアレイ10bは、拡散板6の光出射面SUF6側において、その光入射面SUF10を拡散板6側に向けて配置されている。
 マイクロレンズアレイ10bは、図10に示すように、その光入射面SUF10において光入射面SUF10の法線方向から傾いて入射する光Lbを、その光出射面SUF9の法線方向に向くように光路変換して、その光出射面SUF9から光LbBとして出射する。
 なお、マイクロレンズ10gの曲率半径および屈折率は、拡散板6の光出射面SUF6から出射される光Lbが、マイクロレンズ10gの光出射面SUF9の法線方向に向けられるように設定されている。
 以上のように、この変形によっても、実施の形態2と同様の効果を得ることができる。
 (変形例2)
 この変形例は実施の形態2の変形例である。実施の形態2では、光学シート10としてレンズシート10aを用いたが、この変形例では、光学シート10として、図11に示した拡散シート10cを用いる。
 拡散シート10cは、図11に示すように、透明性を有するシート基材10hを有し、シート基材10hの内部に散乱粒子(例えば光学ビーズ10i)が含有されて構成されている。
 光学ビーズ10iは、樹脂またはガラス等の透明性材料により形成された例えば球形のビーズが使用可能である。ここでは、光学ビーズ10iとして、半径の異なるビーズが使用されている。
 拡散シート10cは、拡散板6の光出射面SUF6側において、その光入射面SUF12を拡散板6側に向けて配置されている。
 拡散シート10cは、図11に示すように、その光入射面SUF10において光入射面SUF10の法線方向から傾いて入射する光Lbを、より平均的に、その光出射面SUF9の法線方向に向くように光路変換して、その光出射面SUF9から光LbBとして出射する。
 なお、ビーズの半径および屈折率は、拡散板6の光出射面SUF6から出射される光Lbが、より平均的に、光出射面SUF9の法線方向に向けられるように設定されている。
 以上のように、この変形によっても、実施の形態2と同様の効果を得ることができる。
 なお、本変形例の拡散シート10cは、実施の形態2のレンズシート10aおよび変形例1のマイクロレンズアレイ10bと比べると、光出射面SUF9から出射される光を光出射面SUF9の法線方向に向ける効果は、最も弱くなっている。即ち、光Lbの輝度指向特性は、拡散シート10cの場合の方がレンズシート10aおよびマイクロレンズアレイ10bの場合よりも、輝度ピークからより一層緩やかに変化する山形になる。
 〔実施の形態3〕
 本実施の形態に係る液晶表示装置100Cは、実施の形態2の変形例である。実施の形態2(図8)において、照明ユニット20bBの拡散板6および光源7を省略し、その代わりに、照明ユニット20aの導光板2と同様の導光板11および光源4A,4Bと同様の光源7A,7Bを備えたものである。また、実施の形態2の光学シート10は、1個だけであったが、本実施の形態の光学シート10Cは、複数個(例えば3個)の光学シート10C1,10C2,10C3が積層されて構成されている。
 以下、図12に基づいて液晶表示装置100Cについて説明する。以下では、実施の形態2と同じ部分は同符号を付して説明を省略し、実施の形態2と異なる部分を中心に説明する。
 本実施の形態の照明ユニット20bCは、図12に示すように、導光板11(第2導光板)と、導光板11の例えばAB両側の端面11a,11bにそれぞれ配置された光源7A,7B(第2光源)と、導光板11の前面SUF11側に配置された光学シート10Cと、導光板11の背面SUF12側に配置された反射部材8とを備えている。
 導光板11は、その各端面11a,11bに入射した各光源7A,7Bからの光L7A,L7Bを導光板11の光出射面SUF11から出射するものであり、実施の形態2の導光板2と同様に形成されている。
 各光源7A,7Bは、実施の形態2の各光源4A,4Bと同様に構成されている。
 反射部材8は、導光板11の背面SUF12から漏れた光を反射するものであり、実施の形態2の反射部材8と同じものである。
 光学シート10Cは、導光板11の光出射面SUF11から出射された光L11を、光学シート10Cの光出射面SUF15の法線方向に向けて光出射面SUF15から出射させる作用を有するものである。
 光学シート10Cは、複数(例えば3個)の光学シート10C1,10C2,10C3が積層されて構成される。各光学シート10C1,10C2,10C3は、一例として、導光板11側から順に10C1,10C2,10C3の順で積層されているが、積層順は、このように限定されるものではない。
 光学シート10C1は、例えば拡散シートとして構成されている。以後、拡散シート10C1とも呼ぶ。この拡散シート10C1としては、例えば、図1の拡散板6を適宜厚さに調整したもの、または、図2の(a)の拡散シート1aと同じものを使用することができる。
 各光学シート10C2,10C3はそれぞれ、レンズシートとして構成されている。以後、各レンズシート10C2,10C3とも呼ぶ。各レンズシート10C2,10C3としては、それぞれ、例えば図9のレンズシート10aを使用することができる。
 各レンズシート10C2,10C3は、それらのプリズム列側が導光板2側に向けられ、且つ、それらのプリズム列の軸が互いに直交するように、重ねられている。
 この照明ユニット20bCでは、各光源7A,7Bからの各光L7a,L7bはそれぞれ、導光板11の各端面11a,11bに入射して導光板11内を伝搬して光出射面SUF11から出射される。そして、この出射光L11は、光学シート10Cを透過することで、光出射面SUF11の法線方向に輝度ピークを有する光に変換されて、照明ユニット20bCのバックライト光LbCとして出射される。
 即ち、この照明ユニット20bCでは、導光板11の光出射面SUF11からの出射光L11は、照明ユニット20aの導光板6の光出射面SUF11からの出射光Lt(図12参照)と同様に、光出射面SUF11の法線方向から傾いた方向に輝度ピークを有するので、光学シート10Cに透過させることで、光出射面SUF11の法線方向に輝度ピークを有する光LbCに変換している。
 そして、照明ユニット20bCのバックライト光LbCは、実施の形態2の場合と同様に、導光板2および光学シート1を透過し、照明ユニット20aのバックライト光Laと重ね合わされて、バックライト光Lとして、光学シート1の前方に出射される。
 以上のように、本実施の形態によっても実施の形態2と同様の効果を奏する。
 (変形例1)
 本変形例は、実施の形態3の変形例である。実施の形態3では、光学シート10Cは、複数の光学シート10C1,10C2,10C3を積層して構成されたが、本変形例では、光学シート10Cは、1個のレンズシートで構成される。以後、レンズシート10Cとも呼ぶ。
 本変形例のレンズシート10Cは、図13に示すように、透明性を有するシート基材10jを有し、シート基材10jの光入射面SUF13側に、複数のプリズム列10kが形成されて構成されている。
 また、本変形例のレンズシート10Cは、図13に示すように、導光板11の光出射面SUF11側において、そのプリズム列10k側が導光板11側に向けられ、且つそのプリズム列10kの軸が各光源7A,7Bの対向方向に直交するように、配置される。
 本変形例では、図13に示すように、導光板11の光出射面SUF11からの出射光L11は、レンズシート10Cにおいて、プリズム列10kのプリズム面から入射して、プリズム列10kの屈折作用により、光出射面SUF14(即ち光入射面SUF13の反対側の面)の法線方向に向けられて、光出射面SUF14から出射される。
 本変形例では、導光板11の端面11a,11bから光源7A,7Bの光が入射されるので、導光板11の光出射面SUF11からの出射光L11は出射角が大きくなり易い。従って、レンズシート10Cの光入射面SUF13への入射光L11の入射角も大きくなり易い。そのため、出射光L11をプリズム列10kのプリズム面から入射させてプリズム列10kで屈折させることで、光出射面SUF14からの出射光LbCを光出射面SUF14の法線方向に向け易くしている。
 〔実施の形態4〕
 本実施の形態に係る液晶表示装置100Dは、図14に示すように、実施の形態3において、各光源4A,7A(即ち、異なる導光板2,11に設けられている光源4A,4B,7A,7Bのうち近接する一組の光源4A,7A)を一体化して1個の光源13Aとし、各光源4B,7B(即ち、異なる導光板2,11に設けられている光源4A,4B,7A,7Bのうち近接する他の一組の光源4B,7B)を一体化して1個の光源13Bとしたものである。液晶表示装置100Dの他の構成は、実施の形態3と同じであるので、同一構成要素には同一符号を付して説明は省略する。
 以上のように、本実施の形態によれば、実施の形態3の場合と比べて、光源の数を減らすことができるので、液晶表示装置100Dの構成の簡素化、および、組立作業の簡素化を図ることができる。
 〔実施の形態5〕
 本実施の形態に係る液晶表示装置100Eは、図15に示すように、実施の形態1において、導光板2のAB両側の端面2a,2bにそれぞれ光源4A,4Bを配置するだけでなく、導光板2のCD両側の各端面2c,2dにもそれぞれ光源4C,4Dを配置したものである(即ち、導光板2の全ての端面2a,2b,2c,2dにそれぞれ各光源4A,4B,4C,4Dを配置したものである)。液晶表示装置100Eの他の構成は、実施の形態1と同じであるので、同一構成要素には同一符号を付して説明は省略する。
 以上のように、本実施の形態によれば、導光板2の4辺全ての端面2a,2b,2c,2dに光源4A,4B,4C,4Dが配置されるので、照明ユニット20aの輝度ピークを、光出射面SUF2の法線方向からAB各側に傾いた2つの方向だけでなく、更に、光出射面SUF2の法線方向からCD各側に傾いた2つの方向にも有することできる。故に、液晶パネル5において水平方向だけでなく垂直方向での視角特性の改善を図れる。
 〔実施の形態6〕
 本実施の形態に係る液晶表示装置100Fは、図16に示すように、実施の形態1(図1)において、拡散板6および光学シート1を省略し、導光板2の光射出面SUF4側に拡散板15を追加したものである。
 なお、拡散板15は、例えば実施の形態1の拡散板6と同じものが使用可能である。また、上記光学シート1は、本実施の形態の構成においても用いることが可能である。この様な構成では、本実施の形態は、実施の形態1における拡散板6の配置を変更した構成と同等となる。
 本実施の形態では、照明ユニット20aFは、導光板2と、導光板2の両側の端面2a,2bに配置された光源4A,4Bと、導光板2の光射出面SUF4側に配置された拡散板15とにより構成される。また、照明ユニット20bFは、導光板2の光入射面SUF5側に配置された1つ以上の光源7と、光源7の後側に配置された反射部材8と、導光板2の光射出面SUF4側に配置された拡散板15とにより構成される。即ち、各照明ユニット20aF,20bFで、拡散板15が共有されている。これにより、部品数を低減でき、コスト削減、小型化および光利用効率の向上を図ることができる。
 なお、本実施の形態のBLユニット20は、各照明ユニット20aF,20bFにより構成される。
 照明ユニット20aFは、実施の形態1の照明ユニット20aにおいて、光学シート1を拡散板15に変更したものであり、照明ユニット20aと実質的に同じである。よって、照明ユニット20aFの各光源4A,4Bからの射出光L4A,L4Bは、照明ユニット20aの場合と同様に、導光板2および拡散板15を順に伝搬して拡散板15の光射出面13からバックライト光Laとして射出される。このバックライト光Laは、実施の形態1の場合と同様に、光射出面13の法線方向に対してAB両側に傾いた方向に輝度ピークを有するバックライト光になっている。
 また、照明ユニット20bFの光源7からの射出光L7は、導光板2および拡散板15を順に伝搬して、拡散板15の光射出面13からバックライト光Lbとして射出される。このバックライト光Lbも、実施の形態1の場合と同様に、光射出面13の法線方向に輝度ピークを有するバックライト光になっている。そして、実施の形態1の場合と同様に、光射出面SUF13から射出された各バックライト光La,Lbが重ね合わさってバックライト光Lとなる。このバックライト光Lが液晶パネル5に照射される。
 〔実施の形態7〕
 本実施の形態に係る液晶表示装置100Gは、実施の形態1において、導光板2(およびこれに対応する光源4A,4B)を左右方向に複数配置したものである。
 例えば、図17では、2つの導光板2L,2Rが、液晶パネル5を平面的に見て、横方向(左右方向、換言すれば、光射出面SUF4に平行な方向)に隣り合うように配置されている。各導光板2L,2Rは、実施の形態1の導光板2と同一の構成であり、導光板2Lの両側の端面2a,2bにはそれぞれ光源4A,4Bが配置され、導光板2Rの両側の端面2a,2bにはそれぞれ光源4A,4Bが配置されている。
 なお、1つの導光板2およびこれに対応する光源4A,4Bからなるセットは、図17のように2セットに限定されず、液晶パネル5の大きさ応じて、4セットあるいはそれ以上で構成され、いわゆるタイル状に配置されていてもよい。
 一般に、光は導光板内で複数回の反射を繰り返すと、次第に低波長側の光量が減衰していき、色味が変わってくる。そのため、大型の液晶パネルにおいて導光板を1つ配置した場合、該導光板内での光の反射回数が増大するため、光源に近い側と遠い側とでは色味が大きく変化してしまうという問題が生じる。この点、上記の構成によれば、複数の導光板(図17では、導光板2L,2R)を横並びに配置することで、各導光板のサイズを小さくすることができるため、各導光板内での光の反射回数を少なく抑えることができる。よって、BLユニット20dの薄型化を実現しつつ、色味の変化(バラツキ)を生じさせることなく液晶パネル5を大型化することができる。
 なお、本実施の形態における照明ユニット20aは、上述した他の実施の形態におけるバックライトユニット20にも適用可能であることは言うまでもない。
 本発明に係る照明装置は、上記照明手段のうち、少なくとも1個の照明手段の輝度ピーク方向は、その光射出面の法線方向とは異なる方向であり、残る上記照明手段のうち、少なくとも1個の照明手段の輝度ピーク方向は、その光射出面の法線方向に沿った方向であることが望ましい。
 上記の構成によれば、少なくとも、輝度ピーク方向が上記法線方向とは異なる方向の照明光と、輝度ピーク方向が上記法線方向に沿った方向の照明光とが重ね合わされるので、少なくともそれらの方向に渡った輝度視角の照明光を実現できる。
 本発明に係る照明装置は、法線方向とは異なる上記方向が、当該法線方向に対して対称な2方向であることが望ましい。
 上記の構成によれば、法線方向に対して対称な輝度視角の照明光を実現できる。
 本発明に係る照明装置は、上記複数の照明手段の上記照明光が重なり合った照明光の輝度は、上記照明手段の光射出面の法線方向を0度とした場合、-60度以上60度以下の範囲において、変曲点を有さないことが望ましい。
 本発明に係る照明装置は、上記複数の照明手段の上記照明光が重なり合った照明光は、該照明光の輝度ピーク方向と、該照明光の輝度が該輝度ピーク方向での輝度の半分の輝度となる射出方向との間に、輝度の変曲点を有さないことが望ましい。
 本発明に係る照明装置は、上記複数の照明手段は、平面視において、その光射出面が重なり合っていることが望ましい。
 上記の構成によれば、平面視において光射出面が重なり合うという簡単な配置関係で、各照明手段の照明光を重ね合わせることができる。
 本発明に係る照明装置は、上記複数の照明手段は、各々の光射出面の法線方向が同方向に揃うように重ね合わされており、上記照明手段のうち、輝度ピーク方向が、その光射出面の法線方向とは異なる方向である照明手段は、上記光射出面が上記法線方向に向けられた第1導光板と、上記第1導光板における上記法線方向に略直交する方向の端面に配置された第1光源と、を備えており、上記第1導光板では、上記第1光源からの光が上記端面から入射して上記光射出面からその法線方向とは異なる方向に輝度ピークを有しながら射出し、上記第1導光板における上記光射出面の反対側の背面側に配置する上記照明手段の照明光は、上記第1導光板の上記背面から入射して上記光射出面から射出することが望ましい。
 上記の構成によれば、複数の照明手段は、各々の光射出面の法線方向が同方向に揃うように重ね合わされており、これにより、それらの照明光が重ね合わされる。よって、簡単な仕組みで、各照明手段の照明光を重ね合わせることができる。
 また、照明手段のうち、輝度ピーク方向が、その光射出面の法線方向とは異なる方向である照明手段は、第1導光板を備えており、上記第1導光板における上記法線方向に略直交する方向の端面に第1光源が配置されており、第1光源の光は、上記第1導光板の上記端面に入射して上記第1導光板の光射出面から射出される。即ち、上記第1導光板における光射出面の反対側の背面に、第1光源は配置されない。
 このため、上記第1導光板は、その背面側に配置する照明手段の照明光を、第1光源に遮られることなく、光射出面側に透過させることができる。これにより、各照明手段を各々の光射出面の法線方向が同方向に揃うように重ね合わすことで、各照明手段の照明光を重ね合わせることができる。
 本発明に係る照明装置は、上記第1光源は、上記導光板における上記法線方向に略直交する方向の両側の端面にそれぞれ配置されていることが望ましい。
 上記の構成によれば、第1光源が導光板の両側の端面に配置されるので、第1光源の配置が導光板の当該両側方向に対して対称になる。よって、当該照明手段の輝度ピーク方向を法線方向に対して対称的にできる。
 本発明に係る照明装置は、上記照明手段のうち、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段は、光射出面が上記法線方向に向けられた拡散板と、上記拡散板における上記光射出面の反対側の背面に配置された第2光源と、を備え、上記拡散板は、上記第2光源からの光を上記背面から入射して上記光射出面から照明光として射出することが望ましい。
 上記の構成によれば、拡散板と第2光源とを用いた簡単な構成で、照明手段のうち、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段を構成できる。
 本発明に係る照明装置は、上記照明手段のうち、輝度ピーク方向が、その光射出面の法線方向に沿った方向である照明手段は、上記導光板におけるその光射出面の反対側の背面に配置された第2光源を備え、上記導光板は、上記第2光源からの光を上記背面から入射して上記光射出面から射出することが望ましい。
 上記の構成によれば、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段は、第2光源で構成されるので、部品数を低減できる。
 本発明に係る照明装置は、上記導光板の上記光射出面側に拡散板を更に備え、上記拡散板は、上記導光板の光射出面から射出された光を上記背面から入射して上記光射出面から照明光として射出することが望ましい。
 上記の構成によれば、導光板の光射出面側に拡散板を更に備えるので、その拡散板により、導光板から射出される第1光源の光および第2光源の光の両方の光を拡散することができる。即ち、1つの拡散板で、第1光源および第2光源の各光を拡散できるので、部品数を低減できる。
 本発明に係る照明装置は、上記照明手段のうち、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段は、光射出面が上記法線方向に向けられた第2導光板と、上記第2導光板における上記法線方向に略直交する方向の端面に配置された第2光源と、を備え、上記第2導光板は、上記第2光源からの光を上記端面から入射して上記光射出面から照明光として射出することが望ましい。
 上記の構成によれば、照明手段のうち、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段は、第2導光板と、第2導光板における法線方向に略直交する方向の端面に配置された第2光源とを備えた構成であるが、この基本構成は、輝度ピーク方向がその光射出面の法線方向とは異なる方向である照明手段の構成と同じ構成である。
 よって、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段の構成として、輝度ピーク方向がその光射出面の法線方向とは異なる方向である照明手段の構成を流用することができる。
 本発明に係る照明装置は、上記照明手段のうち、輝度ピーク方向が、その光射出面の法線方向とは異なる方向である照明手段は、上記第1導光板の上記光射出面側に、上記光射出面から射出された照明光の輝度ピーク方向を変更する光学シートを更に備えることが望ましい。
 上記の構成によれば、光学シートを用いて、当該照明手段の照明光の輝度ピーク方向を変更するので、簡単な構成で、当該照明手段の照明光の輝度ピーク方向を変更することができる。
 本発明に係る照明装置は、上記照明手段のうち、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段は、上記第2導光板の上記光射出面側に、上記第2導光板の上記光射出面から射出された照明光の輝度ピーク方向を上記法線方向に変更する光学シートを更に備えることが望ましい。
 上記の構成によれば、光学シートを用いて、当該照明手段の照明光の輝度ピーク方向を照明方向に変更するので、簡単な構成で、当該照明手段の照明光の輝度ピーク方向を照明方向に変更することができる。
 本発明に係る照明装置は、上記照明手段は導光板を有しており、上記導光板の端面には光源が設けられており、異なる導光板に設けられている光源のうち近接する少なくとも一組の光源が、互いに一体的に構成されていることが望ましい。
 上記の構成によれば、異なる導光板に設けられている光源のうち近接する少なくとも一組の光源が、互いに一体的に構成されているので、光源の個数を低減でき、当該照明装置の構成を簡素化することができる。
 本発明に係る照明装置は、照明手段は平面視に於いて四角形の導光板を有しており、上記導光板の全ての端面に光源が配置されることが望ましい。
 上記の構成によれば、照明手段は平面視に於いて四角形の導光板を有しており、上記導光板の全ての端面に光源が配置されるので、当該照明手段の照明光の輝度ピーク特性を水平方向および垂直方向の各々について対照的にできる。
 本発明に係る照明装置は、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段の上記光射出面側に、輝度ピーク方向がその光射出面の法線方向とは異なる方向である照明手段が重ね合わされていることが望ましい。
 本発明に係る表示装置は、上記照明装置を用いた表示装置であって、液晶パネルと、上記液晶パネルを照らす上記照明装置と、を備えることが望ましい。
 上記の構成によれば、上記の効果を奏する表示装置を構成することができる。
 本発明に係る表示装置は、上記液晶パネルを介して射出される照明光の輝度が、上記照明手段の光射出面の法線方向を0度とした場合、-60度以上60度以下の範囲において、変曲点を有さないことが望ましい。
 本発明に係る表示装置は、上記液晶パネルを介して射出される照明光が、該照明光の輝度ピーク方向と、該照明光の輝度が該輝度ピーク方向での輝度の半分の輝度となる射出方向との間に、輝度の変曲点を有さないことが望ましい。
 上記の構成によれば、液晶パネルを備えてなる表示装置において、その照明光の出射特性(角度変化に応じた輝度の変化特性、例えば、変曲点の有無や減衰特性)を所望の特性に設定することができる。
 したがって、広範囲に渡って同時に高輝度の照明光を照射できる表示装置を実現することができる。
 〔付記事項〕
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、TV、モニタおよびワンセグ機能付き携帯電話等に使用される液晶表示装置に利用することができる。
 1,1a,1b,10,10C1,10C2,10C3 光学シート
 2             導光板(第1導光板)
 4A,4B,4C,4D   光源(第1光源)
 5             液晶パネル
 6,15          拡散板
 7             光源(第2光源)
 8             反射部材
 10a           レンズシート
 10b           マイクロレンズアレイ
 10c,10C       拡散シート
 20a,20b,20bB,20bC  照明ユニット(照明手段)
 100,100B,100C 液晶表示装置(表示装置)

Claims (21)

  1.  照明光の輝度ピーク方向が異なる複数の照明手段を備え、
     上記複数の照明手段は、それらの照明光が重なり合うように照明光を射出することを特徴とする照明装置。
  2.  上記照明手段のうち、少なくとも1個の照明手段の輝度ピーク方向は、その光射出面の法線方向とは異なる方向であり、
     残る上記照明手段のうち、少なくとも1個の照明手段の輝度ピーク方向は、その光射出面の法線方向に沿った方向であることを特徴とする請求項1に記載の照明装置。
  3.  法線方向とは異なる上記方向が、当該法線方向に対して対称な2方向であることを特徴とする請求項2に記載の照明装置。
  4.  上記複数の照明手段の上記照明光が重なり合った照明光の輝度は、上記照明手段の光射出面の法線方向を0度とした場合、-60度以上60度以下の範囲において、変曲点を有さないことを特徴とする請求項1から3の何れか1項に記載の照明装置。
  5.  上記複数の照明手段の上記照明光が重なり合った照明光は、該照明光の輝度ピーク方向と、該照明光の輝度が該輝度ピーク方向での輝度の半分の輝度となる射出方向との間に、輝度の変曲点を有さないことを特徴とする請求項1から3の何れか1項に記載の照明装置。
  6.  上記複数の照明手段は、平面視において、その光射出面が重なり合っていることを特徴とする請求項1から5の何れか1項に記載の照明装置。
  7.  上記複数の照明手段は、各々の光射出面の法線方向が同方向に揃うように重ね合わされており、
     上記照明手段のうち、輝度ピーク方向が、その光射出面の法線方向とは異なる方向である照明手段は、
     上記光射出面が上記法線方向に向けられた第1導光板と、
     上記第1導光板における上記法線方向に略直交する方向の端面に配置された第1光源と、を備えており、
     上記第1導光板では、上記第1光源からの光が上記端面から入射して上記光射出面からその法線方向とは異なる方向に輝度ピークを有しながら射出し、
     上記第1導光板における上記光射出面の反対側の背面側に配置する上記照明手段の照明光は、上記第1導光板の上記背面から入射して上記光射出面から射出することを特徴とする請求項1から6の何れか1項に記載の照明装置。
  8.  上記第1光源は、上記導光板における上記法線方向に略直交する方向の両側の端面にそれぞれ配置されていることを特徴とする請求項7に記載の照明装置。
  9.  上記照明手段のうち、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段は、
     光射出面が上記法線方向に向けられた拡散板と、
     上記拡散板における上記光射出面の反対側の背面に配置された第2光源と、
    を備え、
     上記拡散板は、上記第2光源からの光を上記背面から入射して上記光射出面から照明光として射出することを特徴とする請求項1から8の何れか1項に記載の照明装置。
  10.  上記照明手段のうち、輝度ピーク方向が、その光射出面の法線方向に沿った方向である照明手段は、
     上記導光板におけるその光射出面の反対側の背面に配置された第2光源を備え、
     上記導光板は、上記第2光源からの光を上記背面から入射して上記光射出面から射出することを特徴とする請求項7に記載の照明装置。
  11.  上記導光板の上記光射出面側に拡散板を更に備え、
     上記拡散板は、上記導光板の光射出面から射出された光を上記背面から入射して上記光射出面から照明光として射出することを特徴とする請求項10に記載の照明装置。
  12.  上記照明手段のうち、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段は、
     光射出面が上記法線方向に向けられた第2導光板と、
     上記第2導光板における上記法線方向に略直交する方向の端面に配置された第2光源と、
    を備え、
     上記第2導光板は、上記第2光源からの光を上記端面から入射して上記光射出面から照明光として射出することを特徴とする請求項1から8の何れか1項に記載の照明装置。
  13.  上記照明手段のうち、輝度ピーク方向が、その光射出面の法線方向とは異なる方向である照明手段は、
     上記第1導光板の上記光射出面側に、上記光射出面から射出された照明光の輝度ピーク方向を変更する光学シートを更に備えることを特徴とする請求項7または8に記載の照明装置。
  14.  上記照明手段のうち、輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段は、
     上記第2導光板の上記光射出面側に、上記第2導光板の上記光射出面から射出された照明光の輝度ピーク方向を上記法線方向に変更する光学シートを更に備えることを特徴とする請求項12に記載の照明装置。
  15.  上記光学シートが、拡散シート,プリズムシート,マイクロレンズアレイの内の少なくとも1つであることを特徴とする請求項13又は14に記載の照明装置。
  16.  上記照明手段は導光板を有しており、
     上記導光板の端面には光源が設けられており、
     異なる導光板に設けられている光源のうち近接する少なくとも一組の光源が、互いに一体的に構成されていることを特徴とする請求項1から15の少なくとも1項に記載の照明装置。
  17.  照明手段は平面視に於いて四角形の導光板を有しており、上記導光板の全ての端面に光源が配置されることを特徴とする請求項1から16の何れか1項に記載の照明装置。
  18.  輝度ピーク方向がその光射出面の法線方向に沿った方向である照明手段の上記光射出面側に、輝度ピーク方向がその光射出面の法線方向とは異なる方向である照明手段が重ね合わされていることを特徴とする請求項1から17の何れか1項に記載の照明装置。
  19.  請求項1から18の何れか1項に記載の照明装置を用いた表示装置であって、
     液晶パネルと、
     上記液晶パネルを照らす上記照明装置と、
    を備えることを特徴とする表示装置。
  20.  上記液晶パネルを介して射出される照明光の輝度は、上記照明手段の光射出面の法線方向を0度とした場合、-60度以上60度以下の範囲において、変曲点を有さないことを特徴とする請求項19に記載の表示装置。
  21.  上記液晶パネルを介して射出される照明光は、該照明光の輝度ピーク方向と、該照明光の輝度が該輝度ピーク方向での輝度の半分の輝度となる射出方向との間に、輝度の変曲点を有さないことを特徴とする請求項19に記載の表示装置。
PCT/JP2012/060240 2011-04-22 2012-04-16 照明装置および表示装置 WO2012144451A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-096582 2011-04-22
JP2011096582 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144451A1 true WO2012144451A1 (ja) 2012-10-26

Family

ID=47041557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060240 WO2012144451A1 (ja) 2011-04-22 2012-04-16 照明装置および表示装置

Country Status (1)

Country Link
WO (1) WO2012144451A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511616A1 (en) * 2018-01-15 2019-07-17 AU Optronics Corporation Display device
JP2022138154A (ja) * 2021-03-09 2022-09-22 ジオプティカ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 少なくとも2つの動作モードを有するディスプレイ用の照明装置
WO2024152298A1 (zh) * 2023-01-19 2024-07-25 京东方科技集团股份有限公司 背光模组、显示装置、防窥显示装置及其驱动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155783A (ja) * 2005-11-30 2007-06-21 Casio Comput Co Ltd 液晶表示装置
JP2008123925A (ja) * 2006-11-15 2008-05-29 Citizen Electronics Co Ltd バックライトユニット及び表示装置
JP2008235245A (ja) * 2007-02-19 2008-10-02 Mitsubishi Electric Corp バックライト装置および透過型表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155783A (ja) * 2005-11-30 2007-06-21 Casio Comput Co Ltd 液晶表示装置
JP2008123925A (ja) * 2006-11-15 2008-05-29 Citizen Electronics Co Ltd バックライトユニット及び表示装置
JP2008235245A (ja) * 2007-02-19 2008-10-02 Mitsubishi Electric Corp バックライト装置および透過型表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511616A1 (en) * 2018-01-15 2019-07-17 AU Optronics Corporation Display device
US10732452B2 (en) 2018-01-15 2020-08-04 Au Optronics Corporation Display device
JP2022138154A (ja) * 2021-03-09 2022-09-22 ジオプティカ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 少なくとも2つの動作モードを有するディスプレイ用の照明装置
JP7242104B2 (ja) 2021-03-09 2023-03-20 ジオプティカ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 少なくとも2つの動作モードを有するディスプレイ用の照明装置
WO2024152298A1 (zh) * 2023-01-19 2024-07-25 京东方科技集团股份有限公司 背光模组、显示装置、防窥显示装置及其驱动方法

Similar Documents

Publication Publication Date Title
US8408775B1 (en) Light recycling directional control element and light emitting device using the same
US8177408B1 (en) Light filtering directional control element and light fixture incorporating the same
JP5338319B2 (ja) 光学シート、面光源装置、表示装置及び光学シートの製造方法
WO2012144449A1 (ja) バックライトユニット及び表示装置
US10996510B2 (en) Planar lighting device and liquid crystal display device
JP2011090299A (ja) 光学部品、照明装置、及び表示装置
US20140246982A1 (en) Display device, and display device control method
JP2006208930A (ja) 光学シートとそれを用いたバックライト・ユニットおよびディスプレイ
JP2009187904A (ja) 光源ユニット、バックライトユニット及びディスプレイ装置
JP5262490B2 (ja) 光拡散板、光学シート、バックライトユニットおよびディスプレイ装置
JP4684859B2 (ja) 光収束シート、面光源装置
JP5614128B2 (ja) 光学シート、バックライトユニット及びディスプレイ装置
JP5217447B2 (ja) 光源ユニット、バックライトユニット及びディスプレイ装置
JP2010044270A (ja) 光拡散板、光学シート、バックライトユニット及びディスプレイ装置
WO2014203850A1 (ja) 積層体、積層体の製造方法、光源装置用導光体及び光源装置
JP5104459B2 (ja) 光学部材とそれを用いたバックライト・ユニット、ディスプレイ
WO2012144451A1 (ja) 照明装置および表示装置
JP4956933B2 (ja) 光学シートとそれを用いたバックライト・ユニットおよびディスプレイ
JP2010256431A (ja) 積層樹脂シートとそれを用いたバックライトユニットおよびディスプレイ装置
JP2010262770A (ja) 発光シート、及びそれを用いた照明装置、バックライトユニット、ディスプレイ装置
JP2010044269A (ja) 光拡散板、光学シート、バックライトユニット及びディスプレイ装置
JP2011064745A (ja) 光学シート、バックライトユニット及びディスプレイ装置
JP2014086387A (ja) 導光板、導光板を備えたバックライトユニットおよび表示装置
JP5636884B2 (ja) 導光板、バックライトユニット、表示装置、及び導光板の製造方法
JP2011133556A (ja) 光学シート、バックライトユニット及びディスプレイ装置、並びに金型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP