WO2012144317A1 - 放射線撮影装置及び画像処理方法 - Google Patents

放射線撮影装置及び画像処理方法 Download PDF

Info

Publication number
WO2012144317A1
WO2012144317A1 PCT/JP2012/059071 JP2012059071W WO2012144317A1 WO 2012144317 A1 WO2012144317 A1 WO 2012144317A1 JP 2012059071 W JP2012059071 W JP 2012059071W WO 2012144317 A1 WO2012144317 A1 WO 2012144317A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
grating
pixels
imaging apparatus
radiation
Prior art date
Application number
PCT/JP2012/059071
Other languages
English (en)
French (fr)
Inventor
温之 橋本
拓司 多田
村越 大
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2013510932A priority Critical patent/JP5475925B2/ja
Publication of WO2012144317A1 publication Critical patent/WO2012144317A1/ja
Priority to US14/057,836 priority patent/US8767916B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating

Definitions

  • the present invention relates to a radiation imaging apparatus that obtains an image based on a phase change of radiation and an image processing method thereof.
  • Radiation such as X-rays
  • X-rays has a characteristic of decaying depending on the weight (atomic number) of the elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.
  • a general X-ray imaging apparatus includes an X-ray source that emits X-rays and an X-ray image detector that detects X-rays. Take a picture of the line.
  • X-rays emitted from the X-ray source toward the X-ray image detector are absorbed and attenuated when passing through the subject, and then enter the X-ray image detector.
  • an image based on an X-ray intensity change by the subject is detected by the X-ray image detector.
  • the X-ray absorption ability is lower with an element having a smaller atomic number, there is a problem that a change in X-ray intensity is small and a sufficient contrast cannot be obtained in an image in a soft body tissue or soft material.
  • most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in X-ray absorption capacity between the two is small, so that it is difficult to obtain contrast.
  • X-ray phase imaging is a method of imaging the phase change of X-rays, focusing on the fact that the phase change of X-rays incident on the subject is larger than the intensity change. Can also obtain a high-contrast image.
  • an X-ray imaging apparatus in which first and second gratings are arranged in parallel at a predetermined interval between an X-ray source and an X-ray image detector.
  • a phase contrast image is acquired by imaging an X-ray moire image obtained from an X-ray source through the first and second gratings with an X-ray image detector.
  • a fringe scanning method is used.
  • photographing is performed during each stop while the second grating is intermittently moved by a predetermined amount smaller than the grating pitch in a direction substantially perpendicular to the grating direction with respect to the first grating.
  • a plurality of moire images are detected.
  • the amount of X-ray phase change caused by the interaction with the subject is detected, and a phase differential image is generated.
  • a phase contrast image is generated by integrating the phase differential image.
  • the fringe scanning method requires a highly accurate moving mechanism in order to move the first or second grating with a pitch smaller than the grating pitch. For this reason, there is a problem that the apparatus is complicated and expensive. Further, in the fringe scanning method, since it is necessary to perform imaging a plurality of times in order to acquire one phase contrast image, each body moire or vibration of the apparatus occurs during the series of imaging. There is a problem that the subject or the lattice is displaced between the images and the image quality of the phase differential image is deteriorated. Patent Document 1 suggests that a phase differential image is generated from a single moire image obtained by performing one-time imaging without moving the first and second gratings. This method is not described.
  • Patent Document 2 a single moire image is obtained by performing one-time shooting without moving the first and second gratings, and a spectrum corresponding to the Fourier transform and the carrier frequency is obtained for this moire image.
  • a Fourier transform method for obtaining a phase differential image by performing a series of processes of separation and inverse Fourier transform has been proposed.
  • a radiation imaging apparatus of the present invention includes a radiation source that emits radiation, a first grating, a second grating, a radiation image detector, and a phase differential image generation unit. ing.
  • lattice passes a radiation and produces
  • the second grating generates a second periodic pattern image in which moire fringes are generated by partially shielding the first periodic pattern image.
  • the radiation image detector detects the second periodic pattern image by a plurality of pixels arranged two-dimensionally and generates image data.
  • the phase differential image generation unit includes M pixels arranged in a predetermined direction as one group, and is configured by pixel values of a plurality of pixels in each group while shifting the group in the predetermined direction by a number of pixels smaller than M.
  • a phase differential image is generated by calculating the phase of the intensity modulation signal.
  • the phase differential image generation unit preferably calculates the phase of the intensity modulation signal constituted by the pixel values of a plurality of pixels of each group while shifting the group pixel by pixel in a predetermined direction.
  • the predetermined direction is preferably a direction substantially orthogonal to the moire fringes.
  • the number of pixels constituting the group corresponds to an integral multiple of the period of moire fringes.
  • the number of pixels constituting the group corresponds to one cycle of moire fringes.
  • the number of pixels constituting the group may be smaller than the number of pixels corresponding to one cycle of moire fringes.
  • Moire fringes are generated by arranging the second grating so as to be inclined relative to the first grating in the in-lattice direction, and in the grating directions of the first and second gratings. It is preferable that they are substantially orthogonal.
  • the moire fringes are generated by adjusting the positional relationship in the opposing direction of the first and second gratings or the grating pitch of the first and second gratings. It may be substantially parallel to the lattice direction of the lattice.
  • the moire fringes are arranged such that the second grating is inclined relative to the first grating in the grating in-plane direction, and the positional relationship in the opposing direction of the first and second gratings, or These are generated by adjusting the grating pitch of the first and second gratings, and may not be orthogonal to the grating directions of the first and second gratings and may not be parallel to each other.
  • phase contrast image generation unit that generates a phase contrast image by integrating the phase differential image along a direction substantially orthogonal to the grating directions of the first and second gratings.
  • a correction image storage unit that stores a phase differential image generated by the phase differential image generation unit without a subject as a correction image, and a phase generated by the phase differential image generation unit with a subject arranged It is preferable to include a correction processing unit that subtracts the corrected image stored in the corrected image storage unit from the differential image.
  • the phase contrast image is generated by integrating the corrected phase differential image corrected by the correction processing unit along a direction substantially orthogonal to the grating directions of the first and second gratings. It is preferable to include an image generation unit.
  • the first grating is an absorptive grating, and it is preferable to generate the first periodic pattern image by geometrically optically projecting the incident radiation onto the second grating.
  • the first grating may be an absorption type grating or a phase type grating, and may generate a first periodic pattern image by causing a Talbot effect to incident radiation.
  • the radiation image detector is an optical reading method in which a linear reading light source extending in a direction orthogonal to a predetermined direction is scanned in a predetermined direction to read charges for each pixel and generate image data. It may be a radiation image detector.
  • the image processing method of the present invention includes a radiation source that emits radiation, a first grating that generates a first periodic pattern image by passing the radiation, and a partial shielding of the first periodic pattern image.
  • a second grating that generates a second periodic pattern image in which moire fringes are generated; a radiation image detector that generates image data by detecting the second periodic pattern image using a plurality of two-dimensionally arranged pixels; It is used for the radiography apparatus provided with.
  • M pixels arranged in a predetermined direction are grouped into one group, and this group is shifted in the predetermined direction by a number of pixels smaller than M, and the intensity constituted by the pixel values of a plurality of pixels in each group.
  • a phase differential image is generated by calculating the phase of the modulation signal.
  • M pixels arranged in a predetermined direction are made into one group, and this group is configured by pixel values of a plurality of pixels in each group while shifting the number of pixels smaller than M in the predetermined direction. Since the phase differential image is generated by calculating the phase of the intensity modulation signal, a high-quality phase differential image can be generated from one moire image detected by the radiation image detector.
  • an X-ray imaging apparatus 10 includes an X-ray source 11, an imaging unit 12, a memory 13, an image processing unit 14, an image recording unit 15, an imaging control unit 16, a console 17, and a system control unit 18.
  • the X-ray source 11 has a rotating anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and faces the subject H. X-rays are emitted.
  • the imaging unit 12 includes an X-ray image detector 20, a first grating 21, and a second grating 22.
  • the first and second gratings 21 and 22 are absorption gratings, and are disposed opposite to the X-ray source 11 in the Z direction, which is the X-ray irradiation direction.
  • a space is provided between the X-ray source 11 and the first grating 21 so that the subject H can be arranged.
  • the X-ray image detector 20 is a flat panel detector using a semiconductor circuit, and is disposed in close proximity to the back of the second grating 22.
  • the detection surface 20a of the X-ray image detector 20 exists on the XY plane orthogonal to the Z direction.
  • the first lattice 21 has a lattice plane on the XY plane, and a plurality of X-ray absorption portions 21a and X-ray transmission portions 21b extending in the Y direction (lattice direction) are formed on the lattice plane. .
  • the X-ray absorption parts 21a and the X-ray transmission parts 21b are alternately arranged along the X direction to form a striped pattern.
  • the second grating 22 includes a plurality of X-ray absorption parts 22 a and X-ray transmission parts 22 b that extend in the Y direction and are alternately arranged along the X direction.
  • the X-ray absorbing portions 21a and 22a are formed of a metal having X-ray absorption properties such as gold (Au) and platinum (Pt).
  • the X-ray transmissive portions 21b and 22b are formed of an X-ray transmissive material such as silicon (Si) or resin, or a gap.
  • the first grating 21 partially passes the X-rays emitted from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image).
  • the second grating 22 partially transmits the G1 image generated by the first grating 21 to generate a second periodic pattern image (hereinafter referred to as G2 image).
  • the G1 image substantially matches the lattice pattern of the second lattice 22.
  • the first grating 21 is slightly inclined with respect to the second grating 22 around the Z axis (in the grating plane direction). In the G2 image, moire fringes having a period corresponding to the inclination angle are generated.
  • the X-ray image detector 20 detects the G2 image and generates image data.
  • the memory 13 temporarily stores the image data read from the X-ray image detector 20.
  • the image processing unit 14 generates a phase differential image based on the image data stored in the memory 13, and generates a phase contrast image based on the phase differential image.
  • the image recording unit 15 records the phase differential image and the phase contrast image generated by the image processing unit 14.
  • the imaging control unit 16 controls the X-ray source 11 and the imaging unit 12.
  • the console 17 includes an operation unit 17a that enables operations such as setting of shooting conditions, switching of shooting modes, and shooting execution instructions, and a monitor 17b that displays image information such as shooting information, phase differential images, and phase contrast images. It has.
  • As the imaging mode pre-imaging in which imaging is performed without placing the subject H and main imaging in which the subject H is placed can be executed.
  • the system control unit 18 comprehensively controls each unit in accordance with a signal input from the operation unit 17a.
  • the X-ray image detector 20 includes a plurality of pixels 30 arranged two-dimensionally, a gate scanning line 33, a scanning circuit 34, a signal line 35, and a readout circuit 36.
  • the pixel 30 includes a pixel electrode 31 for collecting charges generated in a semiconductor film such as amorphous selenium (a-Se) by incident X-rays, and a TFT (for reading the charges collected by the pixel electrode 31). Thin Film Transistor) 32.
  • the gate scanning line 33 is provided for each row of the pixels 30.
  • the scanning circuit 34 applies a scanning signal for turning on / off the TFT 32 to each gate scanning line 33.
  • the signal line 35 is provided for each column of the pixels 30.
  • the readout circuit 36 reads out electric charges from the pixels 30 through the signal lines 35, converts them into image data, and outputs them.
  • the detailed layer configuration of each pixel 30 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
  • the readout circuit 36 includes an integration amplifier, an A / D converter, a correction circuit (none of which is shown), and the like.
  • the integrating amplifier integrates the charges output from each pixel 30 through the signal line 35 to generate an image signal.
  • the A / D converter converts the image signal generated by the integrating amplifier into digital image data.
  • the correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 13.
  • the X-ray image detector 20 is not limited to a direct conversion type that directly converts incident X-rays into electric charges, but converts incident X-rays into visible light with a scintillator such as cesium iodide (CsI) or gadolinium oxysulfide (GOS). Alternatively, an indirect conversion type in which visible light is converted into electric charge by a photodiode may be used.
  • the X-ray image detector 20 is not limited to a radiographic image detector based on a TFT panel, and a radiographic image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used. .
  • X-rays irradiated from the X-ray source 11 are cone beams having the X-ray focal point 11a as a light emitting point.
  • the first grating 21 is configured to project the X-rays that have passed through the X-ray transmission part 21b substantially geometrically.
  • the width of the X-ray transmission part 21b in the X direction is set to a value sufficiently larger than the effective wavelength of X-rays radiated from the X-ray source 11, and straightness is achieved without diffracting most of the X-rays. It is realized by letting it pass while keeping.
  • the effective wavelength of X-rays is about 0.4 mm.
  • the width of the X-ray transmission part 21b may be about 1 to 10 ⁇ m. The same applies to the second grating 22.
  • the G1 image generated by the first grating 21 is enlarged in proportion to the distance from the X-ray focal point 11a.
  • the grating pitch p 2 of the second grating 22 is set to coincide with the periodic pattern of the G1 image at the position of the second grating 22.
  • the grating pitch p 2 of the second grating 22 is the grating pitch of the first grating 21, p 1 , the distance L 1 between the X-ray focal point 11 a and the first grating 21, the first grating 21.
  • the G2 image is modulated by the subject H.
  • the modulation amount reflects the refraction angle of X-rays by the subject H.
  • FIG. 3 illustrates one path of X-rays refracted according to the phase shift distribution ⁇ (x) of the subject H.
  • Reference numeral X1 indicates a path along which the X-ray goes straight when the subject H does not exist.
  • X-rays traveling along the path X 1 pass through the first and second gratings 21 and 22 and enter the X-ray image detector 20.
  • Reference numeral X2 indicates an X-ray path refracted by the subject H when the subject H exists.
  • X-rays traveling along the path X ⁇ b> 2 pass through the first grating 21 and are then absorbed by the X-ray absorption unit 22 a of the second grating 22.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following formula (2), where n (x, z) is the refractive index distribution of the subject H.
  • n (x, z) is the refractive index distribution of the subject H.
  • the y-coordinate is omitted for simplification of description.
  • the G1 image formed at the position of the second grating 22 is displaced in the X direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H.
  • This displacement amount ⁇ x is approximately expressed by the following expression (3) based on the fact that the X-ray refraction angle ⁇ is very small.
  • the refraction angle ⁇ is expressed by the following equation (4) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x is related to the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x and the refraction angle ⁇ are the phase shift amount ⁇ of the intensity modulation signal of each pixel detected by the X-ray image detector 20 (the phase of the intensity modulation signal with and without the subject H).
  • the intensity modulation signal is a waveform signal representing an intensity change of a pixel value accompanying a position change between the first grating 21 and the second grating 22.
  • phase shift amount ⁇ of the intensity modulation signal corresponds to the differential amount of the phase shift distribution ⁇ (x).
  • the first grating 21 is inclined by an angle ⁇ around the Z axis with respect to the second grating 22 so that the G1 image is inclined by a predetermined angle ⁇ around the Z axis with respect to the second grating 22. Inclined.
  • a moiré fringe MS having a period T (hereinafter referred to as a moiré period T) represented by the following expression (6) is generated in the G2 image substantially in the Y direction.
  • the pixel size in the X direction of the pixel 30 of the X-ray image detector 20 is assumed to be Dx (hereinafter referred to as main pixel size Dx), and the pixel size in the Y direction is referred to as Dy (hereinafter referred to as sub pixel size Dy).
  • the inclination angle ⁇ of the second grating 22 is set so that the moire period T is substantially an integral multiple of the sub-pixel size Dy.
  • M pixels 30 arranged in the Y direction are defined as one group Gr (x, n).
  • M and n are positive integers.
  • n represents the y coordinate of the first pixel 30 in one group Gr (x, n).
  • I (x, y) indicates the pixel value of the pixel 30 at coordinates x, y.
  • This pixel value I (x, y) is acquired from the image data stored in the memory 13.
  • the pixel values I (x, n) to I (x, n + M ⁇ 1) in one group Gr (x, n) have an intensity modulation amount of the G1 image by the second grating 22 in accordance with the y coordinate of the pixel 30. Due to the difference, as shown in FIG. 6, an intensity modulation signal for one period is formed.
  • the pixel values I (x, n) to I (x, n + M ⁇ 1) in one group Gr (x, n) are obtained by moving the first or second grating in the grating direction in the conventional fringe scanning method. This corresponds to an intensity-modulated signal for one period acquired while moving by a predetermined amount in a substantially vertical direction (X direction).
  • the image processing unit 14 includes a phase differential image generation unit 40, a corrected image storage unit 41, a correction processing unit 42, and a phase contrast image generation unit 43.
  • the phase differential image generation unit 40 reads out the image data stored in the memory 13 by the main shooting and the pre-shooting, and generates a phase differential image by a method described later.
  • the corrected image storage unit 41 stores the phase differential image generated by the phase differential image generation unit 40 during pre-photographing as a corrected image.
  • the correction processing unit 42 generates a corrected phase differential image by subtracting the correction image stored in the correction image storage unit 41 from the phase differential image generated by the phase differential image generation unit 40 during the main photographing.
  • the phase contrast image generation unit 43 generates a phase contrast image by integrating the corrected phase differential image along the X direction.
  • the phase differential image generation unit 40 shifts the group Gr (x, n) one pixel at a time in the Y direction for each column of pixels 30 aligned in the X direction (while incrementing n).
  • the phase differential value is calculated based on the intensity modulation signal of each group Gr (x, n).
  • a phase differential image is obtained by calculating the phase differential value for all the pixels 30.
  • the phase differential value can be calculated by the same method as the fringe scanning method. Specifically, the phase distribution calculation method in the phase modulation interferometry (fringe scan interferometry) shown in “Applied Optics, Introduction to Optical Measurement, Toyohiko Yadagai, Maruzen Co., Ltd., pages 136 to 138” can be used.
  • the phase differential image generation unit 40 calculates the following determinant (7) and applies the calculation result to the following equation (8) to generate the phase differential value ⁇ (x, y).
  • the reference phase ⁇ k the matrices a, A ( ⁇ k ), and B ( ⁇ k ) are expressed by the following equations (9) to (12), respectively.
  • the reference phase ⁇ k changes stepwise from 0 to 2 ⁇ at equal intervals.
  • the non-diagonal terms are zero matrices A ([delta] k), since 1 except the diagonal term is 1/2, the phase differential value [psi (x, y) is simpler following expression (13 ).
  • X-ray imaging apparatus 10 configured as described above.
  • X-rays are emitted from the X-ray source 11 and a G2 image is detected by the X-ray image detector 20.
  • Image data is generated.
  • the image data is stored in the memory 13 and then read out by the image processing unit 14.
  • the image processing unit 14 the calculation is performed based on the image data by the phase differential image generation unit 40, and a phase differential image is generated. This phase differential image is stored in the corrected image storage unit 41 as a corrected image.
  • the pre-photographing operation is completed as described above.
  • X-rays are similarly emitted from the X-ray source 11.
  • the X-ray image detector 20 detects the G2 image and generates image data.
  • the image data is stored in the memory 13 and then read out by the image processing unit 14.
  • the image processing unit 14 the calculation is performed based on the image data by the phase differential image generation unit 40, and a phase differential image is generated.
  • the phase differential image of the actual photographing is input to the correction processing unit 42.
  • the correction processing unit 42 reads a correction image (pre-photographed phase partial image) from the correction image storage unit 41 and subtracts the correction image from the phase differential image. As a result, a corrected phase differential image reflecting only the phase information of the subject H is generated.
  • the corrected phase differential image is input to the phase contrast image generation unit 43, and integration processing is performed along the X direction to generate a phase contrast image.
  • phase contrast image and the corrected phase differential image are recorded in the image recording unit 15 and then input to the console 17 and displayed on the monitor 17b.
  • the phase differential image is equivalent to the X direction and the Y direction.
  • the number of pixels M in one group Gr (x, n) is the same as the number of pixels ⁇ included in one moire period T.
  • the number of pixels M in one group Gr (x, n) may be the same as N times the number of pixels ⁇ included in one moire period T (where N is an integer of 2 or more).
  • the number of pixels M in one group Gr (x, n) may not match the number of pixels ⁇ included in one moire period T or N times the number.
  • the above equation (13) cannot be used to calculate the phase differential value ⁇ (x, y), but the result obtained by calculating the determinant (7) is applied to the above equation (8). Is possible.
  • the number of pixels M in one group Gr (x, n) may be smaller than the number of pixels ⁇ included in one moire cycle T.
  • the above equation (13) cannot be used to calculate the phase differential value ⁇ (x, y), but by applying the result obtained by calculating the determinant (7) to the above equation (8). It can be calculated.
  • the S / N ratio is lower than in the first embodiment, but the resolution is improved.
  • the phase differential value is calculated while shifting the group Gr (x, n) one pixel at a time in the Y direction.
  • the phase differential value may be calculated while shifting the group Gr (x, n) in the Y direction in units of two or more pixels. In this case, it is preferable to shift the number of pixels smaller than the number M of pixels constituting the group Gr (x, n) as a unit so that the resolution in the Y direction of the phase differential image is not deteriorated more than necessary.
  • the extending direction of the X-ray absorbing portion 22a of the second grating 22 is the Y direction
  • the extending direction of the X-ray absorbing portion 21a of the first grating 21 is the angle ⁇ .
  • the extending direction of the X-ray absorbing portion 21a of the first grating 21 is the Y direction
  • the extending direction of the X-ray absorbing portion 22a of the second grating 22 is the angle ⁇ . It may be tilted only.
  • the extending direction of the X-ray absorbing portion 21a of the first grating 21 and the extending direction of the X-ray absorbing portion 22a of the second grating 22 are inclined in the opposite direction with respect to the Y direction, and both are angled. You may make it make (theta).
  • the X-ray image detector 20 is disposed close to the back of the second grating 22, and the X-ray image detector 20 is a G2 image generated by the second grating 22.
  • an interval may be provided between the X-ray image detector 20 and the second grating 22.
  • the X-ray image detector 20 detects a G2 image enlarged at a magnification R of the following equation (14). .
  • the group Gr (x, n) may be similarly set based on the moire cycle T ′.
  • the value represented by the above formula (8) or (13), that is, the value representing the phase of the intensity modulation signal is used as the phase differential value. It is good also as a phase differential value.
  • the phase differential image is generated.
  • an absorption image and a small angle scattered image may be generated.
  • the absorption image is generated by obtaining an average value of the intensity modulation signals exemplified in FIG.
  • the small angle scattered image is generated by obtaining the amplitude of the intensity modulation signal.
  • the subject H is arranged between the X-ray source 11 and the first grating 21, but the subject H is arranged with the first grating 21 and the second grating 22. You may arrange
  • the X-ray emitted from the X-ray source 11 is a cone beam.
  • an X-ray source that emits a parallel beam may be used.
  • the moiré fringes MS are generated in the G2 image due to the relative inclination of the first and second gratings 21 and 22 in the lattice plane direction.
  • the positional relationship between the first and second gratings 21 and 22 to be slightly break the relationship of the above equation (1) (distance L 1, L 2)
  • a moiré fringe MS is generated in the G2 image.
  • the pattern period p 3 in the X direction of the G1 image at the position of the second grating 22 is slightly shifted from the grating pitch p 2 of the second grating 22.
  • Moire fringes MS have a period T expressed by the following expression (15) in the X direction.
  • the phase differential image generation unit 40 shifts the group Gr (n, y) one pixel at a time in the X direction for each row of the pixels 30 arranged in the Y direction (n is set as shown in FIG. 13).
  • the phase differential value ⁇ (x, y) is calculated based on the intensity modulation signal of each group Gr (n, y).
  • the method for calculating the phase differential value ⁇ (x, y) is the same as in the first embodiment. Specifically, when calculating the phase differential value ⁇ (x, y) by performing the calculation of the determinant (7), the following equation (16) is used instead of the above equation (8), and the above equation ( The following equation (17) may be used instead of 12).
  • the phase differential value ⁇ (x, y) is obtained by using the following equation (18) instead of the above equation (13). ) Can be calculated.
  • the number of pixels M in one group Gr (n, y) may not match the number of pixels ⁇ included in one moire period T or N times that number. Also, it may be smaller than the number of pixels ⁇ included in one moire period T. Further, the phase differential value may be calculated while shifting the group Gr (n, y) in units of two or more pixels in the X direction. Other configurations and operations are the same as those in the first embodiment.
  • the spacing L 3 may be provided between the in the present embodiment the X-ray image detector 20 and the second grating 22.
  • the group Gr (n, y) is set based on the moire cycle T ′ obtained by multiplying the moire cycle T represented by the above equation (15) by the magnification R represented by the above equation (14). That's fine.
  • the relative inclination of the first and second gratings 21 and 22 described in the first embodiment in the in-plane direction, and the first and second gratings shown in the second embodiment may occur simultaneously.
  • moire fringes having a period in a direction not parallel to either the X direction or the Y direction may occur in the G2 image.
  • the moire fringes since the moire fringes have components in the X direction and the Y direction, it is possible to generate a phase differential image by using the method of either the first embodiment or the second embodiment.
  • the X-ray source 11 has a single focal point.
  • a multi-slit (line source grid) 23 described in Japanese Patent Publication No. Gazette is provided. Similar to the first and second gratings 21 and 23, the multi-slit 23 is formed by alternately arranging a plurality of X-ray absorbing portions 23a and X-ray transmitting portions 23b extending in the Y direction. .
  • the lattice pitch p 0 of the multi slit 23 is set so as to substantially satisfy the following expression (19).
  • L 0 is the distance from the multi slit 23 to the first grating 21.
  • each X-ray transmission part 23b functions as an X-ray focal point.
  • the radiation emitted from each X-ray transmission part 23b forms a G1 image by the first grating 21 and overlaps at the position of the second grating 22 to form a G2 image.
  • the amount of light of the G2 image is improved, and the calculation accuracy of the phase differential image can be improved and the photographing time can be shortened.
  • each X-ray transmitting portion 23b of the multi-slit 23 functions as an X-ray focal
  • the distance L 1 in the above formula (1) may be replaced by a distance L 0.
  • an interval L 3 may be provided between the X-ray image detector 20 and the second grating 22.
  • the group Gr (x) is based on the moire cycle T ′ obtained by multiplying the moire cycle T represented by the above formula (6) or the above formula (15) by the magnification R represented by the above formula (14).
  • N) or group Gr (n, y) may be set.
  • the first grating 21 projects the incident X-ray geometrically without diffracting it.
  • the Talbot effect is generated in the first grating 21.
  • a small-focus X-ray source is used or the multi-slit 23 is used to reduce the focal point so as to enhance the spatial coherence of X-rays. Good.
  • the self-image of the first grating 21 (G1 image) is formed at a position apart Talbot distance Z m downstream from the first grating 21. Therefore, in the present embodiment, it is necessary to set the distance L 2 from the first grid 21 to the second grating 22 on the Talbot distance Z m.
  • the first grating 21 can be a phase type grating. Other configurations and operations are the same as those in any of the first to third embodiments.
  • “m” is a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy the above expression (1) (however, when the multi slit 23 is used, the distance L 1 is replaced with the distance L 0 ). .
  • the Talbot distance Z m is expressed by the following formula ( 21).
  • “m” is “0” or a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy the above expression (1) (however, when the multi slit 23 is used, the distance L 1 is replaced with the distance L 0 ). .
  • the Talbot distance Z m is expressed by the following equation (22). It is represented by Here, “m” is “0” or a positive integer.
  • the grating pitch p 1, p 2 is set following equation (23) so as to satisfy substantially (However, when using a multi-slit 23, the distance L 1 is replaced by a distance L 0).
  • the first grating 21 is absorption grating, if X-rays emitted from the X-ray source 11 is collimated beam, Talbot distance Z m is represented by the following formula (24).
  • “m” is a positive integer.
  • the Talbot distance Z m is expressed by the following formula ( 25).
  • “m” is “0” or a positive integer.
  • the X-ray image detector 20 that reads electric charges from the pixels 30 via the TFTs is used.
  • linear read light is used.
  • An optical reading type X-ray image detector that reads electric charges by performing scanning is used.
  • the X-ray image detector 50 of the present embodiment generates charges by receiving the first electrode layer 51 that transmits X-rays and the irradiation of X-rays that transmit the first electrode layer 51.
  • the charge that acts as an insulator for the charge of one polarity and the charge that acts as a conductor for the charge of the other polarity A transport layer 54, a reading photoconductive layer 55 that generates charges when irradiated with reading light LR, and a second electrode layer 56 are laminated in this order.
  • a power storage unit 53 for accumulating charges generated in the recording photoconductive layer 52 is formed.
  • Each of the above layers is formed on the glass substrate 57 in order from the second electrode layer 56.
  • the first electrode layer 51 has X-ray transparency.
  • Nesa film (SnO 2 ), ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IDIXO (Idemitsu Indium X-metal Oxide) which is an amorphous light transmissive oxide film; Idemitsu Kosan Co., Ltd.) can be used with a thickness of 50 to 200 nm, and Al or Au with a thickness of 100 nm can also be used.
  • the recording photoconductive layer 52 only needs to generate charges when irradiated with X-rays, and is excellent in terms of relatively high quantum efficiency and high dark resistance with respect to X-rays.
  • a material mainly composed of amorphous selenium is used.
  • the thickness of the recording photoconductive layer 52 is suitably 10 to 1500 ⁇ m.
  • the thickness of the recording photoconductive layer 52 is preferably 150 to 250 ⁇ m for mammography applications, and preferably 500 to 1200 ⁇ m for general imaging applications.
  • the charge transport layer 54 it is better that the difference between the mobility of charges charged in the first electrode layer 51 during the recording of the X-ray image and the mobility of charges having the opposite polarity is larger.
  • a semiconductor material such as an organic compound, a TPD polymer (polycarbonate, polystyrene, PVK) dispersion, a-Se doped with 10 to 200 ppm of Cl, or As 2 Se 3 is suitable.
  • the thickness of the charge transport layer 54 is suitably about 0.2 to 2 ⁇ m.
  • the reading photoconductive layer 55 may be any material that exhibits conductivity when irradiated with the reading light LR.
  • a photoconductive substance containing at least one of MgPc (Magnesium-phtalocyanine), VoPc (phase II-of-Vanadyl-phthalocyanine), CuPc (Cupper-phtalocyanine) as a main component is suitable.
  • the thickness of the reading photoconductive layer 55 is suitably about 5 to 20 ⁇ m.
  • the second electrode layer 56 includes a plurality of transparent linear electrodes 56a that transmit the reading light LR and a plurality of light shielding linear electrodes 56b that shield the reading light LR.
  • the transparent linear electrode 56a and the light-shielding linear electrode 56b extend linearly continuously from one end of the image forming area of the X-ray image detector 50 to the other end.
  • the transparent linear electrodes 56a and the light shielding linear electrodes 56b are alternately arranged in parallel at a predetermined interval.
  • the transparent linear electrode 56a is made of a conductive material that transmits the reading light LR.
  • As the transparent linear electrode 56a for example, ITO, IZO, or IDIXO can be used similarly to the first electrode layer 51.
  • the thickness of the transparent linear electrode 56a is about 100 to 200 nm.
  • the light shielding linear electrode 56b is made of a conductive material while shielding the reading light LR.
  • the above transparent conductive material and a color filter can be used in combination.
  • the thickness of the transparent conductive material is about 100 to 200 nm.
  • the above-described main pixel size Dx is defined by one set of the adjacent transparent linear electrode 56a and the light shielding linear electrode 56b.
  • the X-ray image detector 50 includes a linear reading light source 58 extending in a direction (X direction) orthogonal to the extending direction of the transparent linear electrode 56a and the light shielding linear electrode 56b.
  • the linear reading light source 58 includes a light source such as an LED (Light Emitting Diode) or an LD (Laser Diode) and an optical system, and irradiates the glass substrate 57 with a linear reading light LR.
  • the linear reading light source 58 moves in the extending direction (Y direction) of the transparent linear electrode 56a and the light shielding linear electrode 56b by a moving mechanism (not shown), and the line emitted from the linear reading light source 58 Charge is read out by the reading light in the form of a ring.
  • the sub-pixel size Dy is defined by the width of the linear reading light source 58 in the Y direction.
  • the subpixel size Dy can be reduced and the resolution in the subpixel direction of the phase differential image can be improved.
  • the operation of image detection and readout in the X-ray image detector 50 will be described.
  • the X-rays incident on the X-ray image detector 50 are transmitted through the first electrode layer 51 and irradiated on the recording photoconductive layer 52. Due to this X-ray irradiation, charge pairs are generated in the recording photoconductive layer 52, of which positive charges (holes) combine with the negative charges (electrons) charged in the first electrode layer 51 and disappear, As shown in FIG. 17, the electric charge is accumulated as a latent image charge in a power storage unit 53 formed at the interface between the recording photoconductive layer 52 and the charge transport layer 54.
  • the linear reading light LR emitted from the linear reading light source 58 is irradiated from the glass substrate 57 side.
  • the reading light LR passes through the glass substrate 57 and further passes through the transparent linear electrode 56a and is irradiated onto the reading photoconductive layer 55.
  • the positive charge generated in the reading photoconductive layer 55 by the irradiation of the reading light LR passes through the charge transport layer 54 and is combined with the latent image charge of the power storage unit 53, and the negative charge is converted into the transparent linear electrode 56a.
  • the light shielding linear electrode 56b is combined with the positive charge charged through the integrating amplifier 61 connected to the.
  • the above-described charge reading operation is performed while the linear reading light source 58 sequentially moves by the moving pitch with the sub-pixel size Dy as the moving pitch in the Y direction. Accordingly, an image signal is detected for each reading line irradiated with the linear reading light LR, and the image signal for each detected reading line is sequentially output from the integrating amplifier 61.
  • the image signal output from the integrating amplifier 61 is processed by an A / D converter and a correction circuit (both not shown) as in the first embodiment, and digital image data is generated.
  • the X-ray image detector 50 can be applied to any of the first to fourth embodiments, and other configurations and operations of the present embodiment are the same as those of any of the first to fourth embodiments. It is.
  • the above embodiments may be combined with each other within a consistent range.
  • the present invention can be applied to an industrial radiography apparatus and the like in addition to a radiography apparatus for medical diagnosis.
  • a radiography apparatus for medical diagnosis In addition to X-rays, gamma rays or the like can be used as radiation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 1枚のモアレ画像を用いて高画質の位相微分画像を生成することを可能とする。 X線撮影装置(10)は、X線源(11)から放射されたX線を通過させて第1の周期パターン像を生成する第1の格子(21)と、第1の格子(21)と対向するとともに、第1の周期パターン像を部分的に遮蔽することによりモアレ縞が生じた第2の周期パターン像を生成する第2の格子(22)と、第2の周期パターン像を検出して画像データを生成するX線画像検出器(20)とを備える。X線画像検出器(20)は、XY方向に2次元的に配置されたガぞ(30)を有する。Y方向に並ぶM個の画素(30)を1グループGr(x,n)とし、このグループGr(x,n)をY方向にMより少ない画素数ずつシフトする。このシフトで形成された各グループGr(x,n)内の複数の画素(30)の画素値により構成される強度変調信号の位相を算出することにより位相微分画像を生成する。

Description

放射線撮影装置及び画像処理方法
 本発明は、放射線の位相変化に基づく画像を得る放射線撮影装置及びその画像処理方法に関する。
 放射線、例えばX線は、物質を構成する元素の重さ(原子番号)と、物質の密度及び厚さとに依存して減衰する特性を有する。この特性に着目し、医療診断や非破壊検査等の分野において、被検体の内部を透視するためのプローブとしてX線が利用されている。
 一般的なX線撮影装置は、X線を放射するX線源と、X線を検出するX線画像検出器とを備え、これらの間に被検体を配置して、被検体を透過したX線の撮影を行う。この場合、X線源からX線画像検出器に向けて放射されたX線は、被検体を透過する際に吸収され減衰した後、X線画像検出器に入射する。この結果、被検体によるX線の強度変化に基づく画像がX線画像検出器により検出される。
 X線吸収能は、原子番号が小さい元素ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線の強度変化が小さく、画像に十分なコントラストが得られないという問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも成分の殆どが水であり、両者のX線吸収能の差が小さいため、コントラストが得られにくい。
 このような問題を背景に、被検体によるX線の強度変化に代えて、被検体によるX線の位相変化に基づいた画像を得るX線位相イメージングの研究が近年盛んに行われている。X線位相イメージングは、被検体に入射したX線の位相変化が強度変化より大きいことに着目し、X線の位相変化を画像化する方法であり、X線吸収能が低い被検体に対しても高コントラストの画像を得ることができる。
 このようなX線位相イメージングを可能とするために、X線源とX線画像検出器との間に、第1及び第2の格子を所定の間隔で平行に配置したX線撮影装置が提案されている(例えば、特許文献1参照)。このX線撮影装置では、X線源から第1及び第2の格子を介して得られるX線のモアレ画像をX線画像検出器で撮影することにより位相コントラス画像を取得する。
 特許文献1に記載のX線撮影装置では、縞走査法が用いられている。縞走査法では、第1の格子に対して第2の格子を、格子方向にほぼ垂直な方向に、格子ピッチよりも小さい所定量ずつ間欠的に移動させながら、その各停止中に撮影を行うことにより複数のモアレ画像が検出される。この複数のモアレ画像に基づいて、被検体との相互作用によって生じたX線の位相変化量が検出され、位相微分画像が生成される。この位相微分画像を積分処理することにより位相コントラスト画像が生成される。
 しかし、縞走査法では、第1または第2の格子を、その格子ピッチよりも小さいピッチで精度よく移動させるために高精度な移動機構が必要である。このため、装置の複雑化や高コスト化という問題がある。また、縞走査法では、1枚の位相コントラスト画像を取得するために複数回の撮影を行う必要があるため、その一連の撮影中に被検体の体動や装置の振動が生じると、各モアレ画像間で被検体や格子に位置ずれが生じ、位相微分画像の画質が劣化するという問題がある。特許文献1には、第1及び第2の格子を移動させずに一度の撮影を行うことより得られる1枚のモアレ画像から位相微分画像を生成することが示唆されているが、その具体的な方法については記載されていない。
 特許文献2では、第1及び第2の格子を移動させずに一度の撮影を行うことにより1枚のモアレ画像を取得し、このモアレ画像に対して、フーリエ変換、キャリア周波数に対応したスペクトルの分離、フーリエ逆変換の一連の処理を施すことにより位相微分画像を得るフーリエ変換法が提案されている。
特開2008-200361号公報 WO2010/050483号公報
 しかしながら、特許文献2に記載のフーリエ変換法では、第1及び第2の格子の歪みや配置誤差等により、モアレ画像のモアレ縞に周期や縞の方向に歪みが生じると、キャリア周波数成分の広がりが大きくなるため、そのピーク位置が正確に得られない。キャリア周波数に対応したスペクトルの分離は、ピーク位置を基準として行われるため、スペクトルの分離精度が低下し、位相微分画像の画質が劣化するという問題がある。
 また、特許文献2に記載のフーリエ変換法では、フーリエ変換により、モアレ画像を周波数空間に変換するため、X線画像検出器の画素数が少ない場合には、周波数空間における解像度が低下し、位相微分画像の画質が劣化するという問題がある。
 このため、特許文献2に記載のX線撮影装置では、位相微分画像の画質を向上させるには、周期や方向に歪みがない均一なモアレ縞が得られるように、第1及び第2の格子の位置調整を高精度に行い、かつ画素数の大きなX線画像検出器を用いる必要がある。
 本発明は、1枚のモアレ画像を用いて高画質の位相微分画像を生成することを可能とする放射線撮影装置及び画像処理方法を提供することを目的とする。
 上記目的を達成するために、本発明の放射線撮影装置は、放射線を放射する放射線源と、第1の格子と、第2の格子と、放射線画像検出器と、位相微分画像生成部とを備えている。第1の格子は、放射線を通過させて第1の周期パターン像を生成する。第2の格子は、第1の周期パターン像を部分的に遮蔽することによりモアレ縞が生じた第2の周期パターン像を生成する。放射線画像検出器は、2次元配列された複数の画素により第2の周期パターン像を検出して画像データを生成する。位相微分画像生成部は、所定方向に並ぶM個の画素を1グループとし、このグループを所定方向に、Mより少ない画素数ずつシフトしながら、各グループの複数の画素の画素値により構成される強度変調信号の位相を算出することにより位相微分画像を生成する。
 位相微分画像生成部は、グループを所定方向に1画素ずつシフトしながら、各グループの複数の画素の画素値により構成される強度変調信号の位相を算出することが好ましい。
 所定方向は、モアレ縞にほぼ直交する方向であることが好ましい。この場合、グループを構成する画素数が、モアレ縞の周期の整数倍に相当することが好ましい。さらに、グループを構成する画素数が、モアレ縞の1周期に相当することが好ましい。また、グループを構成する画素数を、モアレ縞の1周期に相当する画素数より少なくしてもよい。
 モアレ縞は、第2の格子を、第1の格子に対して格子面内方向に相対的に傾斜して配置することにより生成されたものであり、第1及び第2の格子の格子方向にほぼ直交していることが好ましい。
 また、モアレ縞は、第1及び第2の格子の対向方向の位置関係、または、第1及び第2の格子の格子ピッチを調整することにより生成されたものであり、第1及び第2の格子の格子方向にほぼ平行であってもよい。
 また、モアレ縞は、第2の格子を、第1の格子に対して格子面内方向に相対的に傾斜して配置し、かつ、第1及び第2の格子の対向方向の位置関係、または、第1及び第2の格子の格子ピッチを調整することにより生成されたものであり、第1及び第2の格子の格子方向に直交せず、かつ平行でなくてもよい。
 位相微分画像を、第1及び第2の格子の格子方向にほぼ直交する方向に沿って積分処理することにより位相コントラスト画像を生成する位相コントラスト画像生成部を備えることが好ましい。
 また、被検体を配置しない状態で位相微分画像生成部により生成された位相微分画像を補正画像として記憶する補正画像記憶部と、被検体を配置した状態で位相微分画像生成部により生成された位相微分画像から、補正画像記憶部に記憶された補正画像を減算する補正処理部と、を備えることが好ましい。この場合には、補正処理部によって補正された補正済みの位相微分画像を、第1及び第2の格子の格子方向にほぼ直交する方向に沿って積分処理して位相コントラスト画像を生成する位相コントラスト画像生成部を備えることが好ましい。
 第1の格子は、吸収型格子であり、入射した放射線を第2の格子に幾何光学的に投影することにより第1の周期パターン像を生成することが好ましい。
 第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ効果を生じさせ第1の周期パターン像を生成するものであってもよい。
 また、放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットを備えることが好ましい。
 放射線画像検出器は、所定方向と直交する方向に延設された線状読取光源が、所定方向に走査されることによって画素ごとに電荷が読み取られ、画像データの生成が行われる光読取方式の放射線画像検出器であってもよい。
 本発明の画像処理方法は、放射線を放射する放射線源と、放射線を通過させて第1の周期パターン像を生成する第1の格子と、第1の周期パターン像を部分的に遮蔽することによりモアレ縞が生じた第2の周期パターン像を生成する第2の格子と、2次元配列された複数の画素により第2の周期パターン像を検出して画像データを生成する放射線画像検出器と、を備えた放射線撮影装置に用いられる。この画像処理方法は、所定方向に並ぶM個の画素を1グループとし、このグループを所定方向に、Mより少ない画素数ずつシフトしながら、各グループの複数の画素の画素値により構成される強度変調信号の位相を算出することにより位相微分画像を生成する。
 本発明によれば、所定方向に並ぶM個の画素を1グループとし、このグループを該所定方向に、Mより少ない画素数ずつシフトしながら、各グループの複数の画素の画素値により構成される強度変調信号の位相を算出することにより位相微分画像を生成するので、放射線画像検出器により検出される1枚のモアレ画像により高画質の位相微分画像を生成することができる。
X線撮影装置の構成を示す模式図である。 X線画像検出器の構成を示す模式図である。 第1及び第2の格子の構成を説明する説明図である。 X線画像検出器の画素に対する第1及び第2の格子の位置関係を説明する説明図である。 強度変調信号を構成する1グループの画素を示す説明図である。 強度変調信号を示すグラフである。 画像処理部の構成を示すブロック図である。 位相微分値の算出時のグループの設定変更方法を説明する説明図である。 グループの設定方法の第1の変形例を説明する説明図である。 グループの設定方法の第2の変形例を説明する説明図である。 グループの設定方法の第3の変形例を説明する説明図である。 第2の実施形態におけるX線画像検出器の画素に対する第1及び第2の格子の位置関係を説明する説明図である。 第2の実施形態における位相微分値の算出時のグループの設定変更方法を説明する説明図である。 第3の実施形態のマルチスリットを設けたX線画像撮影装置の構成を説明する説明図である。 第5の実施形態のX線画像検出器の構成を示す概略斜視図である。 第5の実施形態のX線画像検出器の作用を説明する第1の説明図である。 第5の実施形態のX線画像検出器の作用を説明する第2の説明図である。 第5の実施形態のX線画像検出器の作用を説明する第3の説明図である。
(第1の実施形態)
 図1において、X線撮影装置10は、X線源11、撮影部12、メモリ13、画像処理部14、画像記録部15、撮影制御部16、コンソール17、及びシステム制御部18を備えている。X線源11は、周知のように、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、被検体Hに向けてX線を放射する。
 撮影部12は、X線画像検出器20、第1の格子21、及び第2の格子22を備えている。第1及び第2の格子21,22は、吸収型格子であり、X線照射方向であるZ方向に関してX線源11に対向配置されている。X線源11と第1の格子21との間には、被検体Hが配置可能な間隔が設けられている。X線画像検出器20は、半導体回路を用いたフラットパネル検出器であり、第2の格子22の背後に近接して配置されている。X線画像検出器20の検出面20aは、Z方向に直交するXY面に存在する。
 第1の格子21は、XY面に格子面が存在し、この格子面には、Y方向(格子方向)に延伸された複数のX線吸収部21a及びX線透過部21bが形成されている。X線吸収部21a及びX線透過部21bは、X方向に沿って交互に配列されており、縞状のパターンを形成している。第2の格子22は、第1の格子21と同様にY方向に延伸され、かつX方向に沿って交互に配列された複数のX線吸収部22a及びX線透過部22bを備えている。X線吸収部21a,22aは、金(Au)、白金(Pt)等のX線吸収性を有する金属により形成されている。X線透過部21b,22bは、シリコン(Si)や樹脂等のX線透過性材料や空隙により形成されている。
 第1の格子21は、X線源11から放射されたX線を部分的に通過させて第1の周期パターン像(以下、G1像という)を生成する。第2の格子22は、第1の格子21により生成されたG1像を部分的に透過させて第2の周期パターン像(以下、G2像という)を生成する。G1像は、第2の格子22の格子パターンとほぼ一致する。第1の格子21は、第2の格子22に対してZ軸周り(格子面内方向)に僅かに傾斜している。G2像には、その傾斜角に応じた周期を有するモアレ縞が生じている。
 X線画像検出器20は、G2像を検出して画像データを生成する。メモリ13は、X線画像検出器20から読み出された画像データを一時的に記憶する。画像処理部14は、メモリ13に記憶された画像データに基づいて位相微分画像を生成し、この位相微分画像に基づいて位相コントラスト画像を生成する。画像記録部15は、画像処理部14により生成された位相微分画像や位相コントラスト画像を記録する。撮影制御部16は、X線源11及び撮影部12の制御を行う。
 コンソール17は、撮影条件の設定や、撮影モードの切替、撮影実行指示等の操作を可能とする操作部17aと、撮影情報や、位相微分画像、位相コントラスト画像等の画像表示を行うモニタ17bとを備えている。撮影モードとしては、被検体Hを配置せずに撮影を行うプレ撮影と、被検体Hを配置して行う本撮影が実行可能となっている。システム制御部18は、操作部17aから入力される信号に応じて各部を統括的に制御する。
 図2において、X線画像検出器20は、2次元状に多数配列された画素30と、ゲート走査線33と、走査回路34と、信号線35と、読み出し回路36とから構成されている。画素30は、周知のように、入射X線によりアモルファスセレン(a-Se)等の半導体膜に生じた電荷を収集する画素電極31と、画素電極31によって収集された電荷を読み出すためのTFT(Thin Film Transistor)32とを備えている。ゲート走査線33は、画素30の行ごとに設けられている。走査回路34は、各ゲート走査線33にTFT32をオンオフするための走査信号を印加する。信号線35は、画素30の列ごとに設けられている。読み出し回路36は、各信号線35を介して画素30から電荷を読み出し、画像データに変換して出力する。なお、各画素30の詳細な層構成については、特開2002-26300号公報に記載された層構成と同様である。
 読み出し回路36は、周知のように、積分アンプ、A/D変換器、補正回路(いずれも図示せず)等により構成されている。積分アンプは、各画素30から信号線35を介して出力された電荷を積分して画像信号を生成する。A/D変換器は、積分アンプにより生成された画像信号を、デジタル形式の画像データに変換する。補正回路は、画像データに対して、暗電流補正、ゲイン補正、及びリニアリティ補正等を行い、補正後の画像データをメモリ13に入力する。
 X線画像検出器20は、入射X線を電荷に直接変換する直接変換型に限られず、ヨウ化セシウム(CsI)やガドリウムオキシサルファイド(GOS)等のシンチレータで入射X線を可視光に変換し、可視光をフォトダイオードで電荷に変換する間接変換型であってもよい。また、X線画像検出器20には、TFTパネルをベースとした放射線画像検出器に限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした放射線画像検出器を用いることも可能である。
 図3において、X線源11から照射されるX線は、X線焦点11aを発光点としたコーンビームである。第1の格子21は、X線透過部21bを通過したX線をほぼ幾何光学的に投影するように構成されている。具体的には、X方向に関するX線透過部21bの幅を、X線源11から放射されるX線の実効波長より十分大きな値とし、X線の大部分を回折させずに、直進性を保ったまま通過させることで実現される。例えば、X線源11の回転陽極としてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は約0.4Åである。この場合には、X線透過部21bの幅を1~10μm程度とすればよい。なお、第2の格子22も同様である。
 第1の格子21により生成されるG1像は、X線焦点11aからの距離に比例して拡大される。第2の格子22の格子ピッチpは、第2の格子22の位置におけるG1像の周期パターンと一致するように設定されている。具体的には、第2の格子22の格子ピッチpは、第1の格子21の格子ピッチをp、X線焦点11aと第1の格子21との間の距離L、第1の格子21と第2の格子22との間の距離Lとした場合、下式(1)をほぼ満たすように設定されている。
Figure JPOXMLDOC01-appb-M000001
 X線源11と第1の格子21との間に被検体Hを配置すると、G2像が被検体Hにより変調される。この変調量には、被検体HによるX線の屈折角が反映される。
 次に、位相微分画像の生成方法を説明する。ここで、X,Y,Z方向の座標を、x,y,zとする。図3には、被検体Hの位相シフト分布Φ(x)に応じて屈折するX線の1つの経路が例示されている。符号X1は、被検体Hが存在しない場合にX線が直進する経路を示している。この経路X1を進むX線は、第1及び第2の格子21,22を通過してX線画像検出器20に入射する。符号X2は、被検体Hが存在する場合に、被検体Hにより屈折したX線の経路を示している。この経路X2を進むX線は、第1の格子21を通過した後、第2の格子22のX線吸収部22aにより吸収される。
 被検体Hの位相シフト分布Φ(x)は、被検体Hの屈折率分布をn(x,z)として、下式(2)で表される。ここで、説明の簡略化のため、y座標は省略している。
Figure JPOXMLDOC01-appb-M000002
 第2の格子22の位置に形成されたG1像は、被検体HでのX線の屈折により、その屈折角φに応じた量だけX方向に変位する。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に下式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、屈折角φは、X線の波長λと被検体Hの位相シフト分布Φ(x)を用いて、下式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 このように、変位量Δxは、被検体Hの位相シフト分布Φ(x)に関連している。そして、変位量Δx及び屈折角φは、X線画像検出器20により検出される各画素の強度変調信号の位相ズレ量ψ(被検体Hがある場合とない場合とでの強度変調信号の位相ズレ量)と、下式(5)に示すように関連している。ここで、強度変調信号とは、第1の格子21と第2の格子22との位置変化に伴う画素値の強度変化を表す波形信号である。
Figure JPOXMLDOC01-appb-M000005
 したがって、上式(4)及び(5)により、強度変調信号の位相ズレ量ψが位相シフト分布Φ(x)の微分量に対応することが分かる。この微分量をxについて積分することにより、位相シフト分布Φ(x)、すなわち位相コントラスト画像が生成される。
 図4において、G1像が第2の格子22に対してZ軸周りに所定角度θだけ傾斜するように、第1の格子21は、第2の格子22に対してZ軸周りに角度θだけ傾斜して配置される。これにより、G2像には、ほぼY方向に下式(6)で表される周期T(以下、モアレ周期Tという)を有するモアレ縞MSが生じる。
Figure JPOXMLDOC01-appb-M000006
 X線画像検出器20の画素30のX方向の画素サイズをDx(以下、主画素サイズDxという)、Y方向の画素サイズをDy(以下、副画素サイズDyという)とする。第2の格子22の傾斜角θは、モアレ周期Tが副画素サイズDyのほぼ整数倍となるように設定されている。
 図5において、Y方向に沿って並ぶM個の画素30を1グループGr(x,n)とする。ここで、M,nは、正の整数である。nは、1グループGr(x,n)内の先頭の画素30のy座標を表している。本実施形態では、1グループGr(x,n)内の画素数Mを、1モアレ周期Tに含まれる画素数ν(図4の例では、ν=3)と同一とする。
 I(x,y)は、座標x,yの画素30の画素値を示している。この画素値I(x,y)は、メモリ13に記憶された画像データから取得される。1グループGr(x,n)内の画素値I(x,n)~I(x,n+M-1)は、画素30のy座標に応じて第2の格子22によるG1像の強度変調量が異なることにより、図6に示すように、1周期分の強度変調信号を構成している。したがって、1グループGr(x,n)内の画素値I(x,n)~I(x,n+M-1)は、従来の縞走査法において、第1または第2の格子を、格子方向にほぼ垂直な方向(X方向)に所定量ずつ移動させながら取得した1周期分の強度変調信号に相当する。
 図7において、画像処理部14は、位相微分画像生成部40、補正画像記憶部41、補正処理部42、及び位相コントラスト画像生成部43を備えている。位相微分画像生成部40は、本撮影及びプレ撮影によりメモリ13に記憶された画像データをそれぞれ読み出し、後述する方法によって位相微分画像を生成する。補正画像記憶部41は、プレ撮影時に位相微分画像生成部40により生成された位相微分画像を補正画像として記憶する。補正処理部42は、本撮影時に位相微分画像生成部40により生成された位相微分画像から、補正画像記憶部41に記憶された補正画像を減算することにより、補正済み位相微分画像を生成する。位相コントラスト画像生成部43は、補正済み位相微分画像をX方向に沿って積分処理することにより位相コントラスト画像を生成する。
 位相微分画像生成部40は、図8に示すように、X方向に並ぶ画素30の各列について、グループGr(x,n)をY方向に1画素ずつシフトしながら(nをインクリメントしながら)、各グループGr(x,n)の強度変調信号に基づいて位相微分値を算出する。すべての画素30について位相微分値を算出することにより位相微分画像が得られる。
 位相微分値は、縞走査法と同様な方法により算出可能である。具体的には、「応用光学 光計測入門 谷田貝豊彦著 丸善株式会社 136~138頁」に示された位相変調干渉法(フリンジスキャン干渉法)における位相分布の算出法を用いることができる。
 位相微分画像生成部40は、下記の行列式(7)を演算し、演算結果を次式(8)に適用することにより、位相微分値ψ(x,y)を生成する。
Figure JPOXMLDOC01-appb-M000007

Figure JPOXMLDOC01-appb-M000008
 ここで、参照位相δ、行列a,A(δ),B(δ)は、それぞれ下式(9)~(12)で表される。
Figure JPOXMLDOC01-appb-M000009

Figure JPOXMLDOC01-appb-M000010

Figure JPOXMLDOC01-appb-M000011

Figure JPOXMLDOC01-appb-M000012
 本実施形態では、前述のようにM=νとしているため、参照位相δは、0から2πの間で等間隔に段階変化する。この場合、行列A(δ)の非対角項が0となり、1以外の対角項が1/2となるため、位相微分値ψ(x,y)は、より簡単な下式(13)を用いて算出可能である。
Figure JPOXMLDOC01-appb-M000013
 次に、以上のように構成されたX線撮影装置10の作用を説明する。まず、被検体Hを配置せずに、操作部17aからプレ撮影指示が入力されると、X線源11からX線が放射されるとともに、X線画像検出器20によりG2像の検出が行われ、画像データが生成される。この画像データは、メモリ13に記憶された後、画像処理部14により読み出される。画像処理部14では、位相微分画像生成部40により画像データに基づいて上記演算が行われ、位相微分画像が生成される。この位相微分画像は、補正画像として補正画像記憶部41に記憶される。プレ撮影は、以上で動作が終了する。
 この後、被検体HをX線源11と第1の格子21との間に配置して、操作部17aから本撮影指示が入力されると、同様に、X線源11からX線が放射されるとともに、X線画像検出器20によりG2像の検出が行われ、画像データが生成される。この画像データは、メモリ13に記憶された後、画像処理部14により読み出される。画像処理部14では、位相微分画像生成部40により画像データに基づいて上記演算が行われ、位相微分画像が生成される。
 本撮影の位相微分画像は、補正処理部42に入力される。補正処理部42は、補正画像記憶部41から補正画像(プレ撮影の位相部分画像)を読み出し、位相微分画像から補正画像を減算する。これにより、被検体Hの位相情報のみが反映された補正済み位相微分画像が生成される。この補正済み位相微分画像は、位相コントラスト画像生成部43に入力され、X方向に沿って積分処理が施されることにより、位相コントラスト画像が生成される。
 この位相コントラスト画像及び補正済み位相微分画像は、画像記録部15に記録された後、コンソール17に入力され、モニタ17bに画像表示される。
 以上のように、本実施形態では、グループGr(x,n)をY方向に1画素ずつシフトしながら位相微分値を算出しているため、位相微分画像は、X方向とY方向とに同等の画素数となる。
 なお、上記第1の実施形態では、図5に示すように、1グループGr(x,n)内の画素数Mを、1モアレ周期Tに含まれる画素数νと同一としているが、図9に示すように、1グループGr(x,n)内の画素数Mを、1モアレ周期Tに含まれる画素数νのN倍(ここで、Nは2以上の整数)と同一としてもよい。
 また、図10に示すように、1グループGr(x,n)内の画素数Mは、1モアレ周期Tに含まれる画素数νまたはそのN倍と一致しなくてもよい。この場合、位相微分値ψ(x,y)の算出には、上式(13)を用いることはできないが、行列式(7)を演算した結果を上式(8)に適用することにより算出可能である。
 また、図11に示すように、1グループGr(x,n)内の画素数Mは、1モアレ周期Tに含まれる画素数νより少なくてもよい。この場合も、位相微分値ψ(x,y)の算出には、上式(13)を用いることはできないが、行列式(7)を演算した結果を上式(8)に適用することにより算出可能である。この場合、位相微分値の算出に用いる画素数が少ないため、第1の実施形態の場合よりS/N比は低下するが、解像度は向上する。
 また、上記第1の実施形態では、図8に示すように、グループGr(x,n)をY方向に1画素ずつシフトしながら位相微分値の算出を行っているが、これに限られず、グループGr(x,n)を2以上の画素数を単位として、Y方向にシフトしながら位相微分値の算出を行ってもよい。この場合には、位相微分画像のY方向の解像度を必要以上に劣化させないように、グループGr(x,n)を構成する画素数Mより少ない画素数を単位としてシフトすることが好ましい。
 また、上記第1の実施形態では、第2の格子22のX線吸収部22aの延伸方向をY方向とし、これに対して第1の格子21のX線吸収部21aの延伸方向を角度θだけ傾斜させているが、逆に、第1の格子21のX線吸収部21aの延伸方向をY方向とし、これに対して第2の格子22のX線吸収部22aの延伸方向を角度θだけ傾斜させてもよい。さらには、Y方向に対して、第1の格子21のX線吸収部21aの延伸方向と、第2の格子22のX線吸収部22aの延伸方向とを逆方向に傾斜させ、両者が角度θをなすようにしてもよい。
 また、上記第1の実施形態では、X線画像検出器20が第2の格子22の背後に近接して配置され、X線画像検出器20は、第2の格子22により生成されるG2像をほぼ等倍率で検出しているが、X線画像検出器20と第2の格子22との間に間隔を設けてもよい。X線画像検出器20と第2の格子22とのZ方向への間隔をLとすると、下式(14)の倍率Rで拡大されたG2像がX線画像検出器20により検出される。
Figure JPOXMLDOC01-appb-M000014
 この場合には、X線画像検出器20により検出されるモアレ縞の周期T’は、上式(6)で表されるモアレ周期TのR倍(すなわちT’=RT)となる。このため、モアレ周期T’に基づいて、同様にグループGr(x,n)の設定を行えばよい。
 また、上記第1の実施形態では、上式(8)または(13)で表される値、すなわち強度変調信号の位相を表す値を位相微分値としているが、これに定数を乗じたり付加したりしたものを位相微分値としてもよい。
 また、上記第1の実施形態では、位相微分画像の生成を行っているが、これに加えて、吸収画像や小角散乱画像を生成してもよい。吸収画像は、図6に例示した強度変調信号の平均値を求めることにより生成される。小角散乱画像は、強度変調信号の振幅を求めることにより生成される。
 また、上記第1の実施形態では、被検体HをX線源11と第1の格子21との間に配置しているが、被検体Hを第1の格子21と第2の格子22との間に配置してもよい。
 また、上記第1の実施形態では、X線源11から射出されるX線をコーンビームとしているが、これに代えて、平行ビームを射出するX線源を用いることも可能である。この場合には、上式(1)に代えて、p=pの関係をほぼ満たすように第1及び第2の格子21,22を構成すればよい。
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。上記第1の実施形態では、第1及び第2の格子21,22の格子面内方向への相対的な傾斜によりG2像にモアレ縞MSを生じさせているが、第2の実施形態では、第1及び第2の格子21,22を傾斜させずに、上式(1)の関係を僅かに崩すように第1及び第2の格子21,22の位置関係(距離L,L)、もしくは第1及び第2の格子21,22の格子ピッチp,pを調整することで、図12に示すように、G2像にモアレ縞MSを生じさせる。
 第2の格子22の位置でのG1像のX方向へのパターン周期pは、第2の格子22の格子ピッチpとは僅かにずれている。モアレ縞MSは、X方向に、下式(15)で表される周期Tを有する。
Figure JPOXMLDOC01-appb-M000015
 本実施形態では、位相微分画像生成部40は、図13に示すように、Y方向に並ぶ画素30の各行について、グループGr(n,y)をX方向に1画素ずつシフトしながら(nをインクリメントしながら)、各グループGr(n,y)の強度変調信号に基づいて位相微分値ψ(x,y)を算出する。
 位相微分値ψ(x,y)の算出方法は、第1の実施形態と同様である。具体的には、行列式(7)の演算を行って位相微分値ψ(x,y)を算出する場合には、上式(8)に代えて下式(16)を用い、上式(12)に代えて下式(17)を用いればよい。
Figure JPOXMLDOC01-appb-M000016

Figure JPOXMLDOC01-appb-M000017
 また、モアレ周期Tが主画素サイズDxのほぼ整数倍となるように設定した場合には、上式(13)に代えて、下式(18)を用いることにより位相微分値ψ(x,y)の算出を行うことができる。
Figure JPOXMLDOC01-appb-M000018
 本実施形態においても第1の実施形態と同様に、1グループGr(n,y)内の画素数Mは、1モアレ周期Tに含まれる画素数νまたはそのN倍と一致しなくてもよく、また、1モアレ周期Tに含まれる画素数νより少なくてもよい。さらに、グループGr(n,y)をX方向に2画素以上の単位でシフトしながら位相微分値の算出を行ってもよい。その他の構成や作用については、第1の実施形態と同一である。
 なお、本実施形態においてもX線画像検出器20と第2の格子22との間に間隔Lを設けてもよい。この場合には、上式(15)で表されるモアレ周期Tに、上式(14)で表される倍率Rを乗じたモアレ周期T’に基づいてグループGr(n,y)を設定すればよい。
 また、上記第1の実施形態で説明した第1及び第2の格子21,22の格子面内方向への相対的な傾斜と、上記第2の実施形態で示した第1及び第2の格子21,22の位置関係や格子ピッチのずれが同時に生じることにより、X方向とY方向とのいずれにも平行でない方向に周期を有するモアレ縞がG2像に生じることがある。この場合には、モアレ縞はX方向及びY方向に成分を有するため、第1の実施形態または第2実施形態のいずれかの方法を用いることにより位相微分画像を生成することが可能である。また、この場合には、X方向とY方向とのいずれにも平行でない斜め方向に並ぶ複数の画素30によりグループを構成し、同様に位相微分画像を生成することも可能である。
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。上記第1及び第2の実施形態では、X線源11は単一焦点であるが、第3の実施形態では、図14に示すように、X線源11の射出側直後に、WO2006/131235号公報等に記されたマルチスリット(線源格子)23を設ける。マルチスリット23は、第1及び第2の格子21,23と同様に、Y方向に延伸された複数のX線吸収部23a及びX線透過部23bがX方向に交互に配列されたものである。マルチスリット23の格子ピッチpは、下式(19)をほぼ満たすように設定されている。ここで、Lは、マルチスリット23から第1の格子21まで距離である。
Figure JPOXMLDOC01-appb-M000019
 このようにマルチスリット23を配置すると、X線源11からの放射線がY方向に分散化され、各X線透過部23bがX線焦点として機能する。各X線透過部23bから放射された放射線は、第1の格子21によりG1像を形成し、第2の格子22の位置で重なり合うことによりG2像を形成する。これより、本実施形態では、G2像の光量が向上し、位相微分画像の算出精度の向上や、撮影時間の短縮が可能となる。
 その他の構成や作用については、第1または第2の実施形態と同一である。本実施形態では、マルチスリット23の各X線透過部23bがX線焦点として機能するため、上式(1)において距離Lを、距離Lで置き換えればよい。
 なお、本実施形態においてもX線画像検出器20と第2の格子22との間に間隔Lを設けてもよい。この場合には、上式(6)または上式(15)で表されるモアレ周期Tに、上式(14)で表される倍率Rを乗じたモアレ周期T’に基づいてグループGr(x,n)またはグループGr(n,y)を設定すればよい。なお、マルチスリット23を設けた場合においても、第2の格子22により生成されるG2像は、X線源11のX線焦点11aを原点とし、X線焦点11aからX線画像検出器20までの距離に比例して拡大されるため、G2像の倍率Rについては、上式(14)をそのまま(距離Lを距離Lで置き換えずに)用いればよい。
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。上記第1~第3の実施形態では、第1の格子21は、入射X線を回折せずに幾何光学的に投影しているが、第4の実施形態のX線撮影装置では、特開2008-200361号公報等に記されているように、第1の格子21でタルボ効果が生じる構成とする。第1の格子21でタルボ効果を生じさせるためには、X線の空間干渉性を高めるように、小焦点のX線源を用いるか、または、上記マルチスリット23を用いて小焦点化すればよい。
 第1の格子21でタルボ効果が生じる場合には、第1の格子21の自己像(G1像)は、第1の格子21から下流にタルボ距離Zだけ離れた位置に形成される。このため、本実施形態では、第1の格子21から第2の格子22までの距離Lをタルボ距離Zに設定する必要がある。なお、この場合には、第1の格子21を位相型格子とすることも可能である。その他の構成や作用については、上記第1~第3の実施形態のいずれかと同一である。
 第1の格子21が吸収型格子であり、X線源11から射出されるX線がコーンビームである場合には、タルボ距離Zは、下式(20)で表される。ここで、「m」は正の整数である。この場合には、格子ピッチp,pは、上式(1)をほぼ満たすように設定される(ただし、マルチスリット23を用いる場合には、距離Lは距離Lに置き換えられる)。
Figure JPOXMLDOC01-appb-M000020
 また、第1の格子21がπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビームである場合には、タルボ距離Zは、下式(21)で表される。ここで、「m」は「0」または正の整数である。この場合には、格子ピッチp,pは、上式(1)をほぼ満たすように設定される(ただし、マルチスリット23を用いる場合には、距離Lは距離Lに置き換えられる)。
Figure JPOXMLDOC01-appb-M000021
 また、第1の格子21がπの位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビームである場合には、タルボ距離Zは、下式(22)で表される。ここで、「m」は「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、次式(23)をほぼ満たすように設定される(ただし、マルチスリット23を用いる場合には、距離Lは距離Lに置き換えられる)。
Figure JPOXMLDOC01-appb-M000022

Figure JPOXMLDOC01-appb-M000023
 また、第1の格子21が吸収型格子であり、X線源11から射出されるX線が平行ビームである場合には、タルボ距離Zは、下式(24)で表される。ここで、「m」は正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。
Figure JPOXMLDOC01-appb-M000024
 また、第1の格子21がπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビームである場合には、タルボ距離Zは、下式(25)で表される。ここで、「m」は「0」または正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。
Figure JPOXMLDOC01-appb-M000025
 そして、第1の格子21がπの位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビームである場合には、タルボ距離Zは、下式(26)で表される。ここで、「m」は「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、p=p/2の関係をほぼ満たすように設定される。
Figure JPOXMLDOC01-appb-M000026
(第5の実施形態)
 次に、本発明の第5の実施形態について説明する。上記第1~第4の実施形態では、画素30からTFTを介して電気的に電荷を読み出す方式のX線画像検出器20を用いているが、第5の実施形態では、線状の読取光で走査を行うことにより電荷の読み取りを行う光読取方式のX線画像検出器を用いる。
 図15において、本実施形態のX線画像検出器50は、X線を透過する第1の電極層51と、第1の電極層51を透過したX線の照射を受けることにより電荷を発生する記録用光導電層52と、記録用光導電層52で発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、他方の極性の電荷に対しては導電体として作用する電荷輸送層54と、読取光LRの照射を受けることにより電荷を発生する読取用光導電層55と、第2の電極層56とをこの順に積層したものである。
 記録用光導電層52と電荷輸送層54との界面近傍には、記録用光導電層52内で発生した電荷を蓄積する蓄電部53が形成される。なお、上記各層は、ガラス基板57上に第2の電極層56から順に形成されている。
 第1の電極層51は、X線透過性を有する。第1の電極層51としては、例えば、ネサ皮膜(SnO)、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X-metal Oxide;出光興産(株))などを50~200nm厚にして用いることができ、また、100nm厚のAlやAuなども用いることもできる。
 記録用光導電層52は、X線の照射を受けることにより電荷を発生するものであればよく、X線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているアモルファスセレンを主成分とするものを使用する。記録用光導電層52の厚さは10~1500μmが適切である。また、記録用光導電層52の厚さは、マンモグラフィ用途である場合には150~250μmであることが好ましく、一般撮影用途である場合には500~1200μmであることが好ましい。
 電荷輸送層54としては、X線画像の記録の際に第1の電極層51に帯電する電荷の移動度と、その逆極性となる電荷の移動度の差が大きい程良く、例えば、ポリN-ビニルカルバゾール(PVK)、N,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-〔1,1'-ビフェニル〕-4,4'-ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10~200ppmドープしたa-Se、AsSe等の半導体物質が適当である。電荷輸送層54の厚さは0.2~2μm程度が適切である。
 読取用光導電層55としては、読取光LRの照射を受けることにより導電性を呈するものであればよく、例えば、a-Se、Se-Te、Se-As-Te、無金属フタロシアニン、金属フタロシアニン、MgPc(Magnesium phtalocyanine)、VoPc(phaseII of Vanadyl phthalocyanine)、CuPc(Cupper phtalocyanine)などのうち少なくとも1つを主成分とする光導電性物質が好適である。読取用光導電層55の厚さは5~20μm程度が適切である。
 第2の電極層56は、読取光LRを透過させる複数の透明線状電極56aと、読取光LRを遮光する複数の遮光線状電極56bとを有する。透明線状電極56aと遮光線状電極56bとは、X線画像検出器50の画像形成領域の一方の端部から他方の端部まで連続して直線状に延びている。透明線状電極56aと遮光線状電極56bとは、所定の間隔を空けて交互に平行に配列されている。
 透明線状電極56aは、読取光LRを透過させる導電性を有する材料からなる。透明線状電極56aとして、例えば、第1の電極層51と同様に、ITO、IZOやIDIXOを用いることができる。透明線状電極56aの厚さは100~200nm程度である。
 遮光線状電極56bは読取光LRを遮光するとともに、導電性を有する材料からなる。例えば、上記の透明導電材料とカラーフィルターを組み合せて用いることができる。透明導電材料の厚さは100~200nm程度である。
 X線画像検出器50では、隣接する透明線状電極56aと遮光線状電極56bとの1組により、前述の主画素サイズDxが規定される。
 さらに、X線画像検出器50は、透明線状電極56aと遮光線状電極56bの延伸方向に直交する方向(X方向)に延設された線状読取光源58を備えている。線状読取光源58は、LED(Light Emitting Diode)やLD(Laser Diode)などの光源と光学系とから構成され、線状の読取光LRをガラス基板57に照射する。線状読取光源58は、移動機構(図示せず)によって透明線状電極56a及び遮光線状電極56bの延伸方向(Y方向)について移動するものであり、線状読取光源58から発せられた線状の読取光によって電荷が読み出される。線状読取光源58のY方向の幅により、前述の副画素サイズDyが規定される。本実施形態では、線状読取光源58のY方向の幅を狭くすることにより、副画素サイズDyを小さくし、位相微分画像の副画素方向の解像度を向上させることができる。
 次に、X線画像検出器50における画像検出と読み出しの作用について説明する。まず、図16に示すように高圧電源60によってX線画像検出器50の第1の電極層51に負の電圧を印加した状態において、X線源11から放射され、第1及び第2の格子21,22を通過したX線がG2像として、X線画像検出器50の第1の電極層51側から照射される。
 X線画像検出器50に入射したX線は、第1の電極層51を透過し、記録用光導電層52に照射される。このX線照射により記録用光導電層52で電荷対が発生し、そのうち正の電荷(正孔)は第1の電極層51に帯電した負の電荷(電子)と結合して消滅し、負の電荷は、図17に示すように、潜像電荷として記録用光導電層52と電荷輸送層54との界面に形成される蓄電部53に蓄積される。
 次いで、図18に示すように、第1の電極層51が接地された状態において、線状読取光源58から発せられた線状の読取光LRがガラス基板57側から照射される。読取光LRは、ガラス基板57を透過し、さらに透明線状電極56aを透過して読取用光導電層55に照射される。この読取光LRの照射により読取用光導電層55で発生した正の電荷が電荷輸送層54を通過して蓄電部53の潜像電荷と結合するとともに、負の電荷が、透明線状電極56aに接続された積分アンプ61を介して遮光線状電極56bに帯電した正の電荷と結合する。
 そして、読取用光導電層55で発生した負の電荷と遮光線状電極56bに帯電した正の電荷との結合によって、積分アンプ61に電流Iが流れ、この電流Iが積分されて画像信号として出力される。
 そして、線状読取光源58が、Y方向に副画素サイズDyを移動ピッチとして、この移動ピッチずつ順次移動しながら上記の電荷読取動作が行われる。これにより、線状の読取光LRの照射された読取ラインごとに画像信号が検出され、検出された読取ラインごとの画像信号が積分アンプ61から順次出力される。
 積分アンプ61から出力された画像信号は、第1の実施形態と同様に、A/D変換器、及び補正回路(いずれも図示せず)により処理が行われ、デジタル形式の画像データが生成される。これにより、第1の実施形態と同様な画像データが得られ、この画像データは、メモリ13に入力される。このX線画像検出器50は、第1~第4の実施形態のいずれにも適用可能であり、本実施形態のその他の構成や作用については、第1~第4の実施形態のいずれかと同一である。
 上記各実施形態は、矛盾しない範囲で相互に組み合わせてもよい。本発明は、医療診断用の放射線撮影装置の他に、工業用の放射線撮影装置等に適用することが可能である。また、放射線は、X線以外に、ガンマ線等を用いることも可能である。
 10 X線撮影装置
 20 X線画像検出器
 21 第1の格子
 21a X線吸収部
 21b X線透過部
 22 第2の格子
 22a X線吸収部
 22b X線透過部
 23 マルチスリット
 30 画素
 50 X線画像検出器

Claims (17)

  1.  放射線を放射する放射線源と、
     前記放射線を通過させて第1の周期パターン像を生成する第1の格子と、
     前記第1の周期パターン像を部分的に遮蔽することによりモアレ縞が生じた第2の周期パターン像を生成する第2の格子と、
     2次元配列された複数の画素により前記第2の周期パターン像を検出して画像データを生成する放射線画像検出器と、
     所定方向に並ぶM個の前記画素を1グループとし、このグループを前記所定方向に、前記Mより少ない画素数ずつシフトしながら、各グループの複数の画素の画素値により構成される強度変調信号の位相を算出することにより位相微分画像を生成する位相微分画像生成部と、
     を備えることを特徴とする放射線撮影装置。
  2.  前記位相微分画像生成部は、前記グループを前記所定方向に1画素ずつシフトしながら、各グループの複数の画素の画素値により構成される強度変調信号の位相を算出することを特徴とする請求の範囲第1項に記載の放射線撮影装置。
  3.  前記所定方向は、前記モアレ縞にほぼ直交する方向であることを特徴とする請求の範囲第2項に記載の放射線撮影装置。
  4.  前記グループを構成する画素数が、前記モアレ縞の周期の整数倍に相当することを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  5.  前記グループを構成する画素数が、前記モアレ縞の1周期に相当することを特徴とする請求の範囲第4項に記載の放射線撮影装置。
  6.  前記グループを構成する画素数が、前記モアレ縞の1周期に相当する画素数より少ないことを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  7.  前記モアレ縞は、前記第2の格子を、第1の格子に対して格子面内方向に相対的に傾斜して配置することにより生成されたものであり、前記第1及び第2の格子の格子方向にほぼ直交していることを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  8.  前記モアレ縞は、前記第1及び第2の格子の対向方向の位置関係、または、前記第1及び第2の格子の格子ピッチを調整することにより生成されたものであり、前記第1及び第2の格子の格子方向にほぼ平行であることを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  9.  前記モアレ縞は、前記第2の格子を、第1の格子に対して格子面内方向に相対的に傾斜して配置し、かつ、前記第1及び第2の格子の対向方向の位置関係、または、前記第1及び第2の格子の格子ピッチを調整することにより生成されたものであり、前記第1及び第2の格子の格子方向に直交せず、かつ平行でないことを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  10.  前記位相微分画像を、前記第1及び第2の格子の格子方向にほぼ直交する方向に沿って積分処理することにより位相コントラスト画像を生成する位相コントラスト画像生成部を備えること特徴とする請求の範囲第3項に記載の放射線撮影装置。
  11.  被検体を配置しない状態で前記位相微分画像生成部により生成された位相微分画像を補正画像として記憶する補正画像記憶部と、
     被検体を配置した状態で前記位相微分画像生成部により生成された位相微分画像から、前記補正画像記憶部に記憶された補正画像を減算する補正処理部と、
     を備えることを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  12.  前記補正処理部によって補正された補正済みの位相微分画像を、前記第1及び第2の格子の格子方向にほぼ直交する方向に沿って積分処理して位相コントラスト画像を生成する位相コントラスト画像生成部を備えること特徴とする請求の範囲第11項に記載の放射線撮影装置。
  13.  前記第1の格子は、吸収型格子であり、入射した放射線を前記第2の格子に幾何光学的に投影することにより前記第1の周期パターン像を生成することを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  14.  前記第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ効果を生じさせ前記第1の周期パターン像を生成することを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  15.  前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットを備えることを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  16.  前記放射線画像検出器は、前記所定方向と直交する方向に延設された線状読取光源が、前記所定方向に走査されることによって画素ごとに電荷が読み取られ、画像データの生成が行われる光読取方式の放射線画像検出器であることを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  17.  放射線を放射する放射線源と、
     前記放射線を通過させて第1の周期パターン像を生成する第1の格子と、
     前記第1の周期パターン像を部分的に遮蔽することによりモアレ縞が生じた第2の周期パターン像を生成する第2の格子と、
     2次元配列された複数の画素により前記第2の周期パターン像を検出して画像データを生成する放射線画像検出器と、
     を備えた放射線撮影装置に用いられる画像処理方法であって、
     所定方向に並ぶM個の前記画素を1グループとし、このグループを前記所定方向に、前記Mより少ない画素数ずつシフトしながら、各グループの複数の画素の画素値により構成される強度変調信号の位相を算出することにより位相微分画像を生成することを特徴とする画像処理方法。
PCT/JP2012/059071 2011-04-20 2012-04-03 放射線撮影装置及び画像処理方法 WO2012144317A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013510932A JP5475925B2 (ja) 2011-04-20 2012-04-03 放射線撮影装置及び画像処理方法
US14/057,836 US8767916B2 (en) 2011-04-20 2013-10-18 Radiation imaging apparatus and image processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-093691 2011-04-20
JP2011093691 2011-04-20
JP2011264692 2011-12-02
JP2011-264692 2011-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/057,836 Continuation US8767916B2 (en) 2011-04-20 2013-10-18 Radiation imaging apparatus and image processing method

Publications (1)

Publication Number Publication Date
WO2012144317A1 true WO2012144317A1 (ja) 2012-10-26

Family

ID=47041432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059071 WO2012144317A1 (ja) 2011-04-20 2012-04-03 放射線撮影装置及び画像処理方法

Country Status (3)

Country Link
US (1) US8767916B2 (ja)
JP (1) JP5475925B2 (ja)
WO (1) WO2012144317A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088878A1 (ja) * 2011-12-13 2013-06-20 富士フイルム株式会社 放射線撮影方法及び装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013009248A2 (pt) * 2010-10-19 2019-09-24 Koninl Philips Electronics Nv difração de reticulação para a geração de imagens por contraste de fase diferencial de raios x, disposição de detector de um sistema de raios x para a geração de imagens por contraste de fase de um objeto, sistema de geração de umagens médica de raios x para a geração de imagens por contraste de fase diferencial, método para a geração de imagens por contraste de fase diferencial, elemento de programa de computador para o controle de um aparelho e meio legível por computador
EP2633814A4 (en) * 2010-10-27 2014-03-19 Fujifilm Corp RADIOGRAPHIC SYSTEM METHOD FOR GENERATING RADIOGRAMS
DE102011082878A1 (de) * 2011-09-16 2013-03-21 Siemens Aktiengesellschaft Röntgendetektor einer gitterbasierten Phasenkontrast-Röntgenvorrichtung und Verfahren zum Betreiben einer gitterbasierten Phasenkontrast-Röntgenvorrichtung
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
US9597050B2 (en) * 2012-01-24 2017-03-21 Koninklijke Philips N.V. Multi-directional phase contrast X-ray imaging
WO2014137318A1 (en) * 2012-03-05 2014-09-12 University Of Rochester Methods and apparatus for differential phase-contrast cone-beam ct and hybrid cone-beam ct
KR101378757B1 (ko) * 2012-08-30 2014-03-27 한국원자력연구원 물질 원소 정보 획득 및 영상 차원의 선택이 가능한 방사선 영상화 장치
US8989347B2 (en) * 2012-12-19 2015-03-24 General Electric Company Image reconstruction method for differential phase contrast X-ray imaging
US9700267B2 (en) 2012-12-21 2017-07-11 Carestream Health, Inc. Method and apparatus for fabrication and tuning of grating-based differential phase contrast imaging system
US10578563B2 (en) * 2012-12-21 2020-03-03 Carestream Health, Inc. Phase contrast imaging computed tomography scanner
US9907524B2 (en) 2012-12-21 2018-03-06 Carestream Health, Inc. Material decomposition technique using x-ray phase contrast imaging system
US9724063B2 (en) 2012-12-21 2017-08-08 Carestream Health, Inc. Surrogate phantom for differential phase contrast imaging
US9494534B2 (en) 2012-12-21 2016-11-15 Carestream Health, Inc. Material differentiation with phase contrast imaging
US9357975B2 (en) 2013-12-30 2016-06-07 Carestream Health, Inc. Large FOV phase contrast imaging based on detuned configuration including acquisition and reconstruction techniques
US10096098B2 (en) * 2013-12-30 2018-10-09 Carestream Health, Inc. Phase retrieval from differential phase contrast imaging
AU2012268876A1 (en) * 2012-12-24 2014-07-10 Canon Kabushiki Kaisha Non-linear solution for 2D phase shifting
GB201308851D0 (en) * 2013-05-16 2013-07-03 Ibex Innovations Ltd Multi-spectral x-ray detection apparatus
JPWO2015015851A1 (ja) * 2013-07-30 2017-03-02 コニカミノルタ株式会社 医用画像システム及び関節軟骨状態のスコア判定方法
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
JP5932859B2 (ja) * 2014-02-18 2016-06-08 キヤノン株式会社 検出装置、インプリント装置、および物品の製造方法
JP2015166676A (ja) * 2014-03-03 2015-09-24 キヤノン株式会社 X線撮像システム
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
JP6451400B2 (ja) * 2015-02-26 2019-01-16 コニカミノルタ株式会社 画像処理システム及び画像処理装置
CN107407735B (zh) * 2015-03-10 2019-07-09 株式会社岛津制作所 X射线检测器
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
JP7171561B2 (ja) * 2016-11-10 2022-11-15 コーニンクレッカ フィリップス エヌ ヴェ 格子ベースの位相コントラスト画像化
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
WO2019236384A1 (en) 2018-06-04 2019-12-12 Sigray, Inc. Wavelength dispersive x-ray spectrometer
JP7117452B2 (ja) 2018-07-26 2022-08-12 シグレイ、インコーポレイテッド 高輝度反射型x線源
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
WO2020051061A1 (en) 2018-09-04 2020-03-12 Sigray, Inc. System and method for x-ray fluorescence with filtering
DE112019004478T5 (de) 2018-09-07 2021-07-08 Sigray, Inc. System und verfahren zur röntgenanalyse mit wählbarer tiefe
WO2021046059A1 (en) 2019-09-03 2021-03-11 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
JP7395775B2 (ja) 2020-05-18 2023-12-11 シグレイ、インコーポレイテッド 結晶解析装置及び複数の検出器素子を使用するx線吸収分光法のためのシステム及び方法
DE112021004828T5 (de) 2020-09-17 2023-08-03 Sigray, Inc. System und verfahren unter verwendung von röntgenstrahlen für tiefenauflösende messtechnik und analyse
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11992350B2 (en) 2022-03-15 2024-05-28 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246601A (ja) * 1985-04-24 1986-11-01 Ricoh Co Ltd 縞解析方法
JP2001343208A (ja) * 2000-03-30 2001-12-14 Fuji Photo Optical Co Ltd フーリエ変換を用いた縞解析方法および装置
JP2008200361A (ja) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc X線撮影システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050483A1 (ja) 2008-10-29 2010-05-06 キヤノン株式会社 X線撮像装置およびx線撮像方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246601A (ja) * 1985-04-24 1986-11-01 Ricoh Co Ltd 縞解析方法
JP2001343208A (ja) * 2000-03-30 2001-12-14 Fuji Photo Optical Co Ltd フーリエ変換を用いた縞解析方法および装置
JP2008200361A (ja) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc X線撮影システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088878A1 (ja) * 2011-12-13 2013-06-20 富士フイルム株式会社 放射線撮影方法及び装置

Also Published As

Publication number Publication date
US20140044234A1 (en) 2014-02-13
JP5475925B2 (ja) 2014-04-16
US8767916B2 (en) 2014-07-01
JPWO2012144317A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5475925B2 (ja) 放射線撮影装置及び画像処理方法
JP5438649B2 (ja) 放射線撮影システム及び位置ずれ判定方法
JP2012236005A (ja) 放射線撮影装置
WO2012005179A1 (ja) 放射線撮影システム及びその画像処理方法
JP2012061300A (ja) 放射線撮影システム及びその画像処理方法
JP2011218147A (ja) 放射線撮影システム
US20120189101A1 (en) Radiographic imaging apparatus and radiographic image detector
JP2010253194A (ja) 放射線位相画像撮影装置
JP2011224329A (ja) 放射線撮影システム及び方法
JP2012130586A (ja) 放射線画像検出装置、放射線撮影装置、及び放射線撮影システム
JP2012130451A (ja) 放射線撮影装置及び放射線撮影システム
US20120140886A1 (en) Radiographic phase-contrast imaging method and apparatus
JP2012110472A (ja) 放射線位相画像取得方法および放射線位相画像撮影装置
JP2012143553A (ja) 放射線画像撮影装置および放射線画像検出器
WO2012147671A1 (ja) 放射線撮影装置及び画像処理方法
WO2012057022A1 (ja) 放射線撮影システム及び放射線撮影方法
JP2012110395A (ja) 放射線撮影システム
WO2013038881A1 (ja) 放射線撮影装置及び画像処理方法
WO2012070662A1 (ja) 放射線画像検出装置、放射線撮影装置、及び放射線撮影システム
WO2013047011A1 (ja) 放射線画像検出器及びその製造方法、並びに放射線画像検出器を用いた放射線撮影システム
JP2012147824A (ja) 放射線画像撮影装置および放射線画像検出器
JP2013042788A (ja) 放射線撮影装置及びアンラップ処理方法
WO2013099467A1 (ja) 放射線撮影方法及び装置
JP5610480B2 (ja) 放射線画像処理装置及び方法
WO2013027519A1 (ja) 放射線撮影装置及びアンラップ処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774212

Country of ref document: EP

Kind code of ref document: A1