WO2012144242A1 - タービン静翼およびガスタービン - Google Patents

タービン静翼およびガスタービン Download PDF

Info

Publication number
WO2012144242A1
WO2012144242A1 PCT/JP2012/051198 JP2012051198W WO2012144242A1 WO 2012144242 A1 WO2012144242 A1 WO 2012144242A1 JP 2012051198 W JP2012051198 W JP 2012051198W WO 2012144242 A1 WO2012144242 A1 WO 2012144242A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
circumferential direction
retainer
flow path
blade
Prior art date
Application number
PCT/JP2012/051198
Other languages
English (en)
French (fr)
Inventor
良昌 高岡
仁志 森本
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201280018906.5A priority Critical patent/CN103502577B/zh
Priority to EP12773911.8A priority patent/EP2700789A4/en
Priority to KR1020137024161A priority patent/KR101531779B1/ko
Priority to JP2013510901A priority patent/JP5848335B2/ja
Publication of WO2012144242A1 publication Critical patent/WO2012144242A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0887Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • F16J15/4476Labyrinth packings with radial path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals

Definitions

  • the present invention relates to a turbine stationary blade and a gas turbine that generate combustion gas from taken-in air and rotate a rotor.
  • a gas turbine that rotates and drives a rotor in which a plurality of stages of turbine stationary blades and turbine rotor blades are alternately arranged is known.
  • compressed air is generated from the air taken in in the process of passing through the compressor, the compressed air is supplied to the combustor and fuel is burned to generate combustion gas.
  • the rotor is driven to rotate by passing through a range where the stationary blades and the turbine rotor blades are arranged.
  • FIG. 6A is a cross-sectional view of a main part showing an example of such a gas turbine
  • FIG. 6B is an enlarged cross-sectional view of the main part (see Patent Document 1).
  • 21 is a turbine stationary blade
  • 22 is a turbine blade
  • 23 is a turbine disk to which the turbine blade 22 is attached
  • 24 is an intermediate shaft cover
  • 25 is fixed to the intermediate shaft cover 24 via bolts 26. It is a support ring.
  • the first-stage turbine stationary blade hereinafter referred to as “one-stage stationary blade” 21 to which the tail cylinder 27 of the combustor (not shown) is connected, and this one-stage.
  • the description will be given as a first stage turbine blade (hereinafter referred to as a “first stage blade”) 22 adjacent to the downstream side (right side in the drawing) of the stationary blade 21.
  • the first stage stationary blade 21 is basically formed in an annular shape by arranging a plurality of the same segments along the circumferential direction of the turbine.
  • the one-stage stationary vane 21 includes an outer shroud 21a that constitutes an outer peripheral wall, an inner shroud 21b that constitutes an inner peripheral wall, a wing body 21c that is installed between the outer shroud 21a and the inner shroud 21b, and an inner shroud 21b. And a retainer 21d protruding from the back surface (lower side in the figure). Further, the first stage stationary blade 21 abuts the downstream surface of the retainer 21 d against the support ring 25 and is fixed to the support ring 25 via a pin 28.
  • the inner shroud 21b of each segment of the one-stage stationary blade 21 is formed in a substantially parallelogram (diamond) in front view.
  • the inner shrouds 21b of a plurality of segments are connected so as to abut each other in the turbine circumferential direction, and a slight division gap K1 is formed on the division surface.
  • the wing body 21c has an arcuate shape so as to taper toward the downstream side (the right side in the figure).
  • the support ring 25 against which the downstream surface of the retainer 21d is abutted receives a load in the thrust direction (rotor axial direction) due to the differential pressure of the combustion gas G applied to the blade body 21c.
  • the support ring 25 prevents the first stage stationary blade 21 from being displaced in a direction approaching the first stage moving blade 22.
  • the combustion gas G flows from the left side to the right side on the paper surface of FIG.
  • the one-stage moving blade 22 includes a platform 22 a that forms an inner peripheral wall, and a blade body that protrudes outward from the surface of the platform 22 a in the turbine radial direction (hereinafter simply referred to as “radial direction”). 22b.
  • a split ring 29 located on the inner periphery of a turbine casing (not shown) is disposed opposite the tip of the first stage moving blade 22.
  • a main flow path R through which the combustion gas G passes is formed between the outer shroud 21a and the split ring 29 and the inner shroud 21b and the platform 22a.
  • the blade body 21c of the first stage stationary blade 21 and the blade body 22b of the first stage moving blade 22 are arranged.
  • a vehicle interior S for storing the cooling air discharged from the compressor exists on the radially inner side of the inner shroud 21b of the first stage stationary blade 21.
  • a seal plate 31 is disposed in the rotor axial direction along the dividing surface of each segment in order to shut off the main flow path R and the casing S through which the combustion gas G flows.
  • a seal plate 32 is arranged so as to extend in the radial direction along the retainer 21d.
  • an annular space N that forms a slight gap exists between the support ring 25 and a portion of the inner shroud 21b on the downstream side of the retainer 21d. Since the space N is separated from the casing S by the retainer 21 d and the support ring 25, the space N has substantially the same pressure as the interstage pressure between the first stage stationary blade 21 and the first stage moving blade 22. That is, since the pressure of the combustion gas G flowing through the main flow path R corresponding to the position of the space N is higher than that of the space N, the combustion gas G enters the space N along the seal plate 31 from the divided gap K1 shown in FIG. Easy to flow. That is, there is a problem that a part of the leak gas LG of the combustion gas G is caught in the space N from the division gap K1 and burns the back surface of the inner shroud 21b and the upper surface of the support ring 25.
  • An object of the present invention is to provide a turbine vane that reduces the entrainment of combustion gas from a division gap and a gas turbine including the turbine vane.
  • a plurality of turbine stationary blades according to the present invention are provided adjacent to each other along the circumferential direction of the turbine, an outer shroud constituting an outer wall of the main flow path, and a plurality adjacent to each other along the circumferential direction of the turbine.
  • An inner shroud that constitutes the inner wall of the inner shroud, a blade body that protrudes from the surface of the inner shroud to define a flow of combustion gas from the upstream side to the downstream side of the main flow path, and a turbine circumferential direction that protrudes from the back surface of the inner shroud
  • a retainer extending along the turbine, wherein the retainer connects between a minimum inscribed circle formed between the blade bodies adjacent in the circumferential direction of the turbine and a contact point between each of the blade bodies. It arrange
  • the turbine vane of the present invention it is possible to further suppress the leakage of combustion gas from the main flow path to the back surface side of the inner shroud, and to arrange on the back surface side of the inner shroud accompanying the leakage of high-temperature and high-pressure combustion gas. It is possible to prevent burning of components such as the back surface of the inner shroud and the support ring, and to suppress breakage and cracking of the welded portion.
  • the retainer may be fixed to the turbine main body via a support ring with which a downstream surface abuts, and a seal member may be provided between the retainer and the support ring. Good.
  • the gas turbine of the present invention may include the above-described turbine stationary blade.
  • burnout of the inner shroud and the support ring is improved, the gas turbine can be operated for a long time, and the reliability of the gas turbine is improved.
  • the turbine stationary blade and the gas turbine according to the present invention can control the leakage of the combustion gas from the main flow path to the space on the back surface side of the inner shroud through the dividing gap. It is possible to suppress damage and cracking of components and welds arranged on the back side of the inner shroud.
  • FIG. 1 shows a structure of a turbine stationary blade seal plate according to an embodiment of the present invention, in which (A) is a cross-sectional view of an essential part taken along line AA in FIG. 3, and (B) is taken along line BB in (A). It is an expanded sectional view of the principal part in alignment.
  • FIG. 1 shows a structure of a turbine stationary blade seal plate according to an embodiment of the present invention, in which (A) is a cross-sectional view of an essential part taken along line AA in FIG. 3, and (B) is taken along line BB in (A). It is an expanded sectional view of the principal part in alignment.
  • FIG. 2 is a cross-sectional view taken along line CC in FIG. 3 and FIG. 7B is a cross-sectional view taken along line DD in FIG. 7; It is.
  • the conventional turbine stationary blade is shown, (A) is sectional drawing of the principal part, (B) is an expanded sectional view of the principal part. It is a front view of the principal part of the conventional turbine stationary blade.
  • Example shown below is a suitable specific example in the gas turbine of this invention, and there may be various technically preferable restrictions.
  • the technical scope of the present invention is not limited to these embodiments unless specifically described to limit the present invention.
  • the constituent elements in the embodiments shown below can be appropriately replaced with existing constituent elements and the like, and various variations including combinations with other existing constituent elements are possible. Therefore, the description of the embodiment described below does not limit the contents of the invention described in the claims.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a gas turbine according to an embodiment of the present invention.
  • a gas turbine 1 includes a compressor 2, a plurality of combustors 3, a turbine 4, and an exhaust chamber 5 from the upstream side in the supply / exhaust direction of compressed air C and combustion gas G to the downstream side.
  • the compressor 2 generates compressed air C.
  • the plurality of combustors 3 temporarily store the compressed air C supplied from the compressor 2 in the passenger compartment S, and further mix the compressed air C and fuel to generate a combustion gas G that is a working fluid.
  • the turbine 4 generates rotational power by the combustion gas G supplied from the combustor 3.
  • the exhaust chamber 5 exhausts the combustion gas G that has passed through the turbine 4.
  • the gas turbine 1 includes a rotor 6 that rotates in the circumferential direction R of the turbine 4 with the axis O as the center of rotation.
  • the turbine 4 includes a turbine stationary blade 8 and a turbine rotor blade 9 inside.
  • the turbine stationary blades 8 and the turbine rotor blades 9 are alternately arranged along the axial direction of the rotor 6.
  • the thermal energy of the combustion gas G is converted into rotational energy and taken out as electric power.
  • FIG. 2A is a cross-sectional view of the main part showing an example of the turbine stationary blade 8 of such a gas turbine 1.
  • the first-stage turbine stationary blade hereinafter referred to as “one-stage stationary blade” 8 connected to the uppermost stream side (left side in the drawing) to which the transition piece 3a of the combustor 3 is connected, and this A first stage turbine blade (hereinafter referred to as a “first stage blade”) 9 adjacent to the downstream side (right side in the drawing) of the first stage stationary blade 8 will be described as an example.
  • the first stage stationary blade 8 is basically formed in an annular shape by arranging a plurality of the same segments along the turbine circumferential direction.
  • the one-stage stationary blade 8 includes an outer shroud 8a that constitutes an outer peripheral wall, an inner shroud 8b that constitutes an inner peripheral wall, a blade body 8c that is constructed between the outer shroud 8a and the inner shroud 8b, and an inner shroud 8b. And a retainer 8d protruding from the back surface (lower side in the figure).
  • the first stage stationary blade 8 abuts the downstream surface of the retainer 8 d against the support ring 10 and is fixed to the support ring 10 via a pin 11.
  • the support ring 10 is fixed to the intermediate shaft cover 12 via bolts 13.
  • the inner shroud 8b has one segment formed in a substantially parallelogram (diamond) in front view.
  • Inner shrouds 8b of a plurality of segments are connected by a dividing surface so as to abut each other in the turbine circumferential direction.
  • a horizontal seal plate 14 straddling between the butted end surfaces of the adjacent inner shrouds 8b is installed on the divided surface between the adjacent inner shrouds 8b so as to close the dividing gap K1 in the turbine circumferential direction of the inner shroud 8b. (See FIGS. 3 and 4A and 4B).
  • the wing body 8c has an arc shape so as to be tapered toward the downstream side (right side in FIG. 3).
  • one wing body 8c is provided for one inner shroud 8b.
  • the retainer 8d extends in an annular shape along the circumferential direction of the turbine.
  • the support ring 10 against which the downstream surface of the retainer 21d is abutted receives the load in the thrust direction (direction along the axis O serving as the rotor shaft) due to the differential pressure.
  • the support ring 10 prevents the first stage stationary blade 8 from being displaced in a direction approaching the first stage moving blade 9.
  • a vertical seal plate 15 extending between the butted end surfaces of the retainers 8d adjacent in the turbine circumferential direction is installed in the circumferential direction.
  • the retainer 8d has a throat line P connecting the minimum inscribed circle SN formed between the adjacent blade main bodies 8c and the contacts X1 and X2 between the blade main bodies, and a dividing gap K1 between the adjacent inner shrouds 8b. It is arrange
  • a seal member 16 such as an E-ring as a seal member is provided between the retainer 8d and the support ring 10 as shown in FIG.
  • the retainer 8d and the support ring 10 function as a partition wall of the passenger compartment S.
  • the casing S on the upstream side of the retainer 8d has a high pressure
  • the space N on the downstream side of the retainer 8d has a low pressure.
  • the pressure of the combustion gas G in the main flow path R passing through the blade body 8c is high on the upstream side of the throat line P, but the pressure is suddenly reduced on the downstream side of the throat line P, so that The interstage pressure between the stationary blade 8 and the one-stage moving blade 9 is almost the same pressure.
  • FIG. 5 shows the specifics of the intersection point Q between the throat line P where the pressure of the combustion gas G changes and the dividing gap K1, and the intersection points T1, T2 between the retainer and the dividing gap K1, in contrast to the conventional turbine vane.
  • the positional relationship is shown by a cross section in the rotor radial direction.
  • FIG. 5A shows the positional relationship between the intersection point Q and the intersection point T1 in the present embodiment.
  • FIG. 5B shows the positional relationship between the intersection point Q and the intersection point T2 in the conventional turbine vane.
  • FIG. 5 the position of the intersection point Q in the combustion gas flow direction (rotor axial direction) (left and right direction on the paper surface in FIG. 5) is displayed so as to match in FIGS. 5A and 5B. is doing. Further, for convenience, a vertical line QV standing perpendicular to the rotor passing through the intersection point Q is indicated by a broken line.
  • the pressure of the combustion gas G changes abruptly at the throat line P, but the pressure of the combustion gas in the vicinity of the division gap K1 may be considered to change along the division gap K1. Accordingly, the pressure of the combustion gas G along the dividing gap K1 in the vicinity of the dividing gap K1 is high on the upstream side at the intersection Q between the dividing gap K1 and the throat line P. descend.
  • the intersection point T1 between the retainer 8d and the dividing gap K1 is disposed downstream of the intersection point Q.
  • a division gap K1 on the downstream side from the intersection T1 is an area adjacent to the space N with the seal plate 14 interposed therebetween.
  • intersection point T1 is arranged downstream of the intersection point Q (on the right side of the point Q on the paper surface).
  • FIG. 7 displaying a conventional turbine vane
  • an intersection T2 between the retainer 21d and the dividing gap K1 is disposed upstream of the throat line P.
  • FIG. 5B which displays this in a cross section along the rotor axis direction
  • the intersection point T2 is upstream of the intersection point Q (left side of the point Q on the paper surface). In the position of the intersection T2 shown in FIG.
  • the retainer 8d is disposed downstream of the intersection point Q between the throat line P and the dividing gap K1, so that the pressure of the main flow path R downstream of the throat line P and the space N There is almost no pressure difference. Therefore, the amount of combustion gas that leaks from the main flow path R into the space N via the dividing gap K1 is reduced, so that the back surface of the inner shroud 8b and the support ring 10 are burned out and weld cracks are reduced.
  • a seal member 16 accommodated in the seal groove 10a is interposed between the retainer 8d and the support ring 10. Therefore, the retainer 8d and the support ring 10 on the back surface side of the inner shroud 8b ensure the airtightness of the partition function that partitions the upstream side and the downstream side of the passenger compartment S, thereby preventing the loss of the passenger compartment air.
  • the amount of combustion gas that leaks from the main flow path R into the space N via the division gap K1 by disposing the retainer 8d downstream of the intersection Q between the throat line P and the division gap K2. Therefore, it is possible to avoid burnout and weld cracking of the back surface of the inner shroud 8b and the upper portion of the support ring 10 (outside in the turbine radial direction). Therefore, the gas turbine 1 can be operated for a long time, and the reliability of the gas turbine 1 is improved.
  • the turbine stationary blade and the gas turbine of the present invention it is possible to suppress breakage and cracking of components and welds arranged on the back side of the inner shroud due to leakage of high-temperature and high-pressure combustion gas.
  • Gas turbine 8 Turbine stationary blade (single stage stationary blade) 8a ... outer shroud 8b ... inner shroud 8c ... wing body 8d ... retainer 8e ... rib 10 ... support ring 16 ... seal member (E-ring) G ... Combustion gas N ... Space P ... Throat line Q ... Intersection of throat line and split gap R ... Main flow path T1, T2 ... Intersection of retainer and split gap K1 ... Clearance (split gap)

Abstract

 本発明のタービン静翼は、タービン周方向に沿って複数隣接して設けられると共に主流路の外壁を構成する外側シュラウド(8a)及び内壁を構成する内側シュラウド(8b)と、内側シュラウド(8b)の表面から突出して主流路の上流側から下流側に向う燃焼ガスの流れを規定する翼本体(8c)と、内側シュラウド(8b)の裏面から突出してタービン周方向に沿って延びるリテーナ(8d)と、を備え、リテーナ(8d)は、隣接する翼本体(8c)の翼形状に伴う最小内接円の接点間を結ぶスロートライン(P)と隣接する内側シュラウド(8b)の分割隙間(K1)との交点(Q)よりも下流側に配置されている。

Description

タービン静翼およびガスタービン
 本発明は、取り込んだ空気から燃焼ガスを生成してロータを回転させるタービン静翼およびガスタービンに関する。
 従来から、タービン静翼及びタービン動翼が交互に複数段配列されたロータを回転駆動させるガスタービンが周知である。このガスタービンでは、圧縮機を通過させる過程で取り込んだ空気から圧縮空気を生成し、その圧縮空気を燃焼器に供給すると共に燃料を燃焼させることにより燃焼ガスを生成した後、その燃焼ガスをタービン静翼及びタービン動翼の配列する範囲を通過させることによりロータを回転駆動させる。
 図6(A)はこのようなガスタービンの一例を示す要部の断面図、図6(B)は要部の拡大断面図である(特許文献1参照)。図6において、21はタービン静翼、22はタービン動翼、23はタービン動翼22が取り付けられたタービンディスク、24は中間軸カバー、25は中間軸カバー24にボルト26を介して固定されたサポートリングである。尚、以下の説明においては、燃焼器(図示せず)の尾筒27が接続される最上流側の一段目のタービン静翼(以下、「一段静翼」と称する。)21と、この一段静翼21の下流側(図示右方)に隣接する一段目のタービン動翼(以下、「一段動翼」と称する。)22として説明する。
 一段静翼21は、基本的に同一のセグメントを複数用いてタービン周方向に沿って配列することで円環状とされる。この一段静翼21は、外周壁を構成する外側シュラウド21aと、内周壁を構成する内側シュラウド21bと、外側シュラウド21aと内側シュラウド21bとの間に架設された翼本体21cと、内側シュラウド21bの裏面(図示下方)から突出したリテーナ21dと、を備えている。また、一段静翼21は、リテーナ21dの下流側の面をサポートリング25に突き当てると共に、サポートリング25にピン28を介して固定されている。
 一段静翼21の各セグメントの内側シュラウド21bは、図7に示すように、正面視で略平行四辺形(菱形)に形成されている。複数セグメントの内側シュラウド21bが、タービン周方向に一辺同士を突き合わせるように接続され、分割面には若干の分割隙間K1が形成されている。また、翼本体21cは、下流側(図示右側)に向う程に先細りとなるように弧状の形状を有している。さらに、リテーナ21dの下流側の面が突き当てられたサポートリング25が、翼本体21cにかかる燃焼ガスGの差圧によるスラスト方向(ロータ軸方向)の荷重を受け止める。このサポートリング25により、一段静翼21が一段動翼22に接近する方向に変位することが抑制されている。なお、燃焼ガスGは、図7の紙面上で左側から右側に向かって流れる。
 一段動翼22は、図6に示すように、内周壁を構成するプラットフォーム22aと、プラットフォーム22aの表面からタービン径方向(以下、単に「径方向」と称する。)の外側に突出された翼本体22bと、を備える。一段動翼22の先端に対向して、タービンケーシング(図示せず)の内周に位置する分割環29が配置されている。
 これにより、外側シュラウド21a及び分割環29と内側シュラウド21b及びプラットフォーム22aとの間には、燃焼ガスGが通過する主流路Rが形成されている。この主流路Rに、一段静翼21の翼本体21c及び一段動翼22の翼本体22bがそれぞれ配置される。
 一方、一段静翼21の内側シュラウド21bの径方向内側には、圧縮機を出た冷却空気を貯める車室Sが存在する。内側シュラウド21bには、燃焼ガスGが流れる主流路Rと車室Sを遮断するため、各セグメントの分割面に沿ってロータ軸方向にシール板31が配置される。また、リテーナ21dに沿って径方向に延びるように、シール板32が配置されている。通常、車室S側の空気圧は主流路Rの燃焼ガス圧より高いため、燃焼ガスGが車室S内へ漏れ出すことはない。
特開平10-266807号公報
 図6(B)に示すように、内側シュラウド21bのリテーナ21dより下流側の部分とサポートリング25との間には、わずかな隙間を形成する環状の空間Nが存在する。この空間Nは、リテーナ21dとサポートリング25とで車室Sとの間が縁切りされているため、一段静翼21と一段動翼22との間の段間圧力とほぼ同じ圧力となる。すなわち、空間Nの位置に対応する主流路Rを流れる燃焼ガスGの圧力は、空間Nより圧力が高いため、燃焼ガスGが図6に示す分割隙間K1からシール板31に沿って空間Nに流れ込みやすい。つまり、燃焼ガスGの一部のリークガスLGが、分割隙間K1から空間Nに巻き込まれ、内側シュラウド21bの裏面及びサポートリング25の上面を焼損させるという問題点があった。
 本発明は、分割隙間からの燃焼ガスの巻き込みを低減するタービン静翼およびそれを備えたガスタービンを提供することを目的としている。
 本発明のタービン静翼は、タービン周方向に沿って複数隣接して設けられると共に、主流路の外壁を構成する外側シュラウドと、タービン周方向に沿って複数隣接して設けられると共に、前記主流路の内壁を構成する内側シュラウドと、前記内側シュラウドの表面から突出して前記主流路の上流側から下流側に向う燃焼ガスの流れを規定する翼本体と、前記内側シュラウドの裏面から突出してタービン周方向に沿って延びるリテーナと、を備えるタービン静翼であって、前記リテーナは、タービン周方向で隣接する前記翼本体の間に形成される最小内接円と前記翼本体それぞれとの接点間を結ぶスロートラインと、タービン周方向で隣接する前記内側シュラウドの分割隙間との交点よりも下流側に配置されている。
 本発明のタービン静翼によれば、主流路から内側シュラウドの裏面側への燃焼ガスの漏れをより一層抑制することができると共に、高温高圧な燃焼ガスの漏れに伴う内側シュラウドの裏面側に配置された内側シュラウドの裏面及びサポートリング上等の構成部品の焼損を防止して、溶接部の破損や割れを抑制することができる。
 また、本発明のタービン静翼は、前記リテーナが、その下流側の面が突き当たるサポートリングを介してタービン本体に固定され、前記リテーナと前記サポートリングとの間にはシール部材が設けられてもよい。
 本発明によれば、内側シュラウドの裏面側におけるリテーナとサポートリングとで上流側と下流側とで区画される隔壁機能の気密性を確保することができる。
 本発明のガスタービンは、前述のタービン静翼を備えてもよい。
 本発明によれば、内側シュラウドおよびサポートリングの焼損が改善され、ガスタービンの長時間運転が可能となって、ガスタービンの信頼性が向上する。
 本発明によるタービン静翼およびガスタービンは、主流路から分割隙間を経由して内側シュラウドの裏面側の空間への燃焼ガスの漏れを制することができるため、高温高圧な燃焼ガスの漏れに伴う内側シュラウドの裏面側に配置された構成部品や溶接部の破損や割れを抑制することができる。
本発明の実施形態に係るガスタービンの概略構成を示す縦断面図である。 本発明の実施形態に係るタービン静翼を示し、(A)はタービン静翼の要部の断面図、(B)はタービン静翼の要部の拡大断面図である。 本発明の実施形態に係るタービン静翼を示し、一段静翼の要部の正面図である。 本発明の実施形態に係るタービン静翼のシール板の構造を示し、(A)は図3のA-A線に沿う要部の断面図、(B)は(A)のB-B線に沿う要部の拡大断面図である。 本発明の実施形態と従来のタービン静翼の断面を対比して示し、(A)は図3のC-C線に沿う断面図、(B)は図7のD-D線に沿う断面図である。 従来のタービン静翼を示し、(A)は要部の断面図、(B)は要部の拡大断面図である。 従来のタービン静翼の要部の正面図である。
 次に、本発明の実施形態に係るガスタービンについて、図面を参照して説明する。尚、以下に示す実施例は本発明のガスタービンにおける好適な具体例であり、技術的に好ましい種々の限定を付している場合もある。しかし、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。また、以下に示す実施形態における構成要素は適宜、既存の構成要素等との置き換えが可能であり、かつ、他の既存の構成要素との組合せを含む様々なバリエーションが可能である。したがって、以下に示す実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。
 図1は、本発明の一実施形態に係るガスタービンの概略構成を示す縦断面図である。
 図1において、ガスタービン1は、圧縮機2と、複数の燃焼器3と、タービン4と、排気室5と、を圧縮空気C及び燃焼ガスGの供給・排気方向の上流側から下流側に向けてこの順に備えている。圧縮機2は、圧縮空気Cを生成する。複数の燃焼器3は、圧縮機2から供給される圧縮空気Cを一旦車室Sに貯め、さらに圧縮空気Cと燃料とを混合して作動流体である燃焼ガスGを生成する。タービン4は、燃焼器3から供給される燃焼ガスGにより回転動力を発生させる。排気室5は、タービン4を通過した燃焼ガスGを排気する。また、ガスタービン1は、軸線Oを回転中心としてタービン4の周方向Rに回転するロータ6を備えている。
 タービン4は、内部にタービン静翼8及びタービン動翼9を備える。このタービン静翼8及びタービン動翼9は、ロータ6の軸方向に沿って交互に配置されている。燃焼器3で発生した燃焼ガスGがロータ6の軸廻りに配設されたタービン動翼9を回転させることにより、燃焼ガスGの熱エネルギーが回転エネルギーに変換されて、電力として取り出される。
 図2(A)はこのようなガスタービン1のタービン静翼8の一例を示す要部の断面図である。尚、以下の説明においては、燃焼器3の尾筒3aが接続される最上流側(図示左方)の一段目のタービン静翼(以下、「一段静翼」と称する。)8と、この一段静翼8の下流側(図示右方)に隣接する一段目のタービン動翼(以下、「一段動翼」と称する。)9を一例として説明する。
 一段静翼8は、基本的に同一のセグメントをタービン周方向に沿って複数配列することで円環状とされる。この一段静翼8は、外周壁を構成する外側シュラウド8aと、内周壁を構成する内側シュラウド8bと、外側シュラウド8aと内側シュラウド8bとの間に架設された翼本体8cと、内側シュラウド8bの裏面(図示下方)から突出したリテーナ8dと、を備えている。また、一段静翼8は、リテーナ8dの下流側の面をサポートリング10に突き当てると共に、サポートリング10にピン11を介して固定されている。尚、サポートリング10は中間軸カバー12にボルト13を介して固定されている。
 内側シュラウド8bは、図3に示すように、1つのセグメントが正面視で略平行四辺形(菱形)に形成されている。複数のセグメントの内側シュラウド8bが、タービン周方向に一辺同士を突き合わせるように分割面で接続している。また、隣接する内側シュラウド8bの間の分割面には、内側シュラウド8bのタービン周方向の分割隙間K1を塞ぐように、隣接する内側シュラウド8bの突合せ端面間に跨る横シール板14が架設されている(図3および図4(A),(B)参照)。
 さらに、翼本体8cは、下流側(図3の右側)に向う程に先細りとなるように弧状の形状を有している。また、本実施の形態においては、一つの内側シュラウド8bに対して一つの翼本体8cが設けられている。
 リテーナ8dは、タービン周方向に沿って環状に延在している。リテーナ21dの下流側の面が突き当てられたサポートリング10が、差圧によるスラスト方向(ロータ軸となる軸線Oに沿う方向)の荷重を受け止める。このサポートリング10により、一段静翼8が一段動翼9に接近する方向に変位することが抑制されている。また、隣接するリテーナ8dの間には、タービン周方向で隣接するリテーナ8dの突合せ端面間に跨る縦シール板15が周方向に架設されている。
 さらに、リテーナ8dは、隣接する翼本体8cの間に形成される最小内接円SNと前記翼本体それぞれとの接点X1,X2間を結ぶスロートラインPと、隣接する内側シュラウド8bの分割隙間K1との交点Qよりも下流側に配置されている。
 また、リテーナ8dとサポートリング10との間には、図2(B)に示すように、シール部材としてのEリング等のシール部材16が設けられている。
 このような構成において、リテーナ8dとサポートリング10とは、車室Sの隔壁として機能している。これにより、リテーナ8dよりも上流側の車室Sは高圧、リテーナ8dよりも下流側の空間Nは低圧となる。また、翼本体8cを通過する主流路Rでの燃焼ガスGの圧力は、スロートラインPよりも上流側は高圧であるが、スロートラインPよりも下流側では急激に圧力が低下して、一段静翼8と一段動翼9との間の段間圧力とほぼ同じ圧力となる。
 図5は、従来のタービン静翼との対比で、燃焼ガスGの圧力が変化するスロートラインPと分割隙間K1との交点Qと、リテーナと分割隙間K1との交点T1、T2との具体的な位置関係を、ロータ径方向の断面で示している。図5(A)は、本実施形態における交点Qおよび交点T1の位置関係を示している。図5(B)は、従来のタービン静翼における交点Qと交点T2との位置関係を示している。
 なお、図5では、燃焼ガスの流れ方向(ロータ軸方向)の交点Qの位置(図5の紙面上の左右方向)が、図5(A)及び図5(B)で一致するように表示している。また、便宜上、交点Qを通るロータに垂直に立てた垂線QVを破線で表示している。
 図3に示すように、スロートラインPを境に、燃焼ガスGの圧力が急激に変化するが、分割隙間K1近傍の燃焼ガスの圧力は、分割隙間K1に沿って変化すると考えてよい。従って、分割隙間K1近傍の分割隙間K1に沿う燃焼ガスGの圧力は、分割隙間K1とスロートラインPとの交点Qを境に、上流側で圧力が高く、点Qを通過すると圧力は急激に低下する。一方、リテーナ8dと分割隙間K1の交点T1は、交点Qより下流側に配置されている。交点T1から下流側の分割隙間K1は、シール板14を挟んで空間Nに隣接する領域である。
 この関係を図5で説明すれば、図5(A)において、交点T1は交点Qより下流側(紙面上で点Qの右側)に配置されている。一方、従来のタービン静翼を表示する図7では、スロートラインPより上流側に、リテーナ21dと分割隙間K1との交点T2が配置されている。これを、ロータ軸方向に沿った断面で表示する図5(B)では、交点T2は交点Qよりも上流側(紙面上で点Qの左側)にある。図5(B)に示す交点T2の位置では、点QからT2までの間の分割隙間K1近傍は、高い圧力が維持されているため、点QからT2までの間の分割隙間K1から空間Nに燃焼ガスGが漏れ込みやすくなる。一方、図5(A)に示す交点T1は、交点Qより下流側に配置されているため、交点T1より下流側の分割隙間K1近傍の圧力は低くなり、下流側の段間圧力とほぼ同じとなっている。従って、図5(A)に示す本実施形態の場合では、分割隙間K1から空間Nへの燃焼ガスの漏れ込みを大幅に抑制できる。
 本実施形態では、リテーナ8dが、スロートラインPと分割隙間K1との交点Qよりも下流側に配置されていることから、スロートラインPよりも下流側の主流路Rの圧力と空間Nとの圧力差がほとんどなくなる。そのため、主流路Rから分割隙間K1を経由して空間Nに漏れ込む燃焼ガス量が低減されることにより、内側シュラウド8bの裏面およびサポートリング10の焼損および溶接割れが低減される。
 しかも、リテーナ8dとサポートリング10との間にはシール溝10aに収納されたシール部材16が介在されている。従って、内側シュラウド8bの裏面側におけるリテーナ8dとサポートリング10とで車室Sの上流側と下流側とを区画する隔壁機能の気密性が確保されるため、車室空気の損失を防止できる。
 本発明によれば、リテーナ8dを、スロートラインPと分割隙間K2との交点Qよりも下流側に配置することにより、主流路Rから分割隙間K1を経由して空間Nに漏れ込む燃焼ガス量を低減できるので、内側シュラウド8bの裏面およびサポートリング10の上部(タービン径方向の外側)の焼損や溶接割れを回避できる。そのため、ガスタービン1の長時間運転が可能となり、ガスタービン1の信頼性が向上する。
 本発明のタービン静翼及びガスタービンによれば、高温高圧な燃焼ガスの漏れに伴う内側シュラウドの裏面側に配置された構成部品や溶接部の破損や割れを抑制することができる。
  1…ガスタービン
  8…タービン静翼(一段静翼)
   8a…外側シュラウド
   8b…内側シュラウド
   8c…翼本体
   8d…リテーナ
   8e…リブ
 10…サポートリング
 16…シール部材(Eリング)
  G…燃焼ガス
  N…空間
  P…スロートライン
  Q…スロートラインと分割隙間の交点
  R…主流路
  T1、T2…リテーナと分割隙間の交点
  K1…隙間(分割隙間)

Claims (3)

  1.  タービン周方向に沿って複数隣接して設けられると共に、主流路の外壁を構成する外側シュラウドと、
     タービン周方向に沿って複数隣接して設けられると共に、前記主流路の内壁を構成する内側シュラウドと、
     該前記内側シュラウドの表面から突出して前記主流路の上流側から下流側に向う燃焼ガスの流れを規定する翼本体と、
     前記内側シュラウドの裏面から突出してタービン周方向に沿って延びるリテーナと、を備えるタービン静翼であって、
     前記リテーナは、タービン周方向で隣接する前記翼本体の間に形成される最小内接円と前記翼本体それぞれとの接点間を結ぶスロートラインと、タービン周方向で隣接する前記内側シュラウドの分割隙間との交点よりも下流側に配置されているタービン静翼。
  2.  前記リテーナは、その下流側の面が突き当たるサポートリングを介してタービン本体に固定され、前記リテーナと前記サポートリングとの間にはシール部材が設けられている請求項1に記載のタービン静翼。
  3.  請求項1または請求項2のいずれか1項に記載のタービン静翼を備えるガスタービン。
PCT/JP2012/051198 2011-04-19 2012-01-20 タービン静翼およびガスタービン WO2012144242A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280018906.5A CN103502577B (zh) 2011-04-19 2012-01-20 涡轮静叶片及燃气轮机
EP12773911.8A EP2700789A4 (en) 2011-04-19 2012-01-20 TURBINE STATOR DAWN AND GAS TURBINE
KR1020137024161A KR101531779B1 (ko) 2011-04-19 2012-01-20 터빈 정익 및 가스 터빈
JP2013510901A JP5848335B2 (ja) 2011-04-19 2012-01-20 タービン静翼およびガスタービン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-093045 2011-04-19
JP2011093045 2011-04-19

Publications (1)

Publication Number Publication Date
WO2012144242A1 true WO2012144242A1 (ja) 2012-10-26

Family

ID=47021475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051198 WO2012144242A1 (ja) 2011-04-19 2012-01-20 タービン静翼およびガスタービン

Country Status (6)

Country Link
US (1) US20120269622A1 (ja)
EP (1) EP2700789A4 (ja)
JP (1) JP5848335B2 (ja)
KR (1) KR101531779B1 (ja)
CN (1) CN103502577B (ja)
WO (1) WO2012144242A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036710A (ja) * 2015-08-11 2017-02-16 三菱日立パワーシステムズ株式会社 静翼、及びこれを備えているガスタービン
JP2019052639A (ja) * 2017-09-15 2019-04-04 ゼネラル・エレクトリック・カンパニイ・ポルスカ・エスピー・ズィーオー・オーGeneral Electric Company Polska Sp. Zo.O. 傾斜した内側バンドフランジを有するタービンノズル

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076906A2 (en) * 2013-09-10 2015-05-28 United Technologies Corporation Plug seal for gas turbine engine
KR102084162B1 (ko) * 2018-09-19 2020-03-03 두산중공업 주식회사 터빈 스테이터, 터빈 및 이를 포함하는 가스터빈
US11215063B2 (en) * 2019-10-10 2022-01-04 General Electric Company Seal assembly for chute gap leakage reduction in a gas turbine
KR102519905B1 (ko) 2022-06-17 2023-04-11 최영환 프로펠러 감시 기능을 구비한 선박

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992415A (ja) * 1972-09-05 1974-09-03
JPS5316108A (en) * 1976-07-29 1978-02-14 Gen Electric Fluiddcooled element
JPS5768103U (ja) * 1980-10-13 1982-04-23
JPH05187259A (ja) * 1991-07-22 1993-07-27 General Electric Co <Ge> タービンノズル支持体
JPH10266807A (ja) 1997-03-27 1998-10-06 Mitsubishi Heavy Ind Ltd ガスタービンシール装置
JP2000064807A (ja) * 1998-08-20 2000-02-29 General Electric Co <Ge> 選択的断熱溶射皮膜を有する弓形ノズルベ―ン
US6481959B1 (en) * 2001-04-26 2002-11-19 Honeywell International, Inc. Gas turbine disk cavity ingestion inhibitor
JP2006342804A (ja) * 2005-06-06 2006-12-21 General Electric Co <Ge> 可変複合フィレットを備えたタービン翼形部
US7534088B1 (en) * 2006-06-19 2009-05-19 United Technologies Corporation Fluid injection system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752598A (en) * 1971-11-17 1973-08-14 United Aircraft Corp Segmented duct seal
GB1605219A (en) * 1975-10-02 1984-08-30 Rolls Royce Stator vane for a gas turbine engine
DE3003469A1 (de) * 1980-01-31 1981-08-06 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Einrichtung zur verbindung einander rotationssymmetrisch zugeordneter bauteile fuer stroemungsmaschinen, insbesondere gasturbinentriebwerke
US5174715A (en) * 1990-12-13 1992-12-29 General Electric Company Turbine nozzle
US5154577A (en) * 1991-01-17 1992-10-13 General Electric Company Flexible three-piece seal assembly
JP3782637B2 (ja) * 2000-03-08 2006-06-07 三菱重工業株式会社 ガスタービン冷却静翼
US6752592B2 (en) * 2001-12-28 2004-06-22 General Electric Company Supplemental seal for the chordal hinge seals in a gas turbine
JP4412081B2 (ja) * 2004-07-07 2010-02-10 株式会社日立製作所 ガスタービンとガスタービンの冷却方法
US7172388B2 (en) * 2004-08-24 2007-02-06 Pratt & Whitney Canada Corp. Multi-point seal
DE502006006344D1 (de) * 2006-10-16 2010-04-15 Siemens Ag Turbinenschaufel für eine Turbine mit einem Kühlmittelkanal
US7798768B2 (en) * 2006-10-25 2010-09-21 Siemens Energy, Inc. Turbine vane ID support
US8388307B2 (en) * 2009-07-21 2013-03-05 Honeywell International Inc. Turbine nozzle assembly including radially-compliant spring member for gas turbine engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992415A (ja) * 1972-09-05 1974-09-03
JPS5316108A (en) * 1976-07-29 1978-02-14 Gen Electric Fluiddcooled element
JPS5768103U (ja) * 1980-10-13 1982-04-23
JPH05187259A (ja) * 1991-07-22 1993-07-27 General Electric Co <Ge> タービンノズル支持体
JPH10266807A (ja) 1997-03-27 1998-10-06 Mitsubishi Heavy Ind Ltd ガスタービンシール装置
JP2000064807A (ja) * 1998-08-20 2000-02-29 General Electric Co <Ge> 選択的断熱溶射皮膜を有する弓形ノズルベ―ン
US6481959B1 (en) * 2001-04-26 2002-11-19 Honeywell International, Inc. Gas turbine disk cavity ingestion inhibitor
JP2006342804A (ja) * 2005-06-06 2006-12-21 General Electric Co <Ge> 可変複合フィレットを備えたタービン翼形部
US7534088B1 (en) * 2006-06-19 2009-05-19 United Technologies Corporation Fluid injection system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700789A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036710A (ja) * 2015-08-11 2017-02-16 三菱日立パワーシステムズ株式会社 静翼、及びこれを備えているガスタービン
WO2017026314A1 (ja) * 2015-08-11 2017-02-16 三菱日立パワーシステムズ株式会社 静翼、及びこれを備えているガスタービン
JP2019052639A (ja) * 2017-09-15 2019-04-04 ゼネラル・エレクトリック・カンパニイ・ポルスカ・エスピー・ズィーオー・オーGeneral Electric Company Polska Sp. Zo.O. 傾斜した内側バンドフランジを有するタービンノズル

Also Published As

Publication number Publication date
JPWO2012144242A1 (ja) 2014-07-28
KR20130129282A (ko) 2013-11-27
EP2700789A1 (en) 2014-02-26
CN103502577A (zh) 2014-01-08
CN103502577B (zh) 2015-06-24
JP5848335B2 (ja) 2016-01-27
EP2700789A4 (en) 2015-03-18
US20120269622A1 (en) 2012-10-25
KR101531779B1 (ko) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5848439B2 (ja) シール部材、タービン、及びガスタービン
JP5848335B2 (ja) タービン静翼およびガスタービン
JP6633640B2 (ja) 飛行機のタービンエンジンの噴射システムと燃料噴射ノズルの間の封止デバイス
US20170009989A1 (en) Gas turbine combustion chamber with integrated turbine inlet guide vane ring as well as method for manufacturing the same
CN108930594B (zh) 交叉涡轮发动机的空气轴承和热管理喷嘴布置
US10280798B2 (en) Rotatable full ring fairing for a turbine engine
EP2549121B1 (en) Gas turbine engine comprising a stator vane assembly
JP5885935B2 (ja) タービン静翼およびガスタービン
US9689272B2 (en) Gas turbine and outer shroud
WO2019131011A1 (ja) 航空機用ガスタービン及び航空機用ガスタービンの動翼
US11067277B2 (en) Component assembly for a gas turbine engine
US11118469B2 (en) Seal assembly for a turbo machine
US20180045218A1 (en) Shim for gas turbine engine
WO2019187435A1 (ja) 航空機用ガスタービン
US20220243618A1 (en) Outlet guide vane assembly in gas turbine engine
US10968762B2 (en) Seal assembly for a turbo machine
US10774661B2 (en) Shroud for a turbine engine
JP2009215897A (ja) ガスタービンエンジン
JP2020094508A (ja) タービン静翼及びガスタービン
US20140154060A1 (en) Turbomachine seal assembly and method of sealing a rotor region of a turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510901

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137024161

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012773911

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE