WO2012144102A1 - Seatbelt retractor - Google Patents

Seatbelt retractor Download PDF

Info

Publication number
WO2012144102A1
WO2012144102A1 PCT/JP2011/075554 JP2011075554W WO2012144102A1 WO 2012144102 A1 WO2012144102 A1 WO 2012144102A1 JP 2011075554 W JP2011075554 W JP 2011075554W WO 2012144102 A1 WO2012144102 A1 WO 2012144102A1
Authority
WO
WIPO (PCT)
Prior art keywords
webbing
gear
lock arm
pull
inertial body
Prior art date
Application number
PCT/JP2011/075554
Other languages
French (fr)
Japanese (ja)
Inventor
仁洙 崔
智惠 中山
Original Assignee
芦森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芦森工業株式会社 filed Critical 芦森工業株式会社
Publication of WO2012144102A1 publication Critical patent/WO2012144102A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/36Belt retractors, e.g. reels self-locking in an emergency
    • B60R22/38Belt retractors, e.g. reels self-locking in an emergency responsive only to belt movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/36Belt retractors, e.g. reels self-locking in an emergency
    • B60R22/405Belt retractors, e.g. reels self-locking in an emergency responsive to belt movement and vehicle movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/46Reels with means to tension the belt in an emergency by forced winding up
    • B60R22/4628Reels with means to tension the belt in an emergency by forced winding up characterised by fluid actuators, e.g. pyrotechnic gas generators

Definitions

  • the present invention relates to a seat belt retractor for preventing webbing from being pulled out in an emergency.
  • a flat plate-like inertia body formed in a substantially C shape is rotatably supported on a shaft standing on a flat plate portion of a lock gear.
  • the center of gravity of the inertial body is set at a position slightly away from the rotation axis of the inertial body on the extension line on the rotation axis side of the linear inertial body connecting the rotation axis of the lock gear and the rotation axis of the inertial body.
  • control spring that constantly urges the inertial body in the webbing pull-out direction with respect to the lock gear is provided at the end opposite to the locking claw of the inertial body, and the tip is hemispherical and cylindrical. One end is supported by the guide portion. The other end of the control spring is erected in parallel with the flat plate portion of the lock gear and is supported by a cylindrical spring guide portion having a hemispherical tip.
  • the control spring includes a seat belt retractor configured to be contracted between the spring guide portions in a state where the inertia body is swingably supported (see, for example, Japanese Patent Laid-Open No. 5-208657). .
  • the inertial body revolves around the rotation axis of the lock gear and the rotation axis of the reel shaft depending on the body shape and seating posture of the user. For this reason, there is a possibility that the pulling acceleration (sensor sensitivity) of the webbing that engages the engaging claw of the inertial body with the teeth of the lock gear first cover may vary depending on the revolution position of the inertial body with respect to the rotation axis of the reel shaft. There is.
  • both ends of the control spring are supported by respective cylindrical spring guide portions having a hemispherical tip, the control spring is substantially S-shaped when the inertial body is rotated by sudden pulling out of the webbing. It is shrunk while being bent. For this reason, the control spring is rapidly compressed while being rubbed against each spring guide portion, so that the control spring cannot be smoothly contracted, and there is a possibility that the webbing pull-out acceleration (sensor sensitivity) may vary. .
  • An object of the present invention is to provide a seatbelt retractor that can prevent the occurrence. It is another object of the present invention to provide a seat belt retractor in which a sensor spring that urges an inertial body to rotate in the webbing pull-out direction can be smoothly contracted, and variation in webbing pull-out acceleration can be prevented. To do.
  • a seatbelt retractor is attached to a housing, a take-up drum that is rotatably housed in the housing and winds and houses a webbing, and is attached to the outside of one side wall portion of the housing.
  • a locking means for rotatably supporting one end of the winding drum in a normal state and preventing the winding drum from rotating in the webbing pull-out direction when the webbing is pulled out at a predetermined pulling acceleration or higher.
  • the lock means normally rotates together with the take-up drum, and operates when the webbing is pulled out at a predetermined or higher pulling acceleration.
  • a clutch member that operates a pawl that prevents rotation of the take-up drum in the webbing pull-out direction, and the pull-out acceleration sensing member
  • a locking gear that rotates integrally with the take-up drum, and is rotatably supported at a position away from the rotation shaft of the locking gear radially outward by a predetermined distance so as to surround the rotation shaft of the locking gear.
  • a substantially arcuate inertial body disposed, and a sensor spring that urges the inertial body to rotate in the webbing pull-out direction with respect to the locking gear, and the clutch member is provided on the winding drum.
  • An annular rib provided on the inner peripheral surface, which is provided coaxially with the rotary shaft and engages when the inertial body rotates in the webbing take-up direction against the urging force of the sensor spring. And the inertial body is rotated in the webbing pull-out direction by the sensor spring and is in contact with the stopper, the position of the center of gravity is the rotational axis of the locking gear and the rotation shaft.
  • the first It is set so that it has a maximum width on a bisector that divides the angle into almost equal halves, and becomes narrower as it goes away from the bisector in both circumferential directions, and substantially touches the boundary at both circumferential edges.
  • the inertial body is set so that the variation in the pulling-out acceleration of the webbing engaged with the clutch gear is about 0.2 G or less. And Note that 1G ⁇ 9.8 m / s2.
  • the inertial body includes a second at the inertial body side having a second angle smaller than the first angle at which the position of the center of gravity is substantially bisected by the bisector.
  • the inertial body is set so as to be located in the second region reduced so as to be similar to the first region, and the inertial body has a variation in the pull-out acceleration of the webbing engaged with the clutch gear. It may be set to be approximately 0.1 G or less.
  • the inertial body includes a metal flat plate formed in a substantially arcuate shape, and the flat plate mounted on the inner side so as to be pivotally supported by the locking gear.
  • An engaging claw formed on the portion may include a synthetic resin rotating body formed in a substantially arcuate shape so as to engage with the clutch gear.
  • a metal flat plate formed in a substantially arcuate shape is mounted inside a synthetic resin rotating body formed in a substantially arcuate shape, so that the inertial body is made of only a synthetic resin. It can be made smaller than the case. Moreover, the gravity center position of an inertial body can be easily set by changing the shape of a metal flat plate. Furthermore, since the engaging claw that engages the clutch gear is formed at one end of the rotating body made of synthetic resin, the structure of the inertial body can be simplified.
  • the seatbelt retractor according to the present invention is attached to the housing, the winding drum that is rotatably housed in the housing and winds and stores the webbing, and is attached to the outside of one side wall of the housing.
  • Lock means for rotatably supporting one end side of the winding drum and preventing the winding drum from rotating in the webbing pull-out direction when the webbing is pulled out at a predetermined pulling acceleration or more,
  • the locking means is a locking gear that rotates integrally with the take-up drum, and is pivotally supported at a position away from the rotation shaft of the locking gear radially outward by a predetermined distance so as to rotate the rotation shaft of the locking gear.
  • a substantially arcuate inertial body arranged so as to surround, and a sensor sp which urges the inertial body to rotate in the webbing pull-out direction with respect to the locking gear.
  • a clutch gear which is provided coaxially with the rotating shaft of the winding drum and engages when the inertial body rotates in the webbing winding direction against the urging force of the sensor spring.
  • the at least one of the gear side spring support pin and the inertial body side spring support pin is webbing wound against the urging force of the sensor spring.
  • At least one of the gear-side spring support pin and the inertial body-side spring support pin is bent by the sensor spring so that the outer peripheral surface of the tip side is substantially along the inside of the sensor spring. It is formed in the taper shape by which the outer peripheral surface which approaches the inner side was shaved.
  • the inertial body is rotated by a sudden pull-out of the webbing and the sensor spring is bent and contracted, at least one of the gear side spring support pin and the inertial body side spring support pin does not rub against the inside of the sensor spring.
  • the sensor spring can be smoothly contracted, and the operation sensitivity of the lock means can be stabilized.
  • the inertial body side spring You may make it the front-end
  • FIG. 1 is an external perspective view of a seatbelt retractor according to the present embodiment. It is the perspective view which decomposed
  • FIG. 6 is a partially cutaway cross-sectional view showing a normal state of the lock unit. It is operation
  • movement explanatory drawing (lock state) by the vehicle body acceleration of a lock unit It is explanatory drawing of the coordinate system which shows the gravity center position of a lock arm. It is a figure which shows each coordinate position of the gravity center of a lock arm.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position A.
  • 7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position B.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position C.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position D.
  • 10 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position E.
  • 10 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position F.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position G.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position H.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position I.
  • 5 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position J.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position K.
  • 7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position L.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is located at a coordinate position M.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position N.
  • 10 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position O.
  • 10 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position P.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position Q.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position R.
  • 7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position S.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position T.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position U.
  • 7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position V.
  • FIG. 7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position W.
  • 6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position X.
  • FIG. 6 is a sensitivity error distribution diagram showing an example of a sensitivity error distribution with respect to a relationship between an angle in a webbing pull-out direction from a reference axis to a radius of a pivot shaft where the center of gravity of the lock arm is located, and a distance from a rotation center of the pivot shaft.
  • FIG. 1 is an external perspective view of a seatbelt retractor 1 according to this embodiment.
  • FIG. 2 is an exploded perspective view of the seat belt retractor 1 for each unit.
  • the seat belt retractor 1 is a device for winding a webbing 3 of a vehicle, and includes a housing unit 5, a winding drum unit 6, a pretensioner unit 7, and a winding.
  • a spring unit 8 and a lock unit 9 are included.
  • the lock unit 9 is fixed to the side wall portion 12 of the housing 11 constituting the housing unit 5, and the webbing 3 is pulled out in response to a sudden pull-out of the webbing 3 or a rapid change in the acceleration of the vehicle as will be described later. Start operation to stop.
  • the pretensioner unit 7 provided with a pretensioner mechanism 17 (see FIG. 3), which will be described later, is substantially omitted from the upper and lower end edges of the side plate portions 13 and 14 facing each other of the substantially U-shaped housing unit 5 in plan view.
  • Each screw 15 inserted through from the outside of the pretensioner unit 7 is inserted into the screw fixing portions 13A, 13B, 14A formed with screw holes by extending in a right angle inner direction and the pin fixing portions 14B formed with through holes.
  • the stopper pin 16 is screwed and inserted from the inside of the housing 11 and is fixed by a push nut 18 inserted into the stopper pin 16.
  • the pretensioner unit 7 constitutes the other side wall portion facing the side wall portion 12 of the housing 11.
  • take-up spring unit 8 is fixed to the outside of the pretensioner unit 7 by each ny latch 8A integrally formed with the spring case 19.
  • the winding drum unit 6 around which the webbing 3 is wound and functions as a winding drum is rotatably supported between a lock unit 9 fixed to the side wall portion 12 of the housing unit 5 and the pretensioner unit 7.
  • the winding drum unit 6 includes a guide drum 21, a drum shaft 22, a wire plate 25, a ratchet gear 26, and the like.
  • the guide drum 21 is formed of an aluminum material or the like, and is formed in a substantially cylindrical shape in which the end surface portion on the pretensioner unit 7 side is closed. Further, a flange portion 27 extending in the radial direction from the outer peripheral portion and further extending in a substantially right-angled outward direction is formed on the end edge portion on the pretensioner unit 7 side in the axial direction of the guide drum 21. . In addition, a clutch gear 30 is formed on the inner peripheral surface of the flange portion 27 so that each clutch pawl 29 (see FIG. 4) is engaged and the rotation of the pinion gear body 33 (see FIG. 4) is transmitted in the event of a vehicle collision. ing.
  • a cylindrical mounting boss 31 is erected at the center position of the end surface portion of the guide drum 21 on the pretensioner unit 7 side, and a drum shaft 22 formed of a steel material or the like is fixed by press fitting or the like. Further, the mounting boss 31 is fitted into a cylindrical portion 32A (see FIG. 4) of the bearing member 32 formed of a synthetic resin material such as polyacetal constituting a clutch mechanism 48 (see FIG. 4) described later.
  • one end side of the winding drum unit 6 is rotatably supported by the bearing portion 33A (see FIG. 5) of the pinion gear body 33 constituting the pretensioner unit 7 via the bearing member 32.
  • the tip of the drum shaft 22 of the take-up drum unit 6 is coupled to a spiral spring in the take-up spring unit 8 and constantly urges the take-up drum unit 6 in the winding direction of the webbing 3 by the urging force of the spiral spring. Structured.
  • a flange portion 35 extending in the radial direction from the outer peripheral surface slightly inside from the end edge portion is formed. Further, the outer peripheral portion of the flange portion 35 is covered with a wire plate 25 having a substantially oval shape in a side view formed of an aluminum material or the like. A ratchet gear 26 is fixed to the outer central portion of the wire plate 25 by caulking or the like.
  • the ratchet gear 26 has a disc shape formed of steel or the like, and has a ratchet gear portion 26A that engages with a pawl 37 (see FIG. 7) in the event of a vehicle collision or a vehicle emergency as described later.
  • a shaft portion 28 is erected at the center position on the outer side of the ratchet gear 26.
  • a spline is formed on the outer peripheral surface of the shaft portion 28, and the winding drum unit 6 is rotatably supported by the lock unit 9 via the shaft portion 28.
  • FIG. 3 is a perspective view of the pretensioner unit 7 as viewed from the mounting surface side of the winding spring unit 8.
  • 4 and 5 are exploded perspective views in which the pretensioner unit 7 is disassembled.
  • FIG. 6 is a partially cutaway side view of the pretensioner unit 7.
  • the pretensioner unit 7 includes a pretensioner mechanism 17, a forced lock mechanism 51 that rotates a pawl 37 (see FIG. 8) pivotally supported on the side wall portion 12 of the housing unit 5, and And the cover plate 53.
  • the pretensioner mechanism 17 operates the gas generating member 41 at the time of a vehicle collision or the like, and uses the pressure of this gas via the flange portion 27 of the winding drum unit 6 to perform the winding. This is a mechanism for rotating the take-up drum unit 6 in the winding direction of the webbing 3.
  • the pretensioner mechanism 17 is formed on the gas generation member 41, the pipe cylinder 42, the seal plate 43 and the piston 44 that move in the pipe cylinder 42 under the gas pressure of the gas generation member 41, and the piston 44.
  • the pinion gear body 33 that rotates while meshing with the rack 44A formed, a base plate 45 to which the pipe cylinder 42 is attached, and a substantially rectangular parallelepiped arranged in contact with the side surface of the pipe cylinder 42 on the pinion gear body 33 side.
  • a clutch mechanism 48 disposed on the outer surface of the base plate 45.
  • the pinion gear body 33 has a substantially cylindrical shape formed of a steel material or the like, and a pinion gear portion 55 that meshes with a rack 44A formed on the piston 44 is formed on the outer periphery thereof. Further, a cylindrical support portion 56 extending outward from the end portion of the pinion gear portion 55 on the axial direction cover plate 53 side is formed. The support portion 56 is formed to have a length substantially equal to the thickness dimension of the cover plate 53 with the valley diameter of the pinion gear portion 55 as an outer diameter.
  • a flange portion 57 projecting in the radial direction is formed at an end portion of the pinion gear portion 55 on the axial base plate 45 side.
  • the boss 58 is formed with a bearing 33A into which the cylindrical shaft 32A of the bearing member 32 is inserted while the drum shaft 22 of the winding drum unit 6 is inserted in a substantially cylindrical shape outward from the flange 57. Is formed. Further, on the outer peripheral surface of the boss portion 58, three splines each having an outer diameter of the base end portion are formed at intervals of about 120 degrees of the central angle.
  • the clutch mechanism 48 includes a bearing member 32 formed of a synthetic resin material such as polyacetal, a substantially annular pawl base 61 formed of a steel material, and three clutch pawls formed of a steel material. 29 and a substantially annular pawl guide 62 that is formed of a synthetic resin such as polyacetal and sandwiches each clutch pawl 29 together with the pawl base 61.
  • the bearing member 32 has a substantially cylindrical shape in which a cylindrical mounting boss 31 erected at the center position of the end surface portion of the guide drum 21 on the pretensioner unit 7 side is rotatably fitted.
  • the locking piece 32D is arranged at the distal end portion in the radial direction of each projecting portion 32C so as to face the outer peripheral surface of the cylindrical portion 32A in the axial direction, rather than the thickness dimension of the clutch mechanism 48. It is erected with a slightly lower height. Furthermore, an engaging protrusion is formed at the tip of each locking piece 32D and protrudes in a substantially right triangle shape in a side section in a substantially right angle outward direction.
  • three spline grooves into which the splines formed on the boss portions 58 of the pinion gear body 33 are press-fitted are arranged at intervals of a central angle of about 120 degrees on the inner peripheral surface of the pawl base 61. It is formed one by one.
  • the pawl base 61 has three insertion holes 65 into which the rotation support shafts 29A of the respective clutch pawls 29 are rotatably fitted, and the pawl base 61 is thick so as to surround each insertion hole 65 on the outer diameter side of the pawl base 61.
  • Each pawl support block 66 is provided.
  • a locking block 67 is formed at the outer diameter end of each pawl support block 66.
  • each through hole 69 through which each locking piece 32 ⁇ / b> D of the bearing member 32 is inserted is formed at each vertex portion of the bottom surface of the recess 68.
  • the inner peripheral diameter of the pawl guide 62 is formed larger than the spline groove of the pawl base 61, and the axially outer side surface portion of the pawl guide 62 has 3
  • Each of the long and narrow positioning protrusions 71 protrudes along the radial direction at intervals of a central angle of 120 degrees.
  • three locking hooks 72 that engage with the locking blocks 67 of the pawl base 62 are formed on the outer periphery of the pawl guide 62.
  • each clutch pawl 29 is held in a state of being accommodated rotatably about the rotation support shaft 29.
  • each positioning protrusion 71 protruding from the axially outer side surface portion of the pawl guide 62 of the clutch mechanism 48 is fitted into each positioning hole 75 of the base plate 45, so that the clutch mechanism 48 is attached to the base plate 45. Place on the outside.
  • each spline formed in the boss portion 58 is replaced with each of the pawl base 61 constituting the clutch mechanism 48. Press fit into the spline groove.
  • the clutch mechanism 48 and the pinion gear body 33 are disposed and fixed on the base plate 45, and the pinion gear portion 55 of the pinion gear body 33 is always positioned and fixed at the position shown in FIG.
  • the cylindrical portion 32 ⁇ / b> A is fitted into the bearing portion 33 ⁇ / b> A of the pinion gear body 33 while the locking pieces 32 ⁇ / b> D of the bearing member 32 are inserted into the through holes 69 of the pawl base 61.
  • the flange portion 32 ⁇ / b> B and each projecting portion 32 ⁇ / b> C of the bearing member 32 are fitted into the recessed portion 68.
  • each protrusion 32C of the bearing member 32 are disposed so as to oppose the inner surface of each apex portion of the recess 68, and therefore the bearing member 32 cannot rotate relative to the pawl base 61. Attached to.
  • the base block body 46 is made of a synthetic resin such as polyacetal.
  • the gear housing 81 is formed in a substantially semicircular shape in a plan view from the side edge on the inner side of the base block body 46 and formed in a substantially ring shape with a bottom surface protruding outward.
  • the flange portion 57 of the pinion gear body 33 is inserted into the through hole 82 in the bottom surface portion.
  • each positioning boss 83 protruding from the side surface portion of the base block body 46 on the base plate 45 side is fitted into each positioning hole 85 of the base plate 45, and the base block body 46 is disposed on the inner surface of the base plate 45. .
  • the base block body 46 faces the piston housing portion 42B in which the piston 44 is housed from the lower end portion facing the housing portion 42A in which the gas generating member 41 of the pipe cylinder 42 is housed to the position near the housing portion 42A.
  • the block extension part 87 extended by a predetermined width for example, about 10 mm width
  • a through-hole 89 through which a screw 88 (see FIG. 2) is inserted is formed at the lower end of the block extension 87.
  • an elastic locking piece 46A extending from the outer side surface portion of the base block body 46 to the base plate 45 side and formed to be elastically deformable in the outer direction, and the upper side surface portion and the lower side surface of the base block body 46
  • Each elastic locking piece 46 ⁇ / b> B extending from the portion toward the base plate 45 and elastically deformable in the outward direction is locked to the side end of the base plate 45.
  • the base block body 46 is disposed on the base plate 45.
  • the height of the gear housing portion 81 is formed to be approximately equal to the sum of the heights of the pinion gear portion 55 and the flange portion 57 of the pinion gear body 33.
  • the forced locking mechanism 51 disposed in the base block body 46 will be described with reference to FIGS.
  • the base block body 46 is formed with a recess 91 in which the forced lock mechanism 51 is disposed, and a push block 92 that constitutes the forced lock mechanism 51, a rotary lever 93, A block urging spring 92A for urging the push block 92 in the direction of the rotation lever 93, a gear side arm 94, and a urging spring 95 for urging the gear side arm 94 in the direction of the rotation lever 93 are provided.
  • the gear side arm 94 is connected to a connecting shaft 96 constituting the forced lock mechanism 51 and a mechanical side arm 97 from the outside of the base plate 45.
  • the rotary lever 93 is formed of a synthetic resin such as polyacetal, an aluminum material, or the like, and is formed in a substantially square shape, and a through hole is formed in a bent portion. Then, as shown in FIG. 6, the rotary lever 93 is rotatable on a boss 98 erected on the bottom surface of the concave portion 91 of the base block body 46 so that one end side thereof faces the pinion gear portion 55 of the pinion gear body 33. It is supported.
  • the push block 92 is made of a synthetic resin such as polyacetal. As shown in FIG. 6, the push block 92 has one end positioned near the teeth of the pinion gear portion 55 of the pinion gear body 33 and the other end thereof by the positioning protrusion 101 erected on the bottom surface portion of the recess 91. It is positioned so as to be located in the vicinity of the rotation lever 93. Further, the push block 92 is urged toward the rotating lever 93 by a block urging spring 92A to prevent rattling.
  • the rotation lever 93 can be rotated outward (counterclockwise in FIG. 6) by the push block 92 pushed by the teeth of the pinion gear portion 55. It is configured (see FIG. 9).
  • the push block 92 is prevented from returning to the pinion gear body 33 side by the block biasing spring 92A.
  • the gear side arm 94 is formed of a synthetic resin such as polyacetal, an aluminum material or the like and is formed in a substantially flat plate shape, and at one end side far from the rotation lever 93 on the side surface portion on the base block body 46 side, A boss 103 is erected to be inserted into the through hole 102 formed in the bottom surface portion of the recess 91 of the base block body 46. Further, a groove portion 105 having a predetermined depth through which the bent portion on one end side of the connecting shaft 96 is inserted is formed on a side surface portion where the boss 103 of the gear side arm 94 is erected.
  • the gear side arm 94 has a stepped portion 106 formed on the upper surface of the distal end portion on the rotating lever 93 side so that the other end side of the rotating lever 93 abuts.
  • the gear side arm 94 is rotatably supported on the rotating lever 93 side by inserting the boss 103 into the through hole 102 formed in the bottom surface of the recess 91. Further, the gear side arm 94 is urged by the urging spring 95 on the lower surface of the other tip end portion facing the step portion 106 (in the upward direction in FIG. 6), and the step portion 106. Is in contact with the other end of the rotary lever 93.
  • the connecting shaft 96 is formed of a wire material such as a steel material, and is bent at a substantially right angle so that both ends face each other with a shift of about 90 degrees. Also. The length of the straight portion of the connecting shaft 96 is slightly longer than the width of the side plate portions 13 and 14 of the housing unit 5 (see FIG. 7).
  • a groove 107 through which the bent portion on one end side of the connection shaft 96 is inserted extends from the outer peripheral portion in the through hole 102 formed in the bottom surface portion of the concave portion 91 of the base block body 46. ing. Further, a through hole 108 through which the one end side bent portion of the connection shaft 96 is inserted is formed in a portion of the base plate 45 facing the gear side arm 94.
  • the one end side bent portion of the connecting shaft 96 passes through the through hole 108 of the base plate 45, the through hole 102 and the groove 107 of the base block body 46, and the gear side disposed in the recess 91 of the base block body 46.
  • the arm 94 is inserted into the groove 105.
  • the mechanical arm 97 is formed of a synthetic resin such as polyacetal, aluminum, or the like, and is formed into a substantially flat plate-like narrow fan shape, and on the outer surface of the edge on the central angle side.
  • a boss 112 that is rotatably fitted in a through hole 111 (see FIG. 7) formed in the side wall portion 12 (see FIG. 7) of the housing unit 5 is provided upright.
  • a boss 97 ⁇ / b> A that is inserted into the notch 113 (see FIGS. 7 and 8) is provided upright on the outer surface on the side wall 12 side of the outer peripheral edge of the mechanical arm 97.
  • a groove 115 having a predetermined depth is formed on the inner side surface of the mechanical arm 97 along the center line.
  • the mechanical side arm 97 is placed on the outer surface of the end edge portion on the central angle side of the mechanical side arm 97. It is attached to the other end side of the connecting shaft 96 so that the axial center of the boss 112 erected and the axial center of the connecting shaft 96 are substantially straight.
  • the boss 112 of the mechanical arm 97 is rotatably inserted into the through hole 105 formed in the side wall portion 12 (see FIG. 8). Further, the boss 97 ⁇ / b> A of the mechanical arm 97 is inserted into a notch 138 formed in the side wall portion 12 and is rotatably attached to the inside of the side wall portion 12.
  • the pipe cylinder 42 is formed in a substantially L shape with a steel pipe material or the like. And the one end side (lower bending part in FIG. 4) is comprised so that the substantially cylindrical accommodating part 42A may be formed and the gas generating member 41 may be accommodated.
  • the gas generating member 41 includes explosives, and is configured to ignite the explosives according to an ignition signal from a control unit (not shown) and generate gas by combustion of the gas generating agent.
  • the other end side of the pipe cylinder 42 (the upper bent portion in FIG. 4) is formed with a piston housing portion 42B having a substantially rectangular cross section, and a notch portion 117 is formed at a portion facing the pinion gear body 33, and the base plate 45, the pinion gear portion 55 of the pinion gear body 33 is configured to fit into the notch 117.
  • the upper end portion of the piston accommodating portion 42B is provided with an opening 118 that is cut out so as to be inclined obliquely outward from a substantially central portion in the width direction of both side surfaces abutting against the base plate 45 and the cover plate 53. Yes.
  • the pretensioner unit 7 is attached to the housing unit 5 on both sides of the piston housing portion 42B below the inclined portion 118A inclined toward the outside of the opening 118 formed at the upper end portion, and the piston 44 A pair of opposed through-holes 121 into which the stopper pin 16 functioning as a retaining member can be inserted is formed.
  • the seal plate 43 is formed of a rubber material or the like into a substantially rectangular flat plate that can be inserted from the upper end side of the piston housing portion 42B, and has substantially the same shape as the gas pressure receiving side surface that receives the gas of the piston 44. Further, the seal plate 43 is a substantially cylindrical mounting convex portion that is fitted into a mounting concave portion 122 having a circular cross section having a predetermined depth (for example, a depth of about 4 mm) formed on the gas pressure receiving side surface of the piston 44. 123 is erected. A gas vent hole 124 communicating with the pressure receiving side surface for receiving the gas of the seal plate 43 is formed along the axial center at the center of the mounting convex portion 123.
  • the piston 44 is formed of a steel material or the like, has a substantially rectangular cross section that can be inserted from the upper end side of the piston housing portion 42B, and has a long shape as a whole.
  • a rack 44 ⁇ / b> A that meshes with the pinion gear portion 55 of the pinion gear body 33 is formed on the side surface of the piston 44 on the pinion gear body 33 side.
  • a stepped portion 126 capable of contacting the stopper pin 16 is formed on the back surface of the front end portion (the upper end portion in FIG. 6) of the rack 44A.
  • a pair of groove portions 127 having a predetermined depth are formed on both side surfaces of the rack 44A of the piston 44 from the upper edge of the step portion 126 to the cutting edge at the lower end of the rack 44A. They are formed so as to face each other along the longitudinal direction of the piston 44 up to the facing position.
  • a through hole 128 having a rectangular cross section that is long along the longitudinal direction of the piston 44 is formed at the lower ends of the pair of grooves 127, and both side surface portions are communicated with each other.
  • the mounting recess 122 and the through hole 128 formed on the pressure receiving side surface of the piston 44 are communicated with each other by a small communication hole 131 formed along the longitudinal direction of the piston 44.
  • the seal plate 43 is set to the back side and press-fitted from the upper end side of the piston housing portion 42B to the back side. Further, the gas vent hole 124 of the seal plate 43 communicates with the through hole 128 via the communication hole 131 of the piston 44.
  • the seal plate 43 is pressed by the pressure of the gas generated by the gas generating member 41, and the piston 44 moves to the upper end side opening 118 of the piston housing part 42B.
  • the piston 44 is retracted to the back side of the piston housing part 42B, and the tip of the rack 44A is not engaged with the pinion gear part 55. It is located to become.
  • the base plate is inserted into the notches 117 of the piston housing part 42B configured in this way while the protruding parts 109 projecting outward from both side edges of the gear housing part 81 of the base block body 46 are fitted.
  • the pipe cylinder 42 is disposed on the 45.
  • a rack retaining pin 133 having a substantially U-shaped cross-section standing on the gear housing portion 81 of the base block body 46 is inserted into the gear groove at the upper end of the rack 44A, and the vertical movement of the piston 44 is restricted. Is done. Further, the tip end portion of the piston 44 is located in the vicinity of the pinion gear portion 55 of the pinion gear body 33 and is in a non-meshing state.
  • the piston accommodating portion 42B of the pipe cylinder 42 is separated from each of the ribs 134 having a substantially triangular cross-section standing on the side surface of the base block body 46 and the portion of the side edge of the base plate 45 facing the pinion gear body 33. Both side portions are supported by a back support portion 135 extending substantially at a right angle.
  • the back support part 135 is extended so as to be substantially the same height as the piston housing part 42 ⁇ / b> B, and is located on the upper end side from the substantially central part of the edge part in the extending direction.
  • a notch 136 having a predetermined width (for example, a width of about 8 mm) is formed with a predetermined depth (for example, about 4 mm).
  • a lower end edge portion of the back support portion 135 is extended by a predetermined length (for example, about 4 mm) in a substantially perpendicular outer direction, and a lower corner portion of the back support portion 135 is provided with a cover plate 53.
  • a stepped portion 137 having a height substantially equal to the thickness is formed.
  • through holes 141 and 142 into which the tip of the back support part 135 can be inserted are formed at the side end part of the cover plate 53 facing the back support part 135 of the base plate 45.
  • the side edge part which opposes the outer surface of the backrest part 135 of each through-hole 141,142 is predetermined height (for example, about 3 mm height) to an inner side direction (left direction in FIG. 4). It is depressed. Thereby, when each edge part of the extending direction of the back support part 135 is inserted in each through-hole 141,142, the inner surface of each through-hole 141,142 becomes an outer surface of the back support part 135. It is comprised so that it may contact
  • the positioning bosses 143 that protrude from the side surface portion on the cover plate 53 side of the base block body 46 are covered with the cover.
  • the cover plate 53 is disposed on the upper side of the base block body 46, the forced lock mechanism 51, the pipe cylinder 42, and the like by being fitted into the positioning holes 144 of the plate 53.
  • the cylindrical support portion 56 of the pinion gear body 33 is fitted into the support hole 145 formed in the substantially central portion of the cover plate 53.
  • the back support part 135 extending substantially at right angles from the side edge part of the base plate 45 is inserted into the through holes 141 and 142 formed in the side edge part facing the back support part 135 of the cover plate 53.
  • An elastic locking piece 46C that extends from the outer side surface of the base block body 46 toward the cover plate 53 and is elastically deformable in the outer direction, and a cover from the upper side surface of the base block body 46.
  • Elastic locking pieces 46 ⁇ / b> D that extend toward the plate 53 side and are formed so as to be elastically deformable in the outward direction are respectively locked to the side end portions of the cover plate 53.
  • a screw 88 is inserted into a through hole 157 formed at a position facing the through hole 89 of the base block body 46 of the cover plate 53 and fastened to a screw hole 158 formed by burring processing of the base plate 45.
  • the cover plate 53 is disposed and fixed to the base block body 46, and the pipe cylinder 42 is attached between the cover plate 53 and the base plate 45.
  • the support portion 56 formed at the end of the pinion gear body 33 is rotatably supported by the support hole 145 of the cover plate 53.
  • the base end portion of the boss portion 58 formed at both ends of the pinion gear body 33 and the support portion 56 are rotatably supported by the through hole 76 of the base plate 45 and the support hole 145 of the cover plate 53, respectively.
  • each through hole 121 of the pipe cylinder 42, a through hole 147 formed at a position facing each through hole 121 of the cover plate 53, and a through hole formed at a position facing each through hole 121 of the base plate 45. 148 is arranged on the same axis.
  • the stopper pin 16 formed of steel or the like is inserted into the through hole 148 of the base plate 45, the through holes 121 of the pipe cylinder 42, and the cover plate 53 from the pinning portion 14 ⁇ / b> B side of the housing 11. It can be inserted into the through hole 147 and fixed by the push nut 18.
  • the pipe cylinder 42 is sandwiched between the cover plate 53 and the base plate 45, and both side surfaces are sandwiched between the base block body 46 and the backrest 135. Further, when the seal plate 43 is pressed by the pressure of the gas generated by the gas generating member 41 and the piston 44 moves to the upper end side opening (the upper end in FIG. 6) of the piston housing portion 42B, the piston 44 step portions 126 can be brought into contact with the stopper pins 16 inserted through the respective through holes 121 and stopped.
  • the opening 118 on the upper end side of the piston accommodating portion 42B is a first extending portion that extends from the upper end edge of the cover plate 53 to the base plate 45 side at a substantially half width with respect to the piston accommodating portion 42B.
  • the flat portion 118B perpendicular to the axial direction of the piston accommodating portion 42B of the opening 118 is covered by 151.
  • the inclined portion 118A is covered by the second extending portion 152 that extends obliquely outward from the side end edge of the opening 118 of the first extending portion 151 on the inclined portion 118A side. Is called.
  • an end edge portion of the first extension portion 151 on the base block body 46 side is extended by a predetermined length (for example, a length of about 4 mm) in the lower right direction.
  • the base plate 45 is bent and extended with a predetermined width (for example, a width of about 3 mm) so as to face the outer end edge in the extending direction of the second extending portion 152 of the cover plate 53.
  • the pressed portion 155 is provided.
  • the pressing portion 155 has a predetermined width (for example, a width of about 3 mm) so as to be parallel to the second extending portion 152 from a position facing the through hole 148 at the upper end edge of the base plate 45. It extends a predetermined length (for example, about 8 mm) and is bent at a right angle so as to face the outer end edge in the extending direction of the second extending portion 152 from a substantially central portion.
  • the opening 118 on the upper end side of the piston housing part 42B is covered with the first extending part 151 and the second extending part 152. Further, the outer end edge portion in the extending direction of the second extending portion 152 of the cover plate 53 faces the side surface portion of the pressing portion 155 of the base plate 45.
  • FIG. 7 is an exploded perspective view of the housing unit 5.
  • FIG. 8 is a side view of the seatbelt retractor 1 with the lock unit 9 removed.
  • the housing unit 5 includes a housing 11, a bracket 161, a protector 163, a pawl 37, and a pawl rivet 165.
  • the housing 11 is formed of a steel material or the like in a substantially U shape in plan view, and a through hole 166 into which the tip of the ratchet gear 26 of the winding drum unit 6 is inserted is formed in the side wall portion 12 on the back side. Has been. Further, a notch 113 is formed in a portion of the through hole 166 facing the obliquely lower pawl 37 so that the pawl 37 rotates smoothly. A through hole 168 for rotatably mounting the pawl 37 is formed on the lateral side of the notch 113.
  • a semicircular guide portion 169 is formed on the concentric circle of the through hole 168 at a portion where the pawl 37 of the cutout portion 113 abuts.
  • the portion of the pawl 37 that slides in contact with the guide portion 169 has a height substantially equal to the thickness dimension of the side wall portion 12 and a step that is recessed in an arc shape having the same curvature radius as the side edge of the guide portion 169.
  • the part 37B is formed slightly higher than the thickness dimension of the side wall part 12.
  • a guide pin 37 ⁇ / b> A that is inserted into a guide groove (not shown) of a clutch (not shown) that constitutes the lock unit 9 is erected at the tip of the outer side surface of the pawl 37. ing.
  • the side plate portions 13 and 14 facing each other are extended from both side edge portions of the side wall portion 12.
  • an opening is formed in the central portion of each of the side plate portions 13 and 14 to reduce the weight and improve the efficiency of attaching the webbing 3.
  • upper and lower edge portions of the side plate portions 13 and 14 are formed with screwing portions 13A, 13B, and 14A and pinning portions 14B that extend in a substantially right-angle inner direction with a predetermined width.
  • each screwing part 13A, 13B, 14A is formed with each screw hole 171 by which each screw 15 is screwed by burring, and the screwing part 14B has a through-hole 172 through which the stopper pin 16 is inserted. Is formed. Accordingly, as shown in FIGS. 2, 4, and 5, each screw 15 is inserted from each through hole 185 in the cover plate 53 to each through hole 186 in the base plate 45 and screwed into each screw hole 171. .
  • bracket 161 attached to each upper end edge of the side plate portion 13 by a rivet 162 is formed of a steel material or the like, and webbing is performed on an extended portion that extends substantially inward from the upper end edge of the side plate portion 13.
  • a horizontally long through-hole 173 from which 3 is pulled out is formed, and a horizontally long frame-shaped protector 163 formed of a synthetic resin such as nylon is fitted therein.
  • a bolt insertion hole 178 into which a bolt 176 (see FIG. 8) is inserted when being attached to a fastening piece 175 (see FIG. 8) of the vehicle is formed at the lower end portion of the side plate portion 13.
  • the pawl 37 formed of steel or the like is rotatably inserted into the through hole 168 from the outside of the side wall portion 12 with the stepped portion 37B being in contact with the guide portion 169.
  • the pawl rivet 165 is rotatably fixed. Accordingly, the side surface of the pawl 37 and the side surface of the ratchet gear 26 are positioned so as to be substantially flush with the outer surface of the side wall portion 12.
  • the pretensioner unit 7 when the pretensioner unit 7 is attached to the housing unit 5 by the screws 15, the stopper pins 16, and the push nuts 18, the pretensioner unit 7 is attached to the bent portion on the other end side of the connecting shaft 96.
  • the boss 112 of the mechanical arm 97 is rotatably fitted in a through hole 111 formed in the side wall portion 12 and is positioned in the vicinity of the lower side surface portion of the pawl 37 located in the notch portion 113. .
  • a boss 97 ⁇ / b> A standing on the outer side surface of the mechanical arm 97 is inserted into the notch 113.
  • the pawl 37 is normally close to the mechanical arm 97 and is not engaged with the ratchet gear 26.
  • a predetermined width from a position that is a predetermined height above the lower end surface of the side wall portion 12 (for example, a position that is about 10 mm above).
  • the width is about 10 mm
  • the arm protection fold is bent at a substantially right angle inward (toward the front in FIG. 7) so as to face the pawl 37 and the mechanical arm 97.
  • a curved portion 180 is provided. That is, below the pawl 37 and the mechanical side arm 97 attached to the side wall portion 12, a predetermined length (for example, a length of about 10 mm) is set at a substantially right angle so as to face the mechanical side arm 97 with a predetermined width.
  • An arm protection bent portion 180 extending inward is provided.
  • a laterally long opening 181 is formed in a portion of the side wall portion 13 that faces the connecting shaft 96, and faces the entire length of the connecting shaft 96, and is substantially inward from the lower edge of the opening 181.
  • a shaft protecting bent portion 182 that is bent at a right angle is provided. Further, the end edge portion on the guide drum 21 side of the shaft protecting bent portion 182 extends so as to be inside the connecting shaft 96 facing the side wall portion 13.
  • a bolt insertion hole 178 is formed below the shaft protecting bent portion 182, and a bolt 176 is inserted into the bolt insertion hole 178 and fixed to a vehicle fastening piece 175 by a nut 177.
  • FIG. 9 is an explanatory view showing a state where the piston 44 is moved by the operation of the gas generating member 41 of the pretensioner mechanism 17 and the lower end portion of the rotation lever 93 is disengaged from the tip end portion of the gear side arm 94.
  • FIG. 10 is an explanatory view showing the operation of the pawl 37 corresponding to FIG.
  • the gear side arm 94 is pressed outward by the biasing spring 95 and rotates in the counterclockwise direction when viewed from the front (in the direction of the arrow X3).
  • the push block 92 is pressed outward by the block biasing spring 92A and is maintained in a state of being separated from the pinion gear portion 55 of the pinion gear body 33, and the upper end portion of the rotary lever 93 is abutted against the inner wall surface of the recess 91. Keep in contact.
  • the mechanical side arm 97 has the other end side bent portion of the connecting shaft 96 inserted into the groove 115, and therefore, when the gear side arm 94 rotates, it is counterclockwise when viewed from the front (in the direction of arrow X8).
  • the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26.
  • the pawl 37 and the ratchet gear portion 26A of the ratchet gear 26 are configured to mesh with each other so as to prevent the winding drum unit 6 from rotating in the webbing 3 pull-out direction and to allow rotation in the webbing 3 winding direction. ing.
  • the gas generated from the gas generating member 41 presses the pressure receiving side surface of the seal plate 43, and the mounting recess 122 and the through hole 128 formed on the pressure receiving side surface of the piston 44 from the gas vent hole 124 of the seal plate 43.
  • the liquid flows out in the directions of the arrows X4 to X7 through the communicating holes 131.
  • the first extending portion 151 and the second extending portion 152 of the cover plate 53 that cover the opening 118 of the piston accommodating portion 42B are pressed outward by the gas pressure, but the second extending portion 152 Since the outer edge in the extending direction is pressed against the pressing portion 155 of the base plate 45, the gas is discharged from the gap between the opening 118 and the first extending portion 151 and the second extending portion 152.
  • FIG. 11 is an exploded perspective view of the lock unit 9 as seen from the mechanism cover side.
  • FIG. 12 is an exploded perspective view of the lock unit as seen from the mechanism block side.
  • FIG. 13 is an assembly sectional view including the lock arm of the lock unit.
  • FIG. 14 is a partially cutaway cross-sectional view showing a normal state of the lock unit.
  • the lock unit 9 is a unit that performs operations of the webbing sensitive lock mechanism and the vehicle body sensitive lock mechanism.
  • the lock unit 9 includes a mechanism block 201, a clutch 202, a pilot arm 203, a return spring 204, a vehicle sensor 205, a locking gear 206, a sensor spring 207, a lock arm 208, an inertia mass 209, and a mechanism cover 210.
  • the mechanism block 201 has a substantially bowl-shaped opening 212 that is inverted at the center.
  • the large diameter portion of the opening 212 is formed to be larger than the outer diameter of the ratchet gear portion 26 ⁇ / b> A of the ratchet gear 26 and smaller than the outer diameter of the clutch 202.
  • the ratchet gear 26 is disposed in close proximity to the back surface of the clutch 202 at the large diameter portion of the opening 212, and the shaft portion 28 (see FIG. 8) of the ratchet gear 26 is formed at the center of the clutch 202.
  • the inserted through hole 213 is inserted.
  • a pawl 37 that is pivotally supported on the housing 11 by a pawl rivet 165 is disposed in the small diameter portion of the opening 212, and a connecting portion between the large diameter portion and the small diameter portion of the opening 212 is the pawl 37.
  • a through hole 214 into which the head of the pawl rivet 165 is loosely fitted when the lock unit 9 is attached to the housing 11 is provided on the side of the connecting portion between the large diameter portion and the small diameter portion of the opening 212. Is formed.
  • a concave portion having a substantially rectangular cross section is formed in the other lower end side corner portion (the lower left corner portion in FIG. 11) facing the lower end side corner portion where the small diameter portion of the opening 212 is located.
  • the sensor mounting portion 215 formed on the vehicle is provided, and the vehicle sensor 205 is provided.
  • the vehicle sensor 205 includes a case 216 formed in a container shape having a rectangular cross section, and a metal sphere 217 disposed so as to be able to roll on a substantially dish-shaped mounting portion formed on the bottom surface of the case 216. From the vehicle sensor lever 218, which is placed on the upper side of the sphere 217 and is supported so that the end edge (the left edge in FIG. 14) opposite to the pawl 37 can swing in the vertical direction. It is configured.
  • the vehicle sensor 205 includes a pair of locking holes 220 (see FIG. 5) in which the engaging claws 219 projecting from both end edges of the case 216 are formed at both end edges of the sensor placement portion 215. 12, one locking hole 220 is shown and is locked by being inserted into the sensor mounting portion 215.
  • each rib 222 is formed concentrically so as to protrude radially outward.
  • four contact pieces 223 extending from the upper end portion facing each rib 222 with a predetermined width in a substantially right angle inner direction are provided. Then, by fitting each rib 222 of the clutch 202 to the lower side of each contact piece 223 of the mechanism block 201, the clutch 202 is attached to the mechanism block 201 so as to be rotatable.
  • the side wall portion of the mechanism block 201 is notched at a predetermined width at the upper end portion of the mechanism block 201, and extends from the both end portions of the notch portion substantially upward at a right angle.
  • inserted by the side wall of the webbing winding direction side (it is the left side in FIG.11, FIG.13, FIG.14) of the said notch part of the mechanism block 201 is provided. It protrudes inward.
  • the upper end portion of the clutch 202 has a U-shaped cross section so as to face the side wall of the notch portion of the mechanism block 201 on the webbing pull-out direction side (right side in FIGS. 11, 13, and 14).
  • the spring receiving rib 226 protrudes outward.
  • the spring receiving rib 226 is provided with a protruding holding portion 227 that is fitted to the other end of the return spring 204 in an inward direction. Accordingly, as shown in FIGS. 13 and 14, the clutch 202 is rotated with respect to the mechanism block 201 in the webbing take-up direction side by fitting both ends of the return spring 204 into the protruding holding portions 225 and 227. As shown in FIG.
  • An annular rib portion 228 is erected on the mechanism cover 210 side of the clutch 202 so as to be coaxial with the through-hole 213, and an inner surface of the rib portion 228 has a lock arm 208 as described later.
  • a clutch gear 229 with which the engaging claw 231 is engaged is formed (see FIG. 16). As will be described later, the clutch gear 229 is formed so as to engage with the engaging claw 231 of the lock arm 208 only when the locking gear 206 rotates in the webbing pull-out direction with respect to the axis of the through hole 231. (See FIG. 16).
  • a mounting boss 233 that is fitted into a through-hole 232 formed in the central portion of the pilot arm 203 is erected at a substantially central portion in the left-right direction.
  • the arm 203 is pivotally supported so as to be rotatable. As shown in FIG. 14, the pilot arm 203 is normally in contact with the vehicle sensor lever 218, and is pushed up to the locking gear 206 side by the movement of the sphere 217 by the vehicle sensor lever 218, and is engaged with the locking gear teeth 206A. It is configured to be compatible.
  • a guide groove 235 into which the guide pin 37A of the pawl 37 is loosely fitted is formed on the surface on the mechanism block 201 side opposite to the mounting boss 233 of the clutch 202.
  • the guide groove 235 is formed so as to approach the axial center of the through-hole 213 toward the upper side in the webbing winding direction (the upper left direction in FIG. 14).
  • the locking gear 206 is erected in an annular shape from the entire circumference of the disk-shaped bottom surface portion 236 having a diameter larger than the outer diameter of the annular rib portion 228 of the clutch 202 toward the clutch 202 side, Locking gear teeth 206A that engage with the pilot arm 203 are formed.
  • the locking gear teeth 206A are formed to engage with the pilot arm 203 only when the locking gear 206 rotates in the webbing pull-out direction (see FIG. 20).
  • a cylindrical fixed boss 237 is erected at the center of the bottom surface portion 236 of the locking gear 206 so as to penetrate from the front side to the back side.
  • the inner surface of the fixed boss 237 has a ratchet.
  • a spline groove into which a spline 28A (see FIG. 8) formed on the outer peripheral surface of the shaft portion 28 of the gear 26 is fitted is formed. Then, the shaft portion 28 loosely fitted into the through hole 231 of the clutch 202 is fitted into the fixed boss 237 of the locking gear 206, so that the ratchet gear 26 and the locking gear 206 of the winding drum unit 6 cannot be relatively rotated coaxially. It is press-fitted and fixed.
  • a cylindrical support boss 238 is erected on the surface on the clutch 202 side of the bottom surface portion 236 of the locking gear 206 at a height lower than the locking gear teeth 206A adjacent to the fixed boss 237.
  • the synthetic resin lock arm 208 formed in a substantially arcuate shape so as to surround the fixed boss 237 is supported by a pivot shaft 239 erected on the edge of the fixed boss 237 side in the substantially central portion in the longitudinal direction.
  • the boss 238 is rotatably inserted and pivotally supported.
  • the lock arm 208 is formed with a groove portion 240 that is substantially similar to the outer shape and opens to the bottom surface portion 236 side of the locking gear 206 along the longitudinal direction. Then, a substantially flat inertia mass 209 made of a metal such as iron or stainless steel formed in a substantially arcuate shape is fitted and attached in the groove portion 240. As a result, the lock arm 208 to which the inertia mass 209 is attached functions as an inertial body that generates an inertial delay with respect to the sudden withdrawal of the webbing 3.
  • the lock arm 208 is provided with an elastic locking piece 241 having an inverted L-shaped cross section on the lateral side of the pivot shaft 239 so as to stand on the bottom surface 236 side of the locking gear 206.
  • This elastic locking piece 241 is inserted into a window portion 242 (see FIGS. 11 and 19) having a substantially step shape and formed in the base end portion of the support boss 238 of the locking gear 206, and the shaft of the support boss 238 is It is elastically locked so that it can rotate around the center.
  • the locking gear 206 includes a spring support pin 243 into which one end side of the sensor spring 207 is fitted into a rib portion extending radially outward from the outer peripheral surface of the fixed boss 237. It is erected in the webbing pull-out direction orthogonal to the axis of the fixed boss 237. Further, on the side wall of the lock arm 208 facing the spring support pin 243, a spring support pin 244 into which the other end side of the sensor spring 207 is fitted is provided upright.
  • the spring support pin 243 functions as an example of a gear side spring support pin.
  • the spring support pin 244 functions as an example of an inertial body side spring support pin.
  • the spring support pin 243 erected in parallel with the bottom surface portion 236 of the locking gear 206 is formed in an elongated substantially truncated cone shape. Further, the spring support pin 244 erected on the side wall of the lock arm 208 facing the spring support pin 243 is a concave portion that is recessed in a predetermined depth (for example, a depth of about 2 mm to 3 mm) in a U shape in plan view. A gap for loosely inserting the sensor spring 207 is formed on both sides of the lock arm 208 in the longitudinal direction.
  • the spring support pin 244 of the lock arm 208 is formed in a tapered shape in which the outer peripheral surface of the distal end portion is cut obliquely from the pivot shaft 239 side toward the distal end portion on the opposite side to the pivot shaft 239. ing.
  • the spring support pin 244 of the lock arm 208 is engaged when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229 as described later.
  • the outer peripheral surface of the sensor spring 207 approaching the bent inner side is sharpened so that the outer peripheral surface on the tip side is substantially along the inner side of the sensor spring 207 that is bent and deformed into a substantially elongated S shape. (See FIG. 16).
  • the spring support pin 244 of the lock arm 208 is locked at the tip when the lock arm 208 is rotated in the webbing take-up direction against the biasing force of the sensor spring 207 and engaged with the clutch gear 229. It is erected at a height that is located near the tip of the spring support pin 243 of the gear 206 (see FIG. 16).
  • the outer edge of the engaging claw 231 is
  • the locking gear 206 is configured to be able to come into contact with a spindle-shaped detent 247 erected on the bottom surface 236 of the locking gear 206 (see FIG. 16).
  • the tip of the spring support pin 244 of the lock arm 208 is located at the substantially center of the inner side of the sensor spring 207 that is bent and deformed into a substantially slender S shape, and the outer peripheral surface of the tip portion on the side of the pivot shaft 239 is substantially slender. It is almost along the inside of the sensor spring 207 which is bent and deformed in an S shape.
  • the lock unit 9 is covered with a mechanism cover 210 formed of a synthetic resin.
  • the mechanism cover 210 is a substantially box-shaped cover case that is open on the housing 11 side, and is provided with nai latches 249 having the same configuration as that of the nai latch 8A at three positions, the upper corner portions and the lower end edge central position. Yes.
  • a cylindrical support boss 251 into which a fixed boss 237 protruding from the bottom surface portion 236 of the locking gear 206 is slidably fitted is erected at the center of the mechanism cover 210 on the housing 11 side.
  • the lock unit 9 first attaches the lock arm 208 and the sensor spring 207 to which the inertia mass 209 is attached to the locking gear 206.
  • a return spring 204, a clutch 202, a pilot arm 203, a vehicle sensor 205, and a locking gear 206 are disposed. Thereafter, the fixed boss 237 of the locking gear 206 is fitted into the support boss 251 of the mechanism cover 210, and each ny latch 249 is inserted into each through hole 252 of the mechanism block 201.
  • the lock unit 9 inserts the shaft portion 28 loosely fitted into the opening 212 of the mechanism block 201 into the fixed boss 237 of the locking gear 206 through the through hole 231 of the clutch 202, and The 249 is pushed into each through hole 253 (see FIG. 8) provided at three locations on the side wall portion 12 of the housing 11, thereby being fixed to the outside of the side wall portion 12.
  • the shaft portion 28 of the winding drum unit 6 is rotatably supported by the support boss 251 of the mechanism cover 210 attached to the outside of the side wall portion 12 of the housing 11 via the fixed boss 237 of the lock gear of the lock unit 9. Is done.
  • members other than the inertia mass 209, the return spring 204, the sensor spring 207, and the sphere 217 of the vehicle sensor 205 are formed of a resin member. It is a small thing.
  • the pulling-out direction of the webbing 3 is the arrow 255 direction.
  • the counterclockwise rotation direction is the rotation direction (webbing pull-out direction) of the winding drum unit 6 when the webbing 3 is pulled out.
  • the operation related to the locking operation will be mainly described, and description of other portions will be omitted as appropriate.
  • a part of the drawing is cut out and displayed as necessary.
  • the operation of the pawl 37 is common to both the “webbing sensitive lock mechanism” and the “vehicle body sensitive lock mechanism”. For this reason, in FIG. 15 thru
  • FIGS. 15 to 18 are explanatory diagrams for explaining the operation of the “webbing sensitive lock mechanism”.
  • the portion indicating the relationship between the pawl 37 and the ratchet gear 26 in addition to the portion indicating the relationship between the lock arm 208 and the clutch gear 229 and the portion indicating the movement of the sensor spring 207 are cut off. Missing shows.
  • the lock arm 208 to which the inertia mass 209 is attached has the pivot shaft 239 rotatably supported by the support boss 238 of the locking gear 206.
  • a predetermined acceleration for example, about 1.5 G. 1G ⁇ 9.8 m / s 2
  • the locking gear 206 rotates in the webbing pull-out direction (in the direction of arrow 256).
  • a delay in inertia occurs in the lock arm 208.
  • the lock arm 208 that has been in contact with the stopper 245 rotates in the clockwise direction around the pivot shaft 239 with respect to the locking gear 206 in order to maintain the initial position against the urging force of the sensor spring 207. It is rotated until it comes into contact with the detent 247. Therefore, the engagement claw 231 of the lock arm 208 is rotated radially outward with respect to the rotation shaft of the locking gear 206 and engaged with the clutch gear 229 of the clutch 202.
  • the winding drum unit 6 is moved in the webbing winding direction (the direction opposite to the arrow 256) by the urging force of the winding spring unit 8.
  • the clutch 202 is rotated in the webbing winding direction (clockwise in FIG. 18) by the urging force of the compressed return spring 204.
  • lock arm 208 is rotated in the webbing pull-out direction (in the counterclockwise direction in FIG. 18) by the urging force of the sensor spring 207 and is brought into contact with the stopper 245 so that the engagement claw of the lock arm 208 is engaged. 231 and the clutch gear 229 are disengaged (see FIG. 15).
  • FIGS. 19 to 22 are explanatory diagrams for explaining the operation of the “vehicle body sensitive locking mechanism”.
  • the portion of the case 216 of the vehicle sensor 205 is cut away.
  • the sphere 217 of the vehicle sensor 205 is placed on the dish-shaped bottom surface of the case 216. Therefore, the acceleration due to the shaking or tilting of the vehicle body is a predetermined acceleration (for example, about 1 If it exceeds 5 G), the bottom surface of the case 216 is rolled to push up the vehicle sensor lever 218.
  • a predetermined acceleration for example, about 1 If it exceeds 5 G
  • the pilot arm 203 whose one end is in contact with the vehicle sensor lever 218 is rotatably attached to the attachment boss 233 of the clutch 202, so that it is pushed up by the vehicle sensor lever 218 and attached. It is rotated clockwise (in the direction of arrow 258) around the axis of the boss 233.
  • the tip of the pilot arm 203 on the vehicle sensor 205 side is engaged with a locking gear tooth 206 ⁇ / b> A formed on the outer periphery of the locking gear 206.
  • the clutch 202 rotates in the webbing pull-out direction around the axis of the fixed boss 237 of the locking gear 206 against the urging force of the return spring 204. Moved.
  • the guide pin 37A of the pawl 37 is guided to the guide groove 235 of the clutch 202, so the pawl 37 is rotated to the ratchet gear 26 side. (In the direction of arrow 261).
  • the winding drum unit 6 is moved in the webbing winding direction (the direction opposite to the arrow 256) by the urging force of the winding spring unit 8. To be rotated. As a result, the engagement between the pilot arm 203 and the locking gear teeth 206A is released, and the clutch 202 is moved in the webbing winding direction (clockwise in FIG. 22) by the urging force of the compressed return spring 204. It is rotated.
  • the guide pin of the pawl 37 is rotated as the clutch 202 rotates in the webbing take-up direction.
  • 37A is guided in the reverse direction through the guide groove 235 of the clutch 202, is separated from the ratchet gear 26, and the locked state of the winding drum unit 6 by the pawl 37 is released (see FIG. 19).
  • the pilot arm 203 is rotated toward the vehicle sensor 205 by its own weight and is brought into contact with the vehicle sensor lever 218.
  • FIG. 23 shows an example in which the variation (sensitivity error characteristic) of the pull-out acceleration of the webbing 3 necessary for rotating and engaging the lock arm 208 with the clutch gear 229 is examined. It demonstrates based on thru
  • the variation (sensitivity error characteristic) in the pull-out acceleration of the webbing 3 necessary for revolving the lock arm 208 around the rotation axis of the locking gear 206 by a predetermined angle and engaging the lock arm 208 with the clutch gear 229 is obtained.
  • the variation (sensitivity error characteristic) was examined.
  • a measurement method for measuring the pull-out acceleration of the webbing 3 necessary for rotating the locking gear 206 by a predetermined angle in the webbing pull-out direction and engaging the lock arm 208 with the clutch gear 229 will be described with reference to FIG. .
  • the lock arm 208 is rotated in the webbing pull-out direction (in the direction of the arrow 262) by the urging force of the sensor spring 207, and the engaging claw 231 side edge is normally a stopper. 245 abuts.
  • a straight line connecting the rotation shaft 271 of the locking gear 206 and the rotation shaft 272 of the pivot shaft 239 is defined as a reference straight line 273.
  • a straight line 275 is set by rotating the reference straight line 273 around the rotation axis 272 of the pivot shaft 239 by the angle ⁇ in the webbing pull-out direction. Subsequently, in a state where the edge of the lock arm 208 on the engagement claw 231 side is in contact with the stopper 245, the center of gravity position GP of the lock arm 208 is set on the straight line 275 to the radius from the rotation shaft 272.
  • the position is set to RD (for example, the radius RD is 0.0 mm to 2.0 mm).
  • the locking gear 206 is rotated by a predetermined angle in the webbing pull-out direction (for example, the central angle is 5 degrees), that is, the reference straight line 273 is rotated around the rotation axis 271 with the state shown in FIG.
  • a predetermined angle in the webbing pull-out direction for example, the central angle is 5 degrees
  • the reference straight line 273 is rotated around the rotation axis 271 with the state shown in FIG.
  • the locking gear 206 is rotated by a central angle of 60 degrees in the webbing pull-out direction (in the direction of arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 is obtained at each rotation position.
  • the pull-out acceleration of the webbing 3 was obtained at each rotation position.
  • the lock arm 208 When the pulling acceleration of the webbing 3 is “1.4 G”, the lock arm 208 is engaged with the clutch gear 229 when the locking gear 206 is in the reference state and in the state rotated by 60 ° in the webbing pulling direction. I didn't. Further, when the pulling acceleration of the webbing 3 is “1.3 G”, the lock arm 208 is the clutch when the locking gear 206 is in the reference state, in the state rotated by 60 ° in the webbing pull-out direction, and in the state rotated by 300 °. The gear 229 was not engaged.
  • the locking gear 206 When the pulling acceleration of the webbing 3 is “1.2 G”, the locking gear 206 is in a reference state, a state rotated by 60 ° in the webbing pulling direction, a state rotated by 120 °, and a state rotated by 300 °. At times, the lock arm 208 did not engage the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.1 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
  • the webbing 3 is set when the gravity center position GP is set to a coordinate position O having a radius of 0.2 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276.
  • the operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
  • the webbing 3 is set when the gravity center position GP is set to the coordinate position P having a radius of 0.4 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276.
  • the operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
  • the webbing 3 is set when the gravity center position GP is set to a coordinate position Q having a radius of 0.6 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276.
  • the operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
  • the webbing 3 is set when the center of gravity position GP is set to the coordinate position R having a radius of 0.8 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276.
  • the operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
  • the webbing 3 is set when the gravity center position GP is set to the coordinate position S having a radius of 1.0 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276.
  • the operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
  • the webbing 3 is set when the gravity center position GP is set to a coordinate position T having a radius of 1.2 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276.
  • the operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
  • the gravity center position GP is set to a coordinate position U having a radius of 0.7 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 277. Then, with the state shown in FIG. 23 as a reference state, the locking gear 206 is rotated by a center angle of 60 degrees in the webbing pull-out direction (indicated by the arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 is obtained at each rotation position.
  • the state shown in FIG. 23 as a reference state
  • the locking gear 206 is rotated by a center angle of 60 degrees in the webbing pull-out direction (indicated by the arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 is obtained at each rotation position.
  • the lock arm 208 was engaged with the clutch gear 229 at each pulling acceleration was measured.
  • the center of gravity position GP is set to a coordinate position V having a radius of 0.1 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 278. Then, with the state shown in FIG. 23 as a reference state, the locking gear 206 is rotated by a center angle of 60 degrees in the webbing pull-out direction (indicated by the arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 is obtained at each rotation position.
  • the state shown in FIG. 23 as a reference state
  • the locking gear 206 is rotated by a center angle of 60 degrees in the webbing pull-out direction (indicated by the arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 is obtained at each rotation position.
  • the lock arm 208 was engaged with the clutch gear 229 at each pulling acceleration was measured.
  • the operation result table 302 indicating the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3 when the pulling acceleration of the webbing 3 is “1.6 G” or more, all of the locking gears 206 are displayed. In the rotational position, the lock arm 208 was engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.5 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is engaged. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
  • the sensitivity error distribution chart 311 shows that the angle ⁇ in the webbing pull-out direction from the reference straight line 273 to each straight line where the center of gravity position GP of the lock arm 208 is set on the horizontal axis is from 0 ° to 360 °. It is set.
  • the radius RD from the rotation axis 272 of the pivot shaft 239, that is, the rotation center of the lock arm 208 to the center of gravity GP of the lock arm 208 is 0.0 mm to 2.0 mm. It is set.
  • the variation in the pull-out acceleration of the webbing 3 in which the lock arm 208 engages with the clutch gear 229 is formed in a generally rice ball-shaped section 313 that protrudes upward on the lower left side. ) Is “0.2 G or less”.
  • the outer section 314 of the section 313 has a variation in the pull-out acceleration (sensitivity error) of the webbing 3 where the lock arm 208 engages the clutch gear 229 is “0.3 G or less”. It is a parcel.
  • the distribution area of the gravity center position GP of the lock arm 208 corresponding to each of the sections 312 and 313 in the sensitivity error distribution diagram 311 will be described with reference to FIG. 50 is the same as the configuration of FIG. 24 with the state shown in FIG. 23 as a reference state, and the coordinate positions A to X indicate the same coordinate position on the lock arm 208. That is, as shown in FIG. 23, the lock arm 208 is rotated in the webbing pull-out direction (in the direction of the arrow 262) by the urging force of the sensor spring 207, and the end edge portion on the engagement claw 231 side becomes the stopper 245. It is in a contact state.
  • the distribution region 316 of the center of gravity position GP of the lock arm 208 corresponding to the section 312 of the sensitivity error distribution diagram 311 has the reference straight line 273 around the rotation axis 272 of the pivot shaft 239 in the webbing withdrawal direction (FIG. 50).
  • the distribution region 316 of the center of gravity position GP of the lock arm 208 is gradually narrowed away from the bisector 276 in both circumferential directions, and both end portions are almost at the boundary portions formed by the straight lines 321 and 322. It is a substantially rhombic region in contact. Therefore, by setting the center of gravity position GP of the lock arm 208 to be located within the distribution region 316, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 with which the lock arm 208 engages with the clutch gear 229 is expressed as “ It can be set to “0.1 G or less”.
  • 108 °.
  • the lock arm 208 has a maximum width from a radius of 0.12 mm to a radius of 0.9 mm.
  • the distribution region 317 of the center of gravity position GP of the lock arm 208 is gradually narrowed away from the bisector 276 in both circumferential directions, and both end portions are at the boundary portion formed by the reference straight line 273 and the straight line 323. It is a substantially rhombic region that is almost in contact. Therefore, by setting the center of gravity position GP of the lock arm 208 so as to be located in the distribution region 317, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 with which the lock arm 208 engages the clutch gear 229 is expressed as “ It can be set to “0.2 G or less”. Note that the distribution regions 316 and 317 are substantially similar.
  • the lock arm 208 is configured so that the center of gravity GP of the lock arm 208 is set within the distribution region 317 (see FIG. 50).
  • the variation (sensitivity error) of the drawing acceleration of the webbing 3 engaged with the clutch gear 229 can be set to “0.2 G or less”.
  • the winding drum unit 6 is locked in an emergency. It is possible to stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 engages with the ratchet gear portion 26A of the ratchet gear 26 by setting the variation in the pull-out acceleration of the webbing 3 to 0.2 G or less.
  • the winding drum unit 6 is locked in an emergency. It is possible to further stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26 by setting the variation in the pull-out acceleration of the webbing 3 to 0.1 G or less.
  • the lock arm 208 is made of only a synthetic resin. Can be made smaller. Further, by changing the shape of the metal inertia mass 209, the gravity center position GP of the lock arm 208 engaged with the clutch gear 229 can be easily set. Furthermore, since the engaging claw 231 that engages with the clutch gear 229 is formed at one end of the lock arm 208 made of synthetic resin, the structure of the lock arm 208 can be simplified.
  • the spring support pin 244 of the lock arm 208 is formed in a tapered shape in which the outer peripheral surface of the distal end portion is cut obliquely from the pivot shaft 239 side toward the distal end portion on the opposite side to the pivot shaft 239. ing. That is, the spring support pin 244 of the lock arm 208 approaches the inner side where the sensor spring 207 is bent so that the outer peripheral surface on the tip side is substantially along the inner side where the sensor spring 207 is bent and deformed into a substantially elongated S shape.
  • the outer peripheral surface is formed in a tapered shape.
  • the sensor spring 207 can be contracted smoothly. Accordingly, since the sensor spring 207 is smoothly contracted without resistance, it is possible to further stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26.
  • this invention is not limited to the said embodiment, Of course, various improvement and deformation
  • transformation are possible within the range which does not deviate from the summary of this invention.
  • the following may be used.
  • the same reference numerals as in the configuration of the seat belt retractor 1 according to the embodiment in FIGS. 1 to 24 are the same as or equivalent to the configuration of the seat belt retractor 1 according to the embodiment. Is shown.
  • FIG. 51 For example, instead of the spring support pin 243 of the locking gear 206, a spring support pin 331 of the locking gear 206 shown in FIG. 51 is provided, and instead of the spring support pin 244 of the lock arm 208, FIG. A spring support pin 332 of the lock arm 208 shown in FIG. 51 shows a bent state of the sensor spring 207 when the lock arm 208 according to another embodiment is rotated in the webbing winding direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. FIG. It is a principal part enlarged view.
  • the spring support pin 332 erected on the bottom surface of the recessed portion having a predetermined depth (for example, a depth of about 2 mm to 3 mm) in a U-shape in plan view of the lock arm 208, It is formed in an elongated substantially truncated cone shape.
  • the spring support pin 331 erected in parallel with the bottom surface portion 236 of the locking gear 206 has an outer peripheral surface of the tip portion from the side opposite to the fixed boss 237 toward the fixed boss 237 toward the tip portion. It is formed in a tapered shape that is cut obliquely.
  • the spring support pin 331 of the locking gear 206 has an outer periphery on the tip side when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229.
  • the sensor spring 207 is formed in a tapered shape in which the outer peripheral surface approaching the bent inner side of the sensor spring 207 is cut so that the surface is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape.
  • the spring support pin 331 of the locking gear 206 is locked at the tip when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229.
  • the arm 208 is erected at a height located near the tip of the spring support pin 332 of the arm 208.
  • the tip of the spring support pin 331 of the locking gear 206 is aligned with the sensor spring.
  • the outer peripheral surface on the lock arm 208 side of the tip portion is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape. Yes.
  • the spring support pin 331 remains inside the sensor spring 207. Therefore, the sensor spring 207 can be contracted smoothly. Accordingly, since the sensor spring 207 is smoothly contracted without resistance, it is possible to further stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26.
  • a spring support pin 335 of the locking gear 206 shown in FIG. 52 is provided instead of the spring support pin 243 of the locking gear 206, and the spring support pin 244 of the lock arm 208 is changed.
  • a spring support pin 336 of the lock arm 208 shown in FIG. 52 may be provided. 52 shows a bent state of the sensor spring 207 when the lock arm 208 according to another embodiment is rotated in the webbing winding direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. FIG. It is a principal part enlarged view.
  • a spring support pin 335 erected in parallel to the bottom surface portion 236 of the locking gear 206 and a U-shape of the lock arm 208 in a plan view in a predetermined depth (for example, a depth of about 2 mm to 3 mm).
  • a spring support pin 336 that is erected on the bottom surface of the recessed part that is recessed.
  • the spring support pins 335 and 336 have their tips close to each other when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. It is erected at almost the same height.
  • the spring support pin 335 erected in parallel with the bottom surface portion 236 of the locking gear 206 has an outer peripheral surface of the tip portion from the opposite side to the fixed boss 237 toward the fixed boss 237 toward the tip portion. It is formed in a tapered shape that is cut obliquely. Further, the spring support pin 336 of the lock arm 208 is formed in a tapered shape in which the outer peripheral surface of the distal end portion is cut obliquely from the pivot shaft 239 side toward the distal end portion on the opposite side to the pivot shaft 239. ing.
  • the spring support pin 335 of the locking gear 206 has an outer periphery on the tip side when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229.
  • the sensor spring 207 is formed in a tapered shape in which the outer peripheral surface approaching the bent inner side of the sensor spring 207 is cut so that the surface is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape.
  • the spring support pin 336 of the lock arm 208 has an outer periphery on the tip side when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229.
  • the sensor spring 207 is formed in a tapered shape in which the outer peripheral surface approaching the bent inner side of the sensor spring 207 is cut so that the surface is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape.
  • the tip of the spring support pin 335 of the locking gear 206 is The outer peripheral surface on the lock arm 208 side of the tip portion is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape. Yes. Further, the tip of the spring support pin 336 of the lock arm 208 is positioned substantially at the center of the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape, and the outer peripheral surface of the tip portion on the side of the pivot shaft 239 is substantially elongated. It is almost along the inside of the sensor spring 207 which is bent and deformed in an S shape.
  • the spring support pins 335 and 336 are sensor springs. Since it does not rub against the inside of 207, the sensor spring 207 can be contracted smoothly. Accordingly, since the sensor spring 207 is smoothly contracted without resistance, it is possible to further stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26.
  • the tip of the spring support pin 335 of the locking gear 206 is locked.
  • the arm 208 is erected at a height located near the tip of the spring support pin 336 of the arm 208.

Abstract

A clutch member has a clutch gear that is engaged as a result of an inertial body rotating in the direction of webbing winding in opposition to the energizing force of a sensor spring. Said inertial body is set so that when said inertial body is rotated in the direction of webbing unwinding by said sensor spring and is in contact with a stopper, the center of gravity is positioned, in a first area on the side of said inertial body from a reference line that ties the axis of rotation of a locking gear with the axis of rotation of said inertial body to a position where said reference line has been rotated to a first angle in the direction of webbing unwinding using the axis of rotation of said inertial body as the center, in a first region set so as to have the maximum width on a bisecting line that substantially bisects said first angle. The variation in unwinding speed of said webbing for said inertial body to engage with said clutch gear is set to be about 0.2 G or less.

Description

シートベルト用リトラクタSeat belt retractor
 本発明は、緊急時にウエビングの引き出しを防止するシートベルト用リトラクタに関するものである。 The present invention relates to a seat belt retractor for preventing webbing from being pulled out in an emergency.
 従来より、緊急時にウエビングの引き出しを防止するシートベルト用リトラクタに関して種々提案されている。
 例えば、ウエビングの急激な引き出しを検出するウエビングセンサは、略C形状に形成された平板状の慣性体が、ロックギヤの平板部に立設された軸に回動自在に支持されている。また、慣性体の重心は、ロックギヤの回転軸と慣性体の回転軸とを結ぶ直線の慣性体の回転軸側の延長線上で、慣性体の回転軸からわずか離れた位置に設定されている。
Conventionally, various seat belt retractors for preventing webbing from being pulled out in an emergency have been proposed.
For example, in a webbing sensor that detects a sudden pull-out of a webbing, a flat plate-like inertia body formed in a substantially C shape is rotatably supported on a shaft standing on a flat plate portion of a lock gear. The center of gravity of the inertial body is set at a position slightly away from the rotation axis of the inertial body on the extension line on the rotation axis side of the linear inertial body connecting the rotation axis of the lock gear and the rotation axis of the inertial body.
 また、この慣性体をロックギヤに対してウエビング引出方向へ常時付勢するコントロールばねは、慣性体の係止爪に対して反対側の端部に立設されて先端が半球状で円柱形状のばねガイド部に一端が支持されている。また、コントロールばねの他端は、ロックギヤの平板部に平行に立設されて先端が半球状で円柱形状のばねガイド部に支持されている。そして、コントロールばねは、慣性体が揺動自在に支持された状態で、両ばねガイド部間に縮設されるように構成されたシートベルトリトラクタがある(例えば、特開平5-208657号公報参照。)。 Further, the control spring that constantly urges the inertial body in the webbing pull-out direction with respect to the lock gear is provided at the end opposite to the locking claw of the inertial body, and the tip is hemispherical and cylindrical. One end is supported by the guide portion. The other end of the control spring is erected in parallel with the flat plate portion of the lock gear and is supported by a cylindrical spring guide portion having a hemispherical tip. The control spring includes a seat belt retractor configured to be contracted between the spring guide portions in a state where the inertia body is swingably supported (see, for example, Japanese Patent Laid-Open No. 5-208657). .)
 上述した従来のシートベルトリトラクタのウエビングセンサでは、ロックギヤが回転したとき、慣性体の重心に遠心力が作用するが、その作用線がロックギヤの回転軸と慣性体の回転軸とを結ぶ直線の延長線上に位置するため、この遠心力により慣性体の回転軸回りのモーメントが作用することがない。従って、リールシャフトの通常の回転時に慣性体が、慣性体の回転軸回りに回動することを防止できる。 In the conventional seat belt retractor webbing sensor described above, when the lock gear rotates, centrifugal force acts on the center of gravity of the inertial body, but the line of action is an extension of a straight line connecting the rotation axis of the lock gear and the rotation axis of the inertial body. Since it is located on the line, the moment around the rotation axis of the inertial body does not act by this centrifugal force. Therefore, it is possible to prevent the inertial body from rotating around the rotation axis of the inertial body during normal rotation of the reel shaft.
 しかしながら、ロックギヤは、リールシャフトの一端側に一体的に取り付けられているため、ユーザの体型や着座姿勢によって、慣性体はロックギヤの回転軸及びリールシャフトの回転軸の軸回りに公転する。このため、リールシャフトの回転軸に対する慣性体の公転位置によって、慣性体の係止爪をロックギヤ第1カバーの歯に係合させるウエビングの引出加速度(センサ感度)にバラツキが生じる虞があるという問題がある。 However, since the lock gear is integrally attached to one end side of the reel shaft, the inertial body revolves around the rotation axis of the lock gear and the rotation axis of the reel shaft depending on the body shape and seating posture of the user. For this reason, there is a possibility that the pulling acceleration (sensor sensitivity) of the webbing that engages the engaging claw of the inertial body with the teeth of the lock gear first cover may vary depending on the revolution position of the inertial body with respect to the rotation axis of the reel shaft. There is.
 また、コントロールばねの両端は、先端が半球状で円柱形状の各ばねガイド部で支持されているため、ウエビングの急激な引き出しによって慣性体が回動した場合には、コントロールばねは略S字状に撓みながら縮められる。このため、コントロールばねは、内側が各ばねガイド部に擦れながら急激に圧縮されるため、スムーズに縮むことができず、ウエビングの引出加速度(センサ感度)にバラツキが生じる虞があるという問題がある。 In addition, since both ends of the control spring are supported by respective cylindrical spring guide portions having a hemispherical tip, the control spring is substantially S-shaped when the inertial body is rotated by sudden pulling out of the webbing. It is shrunk while being bent. For this reason, the control spring is rapidly compressed while being rubbed against each spring guide portion, so that the control spring cannot be smoothly contracted, and there is a possibility that the webbing pull-out acceleration (sensor sensitivity) may vary. .
 そこで、本発明は、上述した問題点を解決するためになされたものであり、巻取ドラムの回転軸に対する慣性体の公転位置によって、緊急時に巻取ドラムをロックするウエビングの引出加速度のバラツキの発生を防止することが可能となるシートベルト用リトラクタを提供することを目的とする。また、慣性体をウエビング引出方向へ回動するように付勢するセンサスプリングがスムーズに縮むことができ、ウエビングの引出加速度のバラツキを防止することができるシートベルト用リトラクタを提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and variation in the pulling acceleration of the webbing that locks the winding drum in an emergency depends on the revolution position of the inertial body with respect to the rotating shaft of the winding drum. An object of the present invention is to provide a seatbelt retractor that can prevent the occurrence. It is another object of the present invention to provide a seat belt retractor in which a sensor spring that urges an inertial body to rotate in the webbing pull-out direction can be smoothly contracted, and variation in webbing pull-out acceleration can be prevented. To do.
 前記目的を達成するため本発明のシートベルト用リトラクタは、ハウジングと、前記ハウジングに回転可能に収納されてウエビングを巻回収納する巻取ドラムと、前記ハウジングの一方の側壁部の外側に取り付けられて、通常時前記巻取ドラムの一端側を回転自在に支持し、前記ウエビングが所定以上の引出加速度で引き出されたときに該巻取ドラムのウエビング引出方向への回転を阻止するロック手段と、を備え、前記ロック手段は、通常時前記巻取ドラムと共に回転し、前記ウエビングが所定以上の引出加速度で引き出されたときに作動する引出加速度感知部材と、前記引出加速度感知部材の作動によって前記巻取ドラムのウエビング引出方向への回転を阻止するパウルを作動させるクラッチ部材と、を有し、前記引出加速度感知部材は、前記巻取ドラムと一体的に回転するロッキングギヤと、前記ロッキングギヤの回転軸から半径方向外側へ所定距離離れた位置に回動可能に軸支されて該ロッキングギヤの回転軸を囲むように配置された略弓形の慣性体と、前記慣性体を前記ロッキングギヤに対してウエビング引出方向へ回動するように付勢するセンサスプリングと、を有し、前記クラッチ部材は、前記巻取ドラムの回転軸と同軸に設けられて、前記慣性体が前記センサスプリングの付勢力に抗してウエビング巻取方向へ回動することにより係合するクラッチギヤが内周面に設けられた円環状のリブ部を有し、前記慣性体は、前記センサスプリングによってウエビング引出方向へ回動されてストッパに当接されている場合には、重心位置が前記ロッキングギヤの回転軸と該慣性体の回転軸を結ぶ基準直線から該基準直線を該慣性体の回転軸を中心にウエビング引出方向側へ第1角度回転させた位置までの該慣性体側の第1範囲内において、該第1角度を略2等分する2等分線上に最大幅を有し、該2等分線から両円周方向に離れるに従って狭くなって円周方向両端縁部で境界部にほぼ接するように設定された第1領域内に位置するように設定され、該慣性体は、前記クラッチギヤに係合する前記ウエビングの引出加速度のバラツキが、略0.2G以下になるように設定されていることを特徴とする。尚、1G≒9.8m/s2とする。 To achieve the above object, a seatbelt retractor according to the present invention is attached to a housing, a take-up drum that is rotatably housed in the housing and winds and houses a webbing, and is attached to the outside of one side wall portion of the housing. A locking means for rotatably supporting one end of the winding drum in a normal state and preventing the winding drum from rotating in the webbing pull-out direction when the webbing is pulled out at a predetermined pulling acceleration or higher. The lock means normally rotates together with the take-up drum, and operates when the webbing is pulled out at a predetermined or higher pulling acceleration. A clutch member that operates a pawl that prevents rotation of the take-up drum in the webbing pull-out direction, and the pull-out acceleration sensing member A locking gear that rotates integrally with the take-up drum, and is rotatably supported at a position away from the rotation shaft of the locking gear radially outward by a predetermined distance so as to surround the rotation shaft of the locking gear. A substantially arcuate inertial body disposed, and a sensor spring that urges the inertial body to rotate in the webbing pull-out direction with respect to the locking gear, and the clutch member is provided on the winding drum. An annular rib provided on the inner peripheral surface, which is provided coaxially with the rotary shaft and engages when the inertial body rotates in the webbing take-up direction against the urging force of the sensor spring. And the inertial body is rotated in the webbing pull-out direction by the sensor spring and is in contact with the stopper, the position of the center of gravity is the rotational axis of the locking gear and the rotation shaft. In the first range on the inertial body side from the reference straight line connecting the rotation axes of the sexoid to the position where the reference straight line is rotated by the first angle about the rotation axis of the inertial body toward the webbing pull-out direction side, the first It is set so that it has a maximum width on a bisector that divides the angle into almost equal halves, and becomes narrower as it goes away from the bisector in both circumferential directions, and substantially touches the boundary at both circumferential edges. The inertial body is set so that the variation in the pulling-out acceleration of the webbing engaged with the clutch gear is about 0.2 G or less. And Note that 1G≈9.8 m / s2.
 このようなシートベルト用リトラクタでは、慣性体の重心位置を第1領域内に位置させることによって、慣性体がクラッチギヤに係合するウエビングの引出加速度のバラツキを略0.2G以下に設定することができる。これにより、ユーザの体型や着座姿勢によって、巻取ドラムの回転軸に対する慣性体の公転位置が変化しても、緊急時に巻取ドラムをロックするウエビングの引出加速度のバラツキを略0.2G以下にしてロック手段の作動感度を安定化させることが可能となる。 In such a seatbelt retractor, by setting the center of gravity of the inertial body within the first region, the variation in the pull-out acceleration of the webbing that the inertial body engages with the clutch gear is set to approximately 0.2 G or less. Can do. As a result, even if the revolution position of the inertial body relative to the rotation axis of the take-up drum changes depending on the user's body shape and seating posture, the variation in the pull-out acceleration of the webbing that locks the take-up drum in an emergency is reduced to about 0.2G or less. This makes it possible to stabilize the operating sensitivity of the locking means.
 また、前記本発明のシートベルト用リトラクタにおいて、前記慣性体は、前記重心位置が前記2等分線によって略2等分される前記第1角度よりも小さい第2角度の該慣性体側の第2範囲内において、前記第1領域に対して相似となるように縮小された第2領域内に位置するように設定され、該慣性体は、前記クラッチギヤに係合するウエビングの引出加速度のバラツキが略0.1G以下になるように設定されてるようにしてもよい。 In the seatbelt retractor of the present invention, the inertial body includes a second at the inertial body side having a second angle smaller than the first angle at which the position of the center of gravity is substantially bisected by the bisector. Within the range, the inertial body is set so as to be located in the second region reduced so as to be similar to the first region, and the inertial body has a variation in the pull-out acceleration of the webbing engaged with the clutch gear. It may be set to be approximately 0.1 G or less.
 このようなシートベルト用リトラクタでは、慣性体の重心位置を第2領域内に位置させることによって、慣性体がクラッチギヤに係合するウエビングの引出加速度のバラツキを略0.1G以下に設定することができる。これにより、ユーザの体型や着座姿勢によって、巻取ドラムの回転軸に対する慣性体の公転位置が変化しても、緊急時に巻取ドラムをロックするウエビングの引出加速度のバラツキを略0.1G以下にしてロック手段の作動感度を更に安定化させることが可能となる。 In such a seatbelt retractor, by setting the center of gravity of the inertial body within the second region, the variation in the pull-out acceleration of the webbing that the inertial body engages with the clutch gear is set to about 0.1 G or less. Can do. As a result, even if the revolution position of the inertial body relative to the rotation axis of the winding drum changes depending on the user's body shape and seating posture, the variation in the pulling acceleration of the webbing that locks the winding drum in an emergency is reduced to about 0.1 G or less. Thus, it is possible to further stabilize the operation sensitivity of the locking means.
 また、前記本発明のシートベルト用リトラクタにおいて、前記慣性体は、略弓形に形成された金属製の平板と、前記平板が内側に装着されて前記ロッキングギヤに回動可能に軸支され、一端部に形成された係合爪が前記クラッチギヤに係合するように略弓形に形成された合成樹脂製の回動体と、を有するようにしてもよい。 In the seatbelt retractor according to the present invention, the inertial body includes a metal flat plate formed in a substantially arcuate shape, and the flat plate mounted on the inner side so as to be pivotally supported by the locking gear. An engaging claw formed on the portion may include a synthetic resin rotating body formed in a substantially arcuate shape so as to engage with the clutch gear.
 このようなシートベルト用リトラクタでは、略弓形に形成された金属製の平板を略弓形に形成された合成樹脂製の回動体の内側に装着することによって、該慣性体を合成樹脂だけで作製する場合よりも小型化することができる。また、金属製の平板の形状を変更することによって、慣性体の重心位置を容易に設定することができる。更に、合成樹脂製の回動体の一端部にクラッチギヤに係合する係合爪が形成されているため、慣性体の構造の簡素化を図ることができる。 In such a seat belt retractor, a metal flat plate formed in a substantially arcuate shape is mounted inside a synthetic resin rotating body formed in a substantially arcuate shape, so that the inertial body is made of only a synthetic resin. It can be made smaller than the case. Moreover, the gravity center position of an inertial body can be easily set by changing the shape of a metal flat plate. Furthermore, since the engaging claw that engages the clutch gear is formed at one end of the rotating body made of synthetic resin, the structure of the inertial body can be simplified.
 また、本発明のシートベルト用リトラクタは、ハウジングと、前記ハウジングに回転可能に収納されてウエビングを巻回収納する巻取ドラムと、前記ハウジングの一方の側壁部の外側に取り付けられて、通常時前記巻取ドラムの一端側を回転自在に支持し、前記ウエビングが所定以上の引出加速度で引き出されたときに該巻取ドラムのウエビング引出方向への回転を阻止するロック手段と、を備え、前記ロック手段は、前記巻取ドラムと一体的に回転するロッキングギヤと、前記ロッキングギヤの回転軸から半径方向外側へ所定距離離れた位置に回動可能に軸支されて該ロッキングギヤの回転軸を囲むように配置された略弓形の慣性体と、前記慣性体を前記ロッキングギヤに対してウエビング引出方向へ回動するように付勢するセンサスプリングと、前記巻取ドラムの回転軸と同軸に設けられて、前記慣性体が前記センサスプリングの付勢力に抗してウエビング巻取方向へ回動することにより係合するクラッチギヤが内周面に設けられた円環状のリブ部と、を有し、前記ロッキングギヤは、該ロッキングギヤの回転軸の周縁近傍位置から前記慣性体側方向で、且つ、該回転軸に対して直交するウエビング引出方向へ立設されて、センサスプリングの一端側が嵌め込まれたギヤ側バネ支持ピンを有し、前記慣性体は、前記ギヤ側バネ支持ピンに対向する側壁に立設されて、前記センサスプリングの他端側が嵌め込まれる慣性体側バネ支持ピンを有し、前記慣性体側バネ支持ピンは、前記慣性体が前記センサスプリングによってウエビング引出方向へ回動された場合には、前記ギヤ側支持ピンとほぼ同一直線上に位置するように立設され、前記ギヤ側バネ支持ピンと前記慣性体側バネ支持ピンのうちの少なくとも一方は、前記慣性体が前記センサスプリングの付勢力に抗してウエビング巻取方向へ回動されて前記クラッチギヤに係合した場合に、先端側の外周面が前記センサスプリングの撓み変形した内側にほぼ沿うように、該センサスプリングの撓んだ内側へ接近する外周面が削られた先細り形状に形成されていることを特徴とする。 The seatbelt retractor according to the present invention is attached to the housing, the winding drum that is rotatably housed in the housing and winds and stores the webbing, and is attached to the outside of one side wall of the housing. Lock means for rotatably supporting one end side of the winding drum and preventing the winding drum from rotating in the webbing pull-out direction when the webbing is pulled out at a predetermined pulling acceleration or more, The locking means is a locking gear that rotates integrally with the take-up drum, and is pivotally supported at a position away from the rotation shaft of the locking gear radially outward by a predetermined distance so as to rotate the rotation shaft of the locking gear. A substantially arcuate inertial body arranged so as to surround, and a sensor sp which urges the inertial body to rotate in the webbing pull-out direction with respect to the locking gear. And a clutch gear which is provided coaxially with the rotating shaft of the winding drum and engages when the inertial body rotates in the webbing winding direction against the urging force of the sensor spring. An annular rib portion provided on the rocking gear, wherein the locking gear is in the direction of the inertial body from the position near the periphery of the rotation shaft of the locking gear, and the webbing pull-out direction orthogonal to the rotation shaft And a gear-side spring support pin fitted at one end of the sensor spring, and the inertia body is erected on a side wall facing the gear-side spring support pin, and the other end of the sensor spring An inertia body side spring support pin that is fitted on the side, and the inertia body side spring support pin is connected to the gear side when the inertia body is rotated in the webbing pull-out direction by the sensor spring. The at least one of the gear side spring support pin and the inertial body side spring support pin is webbing wound against the urging force of the sensor spring. The outer peripheral surface approaching the bent inner side of the sensor spring so that the outer peripheral surface on the front end side is substantially along the inner side of the sensor spring which is bent and deformed when the clutch spring is engaged with the clutch gear. It is characterized by being formed in a tapered shape with a cut.
 このようなシートベルト用リトラクタでは、ギヤ側バネ支持ピンと慣性体側バネ支持ピンのうちの少なくとも一方は、先端側の外周面がセンサスプリングの撓み変形した内側にほぼ沿うように、該センサスプリングの撓んだ内側へ接近する外周面が削られた先細り形状に形成されている。 In such a seat belt retractor, at least one of the gear-side spring support pin and the inertial body-side spring support pin is bent by the sensor spring so that the outer peripheral surface of the tip side is substantially along the inside of the sensor spring. It is formed in the taper shape by which the outer peripheral surface which approaches the inner side was shaved.
 これにより、ウエビングの急激な引き出しによって慣性体が回動してセンサスプリングが撓みながら縮んでも、ギヤ側バネ支持ピンと慣性体側バネ支持ピンのうちの少なくとも一方は、センサスプリングの内側と擦れないため、当該センサスプリングはスムーズに縮むことができ、ロック手段の作動感度を安定化させることが可能となる。 Thereby, even if the inertial body is rotated by a sudden pull-out of the webbing and the sensor spring is bent and contracted, at least one of the gear side spring support pin and the inertial body side spring support pin does not rub against the inside of the sensor spring. The sensor spring can be smoothly contracted, and the operation sensitivity of the lock means can be stabilized.
 また、前記本発明のシートベルト用リトラクタにおいて、前記慣性体が前記センサスプリングの付勢力に抗してウエビング巻取方向へ回動されて前記クラッチギヤに係合した場合には、該慣性体側バネ支持ピンの先端部が前記ギヤ側支持ピンの先端部の近傍に位置する高さに立設されているようにしてもよい。 In the seat belt retractor of the present invention, when the inertial body is rotated in the webbing take-up direction against the urging force of the sensor spring and engaged with the clutch gear, the inertial body side spring You may make it the front-end | tip part of a support pin stand upright at the height located in the vicinity of the front-end | tip part of the said gear side support pin.
 このようなシートベルト用リトラクタでは、慣性体がセンサスプリングの付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤに係合した場合には、慣性体側バネ支持ピンの先端部が、ギヤ側支持ピンの先端部の近傍に位置する高さに立設されている。これにより、慣性体側バネ支持ピンの先端部と、ギヤ側バネ支持ピンの先端部とが近接するため、センサスプリングの縮んだ状態を一定にすることができ、ロック手段の作動感度を更に安定化させることが可能となる。 In such a seat belt retractor, when the inertial body is rotated in the webbing winding direction against the urging force of the sensor spring and engaged with the clutch gear, the tip of the inertial body side spring support pin is It is erected at a height located in the vicinity of the tip of the gear side support pin. As a result, since the tip of the inertial body side spring support pin and the tip of the gear side spring support pin are close to each other, the contracted state of the sensor spring can be made constant, and the operation sensitivity of the locking means is further stabilized. It becomes possible to make it.
本実施形態に係るシートベルト用リトラクタの外観斜視図である。1 is an external perspective view of a seatbelt retractor according to the present embodiment. シートベルト用リトラクタをユニット別に分解した斜視図である。It is the perspective view which decomposed | disassembled the seatbelt retractor for every unit. プリテンショナユニットの斜視図である。It is a perspective view of a pretensioner unit. プリテンショナユニットの分解斜視図である。It is a disassembled perspective view of a pretensioner unit. プリテンショナユニットの分解斜視図である。It is a disassembled perspective view of a pretensioner unit. プリテンショナユニットの一部切り欠き側面図である。It is a partially cutaway side view of a pretensioner unit. ハウジングユニットの分解斜視図である。It is a disassembled perspective view of a housing unit. シートベルト用リトラクタのロックユニットを取り除いた状態の側面図である。It is a side view of the state which removed the lock unit of the retractor for seatbelts. プリテンショナ機構のガス発生部材の作動によってピストンが移動して回転レバーの下端部がギヤ側アームの先端部から外れた状態を示す説明図である。It is explanatory drawing which shows the state which the piston moved by the action | operation of the gas generation member of the pretensioner mechanism, and the lower end part of the rotation lever removed from the front-end | tip part of a gear side arm. 図9に対応するパウルの動作を示す説明図である。It is explanatory drawing which shows the operation | movement of the pawl corresponding to FIG. ロックユニットをメカニズムカバー側から見た分解斜視図である。It is the disassembled perspective view which looked at the lock unit from the mechanism cover side. ロックユニットをメカニズムブロック側から見た分解斜視図である。It is the disassembled perspective view which looked at the lock unit from the mechanism block side. ロックユニットのロックアームを含む組立断面図である。It is assembly sectional drawing containing the lock arm of a lock unit. ロックユニットの通常時の状態を示す一部切り欠き断面図。FIG. 6 is a partially cutaway cross-sectional view showing a normal state of the lock unit. ロックユニットのウエビングの引出加速度による動作説明図(作動前)である。It is operation | movement explanatory drawing by the pulling-out acceleration of the webbing of a lock unit (before operation | movement). ロックユニットのウエビングの引出加速度による動作説明図(作動開始時)である。It is operation | movement explanatory drawing (at the time of an action | operation start) by the pulling-out acceleration of the webbing of a lock unit. ロックユニットのウエビングの引出加速度による動作説明図(ロック状態への移行時)である。It is operation | movement explanatory drawing (at the time of transfer to a locked state) by the pulling-out acceleration of the webbing of a lock unit. ロックユニットのウエビングの引出加速度による動作説明図(ロック状態)である。It is operation | movement explanatory drawing (lock state) by the pulling-out acceleration of the webbing of a lock unit. ロックユニットの車体加速度による動作説明図(作動前)である。It is operation | movement explanatory drawing by the vehicle body acceleration of a lock unit (before operation | movement). ロックユニットの車体加速度による動作説明図(作動開始時)である。It is operation | movement explanatory drawing (at the time of an action | operation start) by the vehicle body acceleration of a lock unit. ロックユニットの車体加速度による動作説明図(ロック状態への移行時)である。It is operation | movement explanatory drawing by the vehicle body acceleration of a lock unit (at the time of transfer to a locked state). ロックユニットの車体加速度による動作説明図(ロック状態)である。It is operation | movement explanatory drawing (lock state) by the vehicle body acceleration of a lock unit. ロックアームの重心位置を示す座標系の説明図である。It is explanatory drawing of the coordinate system which shows the gravity center position of a lock arm. ロックアームの重心の各座標位置を示す図である。It is a figure which shows each coordinate position of the gravity center of a lock arm. ロックアームの重心を座標位置Aに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position A. ロックアームの重心を座標位置Bに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position B. ロックアームの重心を座標位置Cに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position C. ロックアームの重心を座標位置Dに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position D. ロックアームの重心を座標位置Eに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。10 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position E. ロックアームの重心を座標位置Fに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。10 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position F. ロックアームの重心を座標位置Gに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position G. ロックアームの重心を座標位置Hに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position H. ロックアームの重心を座標位置Iに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position I. ロックアームの重心を座標位置Jに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。5 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position J. ロックアームの重心を座標位置Kに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position K. ロックアームの重心を座標位置Lに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position L. ロックアームの重心を座標位置Mに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is located at a coordinate position M. ロックアームの重心を座標位置Nに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position N. ロックアームの重心を座標位置Oに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。10 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position O. ロックアームの重心を座標位置Pに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。10 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position P. ロックアームの重心を座標位置Qに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position Q. ロックアームの重心を座標位置Rに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position R. ロックアームの重心を座標位置Sに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position S. ロックアームの重心を座標位置Tに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position T. ロックアームの重心を座標位置Uに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position U. ロックアームの重心を座標位置Vに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration with respect to each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position V. ロックアームの重心を座標位置Wに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。7 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position W. ロックアームの重心を座標位置Xに位置させたときの、各公転角度に対するウエビングの引出加速度に対する作動結果の一例を示す作動結果テーブルである。6 is an operation result table showing an example of an operation result for a webbing pull-out acceleration for each revolution angle when the center of gravity of the lock arm is positioned at a coordinate position X. 基準軸からロックアームの重心が位置するピボット軸の半径までのウエビング引出方向の角度と、ピボット軸の回転中心からの距離との関係に対する感度誤差の分布の一例を示す感度誤差分布図である。FIG. 6 is a sensitivity error distribution diagram showing an example of a sensitivity error distribution with respect to a relationship between an angle in a webbing pull-out direction from a reference axis to a radius of a pivot shaft where the center of gravity of the lock arm is located, and a distance from a rotation center of the pivot shaft. 図49の感度誤差が0.1G以下と0.2G以下の場合の、ロックアームの重心位置の分布領域を示す図である。It is a figure which shows the distribution area | region of the gravity center position of a lock arm when the sensitivity error of FIG. 49 is 0.1 G or less and 0.2 G or less. 他の実施形態に係るセンサスプリングを取り付ける支持ピンの一例を示す図である。It is a figure which shows an example of the support pin which attaches the sensor spring which concerns on other embodiment. 他の実施形態に係るセンサスプリングを取り付ける支持ピンの一例を示す図である。It is a figure which shows an example of the support pin which attaches the sensor spring which concerns on other embodiment.
 以下、本発明に係るシートベルト用リトラクタについて具体化した一実施形態に基づき図面を参照しつつ詳細に説明する。 Hereinafter, a retractor for a seat belt according to an embodiment of the present invention will be described in detail with reference to the drawings based on an embodiment.
 [概略構成]
 先ず、本実施形態に係るシートベルト用リトラクタ1の概略構成について図1及び図2に基づき説明する。
 図1は本実施形態に係るシートベルト用リトラクタ1の外観斜視図である。図2はシートベルト用リトラクタ1をユニット別に分解した斜視図である。
[Schematic configuration]
First, a schematic configuration of the seatbelt retractor 1 according to the present embodiment will be described with reference to FIGS. 1 and 2.
FIG. 1 is an external perspective view of a seatbelt retractor 1 according to this embodiment. FIG. 2 is an exploded perspective view of the seat belt retractor 1 for each unit.
 図1及び図2に示すように、シートベルト用リトラクタ1は、車両のウエビング3を巻き取るための装置であって、ハウジングユニット5と、巻取ドラムユニット6と、プリテンショナユニット7と、巻取バネユニット8と、ロックユニット9とから構成されている。
 また、ロックユニット9は、ハウジングユニット5を構成するハウジング11の側壁部12に固設され、後述のようにウエビング3の急激な引き出しや車両の急激な加速度の変化に反応してウエビング3の引き出しを停止する起動動作を行う。
As shown in FIGS. 1 and 2, the seat belt retractor 1 is a device for winding a webbing 3 of a vehicle, and includes a housing unit 5, a winding drum unit 6, a pretensioner unit 7, and a winding. A spring unit 8 and a lock unit 9 are included.
Further, the lock unit 9 is fixed to the side wall portion 12 of the housing 11 constituting the housing unit 5, and the webbing 3 is pulled out in response to a sudden pull-out of the webbing 3 or a rapid change in the acceleration of the vehicle as will be described later. Start operation to stop.
 また、後述のプリテンショナ機構17(図3参照)を備えたプリテンショナユニット7は、平面視略コの字状のハウジングユニット5の相対向する各側板部13、14の上下端縁部から略直角内側方向に延出されてネジ孔が形成された各ネジ止め部13A、13B、14Aと貫通孔が形成されたピン止め部14Bに、プリテンショナユニット7の外側から挿通される各ネジ15によってネジ止めされ、また、ハウジング11の内側から挿通されるストッパーピン16と該ストッパーピン16に挿入されるプッシュナット18によって固定される。これにより、プリテンショナユニット7は、ハウジング11の側壁部12に相対向する他方の側壁部を構成する。 Further, the pretensioner unit 7 provided with a pretensioner mechanism 17 (see FIG. 3), which will be described later, is substantially omitted from the upper and lower end edges of the side plate portions 13 and 14 facing each other of the substantially U-shaped housing unit 5 in plan view. Each screw 15 inserted through from the outside of the pretensioner unit 7 is inserted into the screw fixing portions 13A, 13B, 14A formed with screw holes by extending in a right angle inner direction and the pin fixing portions 14B formed with through holes. The stopper pin 16 is screwed and inserted from the inside of the housing 11 and is fixed by a push nut 18 inserted into the stopper pin 16. Thereby, the pretensioner unit 7 constitutes the other side wall portion facing the side wall portion 12 of the housing 11.
 また、巻取バネユニット8は、プリテンショナユニット7の外側にバネケース19に一体形成された各ナイラッチ8Aによって固設される。
 そして、ウエビング3が巻装されて巻取ドラムとして機能する巻取ドラムユニット6は、ハウジングユニット5の側壁部12に固設されたロックユニット9とプリテンショナユニット7との間に回転自在に支持される。また、巻取ドラムユニット6は、ガイドドラム21と、ドラムシャフト22と、ワイヤプレート25と、ラチェットギヤ26等とから構成されている。
Further, the take-up spring unit 8 is fixed to the outside of the pretensioner unit 7 by each ny latch 8A integrally formed with the spring case 19.
The winding drum unit 6 around which the webbing 3 is wound and functions as a winding drum is rotatably supported between a lock unit 9 fixed to the side wall portion 12 of the housing unit 5 and the pretensioner unit 7. The The winding drum unit 6 includes a guide drum 21, a drum shaft 22, a wire plate 25, a ratchet gear 26, and the like.
 ガイドドラム21は、アルミ材等により形成されて、プリテンショナユニット7側の端面部が閉塞された略円筒状に形成されている。また、ガイドドラム21の軸心方向のプリテンショナユニット7側の端縁部には、外周部から径方向に延出され、更に略直角外側方向に延出されたフランジ部27が形成されている。また、このフランジ部27の内周面には、車両衝突時に各クラッチパウル29(図4参照)が係合してピニオンギヤ体33(図4参照)の回転が伝達されるクラッチギヤ30が形成されている。 The guide drum 21 is formed of an aluminum material or the like, and is formed in a substantially cylindrical shape in which the end surface portion on the pretensioner unit 7 side is closed. Further, a flange portion 27 extending in the radial direction from the outer peripheral portion and further extending in a substantially right-angled outward direction is formed on the end edge portion on the pretensioner unit 7 side in the axial direction of the guide drum 21. . In addition, a clutch gear 30 is formed on the inner peripheral surface of the flange portion 27 so that each clutch pawl 29 (see FIG. 4) is engaged and the rotation of the pinion gear body 33 (see FIG. 4) is transmitted in the event of a vehicle collision. ing.
 また、ガイドドラム21のプリテンショナユニット7側の端面部中央位置には、円筒状の取付ボス31が立設され、スチール材等により形成されるドラムシャフト22が圧入等によって固着されている。また、この取付ボス31は、後述のクラッチ機構48(図4参照)を構成するポリアセタール等の合成樹脂材により形成された軸受部材32の筒状部32A(図4参照)に嵌入される。 Further, a cylindrical mounting boss 31 is erected at the center position of the end surface portion of the guide drum 21 on the pretensioner unit 7 side, and a drum shaft 22 formed of a steel material or the like is fixed by press fitting or the like. Further, the mounting boss 31 is fitted into a cylindrical portion 32A (see FIG. 4) of the bearing member 32 formed of a synthetic resin material such as polyacetal constituting a clutch mechanism 48 (see FIG. 4) described later.
 これにより、巻取ドラムユニット6の一端側は、軸受部材32を介してプリテンショナユニット7を構成するピニオンギヤ体33の軸受け部33A(図5参照)に回転可能に支持される。また、巻取ドラムユニット6のドラムシャフト22の先端部が、巻取バネユニット8内の渦巻バネに結合され、渦巻バネの付勢力によって巻取ドラムユニット6をウエビング3の巻取方向に常時付勢する構造とされる。 Thereby, one end side of the winding drum unit 6 is rotatably supported by the bearing portion 33A (see FIG. 5) of the pinion gear body 33 constituting the pretensioner unit 7 via the bearing member 32. The tip of the drum shaft 22 of the take-up drum unit 6 is coupled to a spiral spring in the take-up spring unit 8 and constantly urges the take-up drum unit 6 in the winding direction of the webbing 3 by the urging force of the spiral spring. Structured.
 また、ガイドドラム21の軸心方向のロックユニット9側には、端縁部から少し内側の外周面から径方向に延出されたフランジ部35が形成されている。また、フランジ部35の外周部は、アルミ材等により形成された側面視略卵形のワイヤプレート25で覆われている。また、ワイヤプレート25の外側中央部には、ラチェットギヤ26が、カシメ等によって固着されている。 Further, on the lock unit 9 side of the guide drum 21 in the axial direction, a flange portion 35 extending in the radial direction from the outer peripheral surface slightly inside from the end edge portion is formed. Further, the outer peripheral portion of the flange portion 35 is covered with a wire plate 25 having a substantially oval shape in a side view formed of an aluminum material or the like. A ratchet gear 26 is fixed to the outer central portion of the wire plate 25 by caulking or the like.
 このラチェットギヤ26は、スチール材等により形成された円板状で、外周面に、後述のように車両衝突時や車両緊急時にパウル37(図7参照)が係合するラチェットギヤ部26Aが形成されている。また、ラチェットギヤ26の外側中心位置には、軸部28が立設されている。この軸部28の外周面には、スプラインが形成され、巻取ドラムユニット6は、この軸部28を介してロックユニット9に回転可能に支持される。 The ratchet gear 26 has a disc shape formed of steel or the like, and has a ratchet gear portion 26A that engages with a pawl 37 (see FIG. 7) in the event of a vehicle collision or a vehicle emergency as described later. Has been. A shaft portion 28 is erected at the center position on the outer side of the ratchet gear 26. A spline is formed on the outer peripheral surface of the shaft portion 28, and the winding drum unit 6 is rotatably supported by the lock unit 9 via the shaft portion 28.
 [プリテンショナユニットの概略構成]
 次に、プリテンショナユニット7の概略構成について図2乃至図6に基づいて説明する。
 図3はプリテンショナユニット7の巻取バネユニット8の取り付け面側から見た斜視図である。図4及び図5はプリテンショナユニット7を分解した分解斜視図である。図6はプリテンショナユニット7の一部切り欠き側面図である。
[Schematic configuration of pretensioner unit]
Next, a schematic configuration of the pretensioner unit 7 will be described with reference to FIGS.
FIG. 3 is a perspective view of the pretensioner unit 7 as viewed from the mounting surface side of the winding spring unit 8. 4 and 5 are exploded perspective views in which the pretensioner unit 7 is disassembled. FIG. 6 is a partially cutaway side view of the pretensioner unit 7.
 図2乃至図6に示すように、プリテンショナユニット7は、プリテンショナ機構17と、ハウジングユニット5の側壁部12に軸支されたパウル37(図8参照)を回動させる強制ロック機構51と、カバープレート53とから構成されている。 As shown in FIGS. 2 to 6, the pretensioner unit 7 includes a pretensioner mechanism 17, a forced lock mechanism 51 that rotates a pawl 37 (see FIG. 8) pivotally supported on the side wall portion 12 of the housing unit 5, and And the cover plate 53.
 [プリテンショナ機構]
 図3乃至図6に示すように、プリテンショナ機構17は、車両衝突時等にガス発生部材41を作動させ、このガスの圧力を利用して巻取ドラムユニット6のフランジ部27を介して該巻取ドラムユニット6をウエビング3の巻取方向に回転させる機構である。
[Pretensioner mechanism]
As shown in FIGS. 3 to 6, the pretensioner mechanism 17 operates the gas generating member 41 at the time of a vehicle collision or the like, and uses the pressure of this gas via the flange portion 27 of the winding drum unit 6 to perform the winding. This is a mechanism for rotating the take-up drum unit 6 in the winding direction of the webbing 3.
 ここで、プリテンショナ機構17は、ガス発生部材41と、パイプシリンダ42と、ガス発生部材41のガス圧を受けてパイプシリンダ42内を移動するシールプレート43及びピストン44と、このピストン44に形成されたラック44Aに噛合して回転するピニオンギヤ体33と、このパイプシリンダ42が取り付けられるベースプレート45と、このベースプレート45にパイプシリンダ42のピニオンギヤ体33側の側面に当接して配設される略直方体状のベースブロック体46と、ベースプレート45の外側面に配設されるクラッチ機構48とから構成されている。 Here, the pretensioner mechanism 17 is formed on the gas generation member 41, the pipe cylinder 42, the seal plate 43 and the piston 44 that move in the pipe cylinder 42 under the gas pressure of the gas generation member 41, and the piston 44. The pinion gear body 33 that rotates while meshing with the rack 44A formed, a base plate 45 to which the pipe cylinder 42 is attached, and a substantially rectangular parallelepiped arranged in contact with the side surface of the pipe cylinder 42 on the pinion gear body 33 side. And a clutch mechanism 48 disposed on the outer surface of the base plate 45.
 また、ピニオンギヤ体33は、スチール材等で形成された略円筒状で、その外周部にピストン44に形成されたラック44Aに噛合するピニオンギヤ部55が形成されている。また、このピニオンギヤ部55の軸心方向カバープレート53側の端部から外側方向に延出される円筒状の支持部56が形成されている。また、この支持部56は、ピニオンギヤ部55の谷径を外径として、このカバープレート53の厚さ寸法にほぼ等しい長さに形成されている。 Further, the pinion gear body 33 has a substantially cylindrical shape formed of a steel material or the like, and a pinion gear portion 55 that meshes with a rack 44A formed on the piston 44 is formed on the outer periphery thereof. Further, a cylindrical support portion 56 extending outward from the end portion of the pinion gear portion 55 on the axial direction cover plate 53 side is formed. The support portion 56 is formed to have a length substantially equal to the thickness dimension of the cover plate 53 with the valley diameter of the pinion gear portion 55 as an outer diameter.
 また、このピニオンギヤ部55の軸心方向ベースプレート45側の端部には径方向に張り出すフランジ部57が形成されている。さらに、このフランジ部57から外側方向に略円筒状で巻取ドラムユニット6のドラムシャフト22が挿通されると共に、軸受部材32の筒状部32Aが嵌入される軸受け部33Aが形成されたボス部58が形成されている。また、このボス部58の外周面には、基端部の外径を有する3個ずつのスプラインが中心角約120度間隔で形成されている。 Further, a flange portion 57 projecting in the radial direction is formed at an end portion of the pinion gear portion 55 on the axial base plate 45 side. Furthermore, the boss 58 is formed with a bearing 33A into which the cylindrical shaft 32A of the bearing member 32 is inserted while the drum shaft 22 of the winding drum unit 6 is inserted in a substantially cylindrical shape outward from the flange 57. Is formed. Further, on the outer peripheral surface of the boss portion 58, three splines each having an outer diameter of the base end portion are formed at intervals of about 120 degrees of the central angle.
 また、クラッチ機構48は、ポリアセタール等の合成樹脂材により形成された軸受部材32と、スチール材等で形成された略円環状のパウルベース61と、スチール材等で形成された3個のクラッチパウル29と、ポリアセタール等の合成樹脂で形成されて、パウルベース61と共に各クラッチパウル29を挟持する略円環状のパウルガイド62とから構成されている。 The clutch mechanism 48 includes a bearing member 32 formed of a synthetic resin material such as polyacetal, a substantially annular pawl base 61 formed of a steel material, and three clutch pawls formed of a steel material. 29 and a substantially annular pawl guide 62 that is formed of a synthetic resin such as polyacetal and sandwiches each clutch pawl 29 together with the pawl base 61.
 この軸受部材32は、図4及び図5に示すように、ガイドドラム21のプリテンショナユニット7側の端面部中央位置に立設された円筒状の取付ボス31が回転可能に嵌入される略円筒状の筒状部32Aと、その筒状部32Aのガイドドラム21側の端縁部の外周から径方向外側に延出された円環状のフランジ部32Bとから形成されている。 As shown in FIGS. 4 and 5, the bearing member 32 has a substantially cylindrical shape in which a cylindrical mounting boss 31 erected at the center position of the end surface portion of the guide drum 21 on the pretensioner unit 7 side is rotatably fitted. The cylindrical portion 32 </ b> A and an annular flange portion 32 </ b> B extending radially outward from the outer periphery of the edge portion of the cylindrical portion 32 </ b> A on the guide drum 21 side.
 また、このフランジ部32Bの周縁部には、中心角約120度間隔で径方向外側に正面視略三角形の先細りの平板状に延出された3個の突出部32Cが形成されている。また、各突出部32Cの径方向外側先端部には、それぞれ係止片32Dが、筒状部32Aの外周面に対して軸方向平行に対向するように、クラッチ機構48の厚さ寸法よりも少し低い高さ寸法で立設されている。更に、各係止片32Dの先端部には、略直角外側方向に側断面略直角三角形状に突出した係合突起が形成されている。 Further, on the peripheral edge of the flange portion 32B, there are formed three projecting portions 32C extending in the form of a tapered flat plate having a substantially triangular shape when viewed from the front at an interval of about 120 degrees in the central angle. Further, the locking piece 32D is arranged at the distal end portion in the radial direction of each projecting portion 32C so as to face the outer peripheral surface of the cylindrical portion 32A in the axial direction, rather than the thickness dimension of the clutch mechanism 48. It is erected with a slightly lower height. Furthermore, an engaging protrusion is formed at the tip of each locking piece 32D and protrudes in a substantially right triangle shape in a side section in a substantially right angle outward direction.
 また、図4及び図5に示すように、パウルベース61の内周面には、ピニオンギヤ体33のボス部58に形成されたスプラインが圧入されるスプライン溝が中心角約120度間隔で3個ずつ形成されている。また、パウルベース61には、各クラッチパウル29の回転支軸29Aが回転可能に嵌入される3個の挿通孔65と、各挿通孔65をパウルベース61の外径側で囲むように肉厚の各パウル支持ブロック66が設けられている。また、各パウル支持ブロック66の外径端には、それぞれ係止ブロック67が形成されている。 Further, as shown in FIGS. 4 and 5, three spline grooves into which the splines formed on the boss portions 58 of the pinion gear body 33 are press-fitted are arranged at intervals of a central angle of about 120 degrees on the inner peripheral surface of the pawl base 61. It is formed one by one. Further, the pawl base 61 has three insertion holes 65 into which the rotation support shafts 29A of the respective clutch pawls 29 are rotatably fitted, and the pawl base 61 is thick so as to surround each insertion hole 65 on the outer diameter side of the pawl base 61. Each pawl support block 66 is provided. A locking block 67 is formed at the outer diameter end of each pawl support block 66.
 また、パウルベース61のガイドドラム21側の面には、軸受部材32の筒状部32Aをパウルベース61に挿入した場合に、フランジ部32B及び各突出部32Cのほぼ全体が入り込むように嵌入される正面視略三角形状の窪み部68が形成されている。この窪み部68の深さは、平板状の各突出部32Cの厚さにほぼ等しい深さ寸法に形成されている。また、窪み部68の底面の各頂点部分には、軸受部材32の各係止片32Dが挿通される各貫通孔69が形成されている。 Further, when the cylindrical portion 32A of the bearing member 32 is inserted into the pawl base 61, the flange portion 32B and the respective protruding portions 32C are fitted into the surface of the pawl base 61 on the guide drum 21 side. A hollow portion 68 having a substantially triangular shape in front view is formed. The depth of the recessed portion 68 is formed to have a depth dimension substantially equal to the thickness of each flat plate-like protruding portion 32C. In addition, each through hole 69 through which each locking piece 32 </ b> D of the bearing member 32 is inserted is formed at each vertex portion of the bottom surface of the recess 68.
 また、図4及び図5に示すように、パウルガイド62の内周径は、パウルベース61のスプライン溝よりも大きく形成されると共に、このパウルガイド62の軸方向外側の側面部には、3個の細長い各位置決突起71が、中心角120度間隔で半径方向に沿って突設されている。また、パウルガイド62の外周部には、パウルベース62の各係止ブロック67と係合する3個の各係止フック72が形成されている。 As shown in FIGS. 4 and 5, the inner peripheral diameter of the pawl guide 62 is formed larger than the spline groove of the pawl base 61, and the axially outer side surface portion of the pawl guide 62 has 3 Each of the long and narrow positioning protrusions 71 protrudes along the radial direction at intervals of a central angle of 120 degrees. Further, three locking hooks 72 that engage with the locking blocks 67 of the pawl base 62 are formed on the outer periphery of the pawl guide 62.
 そして、パウルベース61の各貫通孔69に各クラッチパウル29の回転支軸29Aを嵌入して載置し、その上側からパウルガイド62の各係止フック72をパウルベース61の各係止ブロック67に係合させることによって、各クラッチパウル29が回転支軸29を中心に回転可能に収納された状態で保持される。続いて、クラッチ機構48のパウルガイド62の軸方向外側の側面部に突設される各位置決突起71を、ベースプレート45の各位置決孔75に嵌入して、該クラッチ機構48をベースプレート45の外側面に配置する。 Then, the rotational support shafts 29A of the clutch pawls 29 are fitted and placed in the through holes 69 of the pawl base 61, and the locking hooks 72 of the pawl guide 62 are connected to the locking blocks 67 of the pawl base 61 from above. By engaging with each other, each clutch pawl 29 is held in a state of being accommodated rotatably about the rotation support shaft 29. Subsequently, each positioning protrusion 71 protruding from the axially outer side surface portion of the pawl guide 62 of the clutch mechanism 48 is fitted into each positioning hole 75 of the base plate 45, so that the clutch mechanism 48 is attached to the base plate 45. Place on the outside.
 その後、ピニオンギヤ体33のボス部58を、ベースプレート45の略中央部に形成された貫通孔76に嵌入後、該ボス部58に形成される各スプラインをクラッチ機構48を構成するパウルベース61の各スプライン溝に圧入固定する。これにより、クラッチ機構48とピニオンギヤ体33とが、ベースプレート45に配設固定されるとともに、ピニオンギヤ体33のピニオンギヤ部55が、図6に示す位置に常に位置決め固定される。 After that, after the boss portion 58 of the pinion gear body 33 is fitted into the through hole 76 formed in the substantially central portion of the base plate 45, each spline formed in the boss portion 58 is replaced with each of the pawl base 61 constituting the clutch mechanism 48. Press fit into the spline groove. Thereby, the clutch mechanism 48 and the pinion gear body 33 are disposed and fixed on the base plate 45, and the pinion gear portion 55 of the pinion gear body 33 is always positioned and fixed at the position shown in FIG.
 これにより、後述のように、車両衝突時等にピニオンギヤ体33が回転した場合には、パウルベース61が回転して各クラッチパウル29が半径方向外側へ回動されて該パウルベース61から半径方向外側へ突出後、ガイドドラム21のクラッチギヤ30に噛合する。更に、ピニオンギヤ体33が回転することによって、パウルガイド62の各位置決突起71が剪断されて、クラッチ機構48及びガイドドラム21がウエビング3の巻取方向へ回転する。 Thus, as will be described later, when the pinion gear body 33 rotates in the event of a vehicle collision or the like, the pawl base 61 rotates and each clutch pawl 29 rotates in the radial direction so that the pawl base 61 moves in the radial direction. After projecting outward, it meshes with the clutch gear 30 of the guide drum 21. Further, when the pinion gear body 33 rotates, each positioning protrusion 71 of the pawl guide 62 is sheared, and the clutch mechanism 48 and the guide drum 21 rotate in the winding direction of the webbing 3.
 続いて、図4及び図5に示すように、軸受部材32の各係止片32Dをパウルベース61の各貫通孔69に挿入しつつ、筒状部32Aをピニオンギヤ体33の軸受け部33Aに嵌入する。そして、軸受部材32のフランジ部32B及び各突出部32Cを窪み部68に嵌入させる。これにより、軸受部材32の各突出部32Cの両側面部は、窪み部68の各頂点部分の内側面に対向するように配置されるため、当該軸受部材32はパウルベース61に対して相対回転不能に取り付けられる。 Subsequently, as shown in FIGS. 4 and 5, the cylindrical portion 32 </ b> A is fitted into the bearing portion 33 </ b> A of the pinion gear body 33 while the locking pieces 32 </ b> D of the bearing member 32 are inserted into the through holes 69 of the pawl base 61. To do. Then, the flange portion 32 </ b> B and each projecting portion 32 </ b> C of the bearing member 32 are fitted into the recessed portion 68. As a result, the both side surfaces of each protrusion 32C of the bearing member 32 are disposed so as to oppose the inner surface of each apex portion of the recess 68, and therefore the bearing member 32 cannot rotate relative to the pawl base 61. Attached to.
 また、ベースブロック体46は、ポリアセタール等の合成樹脂で形成されている。そして、このベースブロック体46の内側の側端縁部から内側方向に平面視略半円状に窪むように形成されると共に底面部が外側方向に突出する略リング状に形成されたギヤ収納部81の該底面部の貫通孔82内にピニオンギヤ体33のフランジ部57を挿通させる。また、このベースブロック体46のベースプレート45側の側面部に突出する各位置決めボス83を、ベースプレート45の各位置決孔85に嵌入して、該ベースブロック体46をベースプレート45の内側面に配置する。 The base block body 46 is made of a synthetic resin such as polyacetal. The gear housing 81 is formed in a substantially semicircular shape in a plan view from the side edge on the inner side of the base block body 46 and formed in a substantially ring shape with a bottom surface protruding outward. The flange portion 57 of the pinion gear body 33 is inserted into the through hole 82 in the bottom surface portion. Further, each positioning boss 83 protruding from the side surface portion of the base block body 46 on the base plate 45 side is fitted into each positioning hole 85 of the base plate 45, and the base block body 46 is disposed on the inner surface of the base plate 45. .
 また、ベースブロック体46は、パイプシリンダ42のガス発生部材41が収納される収納部42Aに対向する下端部から該収納部42A近傍位置まで、ピストン44が収納されるピストン収納部42Bに対向するように同じ厚さで所定幅(例えば、約10mm幅である。)だけ延出されたブロック延出部87が形成されている。また、このブロック延出部87の下端部には、ネジ88(図2参照)が挿通される貫通孔89が形成されている。 Further, the base block body 46 faces the piston housing portion 42B in which the piston 44 is housed from the lower end portion facing the housing portion 42A in which the gas generating member 41 of the pipe cylinder 42 is housed to the position near the housing portion 42A. Thus, the block extension part 87 extended by a predetermined width (for example, about 10 mm width) with the same thickness is formed. A through-hole 89 through which a screw 88 (see FIG. 2) is inserted is formed at the lower end of the block extension 87.
 また、ベースブロック体46の外側側面部からベースプレート45側に延出されて、外側方向に弾性変形可能に形成された弾性係止片46Aと、このベースブロック体46の上側側面部及び下側側面部からベースプレート45側に延出されて、外側方向に弾性変形可能に形成された各弾性係止片46Bとをそれぞれベースプレート45の側端部に係止する。これにより、ベースブロック体46がベースプレート45に配設される。 Also, an elastic locking piece 46A extending from the outer side surface portion of the base block body 46 to the base plate 45 side and formed to be elastically deformable in the outer direction, and the upper side surface portion and the lower side surface of the base block body 46 Each elastic locking piece 46 </ b> B extending from the portion toward the base plate 45 and elastically deformable in the outward direction is locked to the side end of the base plate 45. As a result, the base block body 46 is disposed on the base plate 45.
 尚、ギヤ収納部81の高さは、ピニオンギヤ体33のピニオンギヤ部55とフランジ部57の高さの和にほぼ等しくなるように形成されている。 Note that the height of the gear housing portion 81 is formed to be approximately equal to the sum of the heights of the pinion gear portion 55 and the flange portion 57 of the pinion gear body 33.
 [強制ロック機構]
 ここで、ベースブロック体46内に配設される強制ロック機構51について図3乃至図6に基づいて説明する。
 図3乃至図6に示すように、ベースブロック体46には、強制ロック機構51を配設する凹部91が形成されて、該強制ロック機構51を構成するプッシュブロック92と、回転レバー93と、プッシュブロック92を回転レバー93側方向へ付勢するブロック付勢バネ92Aと、ギヤ側アーム94と、このギヤ側アーム94を回転レバー93側方向へ付勢する付勢バネ95とが配設されている。また、このギヤ側アーム94には、ベースプレート45の外側から該強制ロック機構51を構成する連結シャフト96と、メカ側アーム97が接続されている。
[Forced locking mechanism]
Here, the forced locking mechanism 51 disposed in the base block body 46 will be described with reference to FIGS.
As shown in FIG. 3 to FIG. 6, the base block body 46 is formed with a recess 91 in which the forced lock mechanism 51 is disposed, and a push block 92 that constitutes the forced lock mechanism 51, a rotary lever 93, A block urging spring 92A for urging the push block 92 in the direction of the rotation lever 93, a gear side arm 94, and a urging spring 95 for urging the gear side arm 94 in the direction of the rotation lever 93 are provided. ing. The gear side arm 94 is connected to a connecting shaft 96 constituting the forced lock mechanism 51 and a mechanical side arm 97 from the outside of the base plate 45.
 この回転レバー93は、ポリアセタール等の合成樹脂やアルミ材等で形成されて、略くの字状に形成されると共に、曲がり部に貫通孔が形成されている。そして、図6に示すように、回転レバー93は、一端側がピニオンギヤ体33のピニオンギヤ部55に対向するように、ベースブロック体46の凹部91の底面部に立設されるボス98に回転可能に支持されている。 The rotary lever 93 is formed of a synthetic resin such as polyacetal, an aluminum material, or the like, and is formed in a substantially square shape, and a through hole is formed in a bent portion. Then, as shown in FIG. 6, the rotary lever 93 is rotatable on a boss 98 erected on the bottom surface of the concave portion 91 of the base block body 46 so that one end side thereof faces the pinion gear portion 55 of the pinion gear body 33. It is supported.
 また、プッシュブロック92は、ポリアセタール等の合成樹脂で形成されている。そして、図6に示すように、プッシュブロック92は、凹部91の底面部に立設される位置決突起101によって、一端がピニオンギヤ体33のピニオンギヤ部55の歯の近傍に位置し、他端が回転レバー93の近傍に位置するように位置決めされている。また、このプッシュブロック92は、ブロック付勢バネ92Aによって回転レバー93側に付勢され、ガタツキが防止されている。 The push block 92 is made of a synthetic resin such as polyacetal. As shown in FIG. 6, the push block 92 has one end positioned near the teeth of the pinion gear portion 55 of the pinion gear body 33 and the other end thereof by the positioning protrusion 101 erected on the bottom surface portion of the recess 91. It is positioned so as to be located in the vicinity of the rotation lever 93. Further, the push block 92 is urged toward the rotating lever 93 by a block urging spring 92A to prevent rattling.
 従って、後述のようにピニオンギヤ体33が回転した場合には、回転レバー93は、ピニオンギヤ部55の歯に押されたプッシュブロック92によって外側方向(図6中、反時計方向)に回動可能に構成されている(図9参照)。また、プッシュブロック92は、ブロック付勢バネ92Aによってピニオンギヤ体33側に戻るのを防止される。 Therefore, when the pinion gear body 33 rotates as will be described later, the rotation lever 93 can be rotated outward (counterclockwise in FIG. 6) by the push block 92 pushed by the teeth of the pinion gear portion 55. It is configured (see FIG. 9). The push block 92 is prevented from returning to the pinion gear body 33 side by the block biasing spring 92A.
 また、ギヤ側アーム94は、ポリアセタール等の合成樹脂やアルミ材等で形成されて、略平板状に形成されると共に、ベースブロック体46側の側面部の回転レバー93から遠い一端側には、ベースブロック体46の凹部91の底面部に形成された貫通孔102に挿通されるボス103が立設されている。また、ギヤ側アーム94のボス103が立設される側面部には、連結シャフト96の一端側折曲部が挿通される所定深さの溝部105が形成されている。 Further, the gear side arm 94 is formed of a synthetic resin such as polyacetal, an aluminum material or the like and is formed in a substantially flat plate shape, and at one end side far from the rotation lever 93 on the side surface portion on the base block body 46 side, A boss 103 is erected to be inserted into the through hole 102 formed in the bottom surface portion of the recess 91 of the base block body 46. Further, a groove portion 105 having a predetermined depth through which the bent portion on one end side of the connecting shaft 96 is inserted is formed on a side surface portion where the boss 103 of the gear side arm 94 is erected.
 また、ギヤ側アーム94は、回転レバー93側の先端部上面に、該回転レバー93の他端側が当接される段差部106が形成されている。そして、このギヤ側アーム94は、ボス103が凹部91の底面部に形成される貫通孔102に挿入されて、回転レバー93側に回動可能に支持される。更に、ギヤ側アーム94は、段差部106に対向する他方の先端部下面を付勢バネ95によって回転レバー93側へ(図6中、上側方向である。)付勢されて、該段差部106が回転レバー93の他端側に当接されている。 Further, the gear side arm 94 has a stepped portion 106 formed on the upper surface of the distal end portion on the rotating lever 93 side so that the other end side of the rotating lever 93 abuts. The gear side arm 94 is rotatably supported on the rotating lever 93 side by inserting the boss 103 into the through hole 102 formed in the bottom surface of the recess 91. Further, the gear side arm 94 is urged by the urging spring 95 on the lower surface of the other tip end portion facing the step portion 106 (in the upward direction in FIG. 6), and the step portion 106. Is in contact with the other end of the rotary lever 93.
 従って、回転レバー93が図6中、反時計方向に回動した場合には、この回転レバー93の他端側がギヤ側アーム94の先端部から離れ、ギヤ側アーム94が付勢バネ95の付勢力によって、外側方向(図6中、反時計方向である。)へ回動可能に構成されている。 Therefore, when the rotating lever 93 rotates counterclockwise in FIG. 6, the other end of the rotating lever 93 is separated from the tip of the gear side arm 94, and the gear side arm 94 is attached to the biasing spring 95. It is configured to be rotatable outward (in the counterclockwise direction in FIG. 6) by the force.
 また、連結シャフト96は、スチール材等の線材で形成されて、両端が相互に約90度ずれて対向するように略直角に折り曲げられている。また。この連結シャフト96の直線部の長さは、ハウジングユニット5の各側板部13、14(図7参照)の幅より若干長く形成されている。 The connecting shaft 96 is formed of a wire material such as a steel material, and is bent at a substantially right angle so that both ends face each other with a shift of about 90 degrees. Also. The length of the straight portion of the connecting shaft 96 is slightly longer than the width of the side plate portions 13 and 14 of the housing unit 5 (see FIG. 7).
 また、図5に示すように、ベースブロック体46の凹部91の底面部に形成される貫通孔102には、連結シャフト96の一端側折曲部が挿通される溝107が外周部から延び出ている。また、ベースプレート45のギヤ側アーム94に対向する部分には、連結シャフト96の一端側折曲部が挿通される貫通孔108が形成されている。 Further, as shown in FIG. 5, a groove 107 through which the bent portion on one end side of the connection shaft 96 is inserted extends from the outer peripheral portion in the through hole 102 formed in the bottom surface portion of the concave portion 91 of the base block body 46. ing. Further, a through hole 108 through which the one end side bent portion of the connection shaft 96 is inserted is formed in a portion of the base plate 45 facing the gear side arm 94.
 従って、連結シャフト96の一端側折曲部は、ベースプレート45の貫通孔108と、ベースブロック体46の貫通孔102及び溝107を通って、ベースブロック体46の凹部91に配設されたギヤ側アーム94の溝部105内に嵌入される。 Therefore, the one end side bent portion of the connecting shaft 96 passes through the through hole 108 of the base plate 45, the through hole 102 and the groove 107 of the base block body 46, and the gear side disposed in the recess 91 of the base block body 46. The arm 94 is inserted into the groove 105.
 また、メカ側アーム97は、ポリアセタール等の合成樹脂やアルミ材等で形成されて、略平板状の幅の狭い略扇形に形成されると共に、その中心角側の端縁部の外側面には、ハウジングユニット5の側壁部12(図7参照)に形成される貫通孔111(図7参照)に回転可能に嵌入されるボス112が立設されている。また、メカ側アーム97の外周側端縁部の側壁部12側の外側面には、切欠部113(図7、図8参照)内に挿通されるボス97Aが立設されている。また、メカ側アーム97の内側面には、中心線に沿って所定深さの溝部115が形成されている。 The mechanical arm 97 is formed of a synthetic resin such as polyacetal, aluminum, or the like, and is formed into a substantially flat plate-like narrow fan shape, and on the outer surface of the edge on the central angle side. A boss 112 that is rotatably fitted in a through hole 111 (see FIG. 7) formed in the side wall portion 12 (see FIG. 7) of the housing unit 5 is provided upright. Further, a boss 97 </ b> A that is inserted into the notch 113 (see FIGS. 7 and 8) is provided upright on the outer surface on the side wall 12 side of the outer peripheral edge of the mechanical arm 97. A groove 115 having a predetermined depth is formed on the inner side surface of the mechanical arm 97 along the center line.
 従って、連結シャフト96の他端側折曲部をメカ側アーム97の溝部115内に嵌入することによって、メカ側アーム97は、このメカ側アーム97の中心角側の端縁部の外側面に立設されるボス112の軸心と連結シャフト96の軸心とがほぼ一直線状になるように、連結シャフト96の他端側に取り付けられる。 Therefore, by inserting the other end side bent portion of the connecting shaft 96 into the groove 115 of the mechanical side arm 97, the mechanical side arm 97 is placed on the outer surface of the end edge portion on the central angle side of the mechanical side arm 97. It is attached to the other end side of the connecting shaft 96 so that the axial center of the boss 112 erected and the axial center of the connecting shaft 96 are substantially straight.
 そして、後述のようにプリテンショナユニット7がハウジングユニット5に取り付けられた場合には、メカ側アーム97のボス112は、側壁部12に形成される貫通孔105に回転可能に嵌入される(図8参照)。また、メカ側アーム97のボス97Aは、側壁部12に形成された切欠部138に挿入されて、側壁部12の内側に回動可能に取り付けられる。 When the pretensioner unit 7 is attached to the housing unit 5 as will be described later, the boss 112 of the mechanical arm 97 is rotatably inserted into the through hole 105 formed in the side wall portion 12 (see FIG. 8). Further, the boss 97 </ b> A of the mechanical arm 97 is inserted into a notch 138 formed in the side wall portion 12 and is rotatably attached to the inside of the side wall portion 12.
 [プリテンショナ機構]
 続いて、プリテンショナ機構17を構成するパイプシリンダ42の構成及び取り付けについて図3乃至図6に基づいて説明する。
 図3乃至図6に示すように、パイプシリンダ42は、スチールパイプ材等で略L字状に形成されている。そして、その一端側(図4中、下側折曲部分)は、略円筒状の収納部42Aが形成されて、ガス発生部材41を収納するように構成されている。このガス発生部材41は、火薬を含んでおり、図示省略の制御部からの着火信号により該火薬を着火させてガス発生剤の燃焼でガスを発生させるように構成されている。
[Pretensioner mechanism]
Next, the configuration and attachment of the pipe cylinder 42 constituting the pretensioner mechanism 17 will be described with reference to FIGS.
As shown in FIGS. 3 to 6, the pipe cylinder 42 is formed in a substantially L shape with a steel pipe material or the like. And the one end side (lower bending part in FIG. 4) is comprised so that the substantially cylindrical accommodating part 42A may be formed and the gas generating member 41 may be accommodated. The gas generating member 41 includes explosives, and is configured to ignite the explosives according to an ignition signal from a control unit (not shown) and generate gas by combustion of the gas generating agent.
 また、パイプシリンダ42の他端側(図4中、上側折曲部分)は、断面略長方形のピストン収納部42Bが形成されて、ピニオンギヤ体33に対向する部分に切欠部117が形成され、ベースプレート45上に配設した場合に、該切欠部117内にピニオンギヤ体33のピニオンギヤ部55が填り込むように構成されている。また、ピストン収納部42Bの上端部は、ベースプレート45とカバープレート53に当接される両側面部の幅方向略中央部から斜め外側方向へ傾斜するように切り欠かれた開口部118が設けられている。 Further, the other end side of the pipe cylinder 42 (the upper bent portion in FIG. 4) is formed with a piston housing portion 42B having a substantially rectangular cross section, and a notch portion 117 is formed at a portion facing the pinion gear body 33, and the base plate 45, the pinion gear portion 55 of the pinion gear body 33 is configured to fit into the notch 117. Further, the upper end portion of the piston accommodating portion 42B is provided with an opening 118 that is cut out so as to be inclined obliquely outward from a substantially central portion in the width direction of both side surfaces abutting against the base plate 45 and the cover plate 53. Yes.
 また、ピストン収納部42Bの両側面部には、上端部に形成された開口部118の外側方向へ傾斜する傾斜部118Aの下側に、プリテンショナユニット7をハウジングユニット5に取り付けると共に、ピストン44の抜け止めとして機能するストッパーピン16を挿通可能な相対向する一対の貫通孔121が形成されている。 In addition, the pretensioner unit 7 is attached to the housing unit 5 on both sides of the piston housing portion 42B below the inclined portion 118A inclined toward the outside of the opening 118 formed at the upper end portion, and the piston 44 A pair of opposed through-holes 121 into which the stopper pin 16 functioning as a retaining member can be inserted is formed.
 また、シールプレート43は、ゴム材等でピストン収納部42Bの上端側から挿入可能な略長方形の平板状に形成され、ピストン44のガスを受圧するガス受圧側面と略同一形状である。また、シールプレート43は、ピストン44のガス受圧側面に形成された所定深さ(例えば、約4mmの深さである。)の断面円形の取付凹部122に嵌入される略円柱状の取付凸部123が立設されている。この取付凸部123の中央部には、軸心に沿ってシールプレート43のガスを受圧する受圧側面から連通するガス抜き孔124が形成されている。 The seal plate 43 is formed of a rubber material or the like into a substantially rectangular flat plate that can be inserted from the upper end side of the piston housing portion 42B, and has substantially the same shape as the gas pressure receiving side surface that receives the gas of the piston 44. Further, the seal plate 43 is a substantially cylindrical mounting convex portion that is fitted into a mounting concave portion 122 having a circular cross section having a predetermined depth (for example, a depth of about 4 mm) formed on the gas pressure receiving side surface of the piston 44. 123 is erected. A gas vent hole 124 communicating with the pressure receiving side surface for receiving the gas of the seal plate 43 is formed along the axial center at the center of the mounting convex portion 123.
 また、ピストン44は、スチール材等で形成されて、ピストン収納部42Bの上端側から挿入可能な断面略長方形で、全体として長尺状の形状を有している。また、ピストン44のピニオンギヤ体33側の側面には、ピニオンギヤ体33のピニオンギヤ部55に噛合するラック44Aが形成されている。また、ラック44Aの先端部(図6中、上端部)の背面は、ストッパーピン16に当接可能な段差部126が形成されている。 Further, the piston 44 is formed of a steel material or the like, has a substantially rectangular cross section that can be inserted from the upper end side of the piston housing portion 42B, and has a long shape as a whole. A rack 44 </ b> A that meshes with the pinion gear portion 55 of the pinion gear body 33 is formed on the side surface of the piston 44 on the pinion gear body 33 side. Further, a stepped portion 126 capable of contacting the stopper pin 16 is formed on the back surface of the front end portion (the upper end portion in FIG. 6) of the rack 44A.
 また、ピストン44のラック44Aに対して両側面部には、所定深さ(例えば、深さ約2mmである。)の一対の溝部127が、段差部126の上端縁からラック44Aの下端の刃先に対向する位置まで、ピストン44の長手方向に沿って互いに対向するように形成されている。また、一対の溝部127の下端部には、ピストン44の長手方向に沿って長い断面矩形状の貫通孔128が形成され、両側面部が連通されている。また、ピストン44の受圧側面に形成された取付凹部122と貫通孔128とは、ピストン44の長手方向に沿って形成された細径の連通孔131によって連通されている。 In addition, a pair of groove portions 127 having a predetermined depth (for example, a depth of about 2 mm) are formed on both side surfaces of the rack 44A of the piston 44 from the upper edge of the step portion 126 to the cutting edge at the lower end of the rack 44A. They are formed so as to face each other along the longitudinal direction of the piston 44 up to the facing position. In addition, a through hole 128 having a rectangular cross section that is long along the longitudinal direction of the piston 44 is formed at the lower ends of the pair of grooves 127, and both side surface portions are communicated with each other. Further, the mounting recess 122 and the through hole 128 formed on the pressure receiving side surface of the piston 44 are communicated with each other by a small communication hole 131 formed along the longitudinal direction of the piston 44.
 そして、シールプレート43の取付凸部123をピストン44の受圧側面に形成された取付凹部122に嵌入後、シールプレート43を奥側にして、ピストン収納部42Bの上端側から奥に圧入する。また、シールプレート43のガス抜き孔124は、ピストン44の連通孔131を介して貫通孔128に連通している。 Then, after fitting the mounting convex portion 123 of the seal plate 43 into the mounting concave portion 122 formed on the pressure receiving side surface of the piston 44, the seal plate 43 is set to the back side and press-fitted from the upper end side of the piston housing portion 42B to the back side. Further, the gas vent hole 124 of the seal plate 43 communicates with the through hole 128 via the communication hole 131 of the piston 44.
 従って、この状態で、ガス発生部材41で発生したガスの圧力によって、シールプレート43が押圧されて、ピストン44がピストン収納部42Bの上端側開口部118へ移動する。また、その後、ウエビング3が再度引き出される場合には、ピニオンギヤ体33の逆回転によってピストン44が下方に下がる際に、シールプレート43のガス抜き孔124、ピストン44の連通孔131及び貫通孔128を介してパイプシリンダ42内のガスが抜け、スムーズにピストン44が下がる。 Therefore, in this state, the seal plate 43 is pressed by the pressure of the gas generated by the gas generating member 41, and the piston 44 moves to the upper end side opening 118 of the piston housing part 42B. After that, when the webbing 3 is pulled out again, when the piston 44 is lowered downward by the reverse rotation of the pinion gear body 33, the gas vent hole 124 of the seal plate 43, the communication hole 131 and the through hole 128 of the piston 44 are formed. Accordingly, the gas in the pipe cylinder 42 is released, and the piston 44 is smoothly lowered.
 また、図6に示すように、ガス発生部材41が作動するまでの通常状態では、ピストン44はピストン収納部42Bの奥側に退避して、ラック44Aの先端がピニオンギヤ部55に非噛合状態となるように位置している。そして、このように構成されたピストン収納部42Bの切欠部117の内側に、ベースブロック体46のギヤ収納部81の両側端縁部から外側方向に突出する各突出部109を嵌入させつつ、ベースプレート45上にパイプシリンダ42を配置する。 Further, as shown in FIG. 6, in a normal state until the gas generating member 41 is operated, the piston 44 is retracted to the back side of the piston housing part 42B, and the tip of the rack 44A is not engaged with the pinion gear part 55. It is located to become. The base plate is inserted into the notches 117 of the piston housing part 42B configured in this way while the protruding parts 109 projecting outward from both side edges of the gear housing part 81 of the base block body 46 are fitted. The pipe cylinder 42 is disposed on the 45.
 またこの時、ベースブロック体46のギヤ収納部81に立設された断面略U字状のラック止めピン133が、ラック44Aの上端のギヤ溝に挿入され、ピストン44の上下方向の移動が規制される。また、ピストン44の先端部は、ピニオンギヤ体33のピニオンギヤ部55の近傍に位置して、非噛合状態になっている。 At this time, a rack retaining pin 133 having a substantially U-shaped cross-section standing on the gear housing portion 81 of the base block body 46 is inserted into the gear groove at the upper end of the rack 44A, and the vertical movement of the piston 44 is restricted. Is done. Further, the tip end portion of the piston 44 is located in the vicinity of the pinion gear portion 55 of the pinion gear body 33 and is in a non-meshing state.
 これにより、パイプシリンダ42のピストン収納部42Bは、ベースブロック体46の側面部に立設される断面略三角形の各リブ134と、ベースプレート45の側端縁部のピニオンギヤ体33に対向する部分から略直角に延出された背当て部135によって、その両側面部が支持される。 As a result, the piston accommodating portion 42B of the pipe cylinder 42 is separated from each of the ribs 134 having a substantially triangular cross-section standing on the side surface of the base block body 46 and the portion of the side edge of the base plate 45 facing the pinion gear body 33. Both side portions are supported by a back support portion 135 extending substantially at a right angle.
 この背当て部135は、図4及び図6に示すように、ピストン収納部42Bとほぼ同じ高さになるように延出されており、延出方向端縁部の略中央部より上端側には、所定幅(例えば、幅約8mmである。)の切欠部136が所定深さ(例えば、約4mmである。)形成されている。また、背当て部135の下端縁部は、略直角外側方向に所定長さ(例えば、約4mmである。)延出され、この背当て部135の下側角部には、カバープレート53の厚さにほぼ高さの段差部137が形成されている。 As shown in FIGS. 4 and 6, the back support part 135 is extended so as to be substantially the same height as the piston housing part 42 </ b> B, and is located on the upper end side from the substantially central part of the edge part in the extending direction. A notch 136 having a predetermined width (for example, a width of about 8 mm) is formed with a predetermined depth (for example, about 4 mm). Further, a lower end edge portion of the back support portion 135 is extended by a predetermined length (for example, about 4 mm) in a substantially perpendicular outer direction, and a lower corner portion of the back support portion 135 is provided with a cover plate 53. A stepped portion 137 having a height substantially equal to the thickness is formed.
 また、カバープレート53のベースプレート45の背当て部135に対向する側端部には、該背当て部135の先端部が挿通可能な各貫通孔141、142が形成されている。また、各貫通孔141、142の背当て部135の外側面に対向する側縁部は、内側方向(図4中、左側方向)へ所定高さ(例えば、約3mmの高さである。)窪んでいる。これにより、背当て部135の延出方向の各端縁部が各貫通孔141、142に挿入された場合には、各貫通孔141、142の内側面が、背当て部135の外側面に確実に当接するように構成されている。 Further, through holes 141 and 142 into which the tip of the back support part 135 can be inserted are formed at the side end part of the cover plate 53 facing the back support part 135 of the base plate 45. Moreover, the side edge part which opposes the outer surface of the backrest part 135 of each through-hole 141,142 is predetermined height (for example, about 3 mm height) to an inner side direction (left direction in FIG. 4). It is depressed. Thereby, when each edge part of the extending direction of the back support part 135 is inserted in each through-hole 141,142, the inner surface of each through-hole 141,142 becomes an outer surface of the back support part 135. It is comprised so that it may contact | abut reliably.
 そして、ベースプレート45上にベースブロック体46、強制ロック機構51やパイプシリンダ42等が配置された状態で、このベースブロック体46のカバープレート53側の側面部に突出する各位置決めボス143を、カバープレート53の各位置決孔144に嵌入して、ベースブロック体46、強制ロック機構51やパイプシリンダ42等の上側にカバープレート53を配置する。また同時に、ピニオンギヤ体33の円筒状の支持部56を、カバープレート53の略中央部に形成された支持孔145に嵌入する。 Then, in a state where the base block body 46, the forced lock mechanism 51, the pipe cylinder 42, and the like are arranged on the base plate 45, the positioning bosses 143 that protrude from the side surface portion on the cover plate 53 side of the base block body 46 are covered with the cover. The cover plate 53 is disposed on the upper side of the base block body 46, the forced lock mechanism 51, the pipe cylinder 42, and the like by being fitted into the positioning holes 144 of the plate 53. At the same time, the cylindrical support portion 56 of the pinion gear body 33 is fitted into the support hole 145 formed in the substantially central portion of the cover plate 53.
 また、ベースプレート45の側端縁部から略直角に延出された背当て部135を、カバープレート53の背当て部135に対向する側端縁部に形成された各貫通孔141、142に挿通する。そして、このベースブロック体46の外側側面部からカバープレート53側に延出されて、外側方向に弾性変形可能に形成された弾性係止片46Cと、このベースブロック体46の上側側面部からカバープレート53側に延出されて、外側方向に弾性変形可能に形成された弾性係止片46Dとをそれぞれカバープレート53の側端部に係止する。 Further, the back support part 135 extending substantially at right angles from the side edge part of the base plate 45 is inserted into the through holes 141 and 142 formed in the side edge part facing the back support part 135 of the cover plate 53. To do. An elastic locking piece 46C that extends from the outer side surface of the base block body 46 toward the cover plate 53 and is elastically deformable in the outer direction, and a cover from the upper side surface of the base block body 46. Elastic locking pieces 46 </ b> D that extend toward the plate 53 side and are formed so as to be elastically deformable in the outward direction are respectively locked to the side end portions of the cover plate 53.
 そして、カバープレート53のベースブロック体46の貫通孔89に対向する位置に形成された貫通孔157にネジ88を挿通して、ベースプレート45のバーリング加工によって形成されたネジ孔158に締結する。 Then, a screw 88 is inserted into a through hole 157 formed at a position facing the through hole 89 of the base block body 46 of the cover plate 53 and fastened to a screw hole 158 formed by burring processing of the base plate 45.
 これにより、カバープレート53がベースブロック体46に配設固定され、パイプシリンダ42がカバープレート53とベースプレート45との間に取り付けられる。また、ピニオンギヤ体33の端部に形成された支持部56が、カバープレート53の支持孔145によって回転可能に支持される。従って、ピニオンギヤ体33の両端部に形成されたボス部58の基端部と支持部56とが、それぞれベースプレート45の貫通孔76とカバープレート53の支持孔145とによって回転可能に支持される。 Thus, the cover plate 53 is disposed and fixed to the base block body 46, and the pipe cylinder 42 is attached between the cover plate 53 and the base plate 45. Further, the support portion 56 formed at the end of the pinion gear body 33 is rotatably supported by the support hole 145 of the cover plate 53. Accordingly, the base end portion of the boss portion 58 formed at both ends of the pinion gear body 33 and the support portion 56 are rotatably supported by the through hole 76 of the base plate 45 and the support hole 145 of the cover plate 53, respectively.
 また、パイプシリンダ42の各貫通孔121と、カバープレート53の各貫通孔121に対向する位置に形成された貫通孔147と、ベースプレート45の各貫通孔121に対向する位置に形成された貫通孔148とが同軸上に配置される。これにより、図2に示すように、スチール材等で形成されたストッパーピン16をハウジング11のピン止め部14B側からベースプレート45の貫通孔148、パイプシリンダ42の各貫通孔121及びカバープレート53の貫通孔147へ挿通して、プッシュナット18によって固定することができる。 Further, each through hole 121 of the pipe cylinder 42, a through hole 147 formed at a position facing each through hole 121 of the cover plate 53, and a through hole formed at a position facing each through hole 121 of the base plate 45. 148 is arranged on the same axis. As a result, as shown in FIG. 2, the stopper pin 16 formed of steel or the like is inserted into the through hole 148 of the base plate 45, the through holes 121 of the pipe cylinder 42, and the cover plate 53 from the pinning portion 14 </ b> B side of the housing 11. It can be inserted into the through hole 147 and fixed by the push nut 18.
 従って、パイプシリンダ42は、カバープレート53とベースプレート45とによって挟持されると共に、ベースブロック体46と背当て部135とによって両側面部が挟持される。また、ガス発生部材41で発生したガスの圧力によって、シールプレート43が押圧されて、ピストン44がピストン収納部42Bの上端側開口部(図6中、上端部)へ移動した場合には、ピストン44の段差部126が、各貫通孔121に挿通されたストッパーピン16に当接して、停止させることができる。 Therefore, the pipe cylinder 42 is sandwiched between the cover plate 53 and the base plate 45, and both side surfaces are sandwiched between the base block body 46 and the backrest 135. Further, when the seal plate 43 is pressed by the pressure of the gas generated by the gas generating member 41 and the piston 44 moves to the upper end side opening (the upper end in FIG. 6) of the piston housing portion 42B, the piston 44 step portions 126 can be brought into contact with the stopper pins 16 inserted through the respective through holes 121 and stopped.
 また、ピストン収納部42Bの上端側の開口部118は、カバープレート53の上端縁部から該ピストン収納部42Bの約半分の幅で略直角にベースプレート45側へ延出された第1延出部151によって、該開口部118のピストン収納部42Bの軸方向に対して垂直な平面部118Bが覆われる。また、この第1延出部151の開口部118の傾斜部118A側の側端縁部から斜め外側方向へ傾斜するように延出された第2延出部152によって、該傾斜部118Aが覆われる。また、第1延出部151のベースブロック体46側の端縁部は、直角下側方向へ所定長さ(例えば、長さ約4mmである。)延出されている。 Further, the opening 118 on the upper end side of the piston accommodating portion 42B is a first extending portion that extends from the upper end edge of the cover plate 53 to the base plate 45 side at a substantially half width with respect to the piston accommodating portion 42B. The flat portion 118B perpendicular to the axial direction of the piston accommodating portion 42B of the opening 118 is covered by 151. In addition, the inclined portion 118A is covered by the second extending portion 152 that extends obliquely outward from the side end edge of the opening 118 of the first extending portion 151 on the inclined portion 118A side. Is called. Further, an end edge portion of the first extension portion 151 on the base block body 46 side is extended by a predetermined length (for example, a length of about 4 mm) in the lower right direction.
 また、ベースプレート45の上端縁部から、カバープレート53の第2延出部152の延出方向外側端縁部に対向するように、所定幅(例えば、幅約3mmである。)で折り曲げ延出された押さえ部155が設けられている。この押さえ部155は、ベースプレート45の上端縁部の貫通孔148に対向する位置から、第2延出部152に対して平行になるように所定幅(例えば、幅約3mmである。)で、所定長さ(例えば、約8mmである。)延出されると共に、略中央部から該第2延出部152の延出方向外側端縁部に対向するように直角に折り曲げられている。 Further, the base plate 45 is bent and extended with a predetermined width (for example, a width of about 3 mm) so as to face the outer end edge in the extending direction of the second extending portion 152 of the cover plate 53. The pressed portion 155 is provided. The pressing portion 155 has a predetermined width (for example, a width of about 3 mm) so as to be parallel to the second extending portion 152 from a position facing the through hole 148 at the upper end edge of the base plate 45. It extends a predetermined length (for example, about 8 mm) and is bent at a right angle so as to face the outer end edge in the extending direction of the second extending portion 152 from a substantially central portion.
 これにより、ピストン収納部42Bの上端側の開口部118は、第1延出部151及び第2延出部152によって覆われる。また、カバープレート53の第2延出部152の延出方向外側端縁部は、ベースプレート45の押さえ部155の側面部に対向する。 Thereby, the opening 118 on the upper end side of the piston housing part 42B is covered with the first extending part 151 and the second extending part 152. Further, the outer end edge portion in the extending direction of the second extending portion 152 of the cover plate 53 faces the side surface portion of the pressing portion 155 of the base plate 45.
 [ハウジングユニットの概略構成]
 次に、ハウジングユニット5の概略構成について図7及び図8に基づいて説明する。
 図7はハウジングユニット5の分解斜視図である。図8はシートベルト用リトラクタ1のロックユニット9を取り除いた状態の側面図である。
 図7に示すように、ハウジングユニット5は、ハウジング11と、ブラケット161と、プロテクタ163と、パウル37と、パウルリベット165とから構成されている。
[Schematic configuration of housing unit]
Next, a schematic configuration of the housing unit 5 will be described with reference to FIGS.
FIG. 7 is an exploded perspective view of the housing unit 5. FIG. 8 is a side view of the seatbelt retractor 1 with the lock unit 9 removed.
As shown in FIG. 7, the housing unit 5 includes a housing 11, a bracket 161, a protector 163, a pawl 37, and a pawl rivet 165.
 また、ハウジング11は、スチール材等で平面視略コの字状に形成されて、奥側の側壁部12には巻取ドラムユニット6のラチェットギヤ26の先端部が挿入される貫通孔166が形成されている。また、この貫通孔166の斜め下側のパウル37に対向する部分には、切欠部113が形成され、パウル37がスムーズに回動するようになっている。また、この切欠部113の横側にパウル37を回転可能に取り付けるための貫通孔168が形成されている。 The housing 11 is formed of a steel material or the like in a substantially U shape in plan view, and a through hole 166 into which the tip of the ratchet gear 26 of the winding drum unit 6 is inserted is formed in the side wall portion 12 on the back side. Has been. Further, a notch 113 is formed in a portion of the through hole 166 facing the obliquely lower pawl 37 so that the pawl 37 rotates smoothly. A through hole 168 for rotatably mounting the pawl 37 is formed on the lateral side of the notch 113.
 また、切欠部113のパウル37が当接する部分には、貫通孔168の同心円上に半円形状の案内部169が形成されている。一方、パウル37の案内部169に当接して摺動する部分は、側壁部12の厚さ寸法にほぼ等しい高さで、この案内部169の側縁と同じ曲率半径の円弧状に窪んだ段差部37Bが側壁部12の厚さ寸法より若干高く形成されている。また、図8に示すように、パウル37の外側の側面の先端部には、ロックユニット9を構成するクラッチ(不図示)のガイド溝(不図示)に挿入される案内ピン37Aが立設されている。 Further, a semicircular guide portion 169 is formed on the concentric circle of the through hole 168 at a portion where the pawl 37 of the cutout portion 113 abuts. On the other hand, the portion of the pawl 37 that slides in contact with the guide portion 169 has a height substantially equal to the thickness dimension of the side wall portion 12 and a step that is recessed in an arc shape having the same curvature radius as the side edge of the guide portion 169. The part 37B is formed slightly higher than the thickness dimension of the side wall part 12. Further, as shown in FIG. 8, a guide pin 37 </ b> A that is inserted into a guide groove (not shown) of a clutch (not shown) that constitutes the lock unit 9 is erected at the tip of the outer side surface of the pawl 37. ing.
 また、図7に示すように、側壁部12の両側端縁部から相対向する各側板部13、14が延出されている。また、各側板部13、14の中央部には、それぞれ開口部が形成され、軽量化及びウエビング3の取り付け作業の効率化等が図られている。また、各側板部13、14の上下端縁部には、所定幅で略直角内側方向に延出された各ネジ止め部13A、13B、14Aとピン止め部14Bが形成されている。 Further, as shown in FIG. 7, the side plate portions 13 and 14 facing each other are extended from both side edge portions of the side wall portion 12. In addition, an opening is formed in the central portion of each of the side plate portions 13 and 14 to reduce the weight and improve the efficiency of attaching the webbing 3. Further, upper and lower edge portions of the side plate portions 13 and 14 are formed with screwing portions 13A, 13B, and 14A and pinning portions 14B that extend in a substantially right-angle inner direction with a predetermined width.
 また、各ネジ止め部13A、13B、14Aには、各ネジ15がネジ止めされる各ネジ孔171がバーリングによって形成され、ネジ止め部14Bには、ストッパーピン16が挿通される貫通孔172が形成されている。従って、図2及び図4、図5に示すように、各ネジ15は、カバープレート53の各貫通孔185からベースプレート45の各貫通孔186に挿通されて、各ネジ孔171にネジ止めされる。 Moreover, each screwing part 13A, 13B, 14A is formed with each screw hole 171 by which each screw 15 is screwed by burring, and the screwing part 14B has a through-hole 172 through which the stopper pin 16 is inserted. Is formed. Accordingly, as shown in FIGS. 2, 4, and 5, each screw 15 is inserted from each through hole 185 in the cover plate 53 to each through hole 186 in the base plate 45 and screwed into each screw hole 171. .
 また、側板部13の上端縁部に各リベット162によって取り付けられるブラケット161は、スチール材等で形成されて、側板部13の上端縁部から略直角内側方向に延出された延出部にウエビング3が引き出される横長の貫通孔173が形成され、ナイロン等の合成樹脂で形成された横長枠状のプロテクタ163が嵌め込まれている。また、側板部13の下端部には、車両の締結片175(図8参照)に取り付ける際に、ボルト176(図8参照)が挿通されるボルト挿通孔178が形成されている。 In addition, the bracket 161 attached to each upper end edge of the side plate portion 13 by a rivet 162 is formed of a steel material or the like, and webbing is performed on an extended portion that extends substantially inward from the upper end edge of the side plate portion 13. A horizontally long through-hole 173 from which 3 is pulled out is formed, and a horizontally long frame-shaped protector 163 formed of a synthetic resin such as nylon is fitted therein. Further, a bolt insertion hole 178 into which a bolt 176 (see FIG. 8) is inserted when being attached to a fastening piece 175 (see FIG. 8) of the vehicle is formed at the lower end portion of the side plate portion 13.
 また、図7及び図8に示すように、スチール材等で形成されたパウル37は、段差部37Bが案内部169に当接されて、側壁部12の外側から貫通孔168に回転可能に挿通されるパウルリベット165によって、回動可能に固定されている。これにより、パウル37の側面とラチェットギヤ26の側面とが、側壁部12の外側面とほぼ同一面になるように位置される。 7 and 8, the pawl 37 formed of steel or the like is rotatably inserted into the through hole 168 from the outside of the side wall portion 12 with the stepped portion 37B being in contact with the guide portion 169. The pawl rivet 165 is rotatably fixed. Accordingly, the side surface of the pawl 37 and the side surface of the ratchet gear 26 are positioned so as to be substantially flush with the outer surface of the side wall portion 12.
 また、図8に示すように、プリテンショナユニット7を各ネジ15とストッパーピン16及びプッシュナット18によってハウジングユニット5に取り付けた場合には、連結シャフト96の他端側折曲部に取り付けられたメカ側アーム97のボス112が、側壁部12に形成された貫通孔111に回動可能に嵌入されて、切欠部113内に位置するパウル37の下側の側面部の近傍に位置している。また、メカ側アーム97の外側の側面に立設されたボス97Aが切欠部113に挿入されている。また、パウル37は、通常時には、メカ側アーム97に近接した状態で、且つ、ラチェットギヤ26に係合しないようになっている。 In addition, as shown in FIG. 8, when the pretensioner unit 7 is attached to the housing unit 5 by the screws 15, the stopper pins 16, and the push nuts 18, the pretensioner unit 7 is attached to the bent portion on the other end side of the connecting shaft 96. The boss 112 of the mechanical arm 97 is rotatably fitted in a through hole 111 formed in the side wall portion 12 and is positioned in the vicinity of the lower side surface portion of the pawl 37 located in the notch portion 113. . Further, a boss 97 </ b> A standing on the outer side surface of the mechanical arm 97 is inserted into the notch 113. Further, the pawl 37 is normally close to the mechanical arm 97 and is not engaged with the ratchet gear 26.
 また、側壁部12に取り付けられたパウル37及びメカ側アーム97の下方には、該側壁部12の下端面から所定高さ上側の位置(例えば、約10mm上側の位置である。)から所定幅(例えば、幅約10mmである。)で、このパウル37及びメカ側アーム97に対向するように内側方向(図7中、手前側方向である。)へ略直角に折り曲げられたアーム保護用折曲部180が設けられている。つまり、側壁部12に取り付けられたパウル37及びメカ側アーム97の下方には、所定幅でメカ側アーム97に対向するように略直角に所定長さ(例えば、長さ約10mmである。)内側方向へ延出されたアーム保護用折曲部180が設けられている。 Further, below the pawl 37 and the mechanical arm 97 attached to the side wall portion 12, a predetermined width from a position that is a predetermined height above the lower end surface of the side wall portion 12 (for example, a position that is about 10 mm above). (For example, the width is about 10 mm), and the arm protection fold is bent at a substantially right angle inward (toward the front in FIG. 7) so as to face the pawl 37 and the mechanical arm 97. A curved portion 180 is provided. That is, below the pawl 37 and the mechanical side arm 97 attached to the side wall portion 12, a predetermined length (for example, a length of about 10 mm) is set at a substantially right angle so as to face the mechanical side arm 97 with a predetermined width. An arm protection bent portion 180 extending inward is provided.
 また、側壁部13の連結シャフト96に対向する部分には、該連結シャフト96のほぼ全長に渡って対向する横長の開口部181が形成され、この開口部181の下端縁部から内側方向へ略直角に折り曲げられたシャフト保護用折曲部182が設けられている。また、シャフト保護用折曲部182のガイドドラム21側の端縁部は、側壁部13に対向する連結シャフト96よりも内側になるように延出されている。また、このシャフト保護用折曲部182の下方には、ボルト挿通孔178が形成され、このボルト挿通孔178にボルト176が挿通されてナット177によって車両の締結片175に固着される。 In addition, a laterally long opening 181 is formed in a portion of the side wall portion 13 that faces the connecting shaft 96, and faces the entire length of the connecting shaft 96, and is substantially inward from the lower edge of the opening 181. A shaft protecting bent portion 182 that is bent at a right angle is provided. Further, the end edge portion on the guide drum 21 side of the shaft protecting bent portion 182 extends so as to be inside the connecting shaft 96 facing the side wall portion 13. A bolt insertion hole 178 is formed below the shaft protecting bent portion 182, and a bolt 176 is inserted into the bolt insertion hole 178 and fixed to a vehicle fastening piece 175 by a nut 177.
 [強制ロック機構及びパウルの動作説明]
 次に、車両衝突時等において、プリテンショナ機構17のガス発生部材41の作動によって起動する強制ロック機構51及びパウル37の動作について図9及び図10に基づいて説明する。図9はプリテンショナ機構17のガス発生部材41の作動によってピストン44が移動して、回転レバー93の下端部がギヤ側アーム94の先端部から外れた状態を示す説明図である。図10は図9に対応するパウル37の動作を示す説明図である。
[Description of forced lock mechanism and pawl operation]
Next, operations of the forced lock mechanism 51 and the pawl 37 that are activated by the operation of the gas generating member 41 of the pretensioner mechanism 17 in the event of a vehicle collision will be described with reference to FIGS. 9 and 10. FIG. 9 is an explanatory view showing a state where the piston 44 is moved by the operation of the gas generating member 41 of the pretensioner mechanism 17 and the lower end portion of the rotation lever 93 is disengaged from the tip end portion of the gear side arm 94. FIG. 10 is an explanatory view showing the operation of the pawl 37 corresponding to FIG.
 図9に示すように、車両衝突時等において、プリテンショナ機構17のガス発生部材41が作動した場合には、パイプシリンダ42のピストン収納部42B内のピストン44が図6に示す通常状態から、ラック止めピン133を剪断して上方に(矢印X1方向である。)に移動し、ピニオンギヤ体33を正面視反時計方向(矢印X2方向である。)へ回転させる。また、回転レバー93の上端部は、ブロック付勢バネ92Aによって押されたプッシュブロック92によって更に押されるため、この回転レバー93の下端部が、ギヤ側アーム94の先端部から外れる。 As shown in FIG. 9, when the gas generation member 41 of the pretensioner mechanism 17 is actuated at the time of a vehicle collision or the like, the piston 44 in the piston housing part 42 </ b> B of the pipe cylinder 42 is moved from the normal state shown in FIG. 6. The rack stop pin 133 is sheared and moved upward (in the direction of arrow X1), and the pinion gear body 33 is rotated counterclockwise in the front view (in the direction of arrow X2). Further, since the upper end portion of the rotation lever 93 is further pushed by the push block 92 pushed by the block urging spring 92 </ b> A, the lower end portion of the rotation lever 93 is disengaged from the tip end portion of the gear side arm 94.
 そのため、ギヤ側アーム94は、付勢バネ95によって外側方向に押圧されて、正面視反時計方向(矢印X3方向である。)へ回転する。尚、プッシュブロック92は、ブロック付勢バネ92Aによって外側方向へ押圧され、ピニオンギヤ体33のピニオンギヤ部55と離間した状態で維持されると共に、回転レバー93の上端部を凹部91の内壁面に当接させた状態に維持する。 Therefore, the gear side arm 94 is pressed outward by the biasing spring 95 and rotates in the counterclockwise direction when viewed from the front (in the direction of the arrow X3). The push block 92 is pressed outward by the block biasing spring 92A and is maintained in a state of being separated from the pinion gear portion 55 of the pinion gear body 33, and the upper end portion of the rotary lever 93 is abutted against the inner wall surface of the recess 91. Keep in contact.
 また、図10に示すように、回転レバー93の下端部が、ギヤ側アーム94の先端部から外れた場合には、このギヤ側アーム94が、正面視反時計方向(矢印X3方向である。)へ回転するため、該ギヤ側アーム94の溝部105内に一端側折曲部が挿入されている連結シャフト96も、軸心回りに正面視反時計方向(矢印X3方向である。)へ回転する。 Further, as shown in FIG. 10, when the lower end portion of the rotation lever 93 is disengaged from the tip end portion of the gear side arm 94, the gear side arm 94 is counterclockwise when viewed from the front (the direction of the arrow X3). ), The connecting shaft 96 in which the one-end bent portion is inserted into the groove portion 105 of the gear side arm 94 also rotates counterclockwise (in the direction of the arrow X3) around the axis. To do.
 このため、メカ側アーム97は、連結シャフト96の他端側折曲部が溝部115に挿入されているため、ギヤ側アーム94の回動に伴って正面視反時計方向(矢印X8方向である。)に回動して、パウル37をラチェットギヤ26のラチェットギヤ部26Aに係合させる。尚、パウル37とラチェットギヤ26のラチェットギヤ部26Aとは、巻取ドラムユニット6のウエビング3引き出し方向への回転を抑止し、ウエビング3巻き取り方向への回転を許容するように、噛み合う形状とされている。 For this reason, the mechanical side arm 97 has the other end side bent portion of the connecting shaft 96 inserted into the groove 115, and therefore, when the gear side arm 94 rotates, it is counterclockwise when viewed from the front (in the direction of arrow X8). And the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26. The pawl 37 and the ratchet gear portion 26A of the ratchet gear 26 are configured to mesh with each other so as to prevent the winding drum unit 6 from rotating in the webbing 3 pull-out direction and to allow rotation in the webbing 3 winding direction. ing.
 従って、パウル37とラチェットギヤ26のラチェットギヤ部26Aとが係合した場合には、巻取ドラムユニット6のウエビング3引き出し方向への回転を抑止するロック動作が行われると共に、ウエビング3巻き取り方向への回転が許容される。尚、クラッチ機構48とピニオンギヤ体33が一体となって回転を開始する以前に、パウル37は巻取ドラムユニット6のウエビング3引き出し方向への回転を抑止しうる状態になる。 Therefore, when the pawl 37 and the ratchet gear portion 26A of the ratchet gear 26 are engaged, a locking operation is performed to prevent the winding drum unit 6 from rotating in the webbing 3 pull-out direction, and in the webbing 3 winding direction. Is allowed to rotate. Note that before the clutch mechanism 48 and the pinion gear body 33 start to rotate together, the pawl 37 is in a state in which the winding drum unit 6 can be prevented from rotating in the direction in which the webbing 3 is pulled out.
 また、ガス発生部材41から発生したガスは、シールプレート43の受圧側面を押圧すると共に、シールプレート43のガス抜き孔124からピストン44の受圧側面に形成された取付凹部122と貫通孔128とを連通する連通孔131を介して各矢印X4~X7の方向へ流出する。 Further, the gas generated from the gas generating member 41 presses the pressure receiving side surface of the seal plate 43, and the mounting recess 122 and the through hole 128 formed on the pressure receiving side surface of the piston 44 from the gas vent hole 124 of the seal plate 43. The liquid flows out in the directions of the arrows X4 to X7 through the communicating holes 131.
 そして、ピストン収納部42Bの開口部118を覆うカバープレート53の第1延出部151及び第2延出部152は、ガスの圧力によって外側方向へ押圧されるが、該第2延出部152の延出方向外側端縁部は、ベースプレート45の押さえ部155に当接して押さえられるため、ガスは開口部118と該第1延出部151及び第2延出部152との隙間から排出される。 The first extending portion 151 and the second extending portion 152 of the cover plate 53 that cover the opening 118 of the piston accommodating portion 42B are pressed outward by the gas pressure, but the second extending portion 152 Since the outer edge in the extending direction is pressed against the pressing portion 155 of the base plate 45, the gas is discharged from the gap between the opening 118 and the first extending portion 151 and the second extending portion 152. The
 また、プリテンショナ機構17の動作後、ピニオンギヤ体33の回転が停止した後は、図9に示すように、回転レバー93の下端部が、ギヤ側アーム94の先端部から外れた状態が維持される。即ち、プリテンショナ機構17の動作後においては、パウル37とラチェットギヤ26のラチェットギヤ部26Aとの係合が維持される。このため、巻取ドラムユニット6のラチェットギヤ26及びワイヤプレート25が、ウエビング3引き出し方向へ回転するのが抑止される。 After the operation of the pretensioner mechanism 17, after the rotation of the pinion gear body 33 is stopped, the state where the lower end portion of the rotation lever 93 is disengaged from the distal end portion of the gear side arm 94 is maintained as shown in FIG. The That is, after the operation of the pretensioner mechanism 17, the engagement between the pawl 37 and the ratchet gear portion 26A of the ratchet gear 26 is maintained. For this reason, the ratchet gear 26 and the wire plate 25 of the winding drum unit 6 are prevented from rotating in the direction in which the webbing 3 is pulled out.
 [緊急ロック機構]
 本実施形態に係るシートベルト用リトラクタ1では、車両衝突時等にプリテンショナ機構17が作動して巻取ドラムユニット6がウエビング3の引き出し方向へ回転しないようにロックする強制ロック機構51のほかに、ロックユニット9が作動して巻取ドラムユニット6の回転をロックする2種類のロック機構を備えている。つまり、ウエビングの急な引き出しに対して作動する「ウエビング感応式ロック機構」と、車両の揺れや傾きなどに起因して生ずる加速度に感応して作動する「車体感応式ロック機構」である。
[Emergency lock mechanism]
In the seatbelt retractor 1 according to the present embodiment, in addition to the forcible lock mechanism 51 that locks the pretensioner mechanism 17 so that the winding drum unit 6 does not rotate in the pull-out direction of the webbing 3 when the vehicle collides, etc. There are provided two types of lock mechanisms for operating the lock unit 9 to lock the rotation of the take-up drum unit 6. That is, there are a “webbing sensitive lock mechanism” that operates when the webbing is suddenly pulled out, and a “vehicle body sensitive lock mechanism” that operates in response to the acceleration caused by the shaking or tilting of the vehicle.
 以下の説明では、プリテンショナ機構17が作動してロックする強制ロック機構51と明確に区別するために、ロックユニット9が作動して巻取ドラムユニット6の回転をロックする2種類のロック機構を「緊急ロック機構」と称して、以下に説明を行う。 In the following description, two types of lock mechanisms for operating the lock unit 9 to lock the rotation of the take-up drum unit 6 are described in order to clearly distinguish them from the forced lock mechanism 51 that operates and locks the pretensioner mechanism 17. This will be described as “emergency lock mechanism”.
 [緊急ロック機構の概略構成]
 緊急ロック機構を構成するロックユニット9の概略構成について図11乃至図14に基づいて説明する。図11はロックユニット9をメカニズムカバー側から見た分解斜視図である。図12はロックユニットをメカニズムブロック側から見た分解斜視図である。図13はロックユニットのロックアームを含む組立断面図である。図14はロックユニットの通常時の状態を示す一部切り欠き断面図。
[Schematic configuration of emergency lock mechanism]
A schematic configuration of the lock unit 9 constituting the emergency lock mechanism will be described with reference to FIGS. FIG. 11 is an exploded perspective view of the lock unit 9 as seen from the mechanism cover side. FIG. 12 is an exploded perspective view of the lock unit as seen from the mechanism block side. FIG. 13 is an assembly sectional view including the lock arm of the lock unit. FIG. 14 is a partially cutaway cross-sectional view showing a normal state of the lock unit.
 図11乃至図14に示すように、ロックユニット9は、ウエビング感応式ロック機構と車体感応式ロック機構との動作を行うユニットである。ロックユニット9は、メカニズムブロック201、クラッチ202、パイロットアーム203、リターンスプリング204、ビークルセンサ205、ロッキングギヤ206、センサスプリング207、ロックアーム208、イナーシャマス209、およびメカニズムカバー210で構成されている。 As shown in FIGS. 11 to 14, the lock unit 9 is a unit that performs operations of the webbing sensitive lock mechanism and the vehicle body sensitive lock mechanism. The lock unit 9 includes a mechanism block 201, a clutch 202, a pilot arm 203, a return spring 204, a vehicle sensor 205, a locking gear 206, a sensor spring 207, a lock arm 208, an inertia mass 209, and a mechanism cover 210.
 メカニズムブロック201は、中央部に倒立した略瓢箪形状の開口部212が開設されている。この開口部212の大径部は、ラチェットギヤ26のラチェットギヤ部26Aの外径よりも大きく、且つ、クラッチ202の外径よりも小さくなるように形成されている。これにより、開口部212の大径部において、ラチェットギヤ26がクラッチ202の背面部に近接して対向配置され、ラチェットギヤ26の軸部28(図8参照)が、クラッチ202の中央部に形成された貫通孔213に挿通される。 The mechanism block 201 has a substantially bowl-shaped opening 212 that is inverted at the center. The large diameter portion of the opening 212 is formed to be larger than the outer diameter of the ratchet gear portion 26 </ b> A of the ratchet gear 26 and smaller than the outer diameter of the clutch 202. As a result, the ratchet gear 26 is disposed in close proximity to the back surface of the clutch 202 at the large diameter portion of the opening 212, and the shaft portion 28 (see FIG. 8) of the ratchet gear 26 is formed at the center of the clutch 202. The inserted through hole 213 is inserted.
 また、この開口部212の小径部には、ハウジング11にパウルリベット165により回動可能に軸支されたパウル37が配置され、開口部212の大径部と小径部との接続部分はパウル37の回動可能領域を提供する。また、この開口部212の大径部と小径部との接続部分の横側には、ロックユニット9をハウジング11に取り付けた際に、パウルリベット165の頭部が遊嵌される貫通孔214が形成されている。そして、後述のように、パウル37がクラッチ202によって大径部側へ回動されることにより、該パウル37はラチェットギヤ26のラチェットギヤ部26Aに係合する(図18、図22参照)。 Further, a pawl 37 that is pivotally supported on the housing 11 by a pawl rivet 165 is disposed in the small diameter portion of the opening 212, and a connecting portion between the large diameter portion and the small diameter portion of the opening 212 is the pawl 37. Provides a pivotable area. Further, a through hole 214 into which the head of the pawl rivet 165 is loosely fitted when the lock unit 9 is attached to the housing 11 is provided on the side of the connecting portion between the large diameter portion and the small diameter portion of the opening 212. Is formed. As will be described later, when the pawl 37 is rotated toward the large diameter portion by the clutch 202, the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26 (see FIGS. 18 and 22).
 また、メカニズムブロック201において、開口部212の小径部が位置する下端側角部に対向する他方の下端側角部(図11中、左下角部である。)には、断面略四角形の凹形状に形成されたセンサ載置部215が設けられ、ビークルセンサ205が配設されている。このビークルセンサ205は、断面矩形状の容器形状に形成されたケース216と、ケース216の底面部に形成された略皿状の載置部に転動可能に配置された金属製の球体217と、球体217の上側に載置されてパウル37に対して反対側の端縁部(図14中、左端縁部である。)を上下方向に揺動可能に支持されたビークルセンサレバー218とから構成されている。 Further, in the mechanism block 201, a concave portion having a substantially rectangular cross section is formed in the other lower end side corner portion (the lower left corner portion in FIG. 11) facing the lower end side corner portion where the small diameter portion of the opening 212 is located. The sensor mounting portion 215 formed on the vehicle is provided, and the vehicle sensor 205 is provided. The vehicle sensor 205 includes a case 216 formed in a container shape having a rectangular cross section, and a metal sphere 217 disposed so as to be able to roll on a substantially dish-shaped mounting portion formed on the bottom surface of the case 216. From the vehicle sensor lever 218, which is placed on the upper side of the sphere 217 and is supported so that the end edge (the left edge in FIG. 14) opposite to the pawl 37 can swing in the vertical direction. It is configured.
 そして、ビークルセンサ205は、ケース216の奥側両端縁部に突設された各係合爪219が、センサ載置部215の奥側両端縁部に形成された一対の係止孔220(図12中には、一方の係止孔220が示されている。)に嵌入されて係止され、当該センサ載置部215に取り付けられる。 The vehicle sensor 205 includes a pair of locking holes 220 (see FIG. 5) in which the engaging claws 219 projecting from both end edges of the case 216 are formed at both end edges of the sensor placement portion 215. 12, one locking hole 220 is shown and is locked by being inserted into the sensor mounting portion 215.
 また、略円板状のクラッチ202の外周縁には4箇所に各リブ222が半径方向外側へ突出するように同心円上に形成されている。また、メカニズムブロック201の側壁部には、各リブ222に対向する上端部から略直角内側方向へ所定幅で延出された4個の当接片223が設けられている。そして、クラッチ202の各リブ222を、メカニズムブロック201の各当接片223の下側へ嵌め込むことにより、当該クラッチ202は、回動可能にメカニズムブロック201に取り付けられる。 Further, on the outer peripheral edge of the substantially disc-shaped clutch 202, four ribs 222 are formed concentrically so as to protrude radially outward. Further, on the side wall portion of the mechanism block 201, four contact pieces 223 extending from the upper end portion facing each rib 222 with a predetermined width in a substantially right angle inner direction are provided. Then, by fitting each rib 222 of the clutch 202 to the lower side of each contact piece 223 of the mechanism block 201, the clutch 202 is attached to the mechanism block 201 so as to be rotatable.
 また、メカニズムブロック201の側壁部は、メカニズムブロック201の上端部において、所定幅で切り欠かれて、この切欠部の両端部から略直角上側方向へ延出されている。そして、メカニズムブロック201の当該切欠部のウエビング巻取方向側(図11、図13、図14中、左側である。)の側壁には、リターンスプリング204の一端側が嵌め込まれる突状保持部225が内側方向へ突設されている。 Further, the side wall portion of the mechanism block 201 is notched at a predetermined width at the upper end portion of the mechanism block 201, and extends from the both end portions of the notch portion substantially upward at a right angle. And the protrusion holding | maintenance part 225 by which the one end side of the return spring 204 is engage | inserted by the side wall of the webbing winding direction side (it is the left side in FIG.11, FIG.13, FIG.14) of the said notch part of the mechanism block 201 is provided. It protrudes inward.
 また、クラッチ202の上端部には、メカニズムブロック201の当該切欠部のウエビング引出方向側(図11、図13、図14中、右側である。)の側壁に対向するように、断面コの字形のバネ受け用リブ226が外側方向へ突設されている。また、このバネ受け用リブ226には、リターンスプリング204の他端側が嵌め込まれる突状保持部227が内側方向へ突設されている。従って、図13及び図14に示すように、各突状保持部225、227にリターンスプリング204の両端を嵌め込むことによって、クラッチ202はメカニズムブロック201に対してウエビング巻取方向側へ回動するように所定荷重で付勢される。 Further, the upper end portion of the clutch 202 has a U-shaped cross section so as to face the side wall of the notch portion of the mechanism block 201 on the webbing pull-out direction side (right side in FIGS. 11, 13, and 14). The spring receiving rib 226 protrudes outward. The spring receiving rib 226 is provided with a protruding holding portion 227 that is fitted to the other end of the return spring 204 in an inward direction. Accordingly, as shown in FIGS. 13 and 14, the clutch 202 is rotated with respect to the mechanism block 201 in the webbing take-up direction side by fitting both ends of the return spring 204 into the protruding holding portions 225 and 227. As shown in FIG.
 また、クラッチ202のメカニズムカバー210側には、貫通孔213に対して同軸に円環状のリブ部228が立設され、このリブ部228の内周面には、後述のようにロックアーム208の係合爪231が係合するクラッチギヤ229が形成されている(図16参照)。このクラッチギヤ229は、後述のようにロッキングギヤ206が、貫通孔231の軸心に対してウエビング引出方向への回転した時のみ、ロックアーム208の係合爪231と係合するように形成されている(図16参照)。 An annular rib portion 228 is erected on the mechanism cover 210 side of the clutch 202 so as to be coaxial with the through-hole 213, and an inner surface of the rib portion 228 has a lock arm 208 as described later. A clutch gear 229 with which the engaging claw 231 is engaged is formed (see FIG. 16). As will be described later, the clutch gear 229 is formed so as to engage with the engaging claw 231 of the lock arm 208 only when the locking gear 206 rotates in the webbing pull-out direction with respect to the axis of the through hole 231. (See FIG. 16).
 また、クラッチ202の円環状のリブ部228の下方には、左右方向略中央部に、パイロットアーム203の中央部に形成された貫通孔232に嵌挿される取付ボス233が立設され、当該パイロットアーム203が回動可能に軸支される。このパイロットアーム203は、図14に示すように、ビークルセンサレバー218に通常時は当接しており、球体217の移動によってビークルセンサレバー218によりロッキングギヤ206側へ押し上げられ、ロッキングギヤ歯206Aに係合可能に構成されている。 Also, below the annular rib portion 228 of the clutch 202, a mounting boss 233 that is fitted into a through-hole 232 formed in the central portion of the pilot arm 203 is erected at a substantially central portion in the left-right direction. The arm 203 is pivotally supported so as to be rotatable. As shown in FIG. 14, the pilot arm 203 is normally in contact with the vehicle sensor lever 218, and is pushed up to the locking gear 206 side by the movement of the sphere 217 by the vehicle sensor lever 218, and is engaged with the locking gear teeth 206A. It is configured to be compatible.
 また、クラッチ202の取付ボス233に対して反対側のメカニズムブロック201側の面には、パウル37の案内ピン37Aが遊嵌されるガイド溝235が形成されている。このガイド溝235は、ウエビング巻取方向斜め上側(図14中、左斜め上方向である。)へ貫通孔213の軸心に近づくように形成されている。これにより、後述のようにクラッチ202がウエビング引出方向へ回動された場合には、案内ピン37Aがガイド溝235に沿って移動され、パウル37がラチェットギヤ26のラチェットギヤ部26Aへ近づくように回動される(図17参照)。 Further, a guide groove 235 into which the guide pin 37A of the pawl 37 is loosely fitted is formed on the surface on the mechanism block 201 side opposite to the mounting boss 233 of the clutch 202. The guide groove 235 is formed so as to approach the axial center of the through-hole 213 toward the upper side in the webbing winding direction (the upper left direction in FIG. 14). As a result, when the clutch 202 is rotated in the webbing pull-out direction as described later, the guide pin 37A is moved along the guide groove 235 so that the pawl 37 approaches the ratchet gear portion 26A of the ratchet gear 26. It is rotated (see FIG. 17).
 また、ロッキングギヤ206は、クラッチ202の円環状のリブ部228の外径よりも大きい直径の円板状の底面部236の全周からクラッチ202側へ円環状に立設されて、外周部にパイロットアーム203に係合するロッキングギヤ歯206Aが形成されている。このロッキングギヤ歯206Aは、ロッキングギヤ206がウエビング引出方向へ回転した時のみ、パイロットアーム203と係合するように形成されている(図20参照)。 Further, the locking gear 206 is erected in an annular shape from the entire circumference of the disk-shaped bottom surface portion 236 having a diameter larger than the outer diameter of the annular rib portion 228 of the clutch 202 toward the clutch 202 side, Locking gear teeth 206A that engage with the pilot arm 203 are formed. The locking gear teeth 206A are formed to engage with the pilot arm 203 only when the locking gear 206 rotates in the webbing pull-out direction (see FIG. 20).
 また、ロッキングギヤ206の底面部236の中央部には、円筒状の固定ボス237が前面側から背面側に貫通するように立設されており、この固定ボス237の内周面には、ラチェットギヤ26の軸部28の外周面に形成されたスプライン28A(図8参照)が嵌入されるスプライン溝が形成されている。そして、クラッチ202の貫通孔231に遊嵌された軸部28が、ロッキングギヤ206の固定ボス237に嵌入されて、巻取ドラムユニット6のラチェットギヤ26とロッキングギヤ206とが同軸に相対回転不能に圧入固定される。 A cylindrical fixed boss 237 is erected at the center of the bottom surface portion 236 of the locking gear 206 so as to penetrate from the front side to the back side. The inner surface of the fixed boss 237 has a ratchet. A spline groove into which a spline 28A (see FIG. 8) formed on the outer peripheral surface of the shaft portion 28 of the gear 26 is fitted is formed. Then, the shaft portion 28 loosely fitted into the through hole 231 of the clutch 202 is fitted into the fixed boss 237 of the locking gear 206, so that the ratchet gear 26 and the locking gear 206 of the winding drum unit 6 cannot be relatively rotated coaxially. It is press-fitted and fixed.
 また、ロッキングギヤ206の底面部236のクラッチ202側の面には、固定ボス237に隣接して円筒状の支持ボス238が、ロッキングギヤ歯206Aよりも低い高さで立設されている。そして、固定ボス237を囲むように略弓形に形成された合成樹脂製のロックアーム208は、長手方向略中央部の固定ボス237側の端縁部に立設されたピボット軸239が、この支持ボス238に回転可能に嵌挿され、回動可能に軸支される。 Further, a cylindrical support boss 238 is erected on the surface on the clutch 202 side of the bottom surface portion 236 of the locking gear 206 at a height lower than the locking gear teeth 206A adjacent to the fixed boss 237. The synthetic resin lock arm 208 formed in a substantially arcuate shape so as to surround the fixed boss 237 is supported by a pivot shaft 239 erected on the edge of the fixed boss 237 side in the substantially central portion in the longitudinal direction. The boss 238 is rotatably inserted and pivotally supported.
 また、ロックアーム208は、外形にほぼ相似形でロッキングギヤ206の底面部236側に開口する溝部240が、長手方向に沿って形成されている。そして、この溝部240内には、略弓形に形成された鉄やステンレス等の金属製で略平板状のイナーシャマス209が嵌め込まれて取り付けられる。これにより、イナーシャマス209が装着されたロックアーム208は、ウエビング3の急激な引き出しに対して慣性遅れを発生させる慣性体として機能する。 Further, the lock arm 208 is formed with a groove portion 240 that is substantially similar to the outer shape and opens to the bottom surface portion 236 side of the locking gear 206 along the longitudinal direction. Then, a substantially flat inertia mass 209 made of a metal such as iron or stainless steel formed in a substantially arcuate shape is fitted and attached in the groove portion 240. As a result, the lock arm 208 to which the inertia mass 209 is attached functions as an inertial body that generates an inertial delay with respect to the sudden withdrawal of the webbing 3.
 また、ロックアーム208は、ピボット軸239の横側に断面逆L字形の弾性係止片241が、ロッキングギヤ206の底面部236側へ立設されている。この弾性係止片241は、ロッキングギヤ206の支持ボス238の基端部に形成された略扇形で段差部を有する窓部242(図11、図19参照)に挿入され、支持ボス238の軸心回りに回動可能に弾性的に係止される。 Also, the lock arm 208 is provided with an elastic locking piece 241 having an inverted L-shaped cross section on the lateral side of the pivot shaft 239 so as to stand on the bottom surface 236 side of the locking gear 206. This elastic locking piece 241 is inserted into a window portion 242 (see FIGS. 11 and 19) having a substantially step shape and formed in the base end portion of the support boss 238 of the locking gear 206, and the shaft of the support boss 238 is It is elastically locked so that it can rotate around the center.
 また、図13及び図14に示すように、ロッキングギヤ206は、固定ボス237の外周面から半径方向外側へ延出されたリブ部に、センサスプリング207の一端側が嵌め込まれるバネ支持ピン243が、該固定ボス237の軸心に対して直交するウエビング引出方向へ立設されている。また、ロックアーム208のバネ支持ピン243に対向する側壁には、センサスプリング207の他端側が嵌め込まれるバネ支持ピン244が立設されている。バネ支持ピン243は、ギヤ側バネ支持ピンの一例として機能する。バネ支持ピン244は、慣性体側バネ支持ピンの一例として機能する。 Further, as shown in FIGS. 13 and 14, the locking gear 206 includes a spring support pin 243 into which one end side of the sensor spring 207 is fitted into a rib portion extending radially outward from the outer peripheral surface of the fixed boss 237. It is erected in the webbing pull-out direction orthogonal to the axis of the fixed boss 237. Further, on the side wall of the lock arm 208 facing the spring support pin 243, a spring support pin 244 into which the other end side of the sensor spring 207 is fitted is provided upright. The spring support pin 243 functions as an example of a gear side spring support pin. The spring support pin 244 functions as an example of an inertial body side spring support pin.
 ロッキングギヤ206の底面部236に平行に立設されたバネ支持ピン243は、細長の略円錐台状に形成されている。また、ロックアーム208のバネ支持ピン243に対向する側壁に立設されたバネ支持ピン244は、平面視コの字形に所定深さ(例えば、深さ約2mm~3mmである。)窪んだ凹部の底面部に立設され、ロックアーム208の長手方向両側にセンサスプリング207を遊挿するための隙間が形成されている。また、ロックアーム208のバネ支持ピン244は、先端部の外周面が、ピボット軸239側から、このピボット軸239に対して反対側へ先端部に向かって斜めに削られた先細り形状に形成されている。 The spring support pin 243 erected in parallel with the bottom surface portion 236 of the locking gear 206 is formed in an elongated substantially truncated cone shape. Further, the spring support pin 244 erected on the side wall of the lock arm 208 facing the spring support pin 243 is a concave portion that is recessed in a predetermined depth (for example, a depth of about 2 mm to 3 mm) in a U shape in plan view. A gap for loosely inserting the sensor spring 207 is formed on both sides of the lock arm 208 in the longitudinal direction. Further, the spring support pin 244 of the lock arm 208 is formed in a tapered shape in which the outer peripheral surface of the distal end portion is cut obliquely from the pivot shaft 239 side toward the distal end portion on the opposite side to the pivot shaft 239. ing.
 つまり、ロックアーム208のバネ支持ピン244は、後述のように、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されて、クラッチギヤ229に係合した場合に、先端側の外周面がセンサスプリング207の略細長S字状に撓み変形した内側にほぼ沿うように、該センサスプリング207の撓んだ内側へ接近する外周面が削られた先細り形状に形成されている(図16参照)。 That is, the spring support pin 244 of the lock arm 208 is engaged when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229 as described later. The outer peripheral surface of the sensor spring 207 approaching the bent inner side is sharpened so that the outer peripheral surface on the tip side is substantially along the inner side of the sensor spring 207 that is bent and deformed into a substantially elongated S shape. (See FIG. 16).
 また、ロックアーム208のバネ支持ピン244は、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されて、クラッチギヤ229に係合した場合に、先端部がロッキングギヤ206のバネ支持ピン243の先端部近傍位置に位置する高さに立設されている(図16参照)。 Further, the spring support pin 244 of the lock arm 208 is locked at the tip when the lock arm 208 is rotated in the webbing take-up direction against the biasing force of the sensor spring 207 and engaged with the clutch gear 229. It is erected at a height that is located near the tip of the spring support pin 243 of the gear 206 (see FIG. 16).
 従って、図13及び図14に示すように、各バネ支持ピン243、244にセンサースプリング207の両端を嵌め込むことによって、ロックアーム208は固定ボス237の軸心に対してウエビング引出方向側へ(図13中、矢印246方向である)回動するように所定荷重で付勢され、係合爪231側の端縁部が、固定ボス237の外周部に突設されたストッパ245に当接されている。 Therefore, as shown in FIGS. 13 and 14, by fitting both ends of the sensor spring 207 into the spring support pins 243 and 244, the lock arm 208 moves toward the webbing pull-out direction side with respect to the axis of the fixed boss 237 ( In FIG. 13, it is urged with a predetermined load so as to rotate (in the direction of arrow 246), and the end edge portion on the engagement claw 231 side is brought into contact with a stopper 245 protruding from the outer peripheral portion of the fixed boss 237. ing.
 一方、後述のようにロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤ229に係合した場合には、係合爪231の外側端縁部が、ロッキングギヤ206の底面部236に立設された断面紡錘形の回り止め247に当接可能に構成されている(図16参照)。また、ロックアーム208のバネ支持ピン244の先端は、センサスプリング207の略細長S字状に撓み変形した内側のほぼ中央に位置すると共に、先端部のピボット軸239側の外周面が、略細長S字状に撓み変形したセンサスプリング207の内側にほぼ沿っている。 On the other hand, when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229 as described later, the outer edge of the engaging claw 231 is The locking gear 206 is configured to be able to come into contact with a spindle-shaped detent 247 erected on the bottom surface 236 of the locking gear 206 (see FIG. 16). Further, the tip of the spring support pin 244 of the lock arm 208 is located at the substantially center of the inner side of the sensor spring 207 that is bent and deformed into a substantially slender S shape, and the outer peripheral surface of the tip portion on the side of the pivot shaft 239 is substantially slender. It is almost along the inside of the sensor spring 207 which is bent and deformed in an S shape.
 また、ロックユニット9は、合成樹脂により形成されたメカニズムカバー210でカバーされる。このメカニズムカバー210は、ハウジング11側が開口される略箱体状のカバーケースであり、上側両角部と下端縁部中央位置の3箇所に、ナイラッチ8Aと同様な構成を有するナイラッチ249が設けられている。また、メカニズムカバー210のハウジング11側の中央部には、ロッキングギヤ206の底面部236から突出する固定ボス237が摺動回転可能に嵌入される円筒状の支持ボス251が立設されている。 Further, the lock unit 9 is covered with a mechanism cover 210 formed of a synthetic resin. The mechanism cover 210 is a substantially box-shaped cover case that is open on the housing 11 side, and is provided with nai latches 249 having the same configuration as that of the nai latch 8A at three positions, the upper corner portions and the lower end edge central position. Yes. Also, a cylindrical support boss 251 into which a fixed boss 237 protruding from the bottom surface portion 236 of the locking gear 206 is slidably fitted is erected at the center of the mechanism cover 210 on the housing 11 side.
 ロックユニット9は、先ず、ロッキングギヤ206に、イナーシャマス209が装着されたロックアーム208とセンサスプリング207を取り付ける。そして、メカニズムブロック201に、リターンスプリング204、クラッチ202、パイロットアーム203、ビークルセンサ205、ロッキングギヤ206を配設する。その後、メカニズムカバー210の支持ボス251に、ロッキングギヤ206の固定ボス237を嵌入すると共に、各ナイラッチ249をメカニズムブロック201の各貫通孔252に挿入することによって組み立てられる。 The lock unit 9 first attaches the lock arm 208 and the sensor spring 207 to which the inertia mass 209 is attached to the locking gear 206. In the mechanism block 201, a return spring 204, a clutch 202, a pilot arm 203, a vehicle sensor 205, and a locking gear 206 are disposed. Thereafter, the fixed boss 237 of the locking gear 206 is fitted into the support boss 251 of the mechanism cover 210, and each ny latch 249 is inserted into each through hole 252 of the mechanism block 201.
 そして、ロックユニット9は、メカニズムブロック201の開口部212に遊嵌した軸部28を、クラッチ202の貫通孔231を介してロッキングギヤ206の固定ボス237に嵌入した後、メカニズムカバー210の各ナイラッチ249をハウジング11の側壁部12の3箇所に設けられた各貫通孔253(図8参照)に押し込むことによって、当該側壁部12の外側に固定される。これにより、巻取ドラムユニット6の軸部28が、ロックユニット9のロックギヤの固定ボス237を介して、ハウジング11の側壁部12の外側に取り付けられたメカニズムカバー210の支持ボス251によって回転可能に支持される。 Then, the lock unit 9 inserts the shaft portion 28 loosely fitted into the opening 212 of the mechanism block 201 into the fixed boss 237 of the locking gear 206 through the through hole 231 of the clutch 202, and The 249 is pushed into each through hole 253 (see FIG. 8) provided at three locations on the side wall portion 12 of the housing 11, thereby being fixed to the outside of the side wall portion 12. Thereby, the shaft portion 28 of the winding drum unit 6 is rotatably supported by the support boss 251 of the mechanism cover 210 attached to the outside of the side wall portion 12 of the housing 11 via the fixed boss 237 of the lock gear of the lock unit 9. Is done.
 尚、ロックユニット9は、イナーシャマス209、リターンスプリング204、センサスプリング207、およびビークルセンサ205の球体217を除いた部材は樹脂部材で成形されており、互いに接触した場合の部材間の摩擦係数は小さなものである。 In the lock unit 9, members other than the inertia mass 209, the return spring 204, the sensor spring 207, and the sphere 217 of the vehicle sensor 205 are formed of a resin member. It is a small thing.
 次に、「緊急ロック機構」の動作について図15乃至図22に基づいて説明する。各図においてウエビング3の引き出し方向は矢印255方向である。また、各図において、反時計方向の回転方向がウエビング3が引き出される時の巻取ドラムユニット6の回転方向(ウエビング引出方向)である。以下の説明では、ロック動作に係る動作を中心に説明し、その他の部分については適宜、記載を省略する。 Next, the operation of the “emergency lock mechanism” will be described with reference to FIGS. In each drawing, the pulling-out direction of the webbing 3 is the arrow 255 direction. In each figure, the counterclockwise rotation direction is the rotation direction (webbing pull-out direction) of the winding drum unit 6 when the webbing 3 is pulled out. In the following description, the operation related to the locking operation will be mainly described, and description of other portions will be omitted as appropriate.
 また、動作の説明上、必要に応じて図面の一部を切り欠いて表示している。「ウエビング感応式ロック機構」および「車体感応式ロック機構」では、共にパウル37の動作は共通である。このため、図15乃至図22において、パウル37とラチェットギヤ26との関係を示す部分については、その一部を切り欠いた状態として表示している。 Also, for the explanation of the operation, a part of the drawing is cut out and displayed as necessary. The operation of the pawl 37 is common to both the “webbing sensitive lock mechanism” and the “vehicle body sensitive lock mechanism”. For this reason, in FIG. 15 thru | or FIG. 22, about the part which shows the relationship between the pawl 37 and the ratchet gear 26, the part is displayed as a notch state.
 [ウエビング感応式ロック機構の動作説明]
 先ず、「ウエビング感応式ロック機構」の動作について図15乃至図18に基づいて説明する。図15乃至図18は、「ウエビング感応式ロック機構」の動作を説明する説明図である。「ウエビング感応式ロック機構」では、パウル37とラチェットギヤ26との関係を示す部分に加えて、ロックアーム208とクラッチギヤ229との関係を示す部分、及びセンサスプリング207の動きを示す部分を切り欠いて示している。
[Description of webbing-sensitive locking mechanism]
First, the operation of the “webbing sensitive lock mechanism” will be described with reference to FIGS. 15 to 18 are explanatory diagrams for explaining the operation of the “webbing sensitive lock mechanism”. In the “webbing sensitive lock mechanism”, in addition to the portion indicating the relationship between the pawl 37 and the ratchet gear 26, the portion indicating the relationship between the lock arm 208 and the clutch gear 229 and the portion indicating the movement of the sensor spring 207 are cut off. Missing shows.
 図15及び図16に示すように、イナーシャマス209が装着されたロックアーム208は、ロッキングギヤ206の支持ボス238によってピボット軸239が回動自在に支持されているため、ウエビング3の引出加速度が所定加速度(例えば、約1.5Gである。尚、1G≒9.8m/s2とする。)を超えた場合には、ロッキングギヤ206のウエビング引出方向(矢印256方向である。)への回転に対してロックアーム208に慣性遅れが生じる。 As shown in FIGS. 15 and 16, the lock arm 208 to which the inertia mass 209 is attached has the pivot shaft 239 rotatably supported by the support boss 238 of the locking gear 206. When the acceleration exceeds a predetermined acceleration (for example, about 1.5 G. 1G≈9.8 m / s 2), the locking gear 206 rotates in the webbing pull-out direction (in the direction of arrow 256). On the other hand, a delay in inertia occurs in the lock arm 208.
 このため、ストッパ245に当接していたロックアーム208は、センサスプリング207の付勢力に抗して初期位置を維持するため、当該ロッキングギヤ206に対してピボット軸239を中心に時計方向に回動され、回り止め247に当接するまで回動される。そのため、ロックアーム208の係合爪231は、ロッキングギヤ206の回転軸に対して半径方向外側へ回動されて、クラッチ202のクラッチギヤ229に係合する。 For this reason, the lock arm 208 that has been in contact with the stopper 245 rotates in the clockwise direction around the pivot shaft 239 with respect to the locking gear 206 in order to maintain the initial position against the urging force of the sensor spring 207. It is rotated until it comes into contact with the detent 247. Therefore, the engagement claw 231 of the lock arm 208 is rotated radially outward with respect to the rotation shaft of the locking gear 206 and engaged with the clutch gear 229 of the clutch 202.
 そして、図16及び図17に示すように、ウエビング3の引き出しが所定加速度を超えて継続された場合には、ロッキングギヤ206が更にウエビング引出方向へ回転されるため、ロックアーム208の係合爪231は、クラッチギヤ229に係合した状態で、回り止め247によってウエビング引出方向(矢印256方向である。)へ回動される。従って、クラッチ202は、ロックアーム208によってクラッチギヤ229が回動されるため、リターンスプリング204の付勢力に抗して、ロッキングギヤ206の固定ボス237の軸心回りにウエビング引出方向へ回動される。 As shown in FIGS. 16 and 17, when the webbing 3 is continuously pulled out beyond a predetermined acceleration, the locking gear 206 is further rotated in the webbing pull-out direction. 231 is engaged with the clutch gear 229 and is rotated in the webbing pull-out direction (in the direction of arrow 256) by the rotation stopper 247. Accordingly, since the clutch gear 229 is rotated by the lock arm 208, the clutch 202 is rotated in the webbing pull-out direction around the axis of the fixed boss 237 of the locking gear 206 against the urging force of the return spring 204. The
 これにより、クラッチ202のウエビング引出方向への回動に伴って、パウル37の案内ピン37Aは、当該クラッチ202のガイド溝235によって案内されるため、当該パウル37はラチェットギヤ26側へ回動される(矢印257方向である。)。 Accordingly, as the clutch 202 rotates in the webbing pull-out direction, the guide pin 37A of the pawl 37 is guided by the guide groove 235 of the clutch 202, and therefore the pawl 37 is rotated toward the ratchet gear 26 side. (In the direction of arrow 257).
 そして、図18に示すように、ウエビング3の引き出しが所定加速度を超えて更に継続された場合には、クラッチ202はリターンスプリング204の付勢力に抗して、ウエビング引出方向へ更に回動される。このため、パウル37の案内ピン37Aは、当該クラッチ202のガイド溝235に案内されて、当該パウル37はラチェットギヤ26のラチェットギヤ部26Aに係合される。これにより、ガイドドラム21、つまり、巻取ドラムユニット6の回転がロックされてウエビング3の引き出しがロックされる。 As shown in FIG. 18, when the webbing 3 is further pulled out beyond the predetermined acceleration, the clutch 202 is further rotated in the webbing withdrawal direction against the urging force of the return spring 204. . Therefore, the guide pin 37A of the pawl 37 is guided in the guide groove 235 of the clutch 202, and the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26. Thereby, the rotation of the guide drum 21, that is, the winding drum unit 6 is locked, and the drawer of the webbing 3 is locked.
 その後、ウエビング3に加わる引き出し方向の引張力が緩められた場合には、巻取バネユニット8の付勢力によって、巻取ドラムユニット6がウエビング巻取方向(矢印256に対して反対方向である。)に回転される。これにより、圧縮されたリターンスプリング204の付勢力により、クラッチ202はウエビング巻取方向(図18中、時計方向である。)へ回動される。 Thereafter, when the pulling force applied to the webbing 3 is relaxed, the winding drum unit 6 is moved in the webbing winding direction (the direction opposite to the arrow 256) by the urging force of the winding spring unit 8. To be rotated. Thus, the clutch 202 is rotated in the webbing winding direction (clockwise in FIG. 18) by the urging force of the compressed return spring 204.
 従って、ウエビング3に加わる引き出し方向の引張力が緩められて通常時に戻った場合には、クラッチ202のウエビング巻取方向への回動に伴って、パウル37の案内ピン37Aは、当該クラッチ202のガイド溝235を逆方向に案内されて、ラチェットギヤ26から離間し、パウル37による巻取ドラムユニット6のロック状態が解除される(図15参照)。 Therefore, when the pulling force applied to the webbing 3 is relaxed and returned to the normal state, the guide pin 37A of the pawl 37 moves along the webbing winding direction of the clutch 202. The guide groove 235 is guided in the reverse direction to be separated from the ratchet gear 26, and the locked state of the winding drum unit 6 by the pawl 37 is released (see FIG. 15).
 また、ロックアーム208は、センサスプリング207の付勢力によってウエビング引出方向(図18中、反時計方向である。)へ回動されて、ストッパ245に当接され、当該ロックアーム208の係合爪231とクラッチギヤ229との係合が解除される(図15参照)。 Further, the lock arm 208 is rotated in the webbing pull-out direction (in the counterclockwise direction in FIG. 18) by the urging force of the sensor spring 207 and is brought into contact with the stopper 245 so that the engagement claw of the lock arm 208 is engaged. 231 and the clutch gear 229 are disengaged (see FIG. 15).
 [車体感応式ロック機構の動作説明]
 次に、「車体感応式ロック機構」の動作について図19乃至図22に基づいて説明する。図19乃至図22は、「車体感応式ロック機構」の動作を説明する説明図である。「車体感応式ロック機構」では、パウル37とラチェットギヤ26との関係を示す部分に加えて、ビークルセンサ205のケース216の部分を切り欠いて示している。
[Explanation of body-sensitive locking mechanism]
Next, the operation of the “vehicle body sensitive locking mechanism” will be described with reference to FIGS. 19 to 22 are explanatory diagrams for explaining the operation of the “vehicle body sensitive locking mechanism”. In the “vehicle body sensitive locking mechanism”, in addition to the portion indicating the relationship between the pawl 37 and the ratchet gear 26, the portion of the case 216 of the vehicle sensor 205 is cut away.
 図19及び図20に示すように、ビークルセンサ205の球体217は、ケース216の皿状の底面部に載置されているため、車体の揺れや傾きなどによる加速度が所定加速度(例えば、約1.5Gである。)を超えた場合には、ケース216の底面部を転動してビークルセンサレバー218を押し上げる。 As shown in FIGS. 19 and 20, the sphere 217 of the vehicle sensor 205 is placed on the dish-shaped bottom surface of the case 216. Therefore, the acceleration due to the shaking or tilting of the vehicle body is a predetermined acceleration (for example, about 1 If it exceeds 5 G), the bottom surface of the case 216 is rolled to push up the vehicle sensor lever 218.
 このため、ビークルセンサレバー218上に一端部が当接されているパイロットアーム203は、クラッチ202の取付ボス233に回動自在に取り付けられているため、当該ビークルセンサレバー218によって押し上げられて、取付ボス233の軸心回りに時計方向(矢印258方向である。)に回動される。そして、当該パイロットアーム203のビークルセンサ205側の先端部は、ロッキングギヤ206の外周部に形成されたロッキングギヤ歯206Aに係合する。 For this reason, the pilot arm 203 whose one end is in contact with the vehicle sensor lever 218 is rotatably attached to the attachment boss 233 of the clutch 202, so that it is pushed up by the vehicle sensor lever 218 and attached. It is rotated clockwise (in the direction of arrow 258) around the axis of the boss 233. The tip of the pilot arm 203 on the vehicle sensor 205 side is engaged with a locking gear tooth 206 </ b> A formed on the outer periphery of the locking gear 206.
 そして、図20及び図21に示すように、パイロットアーム203がロッキングギヤ206のロッキングギヤ歯206Aに係合した状態で、ウエビング3が引き出された場合には、当該ロッキングギヤ206がウエビング引出方向(矢印260方向である。)へ回動される。また、ロッキングギヤ206のウエビング引出方向への回転は、パイロットアーム203及び取付ボス233を介してクラッチ202へ伝達される。 As shown in FIGS. 20 and 21, when the webbing 3 is pulled out with the pilot arm 203 engaged with the locking gear teeth 206A of the locking gear 206, the locking gear 206 is pulled in the webbing pull-out direction ( In the direction of arrow 260). The rotation of the locking gear 206 in the webbing pull-out direction is transmitted to the clutch 202 via the pilot arm 203 and the mounting boss 233.
 このため、ロッキングギヤ206のウエビング引出方向への回転に伴って、当該クラッチ202は、リターンスプリング204の付勢力に抗して、ロッキングギヤ206の固定ボス237の軸心回りにウエビング引出方向へ回動される。これにより、クラッチ202のウエビング引出方向への回動に伴って、パウル37の案内ピン37Aは、当該クラッチ202のガイド溝235に案内されるため、当該パウル37はラチェットギヤ26側へ回動される(矢印261方向である。)。 Therefore, as the locking gear 206 rotates in the webbing pull-out direction, the clutch 202 rotates in the webbing pull-out direction around the axis of the fixed boss 237 of the locking gear 206 against the urging force of the return spring 204. Moved. Thus, as the clutch 202 rotates in the webbing pull-out direction, the guide pin 37A of the pawl 37 is guided to the guide groove 235 of the clutch 202, so the pawl 37 is rotated to the ratchet gear 26 side. (In the direction of arrow 261).
 そして、図22に示すように、ウエビング3の引き出しが更に継続された場合には、クラッチ202はリターンスプリング204の付勢力に抗して、ウエビング引出方向へ更に回動される。このため、パウル37の案内ピン37Aは、当該クラッチ202のガイド溝235に案内されて、当該パウル37はラチェットギヤ26のラチェットギヤ部26Aに係合される。これにより、ガイドドラム21、つまり、巻取ドラムユニット6の回転がロックされてウエビング3の引き出しがロックされる。 Then, as shown in FIG. 22, when the webbing 3 is further pulled out, the clutch 202 is further rotated in the webbing pull-out direction against the urging force of the return spring 204. Therefore, the guide pin 37A of the pawl 37 is guided in the guide groove 235 of the clutch 202, and the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26. Thereby, the rotation of the guide drum 21, that is, the winding drum unit 6 is locked, and the drawer of the webbing 3 is locked.
 その後、ウエビング3に加わる引き出し方向の引張力が緩められた場合には、巻取バネユニット8の付勢力によって、巻取ドラムユニット6がウエビング巻取方向(矢印256に対して反対方向である。)に回転される。これにより、パイロットアーム203とロッキングギヤ歯206Aとの係合が解除されて、圧縮されたリターンスプリング204の付勢力により、クラッチ202はウエビング巻取方向(図22中、時計方向である。)へ回動される。 Thereafter, when the pulling force applied to the webbing 3 is relaxed, the winding drum unit 6 is moved in the webbing winding direction (the direction opposite to the arrow 256) by the urging force of the winding spring unit 8. To be rotated. As a result, the engagement between the pilot arm 203 and the locking gear teeth 206A is released, and the clutch 202 is moved in the webbing winding direction (clockwise in FIG. 22) by the urging force of the compressed return spring 204. It is rotated.
 従って、ビークルセンサ205の球体217が、ケース216の皿状の底面中央部に位置する通常時に戻った場合には、クラッチ202のウエビング巻取方向への回動に伴って、パウル37の案内ピン37Aは、当該クラッチ202のガイド溝235を逆方向に案内されて、ラチェットギヤ26から離間し、パウル37による巻取ドラムユニット6のロック状態が解除される(図19参照)。また、パイロットアーム203は、自重によりビークルセンサ205側へ回動され、ビークルセンサレバー218に当接される。 Therefore, when the sphere 217 of the vehicle sensor 205 returns to the normal position located at the center of the dish-shaped bottom surface of the case 216, the guide pin of the pawl 37 is rotated as the clutch 202 rotates in the webbing take-up direction. 37A is guided in the reverse direction through the guide groove 235 of the clutch 202, is separated from the ratchet gear 26, and the locked state of the winding drum unit 6 by the pawl 37 is released (see FIG. 19). The pilot arm 203 is rotated toward the vehicle sensor 205 by its own weight and is brought into contact with the vehicle sensor lever 218.
 [ロックアームの感度誤差特性]
 次に、上記のように構成されたロックユニット9において、ロッキングギヤ206をウエビング引出方向(図23中、矢印262方向である。つまり、図23中、反時計方向である。)へ所定角度ずつ(例えば、中心角度5度ずつである。)回転させて、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度のバラツキ(感度誤差特性)を検討した一例について図23乃至図50に基づいて説明する。
[Lock arm sensitivity error characteristics]
Next, in the lock unit 9 configured as described above, the locking gear 206 is moved by a predetermined angle in the webbing pull-out direction (in the direction of arrow 262 in FIG. 23, that is, in the counterclockwise direction in FIG. 23). (For example, the central angle is 5 degrees each.) FIG. 23 shows an example in which the variation (sensitivity error characteristic) of the pull-out acceleration of the webbing 3 necessary for rotating and engaging the lock arm 208 with the clutch gear 229 is examined. It demonstrates based on thru | or FIG.
 つまり、当該ロックアーム208をロッキングギヤ206の回転軸回りに所定角度ずつ公転させて、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度のバラツキ(感度誤差特性)を検討した。尚、後述のようにイナーシャマス209が装着されたロックアーム208の重心位置を変更して、各重心位置において、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度のバラツキ(感度誤差特性)を検討した。 In other words, the variation (sensitivity error characteristic) in the pull-out acceleration of the webbing 3 necessary for revolving the lock arm 208 around the rotation axis of the locking gear 206 by a predetermined angle and engaging the lock arm 208 with the clutch gear 229 is obtained. investigated. As will be described later, the position of the center of gravity of the lock arm 208 to which the inertia mass 209 is attached is changed, and the pulling acceleration of the webbing 3 necessary for engaging the lock arm 208 with the clutch gear 229 is changed at each center of gravity. The variation (sensitivity error characteristic) was examined.
 先ず、ロッキングギヤ206をウエビング引出方向へ所定角度ずつ回転させて、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度を測定する測定方法について図23に基づいて説明する。
 図23に示すように、ロックアーム208は、センサスプリング207の付勢力によってウエビング引出方向(矢印262方向である。)へ回動されて、通常時は、係合爪231側端縁部がストッパ245に当接されている。また、ロッキングギヤ206の回転軸271とピボット軸239の回転軸272とを結んだ直線を基準直線273とする。
First, a measurement method for measuring the pull-out acceleration of the webbing 3 necessary for rotating the locking gear 206 by a predetermined angle in the webbing pull-out direction and engaging the lock arm 208 with the clutch gear 229 will be described with reference to FIG. .
As shown in FIG. 23, the lock arm 208 is rotated in the webbing pull-out direction (in the direction of the arrow 262) by the urging force of the sensor spring 207, and the engaging claw 231 side edge is normally a stopper. 245 abuts. A straight line connecting the rotation shaft 271 of the locking gear 206 and the rotation shaft 272 of the pivot shaft 239 is defined as a reference straight line 273.
 そして、この基準直線273をピボット軸239の回転軸272回りにウエビング引出方向へ角度θだけ回転させた直線275を設定する。続いて、ロックアーム208の係合爪231側端縁部が、ストッパ245に当接されている状態において、当該ロックアーム208の重心位置GPを、この直線275上に、回転軸272からの半径RD(例えば、半径RDは0.0mm~2.0mmである。)の位置に設定する。 Then, a straight line 275 is set by rotating the reference straight line 273 around the rotation axis 272 of the pivot shaft 239 by the angle θ in the webbing pull-out direction. Subsequently, in a state where the edge of the lock arm 208 on the engagement claw 231 side is in contact with the stopper 245, the center of gravity position GP of the lock arm 208 is set on the straight line 275 to the radius from the rotation shaft 272. The position is set to RD (for example, the radius RD is 0.0 mm to 2.0 mm).
 そして、ロッキングギヤ206をウエビング引出方向へ所定角度ずつ(例えば、中心角度5度ずつである。)回転させて、つまり、図23に示す状態を基準状態として、基準直線273を回転軸271回りにウエビング引出方向へ所定角度ずつ回転させて、各回転位置において、ロックアーム208がクラッチギヤ229に係合したウエビング3の引出加速度を測定する。 Then, the locking gear 206 is rotated by a predetermined angle in the webbing pull-out direction (for example, the central angle is 5 degrees), that is, the reference straight line 273 is rotated around the rotation axis 271 with the state shown in FIG. By rotating the webbing in the webbing pull-out direction by a predetermined angle, the pull-out acceleration of the webbing 3 in which the lock arm 208 is engaged with the clutch gear 229 is measured at each rotation position.
 [角度θ=55°の測定例]
 次に、基準直線273をピボット軸239の回転軸272回りにウエビング引出方向(図24中、矢印263方向である。)へ角度θ=55°だけ回転させた直線276上にロックアーム208の重心位置GPを設定した場合の、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果の一例について図24乃至図44に基づいて説明する。
[Measurement example of angle θ = 55 °]
Next, the center of gravity of the lock arm 208 on the straight line 276 obtained by rotating the reference straight line 273 around the rotation axis 272 of the pivot shaft 239 in the webbing pull-out direction (indicated by the arrow 263 in FIG. 24) by the angle θ = 55 °. An example of the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3 when the position GP is set will be described with reference to FIGS.
 尚、図23に示す状態を基準状態として、ロッキングギヤ206をウエビング引出方向(図23中、矢印262方向である。)へ中心角度60度ずつ回転させ、各回転位置において、ウエビング3の引出加速度を0.8Gから2.0Gまで0.1Gずつ変化させて、各引出加速度においてロックアーム208がクラッチギヤ229に係合したか否かを測定した。また、図25~図44において、ロックアーム208がクラッチギヤ229に係合した場合を「○」で示し、ロックアーム208がクラッチギヤ229に係合しなかった場合を「×」で示している。 23, with the state shown in FIG. 23 as a reference state, the locking gear 206 is rotated by a central angle of 60 degrees in the webbing pull-out direction (in the direction of arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 is obtained at each rotation position. Was changed by 0.1 G from 0.8 G to 2.0 G, and whether or not the lock arm 208 was engaged with the clutch gear 229 at each pulling acceleration was measured. 25 to 44, the case where the lock arm 208 is engaged with the clutch gear 229 is indicated by “◯”, and the case where the lock arm 208 is not engaged with the clutch gear 229 is indicated by “X”. .
 先ず、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径1.2mmの座標位置Aに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図25に基づいて説明する。 First, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position A having a radius of 1.2 mm from the rotation shaft 272 of the pivot shaft 239 on the straight line 276 to the lock arm 208 side, The operation result of the locking gear 206 will be described with reference to FIG.
 図25に示すように、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を示す作動結果テーブル281では、ウエビング3の引出加速度が「1.6G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.5G」の場合には、基準状態のときに、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 25, in the operation result table 281 showing the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3, when the pulling acceleration of the webbing 3 is “1.6G” or more, all of the locking gears 206 are displayed. In the rotational position, the lock arm 208 was engaged with the clutch gear 229. When the pulling acceleration of the webbing 3 is “1.5 G”, the lock arm 208 is not engaged with the clutch gear 229 in the reference state.
 また、ウエビング3の引出加速度が「1.4G」の場合には、ロッキングギヤ206が基準状態と、ウエビング引出方向へ60°回転した状態とのときに、ロックアーム208がクラッチギヤ229に係合しなかった。また、ウエビング3の引出加速度が「1.3G」の場合には、ロッキングギヤ206が基準状態と、ウエビング引出方向へ60°回転した状態、300°回転した状態のときに、ロックアーム208がクラッチギヤ229に係合しなかった。 When the pulling acceleration of the webbing 3 is “1.4 G”, the lock arm 208 is engaged with the clutch gear 229 when the locking gear 206 is in the reference state and in the state rotated by 60 ° in the webbing pulling direction. I didn't. Further, when the pulling acceleration of the webbing 3 is “1.3 G”, the lock arm 208 is the clutch when the locking gear 206 is in the reference state, in the state rotated by 60 ° in the webbing pull-out direction, and in the state rotated by 300 °. The gear 229 was not engaged.
 また、ウエビング3の引出加速度が「1.2G」の場合には、ロッキングギヤ206が基準状態と、ウエビング引出方向へ60°回転した状態、120°回転した状態、及び、300°回転した状態のときに、ロックアーム208がクラッチギヤ229に係合しなかった。更に、ウエビング3の引出加速度が「1.1G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 When the pulling acceleration of the webbing 3 is “1.2 G”, the locking gear 206 is in a reference state, a state rotated by 60 ° in the webbing pulling direction, a state rotated by 120 °, and a state rotated by 300 °. At times, the lock arm 208 did not engage the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.1 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径1.2mmの座標位置Aに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.2G」~「1.5G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.4G」である。 Accordingly, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position A having a radius of 1.2 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 with respect to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.2G” to “ 1.5G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.4 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径1.1mmの座標位置Bに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図26に基づいて説明する。 Further, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position B having a radius of 1.1 mm from the rotation axis 272 of the pivot shaft 239 on the straight line 276 to the lock arm 208 side, The operation result of the locking gear 206 will be described with reference to FIG.
 図26に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル282では、ウエビング3の引出加速度が「1.6G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.5G」~「1.2G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.1G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 26, in the operation result table 282 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.6 G” or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pulling acceleration of the webbing 3 is “1.5 G” to “1.2 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.1 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径1.1mmの座標位置Bに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.2G」~「1.5G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.4G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position B having a radius of 1.1 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 with respect to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.2G” to “ 1.5G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.4 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径1.0mmの座標位置Cに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図27に基づいて説明する。 Further, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position C having a radius of 1.0 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the webbing 3 is pulled out. The operation result of the locking gear 206 will be described with reference to FIG.
 図27に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル283では、ウエビング3の引出加速度が「1.5G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.4G」~「1.2G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.1G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 27, in the operation result table 283 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.5 G” or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.4 G” to “1.2 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.1 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径1.0mmの座標位置Cに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.2G」~「1.4G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.3G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position C having a radius of 1.0 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 with respect to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.2G” to “ 1.4G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.3 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.9mmの座標位置Dに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図28に基づいて説明する。 Further, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position D having a radius of 0.9 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 276, the webbing 3 is pulled out. The operation result of the locking gear 206 will be described with reference to FIG.
 図28に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル284では、ウエビング3の引出加速度が「1.5G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.4G」~「1.2G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.1G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 28, in the operation result table 284 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.5 G” or more, the lock arm is in all rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.4 G” to “1.2 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.1 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.9mmの座標位置Dに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.2G」~「1.4G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.3G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position D having a radius of 0.9 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 with respect to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.2G” to “ 1.4G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.3 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.8mmの座標位置Eに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図29に基づいて説明する。 Further, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position E having a radius of 0.8 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the webbing 3 with respect to the pulling acceleration. The operation result of the locking gear 206 will be described with reference to FIG.
 図29に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル285では、ウエビング3の引出加速度が「1.5G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.4G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 29, in the operation result table 285 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.5 G” or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.4 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.8mmの座標位置Eに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.4G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.2G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position E with a radius of 0.8 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.3G” to “ 1.4G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.2 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.7mmの座標位置Fに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図30に基づいて説明する。 Further, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position F having a radius of 0.7 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 276, the webbing 3 with respect to the drawing acceleration. The operation result of the locking gear 206 will be described with reference to FIG.
 図30に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル286では、ウエビング3の引出加速度が「1.5G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.4G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 30, in the operation result table 286 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.5 G” or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.4 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.7mmの座標位置Fに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.4G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.2G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to a coordinate position F having a radius of 0.7 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.3G” to “ 1.4G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.2 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.6mmの座標位置Gに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図31に基づいて説明する。 Further, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position G having a radius of 0.6 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the webbing 3 is pulled out. The operation result of the locking gear 206 will be described with reference to FIG.
 図31に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル287では、ウエビング3の引出加速度が「1.4G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 31, in the operation result table 287 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.4 G” or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is engaged with the clutch gear 229. A state that does not match has occurred. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.6mmの座標位置Gに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」のときにばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.1G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to a coordinate position G having a radius of 0.6 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. When the pulling acceleration of the webbing 3 necessary for engaging the lock arm 208 with the clutch gear 229 is “1.3 G” depending on the revolution position of the lock arm 208 with respect to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26. It is scattered. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.1 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.55mmの座標位置Hに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図32に基づいて説明する。 Further, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position H having a radius of 0.55 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 276, the webbing 3 with respect to the drawing acceleration. The operation result of the locking gear 206 will be described with reference to FIG.
 図32に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル288では、ウエビング3の引出加速度が「1.4G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.3G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 32, in the operation result table 288 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is "1.4G" or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.3 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.55mmの座標位置Hに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.4G」以上であればよい。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to a coordinate position H having a radius of 0.55 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.4 G” or more. I just need it. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.5mmの座標位置Iに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図33に基づいて説明する。 Further, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position I having a radius of 0.5 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the webbing 3 is pulled out. The operation result of the locking gear 206 will be described with reference to FIG.
 図33に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル288では、ウエビング3の引出加速度が「1.4G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.3G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 33, in the operation result table 288 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.4 G” or more, the lock arm is in all rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.3 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.5mmの座標位置Iに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.4G」以上であればよい。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position I having a radius of 0.5 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.4 G” or more. I just need it. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.4mmの座標位置Jに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図34に基づいて説明する。 Further, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position J having a radius of 0.4 mm from the rotation axis 272 of the pivot shaft 239 on the straight line 276 to the lock arm 208 side, The operation result of the locking gear 206 will be described with reference to FIG.
 図34に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル290では、ウエビング3の引出加速度が「1.5G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.4G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.3G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 34, in the operation result table 290 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is "1.5G" or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.4 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is engaged with the clutch gear 229. A state that does not match has occurred. Further, when the pulling acceleration of the webbing 3 was “1.3 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.4mmの座標位置Jに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.4G」のときにばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.1G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to a coordinate position J having a radius of 0.4 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. When the pulling acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.4 G” depending on the revolution position of the lock arm 208 with respect to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26. It is scattered. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.1 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.3mmの座標位置Kに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図35に基づいて説明する。 Further, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position K having a radius of 0.3 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 276, the webbing 3 is pulled out. The operation result of the locking gear 206 will be described with reference to FIG.
 図35に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル291では、ウエビング3の引出加速度が「1.5G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.4G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.3G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 35, in the operation result table 291 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.5G” or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.4 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is engaged with the clutch gear 229. A state that does not match has occurred. Further, when the pulling acceleration of the webbing 3 was “1.3 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.3mmの座標位置Kに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.4G」のときにばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.1G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position K having a radius of 0.3 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. When the pulling acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.4 G” depending on the revolution position of the lock arm 208 with respect to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26. It is scattered. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.1 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.2mmの座標位置Lに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図36に基づいて説明する。 Further, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position L having a radius of 0.2 mm from the rotation axis 272 of the pivot shaft 239 on the straight line 276 to the lock arm 208 side, The operation result of the locking gear 206 will be described with reference to FIG.
 図36に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル292では、ウエビング3の引出加速度が「1.6G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.5G」~「1.4G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.3G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 36, in the operation result table 292 showing the operation result of the locking gear 206, when the pull-out acceleration of the webbing 3 is “1.6G” or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pulling acceleration of the webbing 3 is “1.5 G” to “1.4 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.3 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.2mmの座標位置Lに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.4G」~「1.5G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.2G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to a coordinate position L having a radius of 0.2 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.4G” to “ 1.5G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.2 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.1mmの座標位置Mに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図37に基づいて説明する。 Further, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position M having a radius of 0.1 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 276, the webbing 3 is pulled out. The operation result of the locking gear 206 will be described with reference to FIG.
 図37に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル293では、ウエビング3の引出加速度が「1.6G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.5G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 37, in the operation result table 293 showing the operation result of the locking gear 206, when the pull-out acceleration of the webbing 3 is “1.6G” or more, the lock arm is in all rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.5 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is engaged. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208側の半径0.2mmの座標位置Mに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.5G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.3G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position M having a radius of 0.2 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.3G” to “ 1.5G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.3 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272上の座標位置Nに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図38に基づいて説明する。 Further, as shown in FIG. 24, when the center of gravity position GP is set to the coordinate position N on the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3 is shown in FIG. Based on
 図38に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル294では、ウエビング3の引出加速度が「1.7G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.6G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 38, in the operation result table 294 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.7 G” or more, the lock arm is in all rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pulling acceleration of the webbing 3 is “1.6 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272上の座標位置Nに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.6G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.4G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position N on the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the rotation shaft 271 of the locking gear 206, that is, the ratchet gear 26 Depending on the revolution position of the lock arm 208 with respect to the rotating shaft 271, the pull-out acceleration of the webbing 3 required for engaging the lock arm 208 with the clutch gear 229 varies from “1.3 G” to “1.6 G”. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.4 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径0.2mmの座標位置Oに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図39に基づいて説明する。 Further, as shown in FIG. 24, the webbing 3 is set when the gravity center position GP is set to a coordinate position O having a radius of 0.2 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276. The operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
 図39に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル295では、ウエビング3の引出加速度が「1.7G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.6G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 39, in the operation result table 295 showing the operation result of the locking gear 206, when the pull-out acceleration of the webbing 3 is “1.7G” or more, the lock arm is in all rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pulling acceleration of the webbing 3 is “1.6 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径0.2mmの座標位置Oに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.6G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.4G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position O having a radius of 0.2 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the locking is performed. The pulling acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 according to the revolution position of the lock arm 208 with respect to the rotation shaft 271 of the gear 206, that is, the rotation shaft 271 of the ratchet gear 26 is “1. It varies from 3G to 1.6G. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.4 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径0.4mmの座標位置Pに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図40に基づいて説明する。 Further, as shown in FIG. 24, the webbing 3 is set when the gravity center position GP is set to the coordinate position P having a radius of 0.4 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276. The operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
 図40に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル296では、ウエビング3の引出加速度が「1.8G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.7G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 40, in the operation result table 296 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.8 G” or more, the lock arm is in all the rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.7 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径0.4mmの座標位置Pに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.7G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.5G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position P having a radius of 0.4 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the locking is performed. The pulling acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 according to the revolution position of the lock arm 208 with respect to the rotation shaft 271 of the gear 206, that is, the rotation shaft 271 of the ratchet gear 26 is “1. It varies from “3G” to “1.7G”. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.5 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径0.6mmの座標位置Qに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図41に基づいて説明する。 Further, as shown in FIG. 24, the webbing 3 is set when the gravity center position GP is set to a coordinate position Q having a radius of 0.6 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276. The operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
 図41に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル297では、ウエビング3の引出加速度が「1.8G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.7G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 41, in the operation result table 297 showing the operation result of the locking gear 206, when the pull-out acceleration of the webbing 3 is “1.8G” or more, the lock arm is in all rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.7 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径0.6mmの座標位置Qに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.7G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.5G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to a coordinate position Q having a radius of 0.6 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the locking is performed. The pulling acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 according to the revolution position of the lock arm 208 with respect to the rotation shaft 271 of the gear 206, that is, the rotation shaft 271 of the ratchet gear 26 is “1. It varies from “3G” to “1.7G”. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.5 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径0.8mmの座標位置Rに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図42に基づいて説明する。 Further, as shown in FIG. 24, the webbing 3 is set when the center of gravity position GP is set to the coordinate position R having a radius of 0.8 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276. The operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
 図42に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル298では、ウエビング3の引出加速度が「1.9G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.8G」~「1.2G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.1G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 42, in the operation result table 298 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is “1.9 G” or more, the lock arm is in all the rotation positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.8 G” to “1.2 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.1 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径0.8mmの座標位置Rに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.2G」~「1.8G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.7G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to a coordinate position R having a radius of 0.8 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the locking is performed. The pulling acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 according to the revolution position of the lock arm 208 with respect to the rotation shaft 271 of the gear 206, that is, the rotation shaft 271 of the ratchet gear 26 is “1. It varies from 2G to 1.8G. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.7 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径1.0mmの座標位置Sに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図43に基づいて説明する。 Further, as shown in FIG. 24, the webbing 3 is set when the gravity center position GP is set to the coordinate position S having a radius of 1.0 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276. The operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
 図43に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル299では、ウエビング3の引出加速度が「2.0G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.9G」~「1.2G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.1G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 43, in the operation result table 299 showing the operation result of the locking gear 206, when the pull-out acceleration of the webbing 3 is "2.0G" or more, the lock arm is in all rotational positions of the locking gear 206. 208 engaged with the clutch gear 229. When the pulling acceleration of the webbing 3 is “1.9 G” to “1.2 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.1 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径1.0mmの座標位置Sに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.2G」~「1.9G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.8G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to a coordinate position S having a radius of 1.0 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the locking is performed. The pulling acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 according to the revolution position of the lock arm 208 with respect to the rotation shaft 271 of the gear 206, that is, the rotation shaft 271 of the ratchet gear 26 is “1. It varies from “2G” to “1.9G”. That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.8 G”.
 また、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径1.2mmの座標位置Tに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図44に基づいて説明する。 Further, as shown in FIG. 24, the webbing 3 is set when the gravity center position GP is set to a coordinate position T having a radius of 1.2 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276. The operation result of the locking gear 206 with respect to the pull-out acceleration will be described with reference to FIG.
 図44に示すように、ロッキングギヤ206の作動結果を示す作動結果テーブル300では、ウエビング3の引出加速度が「2.0G」~「1.1G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.0G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 44, in the operation result table 300 showing the operation result of the locking gear 206, when the pulling acceleration of the webbing 3 is "2.0G" to "1.1G" 2, a state where the lock arm 208 is engaged with the clutch gear 229 and a state where the lock arm 208 is not engaged with the clutch gear 229 occurred. Further, when the pulling acceleration of the webbing 3 is “1.0 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線276上のピボット軸239の回転軸272からロックアーム208に対して反対側の半径1.2mmの座標位置Tに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.1G」~「2.0G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「1.0G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to a coordinate position T having a radius of 1.2 mm opposite to the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on the straight line 276, the locking is performed. The pulling acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 according to the revolution position of the lock arm 208 with respect to the rotation shaft 271 of the gear 206, that is, the rotation shaft 271 of the ratchet gear 26 is “1. It varies from 1G "to" 2.0G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “1.0 G”.
 [角度θ=105°の測定例]
 次に、基準直線273をピボット軸239の回転軸272回りにウエビング引出方向(図24中、矢印263方向である。)へ角度θ=105°だけ回転させた直線277上にロックアーム208の重心位置GPを設定した場合の、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果の一例について図24及び図45に基づいて説明する。尚、図45は、上記図25~図44と同様に測定したロッキングギヤ206の作動結果を示している。
[Measurement example of angle θ = 105 °]
Next, the center of gravity of the lock arm 208 on the straight line 277 obtained by rotating the reference straight line 273 around the rotation axis 272 of the pivot shaft 239 in the webbing pull-out direction (indicated by the arrow 263 in FIG. 24) by the angle θ = 105 °. An example of the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3 when the position GP is set will be described with reference to FIGS. FIG. 45 shows the operation result of the locking gear 206 measured in the same manner as in FIGS.
 図24に示すように、重心位置GPは、直線277上のピボット軸239の回転軸272からロックアーム208側の半径0.7mmの座標位置Uに設定した。そして、図23に示す状態を基準状態として、ロッキングギヤ206をウエビング引出方向(図23中、矢印262方向である。)へ中心角度60度ずつ回転させ、各回転位置において、ウエビング3の引出加速度を0.8Gから2.0Gまで0.1Gずつ変化させて、各引出加速度時にロックアーム208がクラッチギヤ229に係合したか否かを測定した。 24, the gravity center position GP is set to a coordinate position U having a radius of 0.7 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 277. Then, with the state shown in FIG. 23 as a reference state, the locking gear 206 is rotated by a center angle of 60 degrees in the webbing pull-out direction (indicated by the arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 is obtained at each rotation position. Was changed by 0.1 G from 0.8 G to 2.0 G, and whether or not the lock arm 208 was engaged with the clutch gear 229 at each pulling acceleration was measured.
 図45に示すように、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を示す作動結果テーブル301では、ウエビング3の引出加速度が「1.7G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.6G」~「1.4G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.3G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 45, in the operation result table 301 showing the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3, when the pulling acceleration of the webbing 3 is “1.7 G” or more, all of the locking gears 206 are displayed. In the rotational position, the lock arm 208 was engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.6 G” to “1.4 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is locked. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.3 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線277上のピボット軸239の回転軸272からロックアーム208側の半径0.7mmの座標位置Uに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.4G」~「1.6G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.3G」である。 Therefore, as shown in FIG. 24, when the gravity center position GP is set to a coordinate position U having a radius of 0.7 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 277, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.4G” to “ 1.6G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.3 G”.
 [角度θ=120°の測定例]
 次に、基準直線273をピボット軸239の回転軸272回りにウエビング引出方向(図24中、矢印263方向である。)へ角度θ=120°だけ回転させた直線278上にロックアーム208の重心位置GPを設定した場合の、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果の一例について図24及び図46に基づいて説明する。尚、図46は、上記図25~図44と同様に測定したロッキングギヤ206の作動結果を示している。
[Measurement example of angle θ = 120 °]
Next, the center of gravity of the lock arm 208 on the straight line 278 obtained by rotating the reference straight line 273 around the rotation axis 272 of the pivot shaft 239 in the webbing pull-out direction (indicated by the arrow 263 in FIG. 24) by the angle θ = 120 °. An example of the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3 when the position GP is set will be described with reference to FIGS. FIG. 46 shows the operation result of the locking gear 206 measured in the same manner as in FIGS.
 図24に示すように、重心位置GPは、直線278上のピボット軸239の回転軸272からロックアーム208側の半径0.1mmの座標位置Vに設定した。そして、図23に示す状態を基準状態として、ロッキングギヤ206をウエビング引出方向(図23中、矢印262方向である。)へ中心角度60度ずつ回転させ、各回転位置において、ウエビング3の引出加速度を0.8Gから2.0Gまで0.1Gずつ変化させて、各引出加速度時にロックアーム208がクラッチギヤ229に係合したか否かを測定した。 24, the center of gravity position GP is set to a coordinate position V having a radius of 0.1 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 278. Then, with the state shown in FIG. 23 as a reference state, the locking gear 206 is rotated by a center angle of 60 degrees in the webbing pull-out direction (indicated by the arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 is obtained at each rotation position. Was changed by 0.1 G from 0.8 G to 2.0 G, and whether or not the lock arm 208 was engaged with the clutch gear 229 at each pulling acceleration was measured.
 図46に示すように、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を示す作動結果テーブル302では、ウエビング3の引出加速度が「1.6G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.5G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 46, in the operation result table 302 indicating the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3, when the pulling acceleration of the webbing 3 is “1.6 G” or more, all of the locking gears 206 are displayed. In the rotational position, the lock arm 208 was engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.5 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is engaged. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図24に示すように、重心位置GPを直線278上のピボット軸239の回転軸272からロックアーム208側の半径0.1mmの座標位置Vに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.5G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.3G」である。 Therefore, as shown in FIG. 24, when the center of gravity position GP is set to a coordinate position V having a radius of 0.1 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 278, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.3G” to “ 1.5G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.3 G”.
 [角度θ=5°の測定例]
 次に、基準直線273をピボット軸239の回転軸272回りにウエビング引出方向(図24中、矢印263方向である。)へ角度θ=5°だけ回転させた直線279上にロックアーム208の重心位置GPを設定した場合の、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果の一例について図24、図47及び図48に基づいて説明する。
[Measurement example of angle θ = 5 °]
Next, the center of gravity of the lock arm 208 on the straight line 279 obtained by rotating the reference straight line 273 around the rotation axis 272 of the pivot shaft 239 in the webbing pull-out direction (indicated by the arrow 263 in FIG. 24) by an angle θ = 5 °. An example of the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3 when the position GP is set will be described with reference to FIGS. 24, 47 and 48.
 尚、図47及び図48は、上記図25~図44と同様に測定したロッキングギヤ206の作動結果を示している。また、図23に示す状態を基準状態として、ロッキングギヤ206をウエビング引出方向(図23中、矢印262方向である。)へ中心角度60度ずつ回転させ、各回転位置において、ウエビング3の引出加速度を0.8Gから2.0Gまで0.1Gずつ変化させて、各引出加速度時にロックアーム208がクラッチギヤ229に係合したか否かを測定した。 47 and 48 show the operation results of the locking gear 206 measured in the same manner as in FIGS. 25 to 44 described above. Further, with the state shown in FIG. 23 as a reference state, the locking gear 206 is rotated by a central angle of 60 degrees in the webbing pull-out direction (indicated by the arrow 262 in FIG. 23), and the pull-out acceleration of the webbing 3 at each rotational position. Was changed by 0.1 G from 0.8 G to 2.0 G, and whether or not the lock arm 208 was engaged with the clutch gear 229 at each pulling acceleration was measured.
 先ず、図24に示すように、重心位置GPを直線279上のピボット軸239の回転軸272からロックアーム208側の半径0.7mmの座標位置Wに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図47に基づいて説明する。 First, as shown in FIG. 24, when the center of gravity position GP is set to a coordinate position W having a radius of 0.7 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 279, the webbing 3 with respect to the drawing acceleration. The operation result of the locking gear 206 will be described with reference to FIG.
 図47に示すように、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を示す作動結果テーブル303では、ウエビング3の引出加速度が「1.5G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.4G」~「1.2G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.1G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 47, in the operation result table 303 showing the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3, when the pulling acceleration of the webbing 3 is “1.5G” or more, all of the locking gears 206 are displayed. In the rotational position, the lock arm 208 was engaged with the clutch gear 229. When the pull-out acceleration of the webbing 3 is “1.4 G” to “1.2 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 was “1.1 G” or less, the lock arm 208 was not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図47に示すように、重心位置GPを直線279上のピボット軸239の回転軸272からロックアーム208側の半径0.7mmの座標位置Wに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.2G」~「1.4G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.3G」である。 Therefore, as shown in FIG. 47, when the gravity center position GP is set to a coordinate position W having a radius of 0.7 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 279, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 with respect to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.2G” to “ 1.4G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.3 G”.
 また、図24に示すように、重心位置GPを直線279上のピボット軸239の回転軸272からロックアーム208側の半径0.1mmの座標位置Xに設定した場合について、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を図48に基づいて説明する。 Further, as shown in FIG. 24, when the gravity center position GP is set to the coordinate position X having a radius of 0.1 mm on the lock arm 208 side from the rotation shaft 272 of the pivot shaft 239 on the straight line 279, The operation result of the locking gear 206 will be described with reference to FIG.
 図48に示すように、ウエビング3の引出加速度に対するロッキングギヤ206の作動結果を示す作動結果テーブル304では、ウエビング3の引出加速度が「1.6G」以上の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合した。また、ウエビング3の引出加速度が「1.5G」~「1.3G」の場合には、ロッキングギヤ206の各回転位置において、ロックアーム208がクラッチギヤ229に係合する状態と、ロックアーム208がクラッチギヤ229に係合しない状態とが発生した。更に、ウエビング3の引出加速度が「1.2G」以下の場合には、ロッキングギヤ206の全ての回転位置において、ロックアーム208がクラッチギヤ229に係合しなかった。 As shown in FIG. 48, in the operation result table 304 indicating the operation result of the locking gear 206 with respect to the pulling acceleration of the webbing 3, when the pulling acceleration of the webbing 3 is “1.6G” or more, all of the locking gears 206 are displayed. In the rotational position, the lock arm 208 was engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.5 G” to “1.3 G”, the lock arm 208 is engaged with the clutch gear 229 at each rotational position of the locking gear 206, and the lock arm 208 is engaged. Is not engaged with the clutch gear 229. Further, when the pulling acceleration of the webbing 3 is “1.2 G” or less, the lock arm 208 is not engaged with the clutch gear 229 at all the rotational positions of the locking gear 206.
 従って、図48に示すように、重心位置GPを直線279上のピボット軸239の回転軸272からロックアーム208側の半径0.1mmの座標位置Xに設定した場合には、ロッキングギヤ206の回転軸271、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置によって、ロックアーム208をクラッチギヤ229に係合させるために必要なウエビング3の引出加速度は、「1.3G」~「1.5G」でばらついている。即ち、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.3G」である。 Therefore, as shown in FIG. 48, when the center of gravity position GP is set to a coordinate position X having a radius of 0.1 mm on the lock arm 208 side from the rotation axis 272 of the pivot shaft 239 on the straight line 279, the rotation of the locking gear 206 is performed. Depending on the revolving position of the lock arm 208 relative to the shaft 271, that is, the rotation shaft 271 of the ratchet gear 26, the pull-out acceleration of the webbing 3 required to engage the lock arm 208 with the clutch gear 229 is “1.3G” to “ 1.5G ". That is, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 where the lock arm 208 engages with the clutch gear 229 is “0.3 G”.
 [感度誤差の分布]
 次に、上記のように基準直線273をピボット軸239の回転軸272回りにウエビング引出方向(図24中、矢印263方向である。)へ角度θ=0°から角度θ=360°まで5°ずつ回転させた各直線上において、ロックアーム208の重心位置GPをピボット軸239の回転軸272からロックアーム208側の半径RD=0.0mmから半径RD=2.0mmまで0.1mm間隔で設定した場合の、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)について図49に基づいて説明する。
[Sensitivity error distribution]
Next, as described above, the reference straight line 273 is moved around the rotation axis 272 of the pivot shaft 239 in the webbing pull-out direction (in the direction of the arrow 263 in FIG. 24) from the angle θ = 0 ° to the angle θ = 360 ° to 5 °. The center of gravity position GP of the lock arm 208 is set at intervals of 0.1 mm from the radius RD = 0.0 mm to the radius RD = 2.0 mm on the side of the lock arm 208 from the rotation shaft 272 of the pivot shaft 239 on each straight line rotated. Variations in the pull-out acceleration (sensitivity error) of the webbing 3 in which the lock arm 208 engages with the clutch gear 229 will be described with reference to FIG.
 図49に示すように、感度誤差分布図311は、横軸に、基準直線273からロックアーム208の重心位置GPを設定した各直線までのウエビング引出方向への角度θを0°から360°まで設定している。また、感度誤差分布図311は、縦軸に、ピボット軸239の回転軸272、つまり、ロックアーム208の回転中心からロックアーム208の重心位置GPまでの半径RDを0.0mmから2.0mmまで設定している。 As shown in FIG. 49, the sensitivity error distribution chart 311 shows that the angle θ in the webbing pull-out direction from the reference straight line 273 to each straight line where the center of gravity position GP of the lock arm 208 is set on the horizontal axis is from 0 ° to 360 °. It is set. In addition, in the sensitivity error distribution diagram 311, the radius RD from the rotation axis 272 of the pivot shaft 239, that is, the rotation center of the lock arm 208 to the center of gravity GP of the lock arm 208 is 0.0 mm to 2.0 mm. It is set.
 そして、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)を0Gから1.5Gまで0.1G間隔で区分けして示している。従って、感度誤差分布図311の図49中、左下側の略菱形の区画312内では、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.1G以下」である。 And, the fluctuation (sensitivity error) of the pull-out acceleration of the webbing 3 in which the lock arm 208 engages with the clutch gear 229 is shown divided from 0G to 1.5G at intervals of 0.1G. Therefore, in FIG. 49 of the sensitivity error distribution diagram 311, in the substantially rhombic section 312 on the lower left side, the variation in the pull-out acceleration (sensitivity error) of the webbing 3 in which the lock arm 208 engages the clutch gear 229 is “0”. .1G or less ".
 つまり、ウエビング3の引出加速度のバラツキ(感度の誤差)が、「0.1G以下」となる区画312は、角度θ=55°のときに、ロックアーム208の回転中心からの距離が「0.32mm」から「0.67mm」までのほぼ最大幅となり、角度θ=55°から左右方向へ離れるに従って徐々に狭くなり、各角度θ=35°、75°のときにロックアーム208の回転中心からの距離が「0.5mm」となる略菱形の区画である。 That is, in the section 312 where the variation in the pull-out acceleration (sensitivity error) of the webbing 3 is “0.1 G or less”, when the angle θ is 55 °, the distance from the rotation center of the lock arm 208 is “0. 32 mm ”to“ 0.67 mm ”, and the width gradually decreases from the angle θ = 55 ° in the left-right direction. From each rotation angle of the lock arm 208 when the angles θ = 35 ° and 75 °. This is a roughly rhombic section with a distance of “0.5 mm”.
 また、感度誤差分布図311の図49中、左下側の上方に凸の略おむすび型の区画313内では、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)は、「0.2G以下」である。 Further, in FIG. 49 of the sensitivity error distribution diagram 311, the variation in the pull-out acceleration of the webbing 3 in which the lock arm 208 engages with the clutch gear 229 (sensitivity error) is formed in a generally rice ball-shaped section 313 that protrudes upward on the lower left side. ) Is “0.2 G or less”.
 つまり、ウエビング3の引出加速度のバラツキ(感度の誤差)が、「0.2G以下」となる区画313は、角度θ=55°のときに、ロックアーム208の回転中心からの距離が「0.12mm」から「0.90mm」までのほぼ最大幅となり、角度θ=55°から左右方向へ離れるに従って徐々に狭くなり、各角度θ=0°、108°のときにロックアーム208の回転中心からの距離が「0.4mm~0.5mm」となる略おむすび形の区画である。 That is, in the section 313 where the variation in the pull-out acceleration (sensitivity error) of the webbing 3 is “0.2 G or less”, the distance from the rotation center of the lock arm 208 is “0. 12 mm ”to“ 0.90 mm ”, and gradually decreases from the angle θ = 55 ° in the left-right direction, and from the rotation center of the lock arm 208 when the angles θ = 0 ° and 108 °. Is a generally rice ball-shaped section having a distance of “0.4 mm to 0.5 mm”.
 また、感度誤差分布図311の区画313の外側の区画314は、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)が、「0.3G以下」となる区画である。 Further, in the sensitivity error distribution diagram 311, the outer section 314 of the section 313 has a variation in the pull-out acceleration (sensitivity error) of the webbing 3 where the lock arm 208 engages the clutch gear 229 is “0.3 G or less”. It is a parcel.
 [重心位置の分布領域]
 次に、上記感度誤差分布図311の各区画312、313に対応するロックアーム208の重心位置GPの分布領域について図50に基づいて説明する。尚、図50は、図23に示す状態を基準状態として、図24の構成と同じであり、各座標位置A~Xは、ロックアーム208上の同一座標位置を示している。つまり、図23に示すように、ロックアーム208は、センサスプリング207の付勢力によってウエビング引出方向(矢印262方向である。)へ回動されて、係合爪231側端縁部がストッパ245に当接された状態である。
[Distribution area of the center of gravity]
Next, the distribution area of the gravity center position GP of the lock arm 208 corresponding to each of the sections 312 and 313 in the sensitivity error distribution diagram 311 will be described with reference to FIG. 50 is the same as the configuration of FIG. 24 with the state shown in FIG. 23 as a reference state, and the coordinate positions A to X indicate the same coordinate position on the lock arm 208. That is, as shown in FIG. 23, the lock arm 208 is rotated in the webbing pull-out direction (in the direction of the arrow 262) by the urging force of the sensor spring 207, and the end edge portion on the engagement claw 231 side becomes the stopper 245. It is in a contact state.
 図50に示すように、感度誤差分布図311の区画312に対応するロックアーム208の重心位置GPの分布領域316は、基準直線273をピボット軸239の回転軸272回りにウエビング引出方向(図50中、矢印263方向である。)へ角度θ=35°だけ回転させた直線321から、該基準直線273から角度θ=75°だけ回転させた直線322まで回転させたロックアーム208側の範囲内において、この角度θ=35°~75°を2等分する角度θ=55°における2等分線276(図24中の直線276である。)上に、ロックアーム208側の半径0.32mmから半径0.67mmまでの最大幅を有している。 As shown in FIG. 50, the distribution region 316 of the center of gravity position GP of the lock arm 208 corresponding to the section 312 of the sensitivity error distribution diagram 311 has the reference straight line 273 around the rotation axis 272 of the pivot shaft 239 in the webbing withdrawal direction (FIG. 50). In the direction of the arrow 263.) Within the range on the lock arm 208 side rotated from the straight line 321 rotated by the angle θ = 35 ° to the straight line 322 rotated from the reference straight line 273 by the angle θ = 75 °. The angle θ = 35 ° to 75 ° is equally divided into two bisectors 276 (straight line 276 in FIG. 24) at an angle θ = 55 °, and the radius on the lock arm 208 side is 0.32 mm. To a radius of 0.67 mm.
 また、ロックアーム208の重心位置GPの分布領域316は、該2等分線276から両円周方向に離れるに従って徐々に狭くなり、両端部が各直線321、322によって形成される境界部にほぼ接する略菱形領域である。従って、ロックアーム208の重心位置GPを当該分布領域316内に位置するように設定することによって、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)を「0.1G以下」に設定することができる。 Further, the distribution region 316 of the center of gravity position GP of the lock arm 208 is gradually narrowed away from the bisector 276 in both circumferential directions, and both end portions are almost at the boundary portions formed by the straight lines 321 and 322. It is a substantially rhombic region in contact. Therefore, by setting the center of gravity position GP of the lock arm 208 to be located within the distribution region 316, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 with which the lock arm 208 engages with the clutch gear 229 is expressed as “ It can be set to “0.1 G or less”.
 また、感度誤差分布図311の区画313に対応するロックアーム208の重心位置GPの分布領域317は、基準直線273と、該基準直線273から角度θ=108°だけ回転させた直線323まで回転させたロックアーム208側の範囲内において、この角度θ=0°~108°をほぼ2等分する角度θ=55°における2等分線276(図24中の直線276である。)上に、ロックアーム208側の半径0.12mmから半径0.9mmまでの最大幅を有している。 Further, the distribution region 317 of the center of gravity position GP of the lock arm 208 corresponding to the section 313 of the sensitivity error distribution diagram 311 is rotated to a reference straight line 273 and a straight line 323 rotated from the reference straight line 273 by an angle θ = 108 °. In the range on the lock arm 208 side, on the bisector 276 (a straight line 276 in FIG. 24) at an angle θ = 55 ° that bisects this angle θ = 0 ° to 108 °. The lock arm 208 has a maximum width from a radius of 0.12 mm to a radius of 0.9 mm.
 また、ロックアーム208の重心位置GPの分布領域317は、該2等分線276から両円周方向に離れるに従って徐々に狭くなり、両端部が基準直線273と直線323によって形成される境界部にほぼ接する略菱形領域である。従って、ロックアーム208の重心位置GPを当該分布領域317内に位置するように設定することによって、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)を「0.2G以下」に設定することができる。尚、各分布領域316、317は、ほぼ相似である。 Further, the distribution region 317 of the center of gravity position GP of the lock arm 208 is gradually narrowed away from the bisector 276 in both circumferential directions, and both end portions are at the boundary portion formed by the reference straight line 273 and the straight line 323. It is a substantially rhombic region that is almost in contact. Therefore, by setting the center of gravity position GP of the lock arm 208 so as to be located in the distribution region 317, the variation (sensitivity error) in the pull-out acceleration of the webbing 3 with which the lock arm 208 engages the clutch gear 229 is expressed as “ It can be set to “0.2 G or less”. Note that the distribution regions 316 and 317 are substantially similar.
 以上詳細に説明した通り、本実施形態に係るシートベルト用リトラクタ1では、ロックアーム208の重心位置GPを分布領域317(図50参照)内に位置するように設定することによって、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)を「0.2G以下」に設定することができる。 As described in detail above, in the seatbelt retractor 1 according to the present embodiment, the lock arm 208 is configured so that the center of gravity GP of the lock arm 208 is set within the distribution region 317 (see FIG. 50). The variation (sensitivity error) of the drawing acceleration of the webbing 3 engaged with the clutch gear 229 can be set to “0.2 G or less”.
 これにより、ユーザの体型や着座姿勢によって、巻取ドラムユニット6の回転軸、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置が変化しても、緊急時に巻取ドラムユニット6をロックするウエビング3の引出加速度のバラツキを0.2G以下にして、パウル37がラチェットギヤ26のラチェットギヤ部26Aに係合する緊急ロック機構の作動感度を安定化させることが可能となる。 Thereby, even if the revolving position of the lock arm 208 with respect to the rotating shaft of the winding drum unit 6, that is, the rotating shaft 271 of the ratchet gear 26, changes depending on the user's body shape and sitting posture, the winding drum unit 6 is locked in an emergency. It is possible to stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 engages with the ratchet gear portion 26A of the ratchet gear 26 by setting the variation in the pull-out acceleration of the webbing 3 to 0.2 G or less.
 また、ロックアーム208の重心位置GPを分布領域316(図50参照)内に位置するように設定することによって、ロックアーム208がクラッチギヤ229に係合するウエビング3の引出加速度のバラツキ(感度の誤差)を「0.1G以下」に設定することができる。 Further, by setting the center of gravity position GP of the lock arm 208 to be located within the distribution region 316 (see FIG. 50), variation in the pull-out acceleration (sensitivity of the webbing 3) at which the lock arm 208 engages the clutch gear 229 is set. Error) can be set to “0.1 G or less”.
 これにより、ユーザの体型や着座姿勢によって、巻取ドラムユニット6の回転軸、つまり、ラチェットギヤ26の回転軸271に対するロックアーム208の公転位置が変化しても、緊急時に巻取ドラムユニット6をロックするウエビング3の引出加速度のバラツキを0.1G以下にして、パウル37がラチェットギヤ26のラチェットギヤ部26Aに係合する緊急ロック機構の作動感度を更に安定化させることが可能となる。 Thereby, even if the revolving position of the lock arm 208 with respect to the rotating shaft of the winding drum unit 6, that is, the rotating shaft 271 of the ratchet gear 26, changes depending on the user's body shape and sitting posture, the winding drum unit 6 is locked in an emergency. It is possible to further stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26 by setting the variation in the pull-out acceleration of the webbing 3 to 0.1 G or less.
 また、略弓形に形成された金属製のイナーシャマス209を略弓形に形成された合成樹脂製のロックアーム208の溝部240内に装着することによって、該ロックアーム208を合成樹脂だけで作製する場合よりも小型化することができる。また、金属製のイナーシャマス209の形状を変更することによって、クラッチギヤ229に係合するロックアーム208の重心位置GPを容易に設定することができる。更に、合成樹脂製のロックアーム208の一端部にクラッチギヤ229に係合する係合爪231が形成されているため、ロックアーム208の構造の簡素化を図ることができる。 Further, when the metal inertia mass 209 formed in a substantially bow shape is mounted in the groove 240 of the lock arm 208 made of a synthetic resin formed in a substantially bow shape, the lock arm 208 is made of only a synthetic resin. Can be made smaller. Further, by changing the shape of the metal inertia mass 209, the gravity center position GP of the lock arm 208 engaged with the clutch gear 229 can be easily set. Furthermore, since the engaging claw 231 that engages with the clutch gear 229 is formed at one end of the lock arm 208 made of synthetic resin, the structure of the lock arm 208 can be simplified.
 また、ロックアーム208のバネ支持ピン244は、先端部の外周面が、ピボット軸239側から、このピボット軸239に対して反対側へ先端部に向かって斜めに削られた先細り形状に形成されている。つまり、ロックアーム208のバネ支持ピン244は、先端側の外周面がセンサスプリング207の略細長S字状に撓み変形した内側にほぼ沿うように、該センサスプリング207の撓んだ内側へ接近する外周面が削られた先細り形状に形成されている。 Further, the spring support pin 244 of the lock arm 208 is formed in a tapered shape in which the outer peripheral surface of the distal end portion is cut obliquely from the pivot shaft 239 side toward the distal end portion on the opposite side to the pivot shaft 239. ing. That is, the spring support pin 244 of the lock arm 208 approaches the inner side where the sensor spring 207 is bent so that the outer peripheral surface on the tip side is substantially along the inner side where the sensor spring 207 is bent and deformed into a substantially elongated S shape. The outer peripheral surface is formed in a tapered shape.
 これにより、ウエビング3の急激な引き出しによって、ロックアーム208がウエビング巻取方向へ回動して、センサスプリング207が略細長S字状に撓みながら縮んでも、バネ支持ピン244はセンサスプリング207の内側と擦れないため、当該センサスプリング207はスムーズに縮むことができる。従って、センサスプリング207がスムーズに抵抗なく縮むため、パウル37がラチェットギヤ26のラチェットギヤ部26Aに係合する緊急ロック機構の作動感度を更に安定化させることが可能となる。 As a result, even if the lock arm 208 is rotated in the webbing take-up direction by the webbing 3 being suddenly pulled out, and the sensor spring 207 is contracted while being bent into a substantially slender S shape, the spring support pin 244 remains inside the sensor spring 207. Therefore, the sensor spring 207 can be contracted smoothly. Accordingly, since the sensor spring 207 is smoothly contracted without resistance, it is possible to further stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26.
 更に、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤ229に係合した場合には、ロックアーム208のバネ支持ピン244の先端部が、ロッキングギヤ206のバネ支持ピン243の先端部の近傍に位置する高さに立設されている。これにより、バネ支持ピン244の先端部と、バネ支持ピン243の先端部とが近接するため、センサスプリング207の縮んだ状態を一定にすることができ、パウル37がラチェットギヤ26のラチェットギヤ部26Aに係合する緊急ロック機構の作動感度を更に安定化させることが可能となる。 Further, when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229, the distal end portion of the spring support pin 244 of the lock arm 208 is locked. The gear 206 is erected at a height located near the tip of the spring support pin 243 of the gear 206. As a result, since the tip end portion of the spring support pin 244 and the tip end portion of the spring support pin 243 are close to each other, the contracted state of the sensor spring 207 can be made constant, and the pawl 37 can be set to the ratchet gear portion of the ratchet gear 26. It becomes possible to further stabilize the operation sensitivity of the emergency lock mechanism engaged with 26A.
 尚、本発明は前記実施形態に限定されることはなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。例えば、以下のようにしてもよい。
 尚、以下の説明において上記図1乃至図24の前記実施形態に係るシートベルト用リトラクタ1の構成等と同一符号は、該前記実施形態に係るシートベルト用リトラクタ1の構成等と同一あるいは相当部分を示すものである。
In addition, this invention is not limited to the said embodiment, Of course, various improvement and deformation | transformation are possible within the range which does not deviate from the summary of this invention. For example, the following may be used.
In the following description, the same reference numerals as in the configuration of the seat belt retractor 1 according to the embodiment in FIGS. 1 to 24 are the same as or equivalent to the configuration of the seat belt retractor 1 according to the embodiment. Is shown.
 (A)例えば、上記ロッキングギヤ206のバネ支持ピン243に替えて、図51に示すロッキングギヤ206のバネ支持ピン331を設け、且つ、上記ロックアーム208のバネ支持ピン244に替えて、図51に示すロックアーム208のバネ支持ピン332を設けるようにしてもよい。図51は他の実施形態に係るロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤ229に係合した場合における、センサスプリング207の撓み状態を示す要部拡大図である。 (A) For example, instead of the spring support pin 243 of the locking gear 206, a spring support pin 331 of the locking gear 206 shown in FIG. 51 is provided, and instead of the spring support pin 244 of the lock arm 208, FIG. A spring support pin 332 of the lock arm 208 shown in FIG. 51 shows a bent state of the sensor spring 207 when the lock arm 208 according to another embodiment is rotated in the webbing winding direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. FIG. It is a principal part enlarged view.
 図51に示すように、ロックアーム208の平面視コの字形に所定深さ(例えば、深さ約2mm~3mmである。)窪んだ凹部の底面部に立設されたバネ支持ピン332は、細長の略円錐台状に形成されている。また、ロッキングギヤ206の底面部236に平行に立設されたバネ支持ピン331は、先端部の外周面が、固定ボス237に対して反対側から、この固定ボス237側へ先端部に向かって斜めに削られた先細り形状に形成されている。 As shown in FIG. 51, the spring support pin 332 erected on the bottom surface of the recessed portion having a predetermined depth (for example, a depth of about 2 mm to 3 mm) in a U-shape in plan view of the lock arm 208, It is formed in an elongated substantially truncated cone shape. Further, the spring support pin 331 erected in parallel with the bottom surface portion 236 of the locking gear 206 has an outer peripheral surface of the tip portion from the side opposite to the fixed boss 237 toward the fixed boss 237 toward the tip portion. It is formed in a tapered shape that is cut obliquely.
 つまり、ロッキングギヤ206のバネ支持ピン331は、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されて、クラッチギヤ229に係合した場合に、先端側の外周面がセンサスプリング207の略細長S字状に撓み変形した内側にほぼ沿うように、該センサスプリング207の撓んだ内側へ接近する外周面が削られた先細り形状に形成されている。 That is, the spring support pin 331 of the locking gear 206 has an outer periphery on the tip side when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. The sensor spring 207 is formed in a tapered shape in which the outer peripheral surface approaching the bent inner side of the sensor spring 207 is cut so that the surface is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape.
 また、ロッキングギヤ206のバネ支持ピン331は、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されて、クラッチギヤ229に係合した場合に、先端部がロックアーム208のバネ支持ピン332の先端部近傍位置に位置する高さに立設されている。 The spring support pin 331 of the locking gear 206 is locked at the tip when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. The arm 208 is erected at a height located near the tip of the spring support pin 332 of the arm 208.
 従って、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤ229に係合した場合には、ロッキングギヤ206のバネ支持ピン331の先端は、センサスプリング207の略細長S字状に撓み変形した内側のほぼ中央に位置すると共に、先端部のロックアーム208側の外周面が、略細長S字状に撓み変形したセンサスプリング207の内側にほぼ沿っている。 Therefore, when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229, the tip of the spring support pin 331 of the locking gear 206 is aligned with the sensor spring. The outer peripheral surface on the lock arm 208 side of the tip portion is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape. Yes.
 これにより、ウエビング3の急激な引き出しによって、ロックアーム208がウエビング巻取方向へ回動して、センサスプリング207が略細長S字状に撓みながら縮んでも、バネ支持ピン331はセンサスプリング207の内側と擦れないため、当該センサスプリング207はスムーズに縮むことができる。従って、センサスプリング207がスムーズに抵抗なく縮むため、パウル37がラチェットギヤ26のラチェットギヤ部26Aに係合する緊急ロック機構の作動感度を更に安定化させることが可能となる。 As a result, even if the lock arm 208 is rotated in the webbing take-up direction due to abrupt withdrawal of the webbing 3 and the sensor spring 207 is contracted while being bent into a substantially slender S shape, the spring support pin 331 remains inside the sensor spring 207. Therefore, the sensor spring 207 can be contracted smoothly. Accordingly, since the sensor spring 207 is smoothly contracted without resistance, it is possible to further stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26.
 更に、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤ229に係合した場合には、ロッキングギヤ206のバネ支持ピン331の先端部が、ロックアーム208のバネ支持ピン332の先端部の近傍に位置する高さに立設されている。これにより、バネ支持ピン331の先端部と、バネ支持ピン332の先端部とが近接するため、センサスプリング207が縮んだ状態を一定にすることができ、パウル37がラチェットギヤ26のラチェットギヤ部26Aに係合する緊急ロック機構の作動感度を更に安定化させることが可能となる。 Further, when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229, the tip of the spring support pin 331 of the locking gear 206 is locked. The arm 208 is erected at a height located near the tip of the spring support pin 332 of the arm 208. As a result, since the tip end portion of the spring support pin 331 and the tip end portion of the spring support pin 332 are close to each other, the state in which the sensor spring 207 is contracted can be made constant, and the pawl 37 can be kept in the ratchet gear portion of the ratchet gear 26. It becomes possible to further stabilize the operation sensitivity of the emergency lock mechanism engaged with 26A.
 (B)また、例えば、上記ロッキングギヤ206のバネ支持ピン243に替えて、図52に示すロッキングギヤ206のバネ支持ピン335を設け、且つ、上記ロックアーム208のバネ支持ピン244に替えて、図52に示すロックアーム208のバネ支持ピン336を設けるようにしてもよい。図52は他の実施形態に係るロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤ229に係合した場合における、センサスプリング207の撓み状態を示す要部拡大図である。 (B) Further, for example, a spring support pin 335 of the locking gear 206 shown in FIG. 52 is provided instead of the spring support pin 243 of the locking gear 206, and the spring support pin 244 of the lock arm 208 is changed. A spring support pin 336 of the lock arm 208 shown in FIG. 52 may be provided. 52 shows a bent state of the sensor spring 207 when the lock arm 208 according to another embodiment is rotated in the webbing winding direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. FIG. It is a principal part enlarged view.
 図52に示すように、ロッキングギヤ206の底面部236に平行に立設されたバネ支持ピン335と、ロックアーム208の平面視コの字形に所定深さ(例えば、深さ約2mm~3mmである。)窪んだ凹部の底面部に立設されたバネ支持ピン336とは、ほぼ同じ高さに立設されている。また、各バネ支持ピン335、336は、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されて、クラッチギヤ229に係合した場合に、先端部が互いに近接するようにほぼ同じ高さで立設されている。 As shown in FIG. 52, a spring support pin 335 erected in parallel to the bottom surface portion 236 of the locking gear 206 and a U-shape of the lock arm 208 in a plan view in a predetermined depth (for example, a depth of about 2 mm to 3 mm). There is a spring support pin 336 that is erected on the bottom surface of the recessed part that is recessed. The spring support pins 335 and 336 have their tips close to each other when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. It is erected at almost the same height.
 また、ロッキングギヤ206の底面部236に平行に立設されたバネ支持ピン335は、先端部の外周面が、固定ボス237に対して反対側から、この固定ボス237側へ先端部に向かって斜めに削られた先細り形状に形成されている。また、ロックアーム208のバネ支持ピン336は、先端部の外周面が、ピボット軸239側から、このピボット軸239に対して反対側へ先端部に向かって斜めに削られた先細り形状に形成されている。 Further, the spring support pin 335 erected in parallel with the bottom surface portion 236 of the locking gear 206 has an outer peripheral surface of the tip portion from the opposite side to the fixed boss 237 toward the fixed boss 237 toward the tip portion. It is formed in a tapered shape that is cut obliquely. Further, the spring support pin 336 of the lock arm 208 is formed in a tapered shape in which the outer peripheral surface of the distal end portion is cut obliquely from the pivot shaft 239 side toward the distal end portion on the opposite side to the pivot shaft 239. ing.
 つまり、ロッキングギヤ206のバネ支持ピン335は、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されて、クラッチギヤ229に係合した場合に、先端側の外周面がセンサスプリング207の略細長S字状に撓み変形した内側にほぼ沿うように、該センサスプリング207の撓んだ内側へ接近する外周面が削られた先細り形状に形成されている。 That is, the spring support pin 335 of the locking gear 206 has an outer periphery on the tip side when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. The sensor spring 207 is formed in a tapered shape in which the outer peripheral surface approaching the bent inner side of the sensor spring 207 is cut so that the surface is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape.
 また、ロックアーム208のバネ支持ピン336は、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されて、クラッチギヤ229に係合した場合に、先端側の外周面がセンサスプリング207の略細長S字状に撓み変形した内側にほぼ沿うように、該センサスプリング207の撓んだ内側へ接近する外周面が削られた先細り形状に形成されている。 Further, the spring support pin 336 of the lock arm 208 has an outer periphery on the tip side when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229. The sensor spring 207 is formed in a tapered shape in which the outer peripheral surface approaching the bent inner side of the sensor spring 207 is cut so that the surface is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape.
 従って、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤ229に係合した場合には、ロッキングギヤ206のバネ支持ピン335の先端は、センサスプリング207の略細長S字状に撓み変形した内側のほぼ中央に位置すると共に、先端部のロックアーム208側の外周面が、略細長S字状に撓み変形したセンサスプリング207の内側にほぼ沿っている。また、ロックアーム208のバネ支持ピン336の先端は、センサスプリング207の略細長S字状に撓み変形した内側のほぼ中央に位置すると共に、先端部のピボット軸239側の外周面が、略細長S字状に撓み変形したセンサスプリング207の内側にほぼ沿っている。 Therefore, when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229, the tip of the spring support pin 335 of the locking gear 206 is The outer peripheral surface on the lock arm 208 side of the tip portion is substantially along the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape. Yes. Further, the tip of the spring support pin 336 of the lock arm 208 is positioned substantially at the center of the inner side of the sensor spring 207 which is bent and deformed into a substantially elongated S shape, and the outer peripheral surface of the tip portion on the side of the pivot shaft 239 is substantially elongated. It is almost along the inside of the sensor spring 207 which is bent and deformed in an S shape.
 これにより、ウエビング3の急激な引き出しによって、ロックアーム208がウエビング巻取方向へ回動して、センサスプリング207が略細長S字状に撓みながら縮んでも、各バネ支持ピン335、336はセンサスプリング207の内側と擦れないため、当該センサスプリング207はスムーズに縮むことができる。従って、センサスプリング207がスムーズに抵抗なく縮むため、パウル37がラチェットギヤ26のラチェットギヤ部26Aに係合する緊急ロック機構の作動感度を更に安定化させることが可能となる。 As a result, even if the lock arm 208 is rotated in the webbing take-up direction due to a sudden pull-out of the webbing 3 and the sensor spring 207 is contracted while being bent into a substantially slender S shape, the spring support pins 335 and 336 are sensor springs. Since it does not rub against the inside of 207, the sensor spring 207 can be contracted smoothly. Accordingly, since the sensor spring 207 is smoothly contracted without resistance, it is possible to further stabilize the operation sensitivity of the emergency lock mechanism in which the pawl 37 is engaged with the ratchet gear portion 26A of the ratchet gear 26.
 更に、ロックアーム208がセンサスプリング207の付勢力に抗してウエビング巻取方向へ回動されてクラッチギヤ229に係合した場合には、ロッキングギヤ206のバネ支持ピン335の先端部が、ロックアーム208のバネ支持ピン336の先端部の近傍に位置する高さに立設されている。これにより、バネ支持ピン335の先端部と、バネ支持ピン336の先端部とが近接するため、センサスプリング207の縮んだ状態を一定にすることができ、パウル37がラチェットギヤ26のラチェットギヤ部26Aに係合する緊急ロック機構の作動感度を更に安定化させることが可能となる。 Further, when the lock arm 208 is rotated in the webbing take-up direction against the urging force of the sensor spring 207 and engaged with the clutch gear 229, the tip of the spring support pin 335 of the locking gear 206 is locked. The arm 208 is erected at a height located near the tip of the spring support pin 336 of the arm 208. As a result, since the tip end portion of the spring support pin 335 and the tip end portion of the spring support pin 336 are close to each other, the contracted state of the sensor spring 207 can be made constant, and the pawl 37 can be set to the ratchet gear portion of the ratchet gear 26. It becomes possible to further stabilize the operation sensitivity of the emergency lock mechanism engaged with 26A.

Claims (5)

  1.  ハウジングと、
     前記ハウジングに回転可能に収納されてウエビングを巻回収納する巻取ドラムと、
     前記ハウジングの一方の側壁部の外側に取り付けられて、通常時前記巻取ドラムの一端側を回転自在に支持し、前記ウエビングが所定以上の引出加速度で引き出されたときに該巻取ドラムのウエビング引出方向への回転を阻止するロック手段と、
     を備え、
     前記ロック手段は、
       通常時前記巻取ドラムと共に回転し、前記ウエビングが所定以上の引出加速度で引き出されたときに作動する引出加速度感知部材と、
       前記引出加速度感知部材の作動によって前記巻取ドラムのウエビング引出方向への回転を阻止するパウルを作動させるクラッチ部材と、
     を有し、
     前記引出加速度感知部材は、
       前記巻取ドラムと一体的に回転するロッキングギヤと、
       前記ロッキングギヤの回転軸から半径方向外側へ所定距離離れた位置に回動可能に軸支されて該ロッキングギヤの回転軸を囲むように配置された略弓形の慣性体と、
       前記慣性体を前記ロッキングギヤに対してウエビング引出方向へ回動するように付勢するセンサスプリングと、
     を有し、
     前記クラッチ部材は、前記巻取ドラムの回転軸と同軸に設けられて、前記慣性体が前記センサスプリングの付勢力に抗してウエビング巻取方向へ回動することにより係合するクラッチギヤが内周面に設けられた円環状のリブ部を有し、
     前記慣性体は、前記センサスプリングによってウエビング引出方向へ回動されてストッパに当接されている場合には、重心位置が前記ロッキングギヤの回転軸と該慣性体の回転軸を結ぶ基準直線から該基準直線を該慣性体の回転軸を中心にウエビング引出方向側へ第1角度回転させた位置までの該慣性体側の第1範囲内において、該第1角度を略2等分する2等分線上に最大幅を有し、該2等分線から両円周方向に離れるに従って狭くなって円周方向両端縁部で境界部にほぼ接するように設定された第1領域内に位置するように設定され、
     該慣性体は、前記クラッチギヤに係合する前記ウエビングの引出加速度のバラツキが、略0.2G以下になるように設定されていることを特徴とするシートベルト用リトラクタ。
    A housing;
    A winding drum that is rotatably stored in the housing and winds and stores the webbing;
    It is attached to the outside of one side wall portion of the housing, and normally supports one end side of the winding drum so as to be rotatable. When the webbing is pulled out at a predetermined or higher pulling acceleration, the webbing of the winding drum Locking means for preventing rotation in the pull-out direction;
    With
    The locking means is
    A drawing acceleration sensing member that rotates with the winding drum in a normal state and operates when the webbing is drawn at a drawing acceleration of a predetermined value or more;
    A clutch member that operates a pawl that prevents rotation of the winding drum in the webbing pull-out direction by the operation of the pull-out acceleration sensing member;
    Have
    The pull-out acceleration sensing member is
    A locking gear that rotates integrally with the winding drum;
    A substantially arcuate inertial body pivotally supported at a position away from the rotation shaft of the locking gear by a predetermined distance radially outward and disposed so as to surround the rotation shaft of the locking gear;
    A sensor spring that urges the inertial body to rotate in the webbing pull-out direction with respect to the locking gear;
    Have
    The clutch member is provided coaxially with the rotating shaft of the winding drum, and an internal clutch gear is engaged when the inertial body rotates in the webbing winding direction against the urging force of the sensor spring. Having an annular rib provided on the circumferential surface,
    When the inertial body is rotated in the webbing pull-out direction by the sensor spring and is in contact with the stopper, the center of gravity position is determined from the reference straight line connecting the rotation axis of the locking gear and the rotation axis of the inertial body. On a bisector that approximately bisects the first angle within a first range on the inertial body side up to a position where the reference straight line is rotated by a first angle toward the webbing pull-out direction around the rotation axis of the inertial body Is set to be within a first region that is set so as to be substantially in contact with the boundary at both edges in the circumferential direction. And
    The retractor for a seat belt, wherein the inertial body is set so that a variation in a drawing acceleration of the webbing engaged with the clutch gear is about 0.2 G or less.
  2.  前記慣性体は、前記重心位置が前記2等分線によって略2等分される前記第1角度よりも小さい第2角度の該慣性体側の第2範囲内において、前記第1領域に対して相似となるように縮小された第2領域内に位置するように設定され、
     該慣性体は、前記クラッチギヤに係合するウエビングの引出加速度のバラツキが略0.1G以下になるように設定されていることを特徴とするシートベルト用リトラクタ。
    The inertial body is similar to the first region within a second range on the inertial body side at a second angle smaller than the first angle at which the position of the center of gravity is substantially bisected by the bisector. Is set to be located in the second area reduced so that
    The retractor for a seat belt, wherein the inertial body is set so that a variation in a drawing acceleration of a webbing engaged with the clutch gear is about 0.1 G or less.
  3.  前記慣性体は、
       略弓形に形成された金属製の平板と、
       前記平板が内側に装着されて前記ロッキングギヤに回動可能に軸支され、一端部に形成された係合爪が前記クラッチギヤに係合するように略弓形に形成された合成樹脂製の回動体と、
     を有することを特徴とする請求項1又は請求項2に記載のシートベルト用リトラクタ。
    The inertial body is
    A metal flat plate formed in a substantially bow shape;
    The flat plate is mounted on the inside and is pivotally supported by the locking gear so that the engaging claw formed at one end is substantially arcuate so as to engage with the clutch gear. Moving body,
    The seatbelt retractor according to claim 1, wherein the seatbelt retractor is provided.
  4.  ハウジングと、
     前記ハウジングに回転可能に収納されてウエビングを巻回収納する巻取ドラムと、
     前記ハウジングの一方の側壁部の外側に取り付けられて、通常時前記巻取ドラムの一端側を回転自在に支持し、前記ウエビングが所定以上の引出加速度で引き出されたときに該巻取ドラムのウエビング引出方向への回転を阻止するロック手段と、
     を備え、
     前記ロック手段は、
       前記巻取ドラムと一体的に回転するロッキングギヤと、 
       前記ロッキングギヤの回転軸から半径方向外側へ所定距離離れた位置に回動可能に軸支されて該ロッキングギヤの回転軸を囲むように配置された略弓形の慣性体と、
       前記慣性体を前記ロッキングギヤに対してウエビング引出方向へ回動するように付勢するセンサスプリングと、
       前記巻取ドラムの回転軸と同軸に設けられて、前記慣性体が前記センサスプリングの付勢力に抗してウエビング巻取方向へ回動することにより係合するクラッチギヤが内周面に設けられた円環状のリブ部と、
     を有し、
     前記ロッキングギヤは、該ロッキングギヤの回転軸の周縁近傍位置から前記慣性体側方向で、且つ、該回転軸に対して直交するウエビング引出方向へ立設されて、センサスプリングの一端側が嵌め込まれたギヤ側バネ支持ピンを有し、
     前記慣性体は、前記ギヤ側バネ支持ピンに対向する側壁に立設されて、前記センサスプリングの他端側が嵌め込まれる慣性体側バネ支持ピンを有し、
     前記慣性体側バネ支持ピンは、前記慣性体が前記センサスプリングによってウエビング引出方向へ回動された場合には、前記ギヤ側支持ピンとほぼ同一直線上に位置するように立設され、
     前記ギヤ側バネ支持ピンと前記慣性体側バネ支持ピンのうちの少なくとも一方は、前記慣性体が前記センサスプリングの付勢力に抗してウエビング巻取方向へ回動されて前記クラッチギヤに係合した場合に、先端側の外周面が前記センサスプリングの撓み変形した内側にほぼ沿うように、該センサスプリングの撓んだ内側へ接近する外周面が削られた先細り形状に形成されていることを特徴とするシートベルト用リトラクタ。
    A housing;
    A winding drum that is rotatably stored in the housing and winds and stores the webbing;
    It is attached to the outside of one side wall portion of the housing, and normally supports one end side of the winding drum so as to be rotatable. When the webbing is pulled out at a predetermined or higher pulling acceleration, the webbing of the winding drum Locking means for preventing rotation in the pull-out direction;
    With
    The locking means is
    A locking gear that rotates integrally with the winding drum;
    A substantially arcuate inertial body pivotally supported at a position away from the rotation shaft of the locking gear by a predetermined distance radially outward and disposed so as to surround the rotation shaft of the locking gear;
    A sensor spring that urges the inertial body to rotate in the webbing pull-out direction with respect to the locking gear;
    A clutch gear, which is provided coaxially with the rotating shaft of the winding drum and engages when the inertial body rotates in the webbing winding direction against the urging force of the sensor spring, is provided on the inner peripheral surface. An annular rib part,
    Have
    The locking gear is a gear in which one end side of a sensor spring is fitted by being erected in the direction of the inertial body from the position near the periphery of the rotation shaft of the locking gear and in the webbing pull-out direction orthogonal to the rotation shaft Having side spring support pins,
    The inertial body has an inertial body side spring support pin that is erected on a side wall facing the gear side spring support pin and into which the other end side of the sensor spring is fitted,
    The inertial body side spring support pin is erected so as to be positioned substantially on the same straight line as the gear side support pin when the inertial body is rotated in the webbing pull-out direction by the sensor spring.
    At least one of the gear-side spring support pin and the inertial body-side spring support pin is engaged with the clutch gear when the inertial body is rotated in the webbing take-up direction against the urging force of the sensor spring. Further, the outer peripheral surface approaching the bent inner side of the sensor spring is formed in a tapered shape so that the outer peripheral surface on the tip side is substantially along the bent inner side of the sensor spring. Seat belt retractor.
  5.  前記慣性体が前記センサスプリングの付勢力に抗してウエビング巻取方向へ回動されて前記クラッチギヤに係合した場合には、該慣性体側バネ支持ピンの先端部が前記ギヤ側支持ピンの先端部の近傍に位置する高さに立設されていることを特徴とする請求項4に記載のシートベルト用リトラクタ。 When the inertial body is rotated in the webbing take-up direction against the urging force of the sensor spring and engaged with the clutch gear, the tip of the inertial body side spring support pin is connected to the gear side support pin. The seatbelt retractor according to claim 4, wherein the seatbelt retractor is erected at a height located in the vicinity of the distal end portion.
PCT/JP2011/075554 2011-04-18 2011-11-07 Seatbelt retractor WO2012144102A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011091781 2011-04-18
JP2011-091781 2011-04-18
JP2011134161A JP2012232727A (en) 2011-04-18 2011-06-16 Seatbelt retractor
JP2011-134161 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012144102A1 true WO2012144102A1 (en) 2012-10-26

Family

ID=47041239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075554 WO2012144102A1 (en) 2011-04-18 2011-11-07 Seatbelt retractor

Country Status (2)

Country Link
JP (1) JP2012232727A (en)
WO (1) WO2012144102A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297868A4 (en) * 2015-04-01 2018-12-26 Carleton Life Support Systems Inc. Ballistic powered inertia reel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080636B2 (en) * 2013-03-20 2017-02-15 芦森工業株式会社 Seat belt retractor
JP6509634B2 (en) * 2015-05-22 2019-05-08 芦森工業株式会社 Seat belt retractor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208657A (en) * 1992-01-30 1993-08-20 Takata Kk Seat belt retractor
JP2007284014A (en) * 2006-04-20 2007-11-01 Takata Corp Seat belt retractor and seat belt device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208657A (en) * 1992-01-30 1993-08-20 Takata Kk Seat belt retractor
JP2007284014A (en) * 2006-04-20 2007-11-01 Takata Corp Seat belt retractor and seat belt device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297868A4 (en) * 2015-04-01 2018-12-26 Carleton Life Support Systems Inc. Ballistic powered inertia reel

Also Published As

Publication number Publication date
JP2012232727A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US7681824B2 (en) Webbing retracting device
JP5456426B2 (en) Seat belt retractor
JP5919097B2 (en) Seat belt retractor
WO2009123318A1 (en) Seatbelt retractor
JP5166593B2 (en) Webbing take-up device
JP2013184538A (en) Seat belt retractor
WO2012144102A1 (en) Seatbelt retractor
JP5778697B2 (en) Seat belt retractor
KR102056711B1 (en) Seatbelt retractor
JP5876332B2 (en) Seat belt retractor
WO2013061873A1 (en) Seatbelt retractor
JP5456423B2 (en) Seat belt retractor
JP5274869B2 (en) Seat belt retractor
WO2013179978A1 (en) Retractor for seat belt
JP6080636B2 (en) Seat belt retractor
JP6381370B2 (en) Seat belt retractor
JP6074243B2 (en) Seat belt retractor
WO2013061877A1 (en) Seatbelt retractor
WO2013061878A1 (en) Seat belt retractor
JP5534949B2 (en) Seat belt retractor
JP5806587B2 (en) Seat belt retractor
JP6155116B2 (en) Seat belt retractor
JP2013095199A (en) Seatbelt retractor
WO2012011344A1 (en) Seatbelt retractor
JP2013095200A (en) Seatbelt retractor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863848

Country of ref document: EP

Kind code of ref document: A1