WO2012143661A1 - Procédé de quantification de bactéries vivantes dans un milieu liquide - Google Patents

Procédé de quantification de bactéries vivantes dans un milieu liquide Download PDF

Info

Publication number
WO2012143661A1
WO2012143661A1 PCT/FR2012/050838 FR2012050838W WO2012143661A1 WO 2012143661 A1 WO2012143661 A1 WO 2012143661A1 FR 2012050838 W FR2012050838 W FR 2012050838W WO 2012143661 A1 WO2012143661 A1 WO 2012143661A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
dna
sample
yeasts
living
Prior art date
Application number
PCT/FR2012/050838
Other languages
English (en)
Inventor
Vincent Mejean
Fanny RAPTELET
Yann DENIS
Sid Ahmed LABED
Gérard Leger
Gérard Lieutaud
Original Assignee
Societe Des Eaux De Marseille
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Des Eaux De Marseille, Centre National De La Recherche Scientifique (Cnrs) filed Critical Societe Des Eaux De Marseille
Publication of WO2012143661A1 publication Critical patent/WO2012143661A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention relates to a method for quantifying living bacteria in an aqueous medium capable of containing them.
  • the present invention more particularly relates to a method for quantifying living bacteria in an aqueous sample that may contain a mixture of dead and living cells.
  • the present invention relates to a method of quantifying living bacteria of the genus enterococci and Escherichia coli, contained in a bathing water sample and, more particularly, seawater.
  • the method according to the invention is useful because there are regulatory health standards for the concentration of said bacteria E. coli and living enterococci not to exceed in said bathing water, namely, in particular, no more than 10 bacteria E. Coli / ml and 370 enterococci / 100 ml
  • E. coli bacteria is meant here all pathogenic and non-pathogenic subspecies of Escherichia coli.
  • the reference methods for carrying out these quantifications of E. coli and enterococci bacteria in the bathing water samples comprise cell cultures of said bacteria in said sample and quantification by measurement of the enzymatic activity (Standard methods references NF T 90- 432 (for the search for enterococci) and NF T 90-433 (for the research of E. coli) In this reference method, the extraction of said bacteria and the quantification of DNA are not carried out.
  • a method is also known in which the bacteria are extracted from the sample by membrane filtration, and the RNA is extracted from said bacteria by cell lysis and the chromosomal DNA is quantified by an RT PCR method in which the cells are transformed. RNA into DNA.
  • the advantage of this method is that the RNA of the dead bacteria degrades so that during the amplification quantisation step, only the DNA of the living bacteria is quantified.
  • the object of the present invention is to provide a method for extracting and quantifying living bacteria in bathing waters, which is at the same time, more efficient in terms of extraction sensitivity, detection and quantification, and simple and less expensive to industrialize.
  • the present invention provides a method for quantifying living bacteria in a liquid medium, preferably an aqueous medium, capable of containing therein, characterized in that the following successive steps are carried out in which: a) yeasts are added to said sample and a mixture is made with stirring, and b / a residue is separated off solid consisting of a precipitate containing all the yeasts and bacteria contained in said sample, and suspending said solid residue in a buffered solution at pH 7 to 8, preferably a 40 mM Tris buffer at pH 7.6 and a photoactivatable intercalator compound or any other chemical or biological compound capable, under concentration and / or treatment conditions, of causing the binding of said compound specifically to the DNA of the dead bacteria without causing the lysis or degradation of the living bacteria or the DNA binding of living bacteria, said compound known as an inhibitory compound being able to thus prevent PCR amplification of the DNA which is bound, and d / separates a fraction containing a solid residue containing all the yeasts and bacteria, and e
  • step a / the yeasts seem to have a "trapping" effect and / or effect on the bacteria.
  • This step a / avoids having to implement in step b) a step of separating the bacteria by filtration during which there are necessarily losses during the stall of the bacteria on the filters of a on the other hand, and on the other hand avoids the use of commercially available chemical precipitators, which are relatively more expensive.
  • step c) said inhibiting compound is used under the concentration and treatment conditions capable of causing said binding of said compound to the DNA of dead bacteria.
  • a first aspect of the invention is therefore to have discovered this technical effect of yeasts, namely this new use of yeasts as a precipitating agent in the extraction of bacteria, namely that:
  • step a / the yeasts entrain or retain all the dead and living bacteria of the liquid sample tested.
  • step d / the said inhibiting compound and any other molecules present in the initial sample which may affect the subsequent steps are thus eliminated, and
  • the yeasts resist for up to 15 minutes at a temperature of 95 to 100 ° C., so that, in practice, in order to effect the breakdown of the bacterial walls of dead bacteria and living bacteria, heating 5 minutes is sufficient, without affecting the yeast wall.
  • Step e / therefore makes it possible to recover later (in step f /) the bacterial DNA, namely the DNA originating from the dead bacteria bound to the inhibiting compound and the DNA not bound to the inhibitory compound from the initially living bacteria, and not yeast DNA, which would be detrimental to the sensitivity of the PCR of step g /, counts given the relatively large quantity of yeasts initially used.
  • This step e / avoids the implementation of chemical lysis followed by column purification to reduce costs.
  • the heating also has the advantage of avoiding the use of expensive detergent and specific purification column, it being further understood that said detergents may have an inhibitory effect on the performance of the subsequent PCR.
  • step d / at least 99% of the bacteria initially contained in the sample are recovered.
  • the interest of the invention essentially results from the double advantageous technical effect of the implementation of yeasts as precipitating agent thus promoting the extraction of bacteria without hindering the selective extraction of bacterial DNA in the case of a step of extracting DNA by heating, the yeast DNA is not recovered on the one hand, and secondly, the bacterial DNA is not degraded.
  • yeasts as a precipitating agent of bacteria on the one hand, and a simple and inexpensive DNA extraction process by heating to 95-100 ° C. a solution of the bacterial pellet and yeast, which are at the origin of the advantageous results of the invention.
  • the bacterial DNA comprises the non-degraded DNA of the initially living bacteria and the DNA bound to said inhibitory compound resulting from the lysis of the initially dead bacteria.
  • the process according to the invention therefore consists essentially in firstly in recovering all the cells present in the aqueous sample, then in removing the DNA from the dead cells, before extracting and purifying the DNA of the cells. live bacteria. Finally, the resulting DNA is sufficiently pure to be quantified by real-time PCR.
  • the method according to the present invention can be implemented in less than 4 hours and is more accurate than the comparative reference method.
  • step g / the quantification of living bacteria of the enterococci and Escherichia coli genus contained in a bathing water sample is carried out.
  • step b / the sample is centrifuged at least 5000 g in a container for at least 10 minutes and the pellet is recovered by removal of the supernatant.
  • Saccharomyces cerevisiae baker's yeast is used, the yeast concentration being adjusted to a value of 200 to 400 ⁇ g / ml, preferably about 300 ⁇ g / ml.
  • the yeasts form a cell sieve which precipitates all the bacterial cells, preferably under the action of the centrifugal force when the separation is carried out by centrifugation.
  • concentrations above 400 ⁇ g / ml the pellet becomes too large and does not remain attached to the bottom of the container.
  • a coagulant protein such as bovine serum albumin (BSA) at a concentration of 2 to 20 mg / ml in the sample is additionally added to the sample. to promote adhesion of the pellet on the wall of the centrifugation vessel in step b /.
  • BSA bovine serum albumin
  • step c1 At too high concentrations of coagulating proteins, it becomes difficult to rehydrate and re-suspend the solid residue in step c1, on the one hand, and, on the other hand, the efficiency of step e / heating may be affected by coagulation of said protein.
  • said inhibiting compound is a photoactivatable intercalating agent and the suspension is subjected to a light irradiation treatment for activating the binding of said intercalating agent with the DNA of the dead bacteria, said intercalating agent inhibiting PCR amplification of said DNA to which it is bound.
  • the DNA of the dead cells as well as the free DNA strands bound to the intercalating agent in the sample are then no longer quantifiable by PCR, which makes the specific method of the living cells because the intercalating agent remains blocked at the level of the wall of live bacteria, and thus allows step g / quantify specifically only the DNA of the living bacteria by PCR amplification, since the photoactivatable intercalating agent is not bound to it.
  • said intercalating agent is an ethidium azide, preferably EMA, at a concentration of 2 to 5 ⁇ g / ml and the suspension is subjected to light irradiation, maintaining a suspension temperature. at room temperature, preferably by soaking the container containing it in the ice.
  • the intercalating agent can couple to the DNA covalently.
  • light irradiation is achieved by placing the suspension under a 150 Watt halogen lamp at 20 cm for at least 10 minutes.
  • the EMA compound is particularly interesting because of its low cost and the fact that the use of EMA unlike PMA requires very low concentrations for the treatment of the DNA of dead bacteria (2 to 5 ⁇ g / ml for the EMA instead of 100 ⁇ g / ml for the PMA) the risk for the user is therefore much less important because of the carcinogenic nature of these mutagenic molecules.
  • step d / said centrifugal separation of the suspension obtained after the treatment of step c / is carried out at least 5,000 g for at least 10 minutes and removal of the most large portion of the supernatant to recover the pellet containing said solid residue containing all yeasts and bacteria in a small fraction of at least 500 ⁇ of said suspension, and heated in step e).
  • centrifugation time must be considerably increased to obtain a cell recovery efficiency of more than 99%.
  • Speeds of Higher centrifugations are suitable but do not allow to reduce the centrifugation times.
  • step f / the said separation by centrifugation of the suspension obtained after the treatment of step c / is carried out at least 5000 g for at least 5 minutes and removal of the pellet containing the intact yeasts. and the debris of lysed bacteria, to recover the supernatant containing said bacterial DNA.
  • centrifugation time must be considerably increased to pellet all yeasts and cell debris, higher centrifugation speeds are appropriate.
  • a preliminary step is carried out for purification of the bacterial DNA, preferably on a silica column or a 30 KDa threshold membrane filtration column.
  • the threshold of 30 KDa is chosen because the bacterial chromosomes have at least 3.10 6 bases.
  • these filtration columns have a hydrophilic membrane which will retain the bacterial DNA, without fixing it. All other residual molecules and salts will be removed in the filtrate. DNA retained in a small volume of TE will be recovered by flipping the column over a clean tube.
  • This purification step makes it possible to eliminate proteins and RNAs released by the bacteria or else residual traces of inhibiting compound such as EMA or other molecules possibly present in the initial sample, so that the subsequent quantification by PCR is as reliable as possible by eliminating any impurities from the sample that may affect the reliability and specificity of the PCR amplification, in particular that may affect the action of a polymerase enzyme, among others. More particularly, in step g / the E. coli and enterococci bacteria are amplified with the following pair of primers
  • E. coli bacteria a specific sequence of E. coli derived from the 16S gene, and
  • enterococcal genus a specific sequence of the genus Enterococcus derived from the tuf gene.
  • a classical PCR can be carried out with Sybr Green as fluorochrome, the amplification being able to be carried out simultaneously on the same plate because the PCR protocols are identical, the quantification of each species however requiring separate wells for each analysis.
  • the amplification of a range of chromosomal DNA standards of said living bacteria and / or a calibration range of non-bacterial synthetic DNA called alien DNA at various known concentrations is added to quantify a known concentration of said alien DNA as an internal control.
  • the following oligonucleotides chosen from: - SEQ. ID. No. 1 and 2 for the 5 'and 3' primers for the amplification of the sequence derived from the 16S gene of the E. coli bacterium, and
  • SEQ. ID. No. 6 and 7 for the primers 5 'and 3' of the sequence SEQ. ID. # 5.
  • SEQ DNA sequences. ID. No. 1-7 are described in the sequence listing appended to the description.
  • the extraction and quantification steps of the process according to the invention are sufficiently sensitive to detect concentrations of 2 to 10 8 living bacteria / ml of samples.
  • the maximum threshold of 10 8 bacteria is related to a problem of sensitivity of the PCR whereas the minimum threshold of 2 bacteria / ml is related to both the extraction performance and sensitivity of the PCR.
  • Example 2 refers to the following Figures 1 to 3 in which:
  • FIG. 1 represents the effects of the concentration of ethidium azide on samples composed solely of living bacteria or only of dead bacteria or on mixed samples containing live bacteria and dead bacteria, with a duration of illumination of 20 minutes, the following 3 EMA concentrations having been tested: 3 ⁇ g / ml, 6 ⁇ g / ml and 12 ⁇ g / ml.
  • FIG. 2 represents the effects of treatment of ethidium azide at 3 ⁇ g / ml with variable elimination times (10 min and 20 min) on samples consisting of living bacteria, or samples consisting of dead bacteria. or mixed samples containing dead bacteria and live bacteria.
  • FIG. 3 represents the yield (%) of the DNA extraction step by heating as a function of incubation time (t) at 95 ° C. (from 0 to 15 minutes).
  • Example 1 Quantification of E. coli and Enterococcus present in a sample of aqueous medium
  • step 1 corresponds to steps a / and b /) defined above);
  • step 2 corresponds to step c / defined above;
  • step 3 corresponds to the steps d / to f / defined above); 4 / -purification of the DNA on a silica column or by membrane filtration (this step is included in step f / defined above);
  • Centrifugation makes it possible to concentrate the sample and to separate the cell pellets from the supernatants.
  • the major difficulty with centrifugation is that at cell concentrations of less than 10 7 bacteria per ml, even at speeds up to 17,000 xg for relatively long durations (20 min), the cell recovery yield is rarely greater than 60% and, even for samples whose bacterial concentration is greater than 10 7 / ml centrifugation of 15 minutes at 17,000 xg / ne can recover only 95% of the bacteria in the pellet. This is why according to the present invention, there is added a precipitant hitherto never used for this purpose: Saccharomyces cerevisiae, known as baker's yeast.
  • Yeasts are microorganisms, unicellular fungi of 5 to 6 ⁇ , able to sporulate and therefore easy to preserve. Highly resistant, their walls allow them to survive dehydration and high temperatures.
  • the baker's yeast Saccharomyces cerevisiae marketed in dehydrated form, has proved to be an excellent candidate for sedimentation of bacteria. Indeed, it is a unicellular organism that sediments quickly. Centrifugation for 10 min at 5,000 xg is sufficient to form a stable yeast pellet at the bottom of the tube and assures recovery of the bacterial cells.
  • 200 mg of dehydrated yeast are transferred to a 2 ml tube, then the volume is adjusted to 2 ml with a Tris buffer solution (40 mM and pH 7.6) and then mixed with a Vortex device for 2 hours while stirring. minutes. This gives a suspension of yeast with a concentration of 100 mg / ml.
  • a solution of BSA of 60 mg / ml in sterile water is prepared.
  • 50 ml of seawater sample to be tested are transferred to a 50 ml flask.
  • 150 ⁇ of yeast suspension above and 2 ml of BSA solution above are added and homogenized.
  • the yeast suspension thus added at the concentration of 300 ⁇ g / ml in the sample forms a cell sieve and, during a centrifugation at a minimum speed of 5000 ⁇ g for 10 minutes, entrains all the bacteria present in the sample. pellet.
  • the BSA at the concentration of 3 mg / ml in the sample makes it possible to make this pellet solid and to avoid its flow during the elimination of the supernatant.
  • the yeast suspension can be prepared either from fresh yeasts or from dried yeasts resuspended in 40mM Tris buffer pH 7.6 in order to avoid osmotic shock. BSA is rehydrated in sterile water.
  • yeasts do not inhibit subsequent quantitative PCR. In fact, if the protocol is continued until the DNA is extracted, and this DNA is quantitated by quantitative PCR in real time, a yield (measured DNA quantity / initial quantity of bacteria) is obtained. from 1.
  • a photoactivation phase makes it possible to bind the ethidium covalently to the DNA. These bonds result in structural modifications of the DNA, which can no longer be quantified by quantitative PCR (no dehybridization, no fixation of the polymerase).
  • This photoactivation is carried out by placing the samples in an ice bucket to avoid its heating. Placed on a stirring table, the sample is homogenized throughout its illumination. For photo activation, a 150 watt halogen lamp is positioned 20 cm above the surface of the sample. The illumination lasts 10 minutes. Under these conditions, the DNA of living bacteria, protected by the impermeable wall, retains its structure and its properties. Once activated by the light, the EMA can no longer act later. The volume of the sample can then be adjusted to 50 ml with Tris buffer and the sample is centrifuged again under the same conditions as before, namely 10 minutes at 5000 g and at 25 ° C.
  • the above centrifugation makes it possible to reform a pellet consisting of yeasts and living and dead cells.
  • the supernatant can be removed roughly so as to leave only a fraction of about 500 ⁇ L containing the solid residue. For that, it suffices simply to return and empty the tube.
  • a short vortexing resuspends the pellet in the residual supernatant.
  • the cells Under the action of heat shock (5 minutes at 95 ° C and 5 minutes in the ice), the cells lyse and release their DNA.
  • a rapid centrifugation of 5 minutes at 25 ° C and 5000 xg is then sufficient to separate the yeast pellet and cell debris from the supernatant in which the DNA is dissolved.
  • the supernatant thus contains the DNA to be quantified. However, it is likely to be contaminated by proteins and RNAs released by the bacteria or residual traces of EMA or other molecules possibly present in the initial sample. Quantification by quantitative PCR requires some purity of the sample. Indeed, based on the action of a polymerase, the effectiveness of the technique can be decreased in the presence of inhibitors.
  • the supernatant is thus purified and concentrated either: a) by membrane filtration. All the supernatant is removed and deposited on a Vivacon 500 column (Sartorius stedim, hydrosart membrane) with a retention threshold of 30,000 Da previously rinsed with TE (10 mM Tris, 1 mM EDTA, pH 8). The sample is then rinsed twice with the TE.
  • the resulting DNA is then pure enough to be quantitated by quantitative PCR. 5 / - Quantification step by quantitative PCR
  • An MX 3500 P device from the company STRATAGENE and the WIZARD GENOMIC PURIFICATION kit from the PROMEGA company were used to extract the DNA by adding a protein digestion step with the proteinase K.
  • the quantitative PCR device determines the threshold cycle ("cycle threshold” and said), cycle from which the fluorescence is large enough to be measured. The higher the initial target DNA concentration, the sooner the fluorescence will be quantifiable. To translate this threshold cycle into a quantity of DNA, a minimum standard range of 5 points is therefore necessary. This range is carried out with genomic DNA extracted from the targeted bacterium, purified and quantified in number of copies per microliter or with the synthetic target sequence quantified in number of copies per microliter. Synthetic DNA sequences as well as oligonucleotides for amplification thereof have been constructed specifically for this technique. Oligonucleotides targeting Escherichia coli-specific genes and enterococci were recovered from the literature. The sensitivity of the quantitative PCR depends on the specificity of the primers used. Three pairs of primers were tested for E. coli:
  • a pair of primers targeting a sequence of the uidA gene, specific for E. coli and encoding ⁇ -glucuronidase (protein assayed by the enzymatic method).
  • a pair targeting the 16S gene which is also specific for E. coli, and which, being present in several copies in the genome (5 to 7 copies) allows a more sensitive detection, and therefore a lower threshold.
  • the 16S gene primers were favored for the study because, for samples with low chromosome concentration, the uidA gene primers showed concatamers of oligonucleotides preventing the exact measurement of gene copy number.
  • Different concentrations (homo-concentrations and hetero-concentrations) in primers in the reaction volume were tested, changes in duration and / or temperature during the elongation phase were also studied. , but none of the conditions tested allowed to eliminate the formation of these dimers and / or concatemers.
  • each analysis is independent and has been optimized with SYBR Green Kit but the amplification and quantification of the target sequences of E. coli and enterococci can be performed simultaneously during the same PCR program.
  • each amplification cycle contains only two steps: a dehybridization step at 95 ° C for 5 seconds followed by a step of binding the TaqPolymerase and polymerization at 60 ° C for 25 seconds.
  • the level of fluorescence in each well is measured at the end of each cycle.
  • a fusion curve of the amplified DNA is produced at the end of the amplification cycles, it makes it possible to verify the amplification of a single and specific sequence.
  • the quantitative PCR apparatus estimates the initial copy number of target sequence in the test portion of each sample. Taking into account the final volume of the sample and the drift due to the inhibition, the initial concentration of bacteria in the sample can be determined.
  • Example 2 Influence of EMA Concentration and Illumination Treatment 2.1 / - Influence of EMA concentration on DNA binding of living and dead cells.
  • Yield (%) is the ratio of the number of chromosomes measured to the initial amount of bacteria in the sample.
  • the quantitative PCR does not quantify anything.
  • the treatment proves to be too powerful because in a sample made up of living cells only, the quantitative PCR quantifies only 53% of the chromosomes.
  • the EMA destroys part of the DNA of living cells in the absence of a dead cell.
  • EMA at 3 ⁇ g / ml also acts on the DNA of living cells when the illumination phase is 20 minutes, 10 minutes of illumination is sufficient to bridge all of the dead cell DNA. Free DNA, while avoiding the action of EMA on living cells in a sample devoid of dead bacteria.
  • Example 3 Condition for carrying out the step of extracting the DNA by heating as a function of the incubation time at 95 ° C.
  • Step 3 of extraction of the bacterial DNA all the DNA free as well as that of dead bacteria is bridged by the EMA.
  • the DNA of living bacteria must now be released into the medium in order to be recovered and assayed by quantitative PCR.
  • Incubation in a water bath heated to 95 ° C followed by incubation in ice allows the bacteria to be lysed. However, incubation at 95 ° C too long alters the DNA released by the cells after lysis.
  • Figure 3 presents the results of the test which made it possible to determine the optimal duration of this incubation time of the sample. It can be noted that the amount of chromosomes estimated by the quantitative PCR decreases as a function of the incubation time at 95 ° C. 5 minutes are required to lyse all cells, regardless of the initial bacterial concentration. Beyond 5 minutes, it is noted that the number of chromosomes measured by quantitative PCR decreases. An incubation period of 5 minutes is sufficient and avoids certain damage to the bacterial DNA after lysis of the cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La présente invention concerne un procédé de quantification de bactéries vivantes dans un milieu liquide susceptible d'en contenir caractérisé en ce qu'on réalise les étapes successives suivantes dans lesquelles : 1/ on ajoute des levures dans le dit échantillon et on réalise un mélange sous agitation, et 2/ on ajoute un composé inhibiteur apte à se lier et empêcher ainsi l'amplification par PCR de l'ADN des bactéries mortes, et 3/ on la chauffe l'échantillon à une température de pas plus de 100°C pendant 5 à 10 minutes, de manière à lyser toutes les bactéries sans provoquer la lyse des levures, et 4/ on sépare une fraction contenant toutes les levures et débris de bactéries lysées et on récupère une fraction contenant l'ADN bactérien, et 5/ on met en œuvre une quantification par amplification par PCR, de préférence par PCR en temps réel, de l'ADN provenant desdites bactéries initialement vivantes dans l'échantillon de départ.

Description

Procédé de quantification de bactéries vivantes dans un milieu liquide
La présente invention concerne un procédé de quantification de bactéries vivantes dans un milieu aqueux susceptible d'en contenir. La présente invention concerne plus particulièrement une méthode de quantification de bactéries vivantes dans un échantillon aqueux susceptible de contenir un mélange de cellules mortes et vivantes.
Plus particulièrement, la présente invention concerne un procédé de quantification de bactéries vivantes du genre entérocoques et Escherichia coli, contenues dans un échantillon d'eau de baignade et, plus particulièrement, d'eau de mer.
La méthode selon l'invention est utile car il existe des normes sanitaires réglementaires de concentration desdites bactéries E. coli et entérocoques vivantes à ne pas dépasser dans lesdites eaux de baignades, à savoir, notamment, pas plus de 10 bactéries E. Coli/ml et 370 entérocoques/100 ml
On entend ici par bactéries E. coli, toutes les sous-espèces pathogènes et non pathogènes de l'espèce Escherichia coli. Les méthodes de référence pour réaliser ces quantifications de bactéries E. coli et entérocoques dans les échantillons d'eau de baignade comprennent des cultures cellulaires desdites bactéries dans ledit échantillon et la quantification par mesure de l'activité enzymatique (Méthodes normalisées références NF T 90-432 (pour la recherche des entérocoques) et NF T 90-433 (pour la recherche de E. Coli). Dans cette méthode de référence, on ne réalise pas l'extraction desdites bactéries, ni la quantification d'ADN.
Les inconvénients de ce type de méthodes sont une durée et donc un délai de rendu des résultats important, à savoir requérant une incubation de 48h environ), ainsi qu'une spécificité quant aux bactéries détectées insuffisantes et un manque de précision des résultats notamment pour les faibles valeurs.
On connaît également une méthode, dans laquelle on extrait les bactéries de l'échantillon par filtration sur membranes, puis on extrait l'ARN desdites bactéries par lyse cellulaires et on quantifie l'ADN chromosomique par une méthode de RT PCR dans laquelle on transforme l'ARN en ADN.
L'avantage de cette méthode est que l'ARN des bactéries mortes se dégrade de sorte que, lors de l'étape de quantification par amplification, on quantifie uniquement l'ADN des bactéries vivantes.
Toutefois, cette méthode présente les inconvénients suivants. La fragilité des ARN rend la technique très délicate et impose des conditions de manipulation drastiques, notamment des conditions drastiques de décontamination des matériels et réactifs. D'autre part, la quantification est précédée d'une étape de transcription inverse pour transformer les ARN en ADNc. Cette étape peut introduire un biais dans la quantification, et montre qu'on ne quantifie pas directement la cible. En outre, la production d'enzyme ARNase et donc la quantité d'ARN dans une cellule bactérienne peut varier selon son état physiologique. Ainsi, en état de carence nutritionnelle comme dans les eaux de baignade, la bactérie produit des RNase qui vont dégrader ses ARN ribosomaux
Le but de la présente invention est de fournir une méthode d'extraction et quantification de bactéries vivantes dans des eaux de baignade, soit à la fois, plus performante en termes de sensibilité d'extraction, de détection et de quantification, et simple et moins coûteuse à industrialiser.
Pour ce faire, la présente invention fournit un procédé de quantification de bactéries vivantes dans un milieu liquide, de préférence un milieu aqueux, susceptible d'en contenir, caractérisé en ce qu'on réalise les étapes successives suivantes dans lesquelles : a/ on ajoute des levures dans le dit échantillon et on réalise un mélange sous agitation, et b/ on sépare un résidu solide constitué d'un précipité contenant toutes les levures et bactéries contenues dans le dit échantillon, cl on re-suspend le dit résidu solide dans une solution tamponnée à pH de 7 à 8, de préférence un tampon Tris 40mM à pH 7,6 et on y ajoute un composé intercalant photo-activable ou tout autre composé chimique ou biologique apte, dans des conditions de concentration et/ou de traitement, à provoquer la liaison dudit composé spécifiquement à l'ADN des bactéries mortes sans provoquer la lyse ou dégradation des parois des bactéries vivantes ni la liaison à l'ADN des bactéries vivantes, ledit composé dénommé composé inhibiteur étant apte à empêcher ainsi l'amplification par PCR de l'ADN qui lui est lié, et d/ on sépare une fraction contenant un résidu solide contenant toutes les levures et bactéries, et e) on chauffe ledit résidu solide, de préférence au bain marie, à une température de pas plus de 100°C, de préférence à 95°C pendant 5 à 10 minutes, de manière à lyser toutes les bactéries sans provoquer la lyse des levures, et f/ on sépare une fraction contenant toutes les levures et débris de bactéries lysées et on récupère une fraction contenant l'ADN bactérien, et g/ on met en œuvre une quantification par amplification par PCR, de préférence par PCR en temps réel, de l'ADN provenant desdites bactéries initialement vivantes dans l'échantillon de départ. A l'étape a/, les levures ont semble-t-il un effet de "trapping" et/ou effet entraînant sur les bactéries. Cette étape a/ permet d'éviter d'avoir à mettre en œuvre à l'étape b) une étape de séparation des bactéries par filtration au cours de laquelle il y a nécessairement des pertes lors du décrochage des bactéries sur les filtres d'une part, et d'autre part permet d'éviter de mettre en œuvre des agents précipitants chimiques actuellement dans le commerce, lesquels sont relativement plus onéreux.
A l'étape c), ledit composé inhibiteur est mis en œuvre dans les conditions de concentration et de traitement aptes à provoquer ladite liaison dudit composé à l'ADN des bactéries mortes.
Un premier aspect de l'invention est donc d'avoir découvert cet effet technique des levures, à savoir cette utilisation nouvelle des levures à titre d'agent précipitant dans l'extraction de bactéries, à savoir que :
- à l'étape a/, les levures entraînent ou retiennent la totalité des bactéries mortes et vivantes de l'échantillon liquide testé, et
- à l'étape d/, on élimine ainsi ledit composé inhibiteur et d'autres molécules éventuelles présentes dans l'échantillon initial pouvant affecter le étapes ultérieures, et
- à l'étape e/, les levures résistent jusqu'à 15 minutes à une température de 95 à 100°C, de sorte que, en pratique, pour réaliser le claquage des parois bactériennes des bactéries mortes et des bactéries vivantes, un chauffage de 5 mn est suffisant, sans affecter la paroi des levures.
L'étape e/ permet donc de récupérer ultérieurement (à l'étape f/) l'ADN bactérien à savoir l'ADN provenant des bactéries mortes liées au composé inhibiteur et l'ADN non lié au composé inhibiteur provenant des bactéries initialement vivantes, et non pas l'ADN des levures, ce qui serait dommageable à la sensibilité de la PCR de l'étape g/, compte tenu de la relativement grande quantité de levures mises en œuvre initialement.
Cette étape e/ permet d'éviter la mise en œuvre d'une lyse chimique suivie d'une purification sur colonne pour réduire les coûts. Le chauffage présente aussi l'intérêt d'éviter la mise en œuvre de détergent onéreux et de colonne spécifique de purification, étant entendu en outre que lesdits détergents peuvent avoir un effet inhibiteur sur le rendement de la PCR ultérieur.
Les essais réalisés démontrent qu'à l'étape d/, on récupère au moins 99% des bactéries initialement contenues dans l'échantillon.
L'intérêt de l'invention résulte essentiellement du double effet technique avantageux de la mise en œuvre de levures en tant qu'agent précipitant favorisant donc l'extraction des bactéries sans gêner l'extraction sélective de l'ADN bactérien dans le cas d'une étape d'extraction d'ADN par chauffage, l'ADN des levures n'étant pas récupéré d'une part, et d'autre part, l'ADN bactérien n'étant pas dégradé.
C'est la combinaison de la mise en œuvre de levures à titre d'agent précipitant de bactéries d'une part, et un procédé d'extraction d'ADN simple et peu onéreux par mise en température à 95-100°C d'une solution du culot bactérien et de levures, qui sont à l'origine des résultats avantageux de l'invention.
A l'étape f/, l'ADN bactérien comprend l'ADN non dégradé des bactéries initialement vivantes et l'ADN lié au dit composé inhibiteur provenant de la lyse des bactéries initialement mortes.
Le procédé selon l'invention consiste donc essentiellement, dans un premier temps, à récupérer la totalité des cellules présentes dans l'échantillon aqueux, puis d'éliminer l'ADN des cellules mortes, avant d'extraire et de purifier l'ADN des bactéries vivantes. Finalement, l'ADN obtenu est suffisamment pur pour être quantifié par PCR en temps réel. Le procédé selon la présente invention peut être mis en œuvre en moins de 4 heures et s'avère plus précis que la méthode de référence comparative.
Plus particulièrement, à l'étape g/, on réalise la quantification des bactéries vivantes du genre entérocoques et Escherichia Coli contenues dans un échantillon d'eau de baignade.
Selon une autre caractéristique particulière avantageuse, à l'étape b/, on réalise la centrifugation de l'échantillon à au moins 5000 g dans un récipient pendant au moins 10 minutes et on récupère le culot par élimination du surnageant.
Cette vitesse minimale de 5000 g permet d'obtenir un rendement de récupération cellulaire de plus de 99%. Aux vitesses inférieures à 5 000 g, il faut augmenter considérablement le temps de centrifugation pour obtenir un rendement de récupération cellulaire de plus de 99%. Des vitesses de centrifugations supérieures à 5000 g conviennent mais ne permettent pas de diminuer les temps de centrifugation.
Plus particulièrement encore, à l'étape a), on utilise de la levure boulangère de Saccharomyces cerevisiae, la concentration en levures étant ajustée à une valeur de 200 à 400 pg/ml, de préférence environ 300 Mg/ml.
A cette concentration de 200 pg/ml, les levures forment un tamis cellulaire qui entraine dans sa précipitation toutes les cellules bactériennes, de préférence sous l'action de la force centrifuge lorsque la séparation est effectuée par centrifugation. Aux concentrations supérieures à 400 pg/ml, le culot devient trop important et ne reste pas fixé au fond du récipient.
Avantageusement encore, à l'étape a/, on ajoute en outre dans l'échantillon une protéine coagulante telle que le sérum albumine bovine (BSA) à une concentration de 2 à 20 mg/ml dans l'échantillon pour favoriser l'adhérence du culot sur la paroi du récipient de centrifugation à l'étape b/.
A des concentrations trop élevées de protéines coagulantes, il devient difficile de réhydrater et re-suspendre le résidu solide à l'étape cl, d'une part, et, d'autre part, l'efficacité de l'étape e/ de chauffage peut se trouver affectée du fait de la coagulation de ladite protéine.
Dans un mode préféré de réalisation, à l'étape c/, ledit composé inhibiteur est un agent intercalant photo-activable et on soumet la suspension à un traitement d'irradiation lumineuse d'activation de la liaison dudit agent intercalant avec l'ADN des bactéries mortes, ledit agent intercalant inhibant l'amplification par PCR dudit ADN auquel il est lié.
Il est connu de l'homme du métier, notamment dans WO 01/77379 et WO 2007/100762, que certains agents photoactivables intercalant peuvent se lier spécifiquement avec l'ADN des bactéries mortes, dont la paroi membranaire est dégradée ou lysée, puis se lier par intercalation avec l'ADN des bactéries mortes, sans pouvoir pénétrer à l'intérieur des bactéries vivantes et, donc, sans se lier à l'ADN des bactéries vivantes. Les bactéries mortes ont leur paroi fragilisée, rendue perméable, voire déchirée, ce qui permet à un agent intercalant de traverser la paroi et de pénétrer dans la cellule pour atteindre son ADN car les bactéries sont des organismes ne possédant pas de noyau et leur ADN n'est donc pas protégé par une membrane à l'intérieur de la bactérie. Cette intercalation inhibe l'amplification par PCR de l'ADN. L'ADN des cellules mortes ainsi que les brins d'Adn libres liés à l'agent intercalant dans l'échantillon ne sont alors plus quantifiable en PCR ce qui rend la méthode spécifique des cellules vivantes car l'agent intercalant reste bloqué au niveau de la paroi des bactéries vivantes, et permet donc à l'étape g/ de quantifier spécifiquement uniquement l'ADN des bactéries vivantes par amplification par PCR, puisque l'agent intercalant photoactivable ne lui est pas lié.
Plus particulièrement, selon la présente invention, ledit agent intercalant est un azoture d'éthidium, de préférence l'EMA, à une concentration de 2 à 5 pg/ml et on soumet la suspension à une irradiation lumineuse, en maintenant une température de suspension à la température ambiante, de préférence en trempant le récipient la contenant dans la glace. En présence de lumière et grâce à sa fonction chimique particulière notamment l'azoture s'agissant de l'EMA, l'agent intercalant peut se coupler à l'ADN de façon covalente.
Plus particulièrement, on réalise une irradiation lumineuse en plaçant la suspension sous une lampe halogène de 150 Watt à 20 cm pendant au moins 10 minutes.
Le composé EMA est tout particulièrement intéressant, du fait de son faible coût et de ce que l'utilisation de l'EMA contrairement au PMA nécessite des concentrations très faibles pour le traitement de l'ADN des bactéries mortes (2 à 5 pg/ml pour l'EMA au lieu de 100 pg/ml pour le PMA) le risque pour l'utilisateur est donc beaucoup moins important du fait du caractère cancérigène de ces molécules mutagènes.
Selon une autre caractéristique avantageuse, à l'étape d/, on réalise la dite séparation par centrifugation de la suspension obtenue après le traitement de l'étape c/, à au moins 5 000 g pendant au moins 10 minutes et élimination de la plus grand part du surnageant pour récupérer le culot contenant ledit résidu solide contenant toutes les levures et bactéries dans une petite fraction d'au moins 500 μΙ de la dite suspension, et on la chauffe à l'étape e).
Là encore, aux vitesses inférieures à 5 000 g, il faut augmenter considérablement le temps de centrifugation pour obtenir un rendement de récupération cellulaire de plus de 99%. Des vitesses de centrifugations supérieures conviennent mais ne permettent pas de diminuer les temps de centrifugation.
Plus particulièrement encore, à l'étape f/, on réalise la dite séparation par centrifugation de la suspension obtenu après le traitement de l'étape c/, à au moins 5000 g pendant au moins 5 minutes et élimination du culot contenant les levures intactes et les débris de bactéries lysées, pour récupérer le surnageant contenant ledit ADN bactérien.
Là encore, aux vitesses inférieures à 5 000 g, il faut augmenter considérablement le temps de centrifugation pour culoter l'ensemble des levures et débris cellulaires, des vitesses de centrifugation supérieures conviennent.
Plus particulièrement encore, à l'étape g/ on réalise une étape préalable purification de l'ADN bactérien, de préférence sur colonne de silice ou une colonne de filtration membranaire de seuil de 30 KDa.
Le seuil de 30 KDa est choisi parce que les chromosomes bactériens ont au minimum 3.106 bases. De façon connue, ces colonnes de filtration présentent une membrane hydrophile qui va retenir l'ADN bactérien, sans le fixer. Toutes les autres molécules et sels résiduels seront éliminés dans le filtrat. L'ADN retenu dans un faible volume de TE sera récupéré en retournant la colonne au dessus d'un tube propre.
Cette étape de purification permet d'éliminer des protéines et des ARNs relargués par les bactéries ou encore des traces résiduelles de composé inhibiteur tel que l'EMA ou d'autres molécules éventuellement présentes dans l'échantillon initial, ceci afin que la quantification ultérieure par PCR soit la plus fiable possible en éliminant toutes impuretés de l'échantillon pouvant affecter la fiabilité et spécificité de l'amplification par PCR notamment pouvant affecter l'action d'une enzyme polymérase entre autres. Plus particulièrement encore, à l'étape g/ on amplifie les bactéries E. Coli et entérocoques avec les couple d'amorces suivantes
- pour les bactéries E. coli : une séquence spécifique de E. coli tirée du gène 16S, et
- pour les bactéries du genre entérocoques : une séquence spécifique du genre Enterococcus tirées du gène tuf.
Les 2 séquences spécifiques ci-dessus ont été choisies car elles permettent de réaliser des cycles d'amplification et une quantification dans les mêmes conditions et selon un même protocole pour les 2 séquences.
On peut réaliser une PCR classique avec le Sybr Green comme fluorochrome, l'amplification pouvant être réalisé simultanément sur une même plaque car les protocoles de PCR sont identiques, la quantification de chaque espèce nécessitant toutefois des puits séparés pour chaque analyse.
Avantageusement encore, pour la quantification, on réalise l'amplification d'une gamme d'étalons d'ADN chromosomiques desdites bactéries vivantes et/ ou une gamme d'étalonnage d'ADN synthétique non bactérien dénommé ADN alien à différentes concentrations connues. Dans ce dernier cas à l'étape g/ on ajoute dans l'échantillon d'Adn à quantifier, une concentration connue de dite ADN alien à titre de contrôle interne. on utilise les oligonucléotides suivants choisis parmi : - SEQ. ID. n°l et 2 pour les amorces 5' et 3' pour l'amplification de la séquence tirée du gène 16S de la bactérie E. Coli, et
- SEQ. ID. n°3 et 4 pour les amorces 5' et 3' pour l'amplification de la séquence tirée du gène tuf des bactéries entérocoques, et - SEQ. ID. N°5 pour la séquence de contrôle interne d'ADN alien, et
- SEQ. ID. n°6 et 7 pour les amorces 5' et 3' de la séquence SEQ. ID. n°5. Les séquences d'ADN SEQ. ID. n°l à 7 sont décrites dans le listage de séquence annexé à la description.
Les étapes d'extraction et de quantification du procédé selon l'invention sont suffisamment sensibles pour permettre de détecter des concentrations de 2 à 108 bactéries vivantes/ml d'échantillons. Le seuil maximum de 108 bactéries est lié à un problème de sensibilité de la PCR alors que le seuil minimal de 2 bactéries/ml est lié à la fois aux performances d'extraction et de sensibilité de la PCR.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumières des exemples détaillés de réalisation ci- après.
L'exemple 2 se réfère aux figures 1 à 3 suivantes dans lesquelles :
- la figure 1 représente les effets de la concentration en azoture d'éthidium sur des échantillons constitués uniquement de bactéries vivantes ou uniquement de bactéries mortes ou encore sur des échantillons mixtes contenant des bactéries vivantes et des bactéries mortes, avec une durée d'illumination de 20 mn, les 3 concentrations en EMA suivantes ayant été testées : 3 pg/ml, 6 pg/ml et 12 pg/ml.
Dans la figure 1, les symboles suivants ont les significations suivantes :
: échantillon avec bactéries vivantes uniquement
■ : échantillon avec bactéries mortes uniq 1uement : échantillon avec bactéries vivantes et mortes
ES
- la figure 2 représente les effets du traitement de l'azoture d'éthidium à 3 pg/ml avec des durées d'élimination variables (10 mn et 20 mn) sur des échantillons constitués de bactéries vivantes, ou des échantillons constitués de bactéries mortes ou des échantillons mixtes contenant des bactéries mortes et des bactéries vivantes.
Dans la figure 2, les symboles suivants ont les significations suivantes :
E¾ : échantillon avec bactéries vivantes uniquement H : échantillon avec bactéries mortes uniquement
: échantillon avec bactéries vivantes et mortes 0 : sans EMA
- la figure 3 représente le rendement (%) de l'étape d'extraction d'ADN par chauffage en fonction de la durée (t) d'incubation à 95°C (de 0 à 15 minutes).
Exemple 1 : Quantification de E. coli et Enterococcus présents dans un échantillon de milieu aqueux
On a réalisé les cinq étapes successives suivantes de :
1/- récupération et concentration de l'ensemble des cellules par centrifugation avec utilisation d'un précipitant spécifique et novateur (cette étape 1 correspond aux étapes a/ et b/) définies ci-dessus);
2/- déstructuration de l'ADN des bactéries mortes et de l'ADN libre dans l'échantillon par un traitement à l'EMA (cette étape 2 correspond à l'étape c/ définie ci-dessus);
3/-récupération et lyse totale des cellules par un chauffage de l'échantillon et séparation de l'ADN du reste de l'échantillon (cette étape 3 correspond aux étapes d/ à f/ définies ci-dessus); 4/-pu rification de l'ADN sur colonne de silice ou par filtration sur membrane (cette étape est inclue dans l'étape f/ définie ci-dessus);
5/- quantification de l'ADN par PCR quantitative (cette étape est inclue dans l'étape g/ définie ci-dessus). 1/- Etape de récupération de l'ensemble des bactéries
La centrifugation permet de concentrer l'échantillon et de séparer les culots cellulaires des surnageants. La difficulté majeure avec la centrifugation réside dans le fait qu'à des concentrations cellulaires inférieures à 107 bactéries par ml, même avec des vitesses allant jusqu'à 17 000 x g pendant des durées relativement longues (20 mn), le rendement de récupération cellulaire est rarement supérieur à 60% et, même pour des échantillons dont la concentration bactérienne est supérieure à 107/ml une centrifugation de 15 mn à 17.000 x g/ ne permet de récupérer que 95% des bactéries dans le culot. C'est pourquoi selon la présente invention, on ajoute un précipitant jusque-là encore jamais utilisé pour cet usage : Saccharomyces cerevisiae dite levure de boulangerie. Les levures sont des microorganismes, champignons unicellulaires de 5 à 6 μιτι, capables de sporuler et donc faciles à conserver. Très résistantes, leurs parois leur permettent de survivre à la déshydratation et aux températures élevées. Ainsi, la levure de boulanger Saccharomyces cerevisiae, commercialisée sous forme déshydratée, s'est révélée être un excellent candidat pour assurer la sédimentation des bactéries. En effet, il s'agit d'un organisme unicellulaire qui sédimente rapidement. Une centrifugation de 10 min à 5 000 x g suffit pour former un culot de levure stable au fond du tube et assure la récupération des cellules bactériennes. Des quantifications réalisées sur gel d'agar avant et après cette centrifugation ont montré que quelque soit la quantité initiale de bactéries, l'ajout de levures déshydratées (préalablement resuspendues dans une solution de Tris stérile) dans l'échantillon assure une récupération de 100 % des bactéries. De plus, en ajoutant de la BSA en solution dans un échantillon, on peut observer un culot encore plus solide. D'autre part, l'utilisation de cette solution de BSA est un atout pour les premiers rinçages car elle est réputée pour capter les sels présents dans un échantillon et faciliter la PCR ultérieure même en présence d'inhibiteurs (King CE., Debruyne R., Kuch M., Schwarz C, and Poinar H.N. (2009): A quantitative approach to detect and overcome PCR inhibition in ancient DNA extracts. BioTechniques, Vol. 47, p. 941-949).
Plus précisément, 200 mg de levure déshydratée sont transférés dans un tube de 2 ml, puis on ajuste le volume à 2 ml avec une solution tampon Tris (40 mM et pH 7,6) puis on mélange sous agitation avec un dispositif Vortex pendant 2 minutes. On obtient ainsi une suspension de levure avec une concentration de 100 mg/ml. Parallèlement, on prépare une solution de BSA de 60 mg/ml dans de l'eau stérile. Ensuite, on transfert 50ml_ d'échantillon d'eau de mer à tester dans un flacon de 50 ml. Puis on y ajoute 150 μΙ de suspension de levure ci-dessus et 2 ml de solution de BSA ci-dessus et on homogénéise.
La suspension de levure ainsi ajoutée à la concentration de 300 pg/ml dans l'échantillon forme un tamis cellulaire et, au cours d'une centrifugation à la vitesse minimale de 5000 x g pendant 10 minutes, entraine l'ensemble des bactéries présentes dans le culot. D'autre part, la BSA à la concentration de 3 mg/ml dans l'échantillon permet de rendre ce culot solide et d'éviter son écoulement lors de l'élimination du surnageant. La suspension de levure peut être préparée soit à partir de levures fraîches soit à partir de levures déshydratées resupendues dans du tampon Tris 40mM pH 7,6 afin d'éviter un choc osmotique. La BSA est réhydratée dans de l'eau stérile. D'autre part, les levures n'inhibent pas la PCR quantitative ultérieure. En effet, si l'on poursuit le protocole jusqu'à l'extraction de l'ADN, et qu'on quantifie cet ADN par PCR quantitative en temps réel, on obtient un rendement (Quantité ADN mesurée / Quantité initiale de bactéries) proche de 1.
2/- Traitement à l'azoture d'éthidium Le surnageant éliminé après la première centrifugation de 10 minutes à 5 000 g à la température de 25°C, il reste dans le culot les levures et toutes les bactéries vivantes et mortes initialement présentes dans l'échantillon. Ce culot est repris dans 15 ml d'un tampon Tris 40 mM pH 7,6 et 45 μΙ d'une solution d'azoture d'éthidium (EMA) dans du TMAO (triméthyl aminé oxyde) sont ajoutés, l'EMA se trouvant ainsi ajouté à la concentration de 3 pg/ml dans l'échantillon. Une première courte incubation de 30 secondes à 5 minutes, à température ambiante et à l'obscurité, permet à l'EMA de traverser les parois perforées des cellules mortes. Puis une phase de photoactivation permet de lier l'éthidium de façon covalente à l'ADN. Ces liaisons entraînent des modifications structurales de l'ADN qui ne pourra alors plus être quantifié par PCR quantitative (pas de déshybridation, pas de fixation de la polymérase). Cette photoactivation est réalisée en plaçant les échantillons dans un bac à glace afin d'éviter son échauffement. Placé sur une table d'agitation, l'échantillon est homogénéisé tout au long de son illumination. Pour la photo activation, une lampe halogène de 150 Watt est positionnée 20 cm au dessus de la surface de l'échantillon. L'illumination dure ainsi 10 minutes. Dans ces conditions, l'ADN des bactéries vivantes, protégé par la paroi imperméable, conserve sa structure et ses propriétés. L'EMA une fois activé par la lumière ne pourra plus agir ultérieurement. On peut alors compléter le volume de l'échantillon à 50 ml avec le tampon Tris et centrifuger de nouveau l'échantillon dans les mêmes conditions que précédemment, à savoir 10 minutes à 5 000g et à la température de 25°C.
3/- Etape de lyse des cellules par chauffage et récupération de l'ADN de l'échantillon
La centrifugation ci-dessus permet de reformer un culot constitué des levures et des cellules vivantes et mortes. Le surnageant peut être éliminé grossièrement de façon à ne laisser qu'une fraction de 500 pL environ contenant le résidu solide. Pour cela il suffit simplement de retourner et de vider le tube. Un court vortexage permet de resuspendre le culot dans le surnageant résiduel. Sous l'action d'un choc thermique (5 minutes à 95 °C puis 5 minutes dans la glace), les cellules lysent et libèrent leur ADN. Une rapide centrifugation de 5 minutes à 25°C et à 5 000 x g suffit alors pour séparer le culot de levure et les débris cellulaires du surnageant dans lequel est dissout l'ADN.
4/- Etape de purification de l'ADN
Le surnageant contient donc l'ADN à quantifier. Cependant, il est susceptible d'être contaminé par des protéines et des ARNs relargués par les bactéries ou encore des traces résiduelles d'EMA ou autres molécules éventuellement présentes dans l'échantillon initial. La quantification par PCR quantitative exige une certaine pureté de l'échantillon. En effet, basée sur l'action d'une polymérase, l'efficacité de la technique peut être diminuée en présence d'inhibiteurs. Le surnageant est donc purifié et concentré soit : a) par filtration sur membrane. Tout le surnageant est prélevé et déposé sur une colonne Vivacon 500 (Sartorius stedim, membrane hydrosart) avec un seuil de rétention de 30 000 Da préalablement rincée avec du TE (Tris lOmM, EDTA ImM, pH 8). L'échantillon est alors rincé deux fois avec le TE. Les filtrations sont permises grâce à des centrifugations successives à 7 000 x g pendant 10 minutes. Les rinçages effectués, toutes les molécules ayant un poids moléculaire inférieur à 30 kDa ont été éliminées et l'ADN peut donc être récupéré dans le volume de TE retenu au dessus de la membrane en retournant la colonne au dessus d'un tube propre.
b) par fixation-élution sur colonne de silice. Tout le surnageant est mélangé avec des solutions de rinçage puis passé sur une colonne QIAamp MinElute (Kit QIA amp DNA Micro, QIAGEN). L'ADN contenu dans l'échantillon va se fixer sur les billes de silice contenu dans la colonne. Après un rinçage, l'ADN est éluer dans 50 pL de TE. Le passage des solutions sur la colonne est effectué grâce à des centrifugations de 1 à 3 minutes à 20000 x g.
L'ADN obtenu est alors suffisamment pur pour être quantifié par PCR quantitative. 5/- Etape de quantification par PCR quantitative
On a utilisé un appareil MX 3500 P de la société STRATAGENE et le kit WIZARD GENOMIC PURIFICATION de la société PROMEGA pour extraire l'ADN en ajoutant une étape de digestion de protéine avec la protéinase K. Un contrôle interne préférable pour vérifier l'absence d'inhibition de la PCR dans chaque échantillon. Ce contrôle est réalisé en ajoutant une quantité connue d'ADN synthétique, ci-après SEQ. ID. n°5 vu absent de toutes banques chromosomiques, dans l'échantillon final. La quantité de cet ADN est mesurée par PCR quantitative avec les amorces SED. ID. n°6 et 7 ce qui permet de déterminer s'il existe une inhibition, et si tel est le cas de calculer la dérive qu'elle entraine. En supposant que l'inhibition influence autant l'amplification de l'ADN synthétique que celle de l'ADN bactérien, on déduit la quantité réelle d'ADN bactérien dans l'échantillon. Une gamme étalon est nécessaire pour chaque gène ciblé par la
PCR quantitative. En effet, l'appareil de PCR quantitative détermine le cycle seuil (« cycle threshold » dit et), cycle à partir duquel la fluorescence est suffisamment importante pour être mesurée. Plus la concentration initiale en ADN cible est importante plus la fluorescence sera quantifiable tôt. Pour traduire ce cycle seuil en quantité d'ADN, une gamme étalon de 5 points minimum est donc nécessaire. Cette gamme est effectuée avec de l'ADN génomique extrait de la bactérie ciblée, purifié et quantifié en nombre de copies par microlitre ou avec la séquence cible synthétique quantifiée en nombre de copies par microlitre. Les séquences d'ADN synthétique ainsi que les oligonucléotides permettant l'amplification de ce dernier ont été construits spécifiquement pour cette technique. Les oligonucléotides ciblant des gènes spécifiques des Escherichia coli et des entérocoques ont été récupérés de la littérature. La sensibilité de la PCR quantitative dépend de la spécificité des amorces utilisées. Trois couples d'amorces ont été testés pour E. coli :
• un couple d'amorces ciblant une séquence du gène uidA, spécifique de E. coli et codant pour la β-glucuronidase (protéine dosée par la méthode enzymatique).
• un couple ciblant le gène 16S qui est également spécifique de E. coli, et qui, étant présent en plusieurs copies dans le génome (5 à 7 copies) permet une détection plus sensible, et donc un seuil plus bas.
• un couple ciblant le gène LacZ, mais ces amorces non spécifiques de E. coli ont été éliminées.
Les amorces du gène 16S ont été privilégiées pour l'étude car, pour des échantillons à faible concentration chromosomique, les amorces du gène uidA faisaient apparaître des concatémères d'oligonucléotides empêchant la mesure exacte du nombre de copies du gène. Des concentrations différentes (homo-concentrations et hétéro- concentrations) en amorces dans le volume réactionnel ont été testées, des modifications de la durée et/ou de la température lors de la phase d'élongation ont également fait l'objet d'une étude, mais aucune des conditions testées n'a permis d'éliminer la formation de ces dimères et/ou concatémères.
Deux couples d'amorces ont été testés pour Entérocoques.
• Des amorces ciblant gène 23S, spécifique des entérocoques,
• Un couple ciblant une séquence du gène codant pour la protéine Tuf tout autant spécifique des Entérocoques. Ce second couple a été privilégié pour la quantification des entérocoques car l'amplification et la quantification de la séquence ciblée peuvent être réalisées avec le même protocole de PCR quantitative que celui de la quantification des E. coli. Le couple d'oligonucléotides utilisé pour quantifier le nombre de chromosomes des E. coli proposé par Malinen et al (2003) (Comparison of real-time PCR with SYBR Green I or 59-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology, Vol. 149, p. 269-277) ciblant le gène 16S des E. coli uniquement, présente les séquences suivantes :
Ecolil6s Fw : SEQ. ID. n° 1 = 5' - GTTAATACCTTTGCTCATTGA -
3
Ecolil6s Rv : SEQ. ID. n° 2 = 5' - ACCAGGGTATCTAATCCTGTT - 3'
Le couple d'amorces utilisé pour quantifier le nombre de chromosomes des entérocoques établi par Morrison et al (2008) : (Quantification of enterococci and bifidobacteria in Georgia estuaries using conventional and molecular methods. Water Research, Vol 42, p. 4001-4009) ciblant le gène de la protéine Tuf des entérocoques, présente les séquences suivantes :
EnteroTuf Fw : SEQ. ID. n° 3 = 5' - TACTGACAAACCATTCATGATG
- 3'
EnteroTuf Rv : SEQ. ID. n° 4 = 5' - AACTTCGTCACCAACGCGAAC - 3'.
Chaque analyse est indépendante et a été optimisée avec des Kit de SYBR Green mais l'amplification et la quantification des séquences cibles d'E. coli et des entérocoques peuvent être réalisées simultanément au cours d'un même programme PCR. Avec les couples d'amorce utilisées à la concentration de 0,4 μΜ, chaque cycle d'amplification contient seulement deux étapes : une étape de déshybridation à 95°C pendant 5 secondes suivie d'une étape de fixation de la TaqPolymérase et de polymérisation à 60 °C pendant 25 secondes. Le niveau de fluorescence dans chaque puits est mesuré à la fin de chaque cycle. Une courbe de fusion de l'ADN amplifié est réalisée à la fin des cycles d'amplification, elle permet de vérifier l'amplification d'une séquence unique et spécifique. L'appareil de PCR quantitative estime alors le nombre de copies initial de séquence cible dans la prise d'essai de chaque échantillon. En tenant compte du volume final de l'échantillon et de la dérive due à l'inhibition, la concentration initiale en bactéries dans l'échantillon peut être déterminée.
La séquence de contrôle interne d'ADN synthétique dite séquence alien et ses amorces d'amplification étaient les séquences suivantes :
Séquence alien =
SEQ. ID. N° 5 = 5' - CCCATTCATCTGCCAGCTAGCAGACGGGCACAACGGGTCAACATATTGCTGCTT GGACTTAAGTTACGCTAGAGGTTTCTATGGGCCAGGTGCATAAGGATGCTCTC CCA - 3'
Ali Fw : SEQ. ID. n° 6 = 5'- GGGTAAGTAGACGGTCGATC - 3'
Ali Rv : SEQ. ID. n° 7 = 5' - ACGTATTCCTACGAGAGGGT - 3'
Exemple 2 : Influence de la concentration en EMA et du traitement d'illumination. 2.1/- Influence de la concentration en EMA sur la liaison à l'ADN des cellules vivantes et mortes.
Des essais de quantification d'ADN sur des échantillons préalablement traités avec des concentrations variables en azoture d'éthidium de 3, 6 et 12 pg/ml ont été réalisés. Trois types d'échantillons ont été testés, des échantillons composés uniquement de bactéries vivantes ou mortes (non lysées) et des échantillons mixtes contenant 10 fois plus de cellules mortes non lysées que cellules vivantes dans 50 ml d'eau de mer filtrée. La figure 1 présente les détails et résultats de l'expérience.
Le rendement en ordonnée (%) correspond au rapport du nombre de chromosomes mesuré par rapport à la quantité initiale en bactéries dans l'échantillon.
Suite à une exposition de 20 minutes sous une lampe halogène (150 W), seule la concentration de 3 pg/ml d'EMA d'échantillon semble adaptée. En effet, après un traitement à l'azoture d'éthidium aux concentrations 6 pg/ml et 12 pg/ml, aucun chromosome n'est quantifié dans les échantillons contenant des bactéries vivantes uniquement. En revanche, après un traitement à l'azoture d'éthidium à la concentration de 3 pg/ml, dans un échantillon mixte, la PCR quantitative permet de quantifier 96% des chromosomes des bactéries vivantes. L'EMA semble donc agir prioritairement sur les cellules mortes. D'autre part, cette concentration apparaît suffisante pour traiter tout l'ADN des cellules mortes. En effet dans un échantillon constitué uniquement de cellules mortes, après un tel traitement, la PCR quantitative ne quantifie rien. Cependant, le traitement s'avère être trop puissant car dans un échantillon constitué de cellules vivantes uniquement, la PCR quantitative ne quantifie que 53 % des chromosomes. Dans ces conditions, l'EMA déstructure une partie de l'ADN des cellules vivantes en absence de cellule morte.
2.2/- Influence du traitement d'illumination sur la liaison à l'ADN des cellules
Des essais de quantification d'ADN sur des échantillons traités à l'azoture d'éthidium 3 pg/ml pendant des durées d'illumination variables (10 et 20 minutes) ont été réalisés. Trois types d'échantillons sont testés, des échantillons composés uniquement de bactéries vivantes ou mortes (non lysées) et des échantillons mixtes contenant 10 fois plus de cellules mortes non lysées que cellules vivantes dans 50 ml d'eau de mer filtrée. La figure 2 présente les détails et résultats de l'expérience. Le rendement en ordonnées (%) correspond au rapport du nombre de chromosomes mesurés par rapport à la quantité initiale en bactéries dans l'échantillon.
Alors que l'EMA à 3 pg/ml agit aussi sur l'ADN des cellules vivantes lorsque la phase d'illumination est de 20 minutes, 10 minutes d'illumination suffisent pour ponter la totalité de l'ADN des cellules mortes et de l'ADN libre, tout en évitant l'action de l'EMA sur les cellules vivantes dans un échantillon dépourvu de bactéries mortes.
D'autre part, il est important de noter qu'un dénombrement sur milieux gélosés après le traitement à l'EMA ne permet pas de mesurer le nombre de cellules vivantes dans l'échantillon. En effet, même s'il n'endommage pas l'ADN des bactéries vivantes, l'azoture d'éthidium semble léser les cellules vivantes et perturber leur développement.
Exemple 3 : Condition de mise en œuvre de l'étape d'extraction de l'ADN par chauffage en fonction de la durée d'incubation à 95°C A l'étape 3 d'extraction de l'ADN bactérien, tout l'ADN libre ainsi que celui des bactéries mortes est ponté par l'EMA. L'ADN des bactéries vivantes doit maintenant être libéré dans le milieu afin d'être récupéré puis dosé en PCR quantitative. Une incubation dans un bain- marie porté à 95°C suivie d'une incubation dans la glace permet de lyser les bactéries. Cependant, une incubation à 95°C trop longue altère l'ADN libéré par les cellules après leur lyse.
La figure 3 présente les résultats du test qui a permis de déterminer la durée optimale de ce temps d'incubation de l'échantillon. On peut remarquer que la quantité de chromosomes estimée par la PCR quantitative diminue en fonction du temps d'incubation à 95°C. 5 minutes sont nécessaires pour assurer la lyse de toutes les cellules, quelle que soit la concentration initiale en bactérie. Au-delà de 5 minutes, on remarque que le nombre de chromosomes mesuré par PCR quantitative décroit. Une durée d'incubation de 5 minutes est suffisante et évite certains dommages de l'ADN bactérien après la lyse des cellules.

Claims

REVENDICATIONS
1. Procédé de quantification de bactéries vivantes dans un milieu liquide, de préférence milieu aqueux, susceptible d'en contenir caractérisé en ce qu'on réalise les étapes successives suivantes dans lesquelles : a/ on ajoute des levures dans le dit échantillon et on réalise un mélange sous agitation, et b/ on sépare un résidu solide constitué d'un précipité contenant toutes les levures et bactéries contenues dans le dit échantillon, cl on re-suspend le dit résidu solide dans une solution tamponnée à pH de 7 à 8, de préférence un tampon Tris 40mM à pH 7,6 et on y ajoute un composé chimique ou biologique, apte, dans des conditions de concentration et/ou de traitement, à provoquer la liaison dudit composé spécifiquement à l'ADN des bactéries mortes sans provoquer la lyse ou dégradation des parois des bactéries vivantes ni la liaison à l'ADN des bactéries vivantes, ledit composé dénommé composé inhibiteur étant apte à empêcher ainsi l'amplification par PCR de l'ADN qui lui est lié, et d/ on sépare une fraction contenant un résidu solide contenant toutes les levures et bactéries, et e/ on la chauffe ledit résidu solide, de préférence au bain marie, à une température de pas plus de 100°C, de préférence à 95°C pendant 5 à 10 minutes, de manière à lyser toutes les bactéries sans provoquer la lyse des levures, et f/ on sépare une fraction contenant toutes les levures et débris de bactéries lysées et on récupère une fraction contenant l'ADN bactérien, et g/ on met en œuvre une quantification par amplification par PCR, de préférence par PCR en temps réel, de l'ADN provenant desdites bactéries initialement vivantes dans l'échantillon de départ.
2. Procédé selon la revendication 1, caractérisé en ce qu'à l'étape g/, on réalise la quantification des bactéries vivantes du genre entérocoques et Escherichia Coli contenues dans un échantillon d'eau de baignade.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'à l'étape b/, on réalise la centrifugation de l'échantillon à au moins 5 000 g dans un récipient pendant au moins 10 minutes et on récupère le culot par élimination du surnageant.
4. Procédé selon la revendication 1 à 3, caractérisé en ce qu'à l'étape a), on utilise de la levure boulangère de Saccharomyces cerevisiae, la concentration en levures étant ajustée à une valeur de 200 à 400 pg/ml.
5. Procédé selon la revendication 4, caractérisé en ce qu'à l'étape a/, on ajoute en outre dans l'échantillon une protéine coagulante telle que le sérum albumine bovine (BSA) à une concentration de 2 à 20 mg/ml dans l'échantillon pour favoriser l'adhérence du culot sur la paroi du récipient de centrifugation à l'étape b/.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'à l'étape c/, le dit composé inhibiteur est un agent intercalant photo-activable et on soumet la suspension à un traitement d'irradiation lumineuse d'activation de la liaison dudit agent intercalant avec l'ADN des bactéries mortes, ledit agent intercalant inhibant l'amplification par PCR dudit ADN auquel il est lié.
7. Procédé selon la revendication 6, caractérisé en ce que ledit agent intercalant est un azoture d'éthidium, de préférence l'EMA, à une concentration de 2 à 5 pg/ml et on soumet la suspension à une irradiation lumineuse, en maintenant une température de suspension à la température ambiante, de préférence en trempant le récipient la contenant dans la glace.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'à l'étape d/, on réalise la dite séparation par centrifugation de la suspension obtenue après le traitement de l'étape c/, à au moins 5 000 g pendant au moins 10 minutes et élimination de la plus grand part du surnageant pour récupérer le culot contenant ledit résidu solide contenant toutes les levures et bactéries dans une petite fraction d'au moins 500 μΙ de la dite suspension, et on la chauffe à l'étape e/.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'à l'étape d/, on récupère au moins 99% des bactéries initialement contenues dans l'échantillon.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'à l'étape f/, on réalise la dite séparation par centrifugation de la suspension obtenu après le traitement de l'étape c/, à au moins 5000 g pendant au moins 5 minutes et élimination du culot contenant les levures intactes et les débris de bactéries lysées, pour récupérer le surnageant contenant ledit ADN bactérien.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'à l'étape g/ on réalise une étape préalable purification de l'ADN bactérien, de préférence sur colonne de silice ou une colonne de filtration membranaire de seuil de 30 KDa.
12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'à l'étape g/ on amplifie les bactéries E. Coli et entérocoques avec les couple d'amorces suivantes :
- pour les bactéries E. coli : une séquence spécifique tirée du gène 16S - pour les bactéries du genre entérocoques : une séquence spécifique du genre Enterococcus tirées du gène tuf.
13. Procédé selon la revendication 12, caractérisé en ce que l'étape g/ on ajoute dans l'échantillon d'ADN à quantifier une concentration connue d'ADN synthétique non bactérien dénommé ADN alien.
14. Procédé selon l'une des revendications 12 ou 13, caractérisé en ce qu'on utilise les oligonucléotides suivants choisis parmi : - SEQ. ID. n°l et 2 pour les amorces 5' et 3' des bactéries E.
Coli, et
- SEQ. ID. n°3 et 4 pour les amorces 5' et 3' des bactéries entérocoques, et
- SEQ. ID. N°5 pour la séquence de contrôle interne d'ADN alien, et
- SEQ. ID. n°6 et 7 pour les amorces 5' et 3' de la séquence SEQ. ID. n°5.
15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que l'on peut détecter des concentrations de 2 à 108 bactéries vivantes/ml d'échantillons.
PCT/FR2012/050838 2011-04-18 2012-04-17 Procédé de quantification de bactéries vivantes dans un milieu liquide WO2012143661A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153336A FR2974117B1 (fr) 2011-04-18 2011-04-18 Procede de quantification de bacteries vivantes dans un milieu liquide
FR1153336 2011-04-18

Publications (1)

Publication Number Publication Date
WO2012143661A1 true WO2012143661A1 (fr) 2012-10-26

Family

ID=46146924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050838 WO2012143661A1 (fr) 2011-04-18 2012-04-17 Procédé de quantification de bactéries vivantes dans un milieu liquide

Country Status (2)

Country Link
FR (1) FR2974117B1 (fr)
WO (1) WO2012143661A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265445A (zh) * 2020-02-14 2021-08-17 泰斯托生物分析有限公司 用于检测活微生物的方法和流体管道系统
US11261476B2 (en) 2016-10-19 2022-03-01 Q-Linea Ab Method for recovering microbial cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077379A2 (fr) 2000-04-10 2001-10-18 Matforsk Detection de cellules
WO2003052143A2 (fr) * 2001-12-19 2003-06-26 Angles D Auriac Marc B Nouvelles amorces pour la detection et l'identification de groupes d'indicateurs bacteriens
DE102006020463A1 (de) * 2005-05-24 2006-12-07 Sartorius Ag Verfahren zum Entfernen von Nukleinsäuren aus einer Flüssigkeit, Verfahren zur Herstellung von Adsorberelementen und Verwendung von Membranadsorbermaterial-Verschnitt
WO2007023181A1 (fr) * 2005-08-24 2007-03-01 Qiagen Gmbh Procede de separation de cellules vivantes
WO2007100762A2 (fr) 2006-02-28 2007-09-07 Montana State University Utilisation de dérivés de phénanthridium pour établir une différence entre des cellules à membranes intactes et compromises en utilisant des techniques à base d'acides nucléiques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077379A2 (fr) 2000-04-10 2001-10-18 Matforsk Detection de cellules
WO2003052143A2 (fr) * 2001-12-19 2003-06-26 Angles D Auriac Marc B Nouvelles amorces pour la detection et l'identification de groupes d'indicateurs bacteriens
DE102006020463A1 (de) * 2005-05-24 2006-12-07 Sartorius Ag Verfahren zum Entfernen von Nukleinsäuren aus einer Flüssigkeit, Verfahren zur Herstellung von Adsorberelementen und Verwendung von Membranadsorbermaterial-Verschnitt
WO2007023181A1 (fr) * 2005-08-24 2007-03-01 Qiagen Gmbh Procede de separation de cellules vivantes
WO2007100762A2 (fr) 2006-02-28 2007-09-07 Montana State University Utilisation de dérivés de phénanthridium pour établir une différence entre des cellules à membranes intactes et compromises en utilisant des techniques à base d'acides nucléiques

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
C. GARCIA-ALJARO ET AL: "Combined use of an immunomagnetic separation method and immunoblotting for the enumeration and isolation of Escherichia coli O157 in wastewaters", JOURNAL OF APPLIED MICROBIOLOGY, vol. 98, no. 3, 1 March 2005 (2005-03-01), pages 589 - 597, XP055021706, ISSN: 1364-5072, DOI: 10.1111/j.1365-2672.2004.02497.x *
HORÁKOVÁ K ET AL: "Evaluation of methods for isolation of DNA for polymerase chain reaction (PCR)-based identification of pathogenic bacteria from pure cultures and water samples.", WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2008 LNKD- PUBMED:18824796, vol. 58, no. 5, 2008, pages 995 - 999, XP002671330, ISSN: 0273-1223 *
J. JOFRE ET AL: "Feasibility of methods based on nucleic acid amplification techniques to fulfil the requirements for microbiological analysis of water quality", JOURNAL OF APPLIED MICROBIOLOGY, vol. 109, no. 6, 1 December 2010 (2010-12-01), pages 1853 - 1867, XP055021675, ISSN: 1364-5072, DOI: 10.1111/j.1365-2672.2010.04830.x *
KING C.E.; DEBRUYNE R.; KUCH M.; SCHWARZ C.; POINAR H.N.: "A quantitative approach to detect and overcome PCR inhibition in ancient DNA extracts", BIOTECHNIQUES, vol. 47, 2009, pages 941 - 949, XP055070208, DOI: doi:10.2144/000113244
LEGER G., MEJEAN V., RAPTELET F.: "La qPCR-abo, une méthode rapide et innovantepour l'analyse des eaux de baignade", 7 June 2011 (2011-06-07), XP002671332, Retrieved from the Internet <URL:http://www.rencontres-eauxdebaignade.com/2011/res/TR2-SEM.pdf> [retrieved on 20120312] *
MALINEN ET AL.: "Comparison of real-time PCR with SYBR Green I or 59-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria", MICROBIOLOGY, vol. 149, 2003, pages 269 - 277, XP002451760
MORALES-MORALES H A ET AL: "Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water", APPLIED AND ENVIRONMENTAL MICROBIOLOGY 20030701 AMERICAN SOCIETY FOR MICROBIOLOGY US, vol. 69, no. 7, 1 July 2003 (2003-07-01), pages 4098 - 4102, XP002671331, DOI: DOI:10.1128/AEM.69.7.4098-4102.2003 *
MORRISON ET AL.: "Quantification of enterococci and bifidobacteria in Georgia estuaries using conventional and molecular methods", WATER RESEARCH, vol. 42, 2008, pages 4001 - 4009, XP024528771, DOI: doi:10.1016/j.watres.2008.07.021
NOCKER ANDREAS ET AL: "Discrimination between live and dead cells in bacterial communities from environmental water samples analyzed by 454 pyrosequencing", INTERNATIONAL MICROBIOLOGY, vol. 13, no. 2, June 2010 (2010-06-01), pages 59 - 65 URL, XP002671329, ISSN: 1139-6709 *
ROMPRE A ET AL: "Detection and enumeration of coliforms in drinking water: Current methods and emerging approaches", JOURNAL OF MICROBIOLOGICAL METHODS, ELSEVIER, AMSTERDAM, NL, vol. 49, no. 1, 1 March 2002 (2002-03-01), pages 31 - 54, XP002359233, ISSN: 0167-7012, DOI: 10.1016/S0167-7012(01)00351-7 *
SOEJIMA T ET AL: "Photoactivated ethidium monoazide directly cleaves bacterial DNA and is applied to PCR for discrimination of live and dead bacteria", MICROBIOLOGY AND IMMUNOLOGY, CENTER FOR ACADEMIC PUBLICATIONS JAPAN, JP, vol. 51, 1 August 2007 (2007-08-01), pages 763 - 775, XP008107488, ISSN: 0385-5600 *
VARMA M ET AL: "Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater", WATER RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 43, no. 19, 1 November 2009 (2009-11-01), pages 4790 - 4801, XP026738132, ISSN: 0043-1354, [retrieved on 20090529], DOI: 10.1016/J.WATRES.2009.05.031 *
WHITING ET AL: "Detection of Pediococcus spp. in brewing yeast by a rapid immunoassay.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 58, no. 2, 1 February 1992 (1992-02-01), pages 713 - 716, XP055021682, ISSN: 0099-2240 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261476B2 (en) 2016-10-19 2022-03-01 Q-Linea Ab Method for recovering microbial cells
CN113265445A (zh) * 2020-02-14 2021-08-17 泰斯托生物分析有限公司 用于检测活微生物的方法和流体管道系统

Also Published As

Publication number Publication date
FR2974117A1 (fr) 2012-10-19
FR2974117B1 (fr) 2018-05-11

Similar Documents

Publication Publication Date Title
Sellers et al. Mu-DNA: a modular universal DNA extraction method adaptable for a wide range of sample types
EP2018425B1 (fr) Procede d&#39;extraction des acides desoxyribonucleiques (adn) de microorganismes eventuellement presents dans un echantillon sanguin
JP5572578B2 (ja) 精製rnaの単離試薬及び方法
CN103097532B (zh) 高产量分离包括小靶核酸在内的靶核酸的方法
EP3286324B1 (fr) Procédé, solution de lyse et kit pour l&#39;appauvrissement sélectif d&#39;acides nucléiques animaux dans un échantillon
FR2926560A1 (fr) Procede d&#39;extraction et de purification d&#39;acides nucleiques sur membrane
EP0713922A1 (fr) Oligonucléotide utilisable comme amorce dans une méthode d&#39;amplification basée sur une réplication avec déplacement de brin
EP0787209A1 (fr) Procede d&#39;amplification de sequences d&#39;acide nucleique par deplacement, a l&#39;aide d&#39;amorces chimeres
Sun et al. Efficient purification and concentration of viruses from a large body of high turbidity seawater
WO2002002811A2 (fr) Procede de controle de la qualite microbiologique d&#39;un milieu aqueux et necessaire approprie
US20070077573A1 (en) Method for extracting DNA from sample of organism
FR2723950A1 (fr) Fragments nucleotidiques capables de s&#39;hybrider specifiquemennt a l&#39;adnr ou arnr des rickettsia et leur utilisation comme sondes ou amorces.
WO2012143661A1 (fr) Procédé de quantification de bactéries vivantes dans un milieu liquide
Gao et al. Insight into the short-term effect of titanium dioxide nanoparticles on active ammonia oxidizing microorganisms in a full-scale wastewater treatment plant: a DNA-stable isotope probing study
WO2000008136A1 (fr) Amplification enzymatique d&#39;acide nucleique
FR2838066A1 (fr) Procede et automate d&#39;extraction d&#39;acides nucleiques a partir d&#39;un melange complexe
WO2004027080A2 (fr) Procede d&#39;extraction d&#39;acides nucleiques a partir d&#39;echantillons microbiens
JP4482517B2 (ja) 銀ナノ粒子を利用した標的物質の精製方法
FR2966826A1 (fr) Procede de concentration de composes echantillons et d&#39;amplification d&#39;acides nucleiques
JP7403948B2 (ja) 試料の前処理方法
JP2005265680A (ja) 浴槽水中のレジオネラ属菌の検査方法
Sekikawa et al. Suppression of Bst DNA polymerase inhibition by nonionic surfactants and its application for Cryptosporidium parvum DNA detection
JP2006166711A (ja) 糞便由来遺伝子の簡便増幅方法
JP3769604B2 (ja) 水界に存在するウイルスの遺伝子を分離、分画及び解析する方法
JPWO2006088030A1 (ja) 核酸抽出方法、核酸抽出剤、および核酸抽出用キット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12722425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12722425

Country of ref document: EP

Kind code of ref document: A1