WO2012141106A1 - 高周波コイルユニット及び磁気共鳴イメージング装置 - Google Patents

高周波コイルユニット及び磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2012141106A1
WO2012141106A1 PCT/JP2012/059574 JP2012059574W WO2012141106A1 WO 2012141106 A1 WO2012141106 A1 WO 2012141106A1 JP 2012059574 W JP2012059574 W JP 2012059574W WO 2012141106 A1 WO2012141106 A1 WO 2012141106A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil unit
coil
conductor
magnetic field
frequency coil
Prior art date
Application number
PCT/JP2012/059574
Other languages
English (en)
French (fr)
Inventor
悦久 五月女
尾藤 良孝
秀太 羽原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US14/001,221 priority Critical patent/US9541614B2/en
Priority to CN201280007147.2A priority patent/CN103338696B/zh
Publication of WO2012141106A1 publication Critical patent/WO2012141106A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a magnetic resonance imaging (MRI) technique, and relates to a technique for irradiating an electromagnetic wave and detecting a magnetic resonance signal.
  • MRI magnetic resonance imaging
  • An MRI apparatus used for MRI is a medical image diagnostic apparatus that causes magnetic resonance to occur in a nuclear spin in an arbitrary cross section that crosses an examination target, and obtains a tomographic image in the cross section from a generated magnetic resonance signal.
  • a nuclear spin in the subject for example, a nuclear spin of a hydrogen atom is excited and excited.
  • a circularly polarized magnetic field is generated as a magnetic resonance signal. This signal is detected by an RF coil, and signal processing is performed to image the hydrogen nucleus distribution in the living body.
  • This RF coil includes a transmission coil dedicated to high-frequency magnetic field irradiation, a reception coil dedicated to reception of magnetic resonance signals, or a transmission / reception coil that also serves as both.
  • Various coils have been developed in order to efficiently obtain high-quality images. For example, when exciting the nuclear spin in the subject, a uniform irradiation intensity distribution is required. The uniformity is desirably within 70% with respect to the maximum value of the irradiation distribution in the region to be imaged. This is because if the irradiation intensity is highly uneven, the excitation state of the nuclear spin varies depending on the site in the subject, and unevenness of contrast and artifacts occur in the obtained image.
  • cylindrical RF coils such as birdcage coils (see, for example, Patent Document 1 and Non-Patent Document 1) and TEM coils (see, for example, Non-Patent Document 2) are known.
  • the birdcage coil is composed of two cylindrical ring conductors, a plurality of linear rung conductors, and a plurality of capacitors. The end of the rung conductor and the ring conductor are connected, and the capacitor is either a ring conductor or a rung. Arranged on the conductor.
  • the QD method is a method of irradiating a high-frequency magnetic field using two RF coils whose directions of the high-frequency magnetic field to be irradiated are orthogonal to each other so that the phase difference in time phase of the high-frequency magnetic field irradiated by each RF coil is 90 degrees. is there.
  • the QD method it is possible to irradiate a circularly polarized magnetic field that excites nuclear spins of hydrogen atoms with high efficiency.
  • the irradiation intensity is ⁇ compared with the case of irradiating with one RF coil. 2 times improvement.
  • the electric power can be reduced to 1/2 when converted into the irradiation electric power, the irradiation efficiency is improved twice.
  • two power supply ports used for irradiation are arranged at positions orthogonal to each other, so that it is possible to irradiate a high-frequency magnetic field by this QD method with one coil.
  • the elliptical cylindrical coil can increase the proportion of the subject in the coil (filling factor) rather than the cylindrical coil.
  • the irradiation efficiency of the RF coil is improved.
  • elliptical birdcage coils having an elliptical cylindrical shape have been developed (see, for example, Patent Document 3, Non-Patent Document 4, and Non-Patent Document 5).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to obtain an elliptical birdcage coil that reduces labor and manufacturing cost at the time of manufacture and has less performance fluctuation.
  • the present invention provides a high-frequency coil unit constituted by an elliptical birdcage coil in which the capacitances of a plurality of capacitors arranged in at least one of a ring conductor and a rung conductor are unified for each conductor type to be arranged.
  • the inductance value and arrangement of the ring conductor and the rung conductor are determined so that the capacitance of the capacitor is the same for each type of conductor to be arranged.
  • a plurality of linear conductors arranged along the elliptic cylindrical curved surface in parallel to the central axis of the elliptic cylindrical curved surface, and along the elliptic cylindrical curved surface centered on a point on the central axis
  • Two elliptical loop conductors arranged so that the loop surfaces are parallel to each other, and a plurality of first capacitors each composed of one or more capacitors, and both ends of each linear conductor,
  • the first capacitor is connected to the elliptical loop-shaped conductor, and the first capacitor is either 1 on each of the linear conductors or on the arc-shaped conductor sandwiched by the connection points of the linear conductors adjacent to the elliptical loop-shaped conductor.
  • the plurality of linear conductors are arranged symmetrically with respect to the major axis and the minor axis of the elliptical loop conductor, and the capacitance of the first capacitor has the same value.
  • High frequency coil unit To provide.
  • a static magnetic field generating means for generating a static magnetic field
  • a gradient magnetic field applying means for applying a gradient magnetic field
  • a high frequency magnetic field signal generating means for generating a high frequency magnetic field signal
  • a high frequency magnetic field signal input from the high frequency magnetic field signal generating means A transmitter / receiver coil that detects a magnetic resonance signal generated from the subject and outputs it as a detection signal, signal processing means for performing signal processing on the detection signal, and a gradient magnetic field applying means
  • a magnetic resonance imaging apparatus comprising: a high-frequency magnetic field signal generation unit; and a control unit that controls operations of the signal processing unit, wherein the high-frequency coil unit is used as the transmission / reception coil.
  • a resonance imaging apparatus is provided.
  • the present invention it is possible to easily obtain an elliptic birdcage coil with low cost and low performance fluctuation. It is possible to reduce the labor and manufacturing cost at the time of manufacturing the elliptical birdcage coil, and variations in coil performance.
  • (A) And (b) is explanatory drawing for demonstrating the magnetic coupling prevention circuit of RF coil unit of 2nd embodiment.
  • (A) is explanatory drawing for demonstrating the surface coil of 2nd embodiment
  • (b) is explanatory drawing for demonstrating the magnetic coupling prevention circuit of the surface coil of 2nd embodiment.
  • (A), (b) is explanatory drawing for demonstrating the modification of the RF coil unit of 2nd embodiment.
  • FIG. 1 is an external view of the MRI apparatus of this embodiment.
  • FIG. 1 shows an MRI apparatus 100 including a horizontal magnetic field type magnet 101, and a subject 150 is inserted into an imaging space in a bore of the magnet 101 while being laid on a table 130 and imaged.
  • the coordinate system 200 is used in which the direction of the static magnetic field 140 (B 0 ) generated by the horizontal magnetic field type magnet 101 is the z-axis 203 direction.
  • FIG. 2 is a block diagram showing a schematic configuration of the MRI apparatus 100 of the present embodiment.
  • the same elements as those in FIG. 1 are denoted by the same reference numerals.
  • the MRI apparatus 100 of this embodiment includes a horizontal magnetic field type magnet 101 (static magnetic field generating means), a gradient magnetic field coil 102 (gradient magnetic field applying means), a shim coil 106 for adjusting static magnetic field uniformity, and a sequencer 119.
  • a transmission / reception RF coil 105 (transmission / reception coil) that generates a high-frequency magnetic field and receives a magnetic resonance signal
  • a transmission / reception switch 115 a gradient magnetic field power source 112
  • a high-frequency magnetic field generator 113 high-frequency magnetic field signal generation means
  • a receiver 114 a shim power supply 116, a storage medium 122, a computer 120 (control means), a display device 121, and a table 130 are provided.
  • the gradient magnetic field coil 102 and the shim coil 106 are connected to a gradient magnetic field power source 112 and a shim power source 116, respectively.
  • the transmission / reception RF coil 105 is connected to a high-frequency magnetic field generator 113 and a receiver 114 via a transmission / reception switch 115.
  • the sequencer 119 sends commands to the gradient magnetic field power source 112, the shim power source 116, and the high frequency magnetic field generator 113 to generate a gradient magnetic field and a high frequency magnetic field, respectively.
  • the high-frequency magnetic field is applied to the subject 150 through the transmission / reception RF coil 105.
  • a magnetic resonance signal generated from the subject 150 by applying a high-frequency magnetic field is detected by the transmission / reception RF coil 105 and detected by the receiver 114.
  • the magnetic resonance frequency used as a reference for detection by the receiver 114 is set by the sequencer 119.
  • the detected signal is sent to the computer 120 through an A / D converter, where signal processing such as image reconstruction is performed.
  • the result is displayed on the display device 121.
  • the detected signal and measurement conditions are stored in the storage medium 122 as necessary.
  • the sequencer 119 performs control so that each device operates at a timing and intensity programmed in advance.
  • the RF coil unit 310 used as the transmission / reception RF coil 105 in the MRI apparatus 100 of the present embodiment will be described.
  • the RF coil unit 310 according to the present embodiment is an elliptic birdcage coil having a uniform irradiation distribution in the subject 150 and capable of QD irradiation.
  • FIG. 3A is a view of the RF coil unit 310 viewed from an oblique side.
  • FIGS. 3B, 4A, and 4B are views of the RF coil unit 310 viewed from the direction of the central axis 311. It is a figure.
  • the RF coil unit 310 has an elliptic cylindrical curved surface along an elliptic cylindrical curved surface having a major axis diameter 2a and a minor axis diameter 2b.
  • the central axis 311 direction is the z-axis direction of the coordinate system 200
  • the major axis direction of the ellipse formed by the elliptical loop conductor 302 is the x-axis 201 direction
  • the minor axis direction is the y-axis 202 direction. It shall be arranged so that
  • the two elliptical loop conductors 302 are arranged so that their loop surfaces are parallel to each other.
  • the ellipse formed by the elliptic loop conductor 302 has a major axis diameter of 2a and a minor axis diameter of 2b, similar to the elliptic cylindrical curved surface.
  • the major axis, the minor axis, and the center of the ellipse formed by the elliptical loop-shaped conductor 302 are referred to as the major axis, the minor axis, and the center of the elliptical loop-shaped conductor 302, respectively.
  • both ends of the linear conductor 301 are connected to the elliptical loop conductor 302 at connection points 308, respectively.
  • a conductor portion having two adjacent connection points 308 as both ends is referred to as an arc-shaped conductor 303.
  • a loop 309 is constituted by two adjacent linear conductors 301 and two arc-shaped conductors 303 between the two linear conductors 301.
  • the 4N linear conductors 301 are arranged so as to be line symmetric with respect to the x axis 201 and the y axis 202.
  • four linear conductors 301 out of 4N linear conductors 301 are formed of an elliptic loop-shaped conductor 302 and any one of the x-axis 201 and the y-axis 202.
  • the remaining four (N-1) linear conductors 301 are arranged so as to pass through the intersections, and are arranged in line-symmetrical positions with respect to the major axis and minor axis of the elliptical loop conductor 302. Details of the straight conductor 301 and the elliptical loop conductor 302 will be described later.
  • the first feeding point 304 and the second feeding point 305 are positions that are line-symmetric with respect to the y-axis 202 or the x-axis 201, and a high-frequency current that flows to the other feeding point when feeding to one feeding point Are arranged at positions where the amplitude of each is minimum.
  • the first capacitors 306 are connected to two first capacitors 306 that are line-symmetric with respect to the y-axis 202 or the x-axis 201 and that have an electrical phase difference of 75 to 105 degrees.
  • the electrical phase difference between the two feeding points is 75 to 105 degrees, it has been found by simulation that the amplitude of the high-frequency current flowing through the other feeding point is minimized when feeding to one feeding point. It is a thing.
  • an example is shown in which the first capacitors 306 are connected to two first capacitors 306 that are line-symmetric with respect to the y-axis 202 and that have a difference in electrical phase between 75 and 105 degrees.
  • the first feeding point 304 and the second feeding point 305 are each connected to a QD hybrid (not shown) via a coaxial cable.
  • the output of the QD hybrid is connected to the transmission / reception switch 115.
  • the QD hybrid is a two-input / two-output circuit that distributes and outputs two signals with a signal waveform phase difference of 90 degrees for one input. , One of the phases is shifted by 90 degrees and a synthesized signal is output.
  • One first capacitor 306 is disposed on each arcuate conductor 303.
  • the first capacitors 306 have the same capacity. The capacitance is adjusted so that the RF coil unit 310 is in a resonance state at the magnetic resonance frequency (f c ) used in the transmission / reception RF coil 105.
  • the first capacitor 306 may be composed of a plurality of capacitors. When the first capacitor 306 includes a plurality of capacitors, the combined capacity of these capacitors is used as the capacity of the first capacitor 306.
  • the RF coil unit 310 is an elliptic birdcage coil in which each first capacitor 306 has the same capacity, the irradiation distribution in the subject 150 is uniform, and realizes QD-type irradiation.
  • N ⁇ 1 linear conductors 301 arranged in each quadrant of the coordinate plane defined by the x axis 201 and the y axis 202 is N ⁇ 1 (3 in the figure) arranged in the first quadrant 211.
  • ⁇ 0 is the phase of the loop current 312 flowing in the loop 309 closest to the y-axis 202 in the second quadrant
  • ⁇ N is the phase of the loop current 312 flowing in the loop 309 closest to the x-axis 201 in the fourth quadrant.
  • ⁇ 0 is the phase of the loop current 312 of the 4N-th loop 309
  • ⁇ N is the phase of the loop current 312 of the Nth loop 309.
  • connection point 308 of the 4N linear conductors 301 is arranged on the elliptical loop conductor 302 in a point-symmetric manner with the center of the elliptical loop conductor 302 as a symmetric point. Therefore, N-1 (3 in the figure) linear conductors 301 in the second quadrant are line-symmetric with respect to the N-1 (3 in the figure) linear conductors 301 in the first quadrant 211 and the y-axis 202.
  • the three linear conductors 301 in the third quadrant are arranged symmetrically with respect to the N-1 (three in the figure) linear conductors 301 in the third quadrant and the x-axis 201.
  • N-1 (3 in the figure) linear conductors 301 in the fourth quadrant are arranged in line-symmetrical positions with respect to the three linear conductors 301 in the first quadrant 211 and the x-axis 201.
  • the electrical phase difference ⁇ k between the adjacent arcuate conductors 303 satisfies the following expressions (2), (3), (4), (5), and (6). Adjusted. ⁇ k > 0 (2) ⁇ k-1 ⁇ k (1 ⁇ k ⁇ N + 1) (3)
  • k is an integer that satisfies N + 1>k>
  • k ′ is an integer that satisfies N> k ′> 0.
  • Equations (5) and (6) are derived from the equivalent circuit 410 in the first quadrant 211 of the RF coil unit 310 shown in FIG.
  • the equivalent circuit 410 is shown in FIG.
  • the equivalent circuit 410 is obtained by developing a portion of the first quadrant 211 of the RF coil unit 310 on a plane.
  • C is the value of the first capacitor 306.
  • the inductance of the arcuate conductor 303 is indicated by 411
  • the inductance of the linear conductor 301 is indicated by 412.
  • the virtual ground plane 413 is set at the midpoint of the linear conductor 301.
  • V k is a loop current 312 that flows through the k-th loop 309 from the side closer to the y-axis 202 in the first quadrant 211.
  • I k that is the loop current 312 is expressed by Expression (10).
  • I k + 1 / I k exp (j ⁇ k + 1 ) (11)
  • I k / I k-1 exp (j ⁇ k ) (12)
  • Expression (9) is expressed by Expression (13).
  • C is the value of the first capacitor 306 and is constant.
  • is the resonance angular frequency of the coil and is constant regardless of k.
  • equation (14) is obtained.
  • equation (14) is solved for the real part, equation (6) above is obtained. Further, when equation (14) is solved for the imaginary part, equation (15) is obtained.
  • L l 0 is the inductance of the linear conductor closest to the y-axis 202 in the second quadrant shown in FIG. 3B, and is equal to L l 2 due to the symmetry of the coil shape.
  • equation (15) becomes equivalent to equation (5).
  • L 1 N + 2 is the inductance of the linear conductor 301 closest to the x-axis 201 in the fourth quadrant shown in FIG. 3B, and is equal to L 1 N due to the symmetry of the coil shape.
  • the equivalent inductance L l k of the linear conductor 301 is the self-inductance L ls k obtained from the shape of the linear conductor 301 and the mutual inductance M l k , k ⁇ 1 , M l k , k with the adjacent linear conductor 301. It is calculated as the sum of +1 . That is, it is represented by Formula (16) (see Non-Patent Document 4).
  • L l k L ls k + M l k , k ⁇ 1 + M l k , k + 1 (16)
  • the self-inductance L ls k of the linear conductor 301 having the width w k and the length l is expressed by Expression (17).
  • d k and k ⁇ 1 are distances between the k-th and k ⁇ 1-th linear conductors 301 counting from the y-axis 202 to the elliptical loop-shaped conductor 302 in the clockwise direction in the circumferential direction.
  • d k and k + 1 are distances between the two k-th and k + 1-th straight conductors 301 counted clockwise from the y-axis 202 to the elliptical loop-shaped conductor 302 in the circumferential direction.
  • the equivalent inductances L l k and L l k + 1 of the two adjacent linear conductors 301 have a relationship of L l k > L l k + 1 .
  • the distance between the linear conductors 301 is clockwise from the y-axis 202 to the circumferential direction of the elliptical loop-shaped conductor 302, that is, long from the minor axis direction. Increasing in the axial direction.
  • width w k of the linear conductor 301 tends to increase clockwise from the y-axis 202 to the circumferential direction of the elliptical loop-shaped conductor 302, that is, from the minor axis direction to the major axis direction.
  • L r k of the arcuate conductor 303 is expressed by the following equation (23).
  • l r k and w r are the length and width of the arcuate conductor 303, respectively.
  • the length l r k of the arcuate conductor 303 is expressed by Expression (24).
  • Equations (5) and (6) are obtained by calculating the equivalent inductance L l k of the linear conductor 301 and the equivalent inductance L r k of the arcuate conductor 303 obtained using the equations (17) to (24). Substitute and solve.
  • Formula (2) and Formula (3) are essential conditions for the following reasons.
  • FIG. 6 shows elliptic birdcage coils 910 disclosed in Non-Patent Document 4 and having different capacitor values.
  • the electrical phase shift between the loops 309 constituted by the two linear conductors 301 and the two arcuate conductors 303 is used to make the sensitivity distribution a uniform resonance mode.
  • the elliptical birdcage coil 910 shown in FIG. 6 has a major axis diameter of 300 mm, a minor axis diameter of 240 mm, and a length of 300 mm.
  • the elliptical birdcage coil 910 is in a resonance mode with a uniform sensitivity distribution at 120 MHz.
  • the value of each capacitor 906 tended to decrease counterclockwise from the top of the x-axis 201 in the circumferential direction of the elliptical loop conductor 302. This indicates that the values of the capacitors are not the same when the electrical phase difference ⁇ is constant.
  • the linear conductor 301 is disposed so as to satisfy the above equation (1), and the electrical phase difference ⁇ k between the adjacent arcuate conductors 303 satisfies the above equations (2), (3), and (4).
  • the RF coil unit 310 of the present embodiment is in a resonance state at the magnetic resonance frequency (f c ) while keeping the value of the first capacitor 306 constant, and the sensitivity of the coil It shows that the distribution resonates in a uniform resonance mode.
  • Non-Patent Document 1 when a birdcage coil having N ′ rungs operates in a resonance mode with a uniform sensitivity distribution, it is composed of two adjacent rung conductors and a ring conductor between them.
  • the current flowing through the k th loop of N ′ loops is expressed by the following equation (25).
  • I k A ⁇ exp (j ( ⁇ c t + ⁇ k )) (25)
  • phase ⁇ k satisfies the following equation (26).
  • [theta] k > [theta] k-1 and [theta] 0 [theta] N '
  • [omega] c is an angular frequency of the magnetic resonance frequency
  • A is a constant determined by the loss of the coil and the feeding voltage.
  • Each linear conductor 301 of the RF coil unit 310 shown in FIG. 3 is arranged so as to have a line-symmetric relationship with respect to the major axis and minor axis of the elliptical loop conductor 302. If the change in the electrical phase on the elliptical loop-shaped conductor 302 in the first quadrant 211 shown in FIG. 3 (b) is 90 degrees due to the symmetry of the shape, the ring conductor (elliptical loop-shaped conductor 302) goes around once. 360 degrees, and the resonance mode has a uniform sensitivity distribution.
  • the sum of the phase differences ⁇ of the loop currents 312 flowing through the loops 309 in the first quadrant 211 is expressed by Expression (27).
  • the phase difference ⁇ of the loop current 312 is generated between adjacent loops 309. Therefore, half of the phase differences at both ends (the phase difference ⁇ 1 generated across the y-axis 202 and the phase difference ⁇ N + 1 generated across the x-axis 201) are added due to the symmetry of the coil shape.
  • the equation (4) is obtained. That is, since the RF coil unit 310 of the present embodiment is configured to satisfy the formula (4), as described above, the N ⁇ 1 linear conductors 301 in the first quadrant 211 are elliptical loop conductors. It can be said that the electrical phase on 302 is connected to a position where the change is 90 degrees.
  • the RF coil unit 310 of the present embodiment has a magnetic resonance frequency (When resonating at f c ), resonance occurs in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the electrical phase difference of the loop current 312 flowing through the two adjacent loops 309 is set to increase from the y-axis 202 direction toward the x-axis 201 direction, Further, due to the symmetry of the RF coil unit 310, the electrical phase difference ⁇ k is set so that the electrical phase difference between the two arcuate conductors 303 located at point symmetry with respect to the origin is 180 degrees.
  • the RF coil unit 310 adjusted as described above operates as the transmission / reception RF coil 105.
  • the transmission / reception switch 115 is switched to transmit a signal from the high-frequency magnetic field generator 113 to the RF coil unit 310.
  • a high-frequency signal having a magnetic resonance frequency (f c ) as a carrier component is sent from the high-frequency magnetic field generator 113 to the QD hybrid through the transmission / reception switch 115, the QD hybrid shifts one electrical phase by 90 degrees to generate a high-frequency signal.
  • the signal is divided into two and input to the first feeding point 304 and the second feeding point 305, respectively.
  • the RF coil unit 310 When a high frequency signal having a magnetic resonance frequency (f c ) as a carrier component is applied to the first feeding point 304, the RF coil unit 310 enters a resonance state. At this time, the change in the electrical phase of the high-frequency current flowing on the elliptical loop-shaped conductor 302 is 360 degrees around the elliptical loop-shaped conductor 302. Since the electrical phase difference between the two feeding points (the first feeding point 304 and the second feeding point 305) is 75 to 105 degrees, when feeding to one feeding point, an elliptical loop is formed at the other feeding point. The amplitude of the high frequency current flowing through the conductor 302 is minimized. Therefore, a high frequency signal is applied to the first feeding point 304 and the second feeding point 305 of the RF coil unit 310 without interfering with each other, and the RF coil unit 310 irradiates a rotating magnetic field inside the coil.
  • f c magnetic resonance frequency
  • a magnetic resonance signal is generated after rotating magnetic field irradiation.
  • the transmission / reception switch 115 is switched to transmit a signal to the receiver 114 by a control signal from the sequencer 119.
  • the RF coil unit 310 detects a magnetic resonance signal with the same sensitivity distribution as during irradiation.
  • the detected magnetic resonance signal is sent to the QD hybrid through the first feeding point 304 and the second feeding point 305, and one of the signals is shifted 90 degrees and synthesized.
  • the synthesized signal is sent to the receiver 114 through the transmission / reception switch 115.
  • the RF coil unit 310 operates as the transmission / reception RF coil 105.
  • the electrical phase difference between two adjacent arcuate conductors of the linear conductor becomes smaller as the distance from the major axis of the elliptical loop conductor increases. Arrange so that. Further, the linear conductors are arranged so that the total electric phase difference between the arcuate conductors between the major axis and the minor axis is 90 degrees. That is, due to the symmetry of the elliptical birdcage coil, the two arcuate conductors located at point symmetry with respect to the origin are arranged so that the electrical phase difference is 180 degrees.
  • the present embodiment it is possible to provide an elliptical birdcage coil having the same capacitance of the inserted capacitor. Thereby, it is possible to reduce the labor and manufacturing cost at the time of manufacturing the elliptical birdcage coil, and the increase in variation in the performance of the coil.
  • the two linear conductors 301 are arranged on the x-axis 201 and the two linear conductors 301 are arranged on the y-axis 202, respectively.
  • the arrangement of the linear conductor 301 is not limited to this.
  • the 4N linear conductors 301 need only be arranged symmetrically with respect to the x-axis 201 and the y-axis 202.
  • FIG. 7 shows an example of the RF coil unit 320 in which the linear conductor 301 is not disposed on any of the x-axis 201 and the y-axis 202. Also in the RF coil unit 320, each linear conductor 301 is basically arranged symmetrically with respect to each of the x-axis 201 and the y-axis 202, and each quadrant defined by the x-axis 201 and the y-axis 202 has N Two linear conductors 301 are arranged.
  • one first capacitor 306 is arranged for each arcuate conductor 303, and the capacitance is the same. Then, the RF coil unit 320 is adjusted to a resonance state at the magnetic resonance frequency (f c ) used in the transmission / reception RF coil 105.
  • the first feeding point 304 and the second feeding point 305 are positions that are line-symmetric with respect to the y-axis 202 or the x-axis 201, and when feeding to one feeding point, Each is arranged at a position where the amplitude of the flowing high-frequency current is minimized.
  • ⁇ 0 is the phase of the loop current 312 flowing in the loop 309 adjacent to the arcuate conductor 303 that intersects the y-axis 202 in the second quadrant, and ⁇ N intersects the x-axis 201 in the fourth quadrant.
  • the phase of the loop current flowing in the loop 309 adjacent to the arcuate conductor 303 is determined.
  • the linear conductors 301 in the other quadrants are arranged symmetrically with respect to the x-axis 201 and the y-axis 202 as the entire RF coil unit 320.
  • the electrical phase difference ⁇ k is adjusted so as to satisfy the above formula (2), formula (3), formula (29), formula (30), and formula (31), similarly to the RF coil unit 310. .
  • the electrical phase differences ⁇ 1 and ⁇ 2 of the loop 309 formed by the arcuate conductor 303 intersecting the y-axis 202 are equal to the loops on both sides.
  • k is an integer that satisfies N + 1>k> 1.
  • Equation (30) and Equation (31) can be derived from the equivalent circuit 420 of the RF coil unit 320 in the first quadrant 211 shown in FIG.
  • This equivalent circuit 420 is shown in FIG.
  • FIG. 8 is a diagram in which the first quadrant 211 portion of the RF coil unit 320 is developed on a plane and represented by an equivalent circuit.
  • C is the value of the first capacitor 306.
  • the equivalent circuit 410 is symmetric with respect to the vertical direction of the paper surface of FIG. 8, the virtual ground plane 413 is set at the midpoint of the linear conductor 301.
  • V k The voltage V k between the connection point 308 and the ground plane 413 of the k-th linear conductor 301 counting clockwise in the circumferential direction from the top of the y-axis 202 to the elliptical loop-shaped conductor 302 is expressed by an equation (Kirchhoff's law: 32).
  • I k is a loop current 312 that flows through the k-th loop 309 from the side closer to the y-axis 202 in the first quadrant 211.
  • I k which is the loop current 312 is expressed by Expression (35).
  • I k + 1 / I k exp (j ⁇ k + 1 ) (36)
  • I k / I k-1 exp (j ⁇ k ) (37)
  • Expression (34) is expressed by the following Expression (38).
  • C is the value of the first capacitor 306 and is constant.
  • is the resonance angular frequency of the coil and is constant regardless of k.
  • equation (39) is obtained.
  • equation (39) When equation (39) is solved for the real part, equation (31) is obtained. Further, when equation (39) is solved for the imaginary part, the following equation (40) is obtained.
  • L l 0 is the inductance of the linear conductor closest to the y-axis 202 in the second quadrant shown in FIG. 7B, and is equal to L l 1 due to the symmetry of the coil shape.
  • the equivalent inductance L l k of the linear conductor 301 of the RF coil unit 320 is similar to the self-inductance L ls k obtained from the shape of the linear conductor 301 and the adjacent linear conductor 301 as in the case of the RF coil unit 310. It is obtained as the sum of mutual inductances M l k , k ⁇ 1 , M l k , k + 1 . That is, it is expressed by equation (16).
  • the RF coil unit 320 having the above configuration is in a resonance state at the magnetic resonance frequency (f c ) and resonates in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the resonance mode has a uniform sensitivity distribution. That is, the sum of the phase differences ⁇ of the loop current 312 flowing in the loop 309 in the first quadrant 211 may be 90 degrees. Since the phase difference ⁇ k of the loop current occurs between the adjacent loops 309, the sum of the phase differences ⁇ k is expressed by Expression (29), which is the loop current 312 that flows through the loop 309 in the first quadrant 211. It is shown that the sum of the electrical phase differences ⁇ is 90 degrees.
  • the RF coil unit 320 shown in FIG. 7 enters a resonance state at the magnetic resonance frequency (f c ) as in the case of the RF coil unit 310 and resonates in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the RF coil unit 320 shown in FIG. 7 includes 4N linear conductors 301 arranged at positions symmetrical to the x-axis 201 and the y-axis 202, but the number of the linear conductors 301 is limited to this. Absent. For example, the number may be 2N.
  • the 2N linear conductors 301 may be arranged on the object with respect to the x axis 201 and the y axis 202.
  • FIG. 9 shows an RF coil unit 330 including 2N linear conductors 301 arranged at positions symmetrical with respect to the x-axis 201 and the y-axis 202.
  • N 9 and the linear conductor 301 is arranged on the y-axis 202 will be described as an example.
  • one first capacitor 306 is arranged for each arcuate conductor 303, and the capacitance is the same. Then, the RF coil unit 330 is adjusted to be in a resonance state at the magnetic resonance frequency (f c ) used in the transmission / reception RF coil 105.
  • the first feeding point 304 and the second feeding point 305 are positions that are line-symmetric with respect to the y-axis 202 or the x-axis 201, and when feeding to one feeding point, Each is arranged at a position where the amplitude of the flowing high-frequency current is minimized.
  • [N / 2] represents an integer part of N / 2.
  • the linear conductors 301 in the other quadrants are arranged symmetrically with respect to the x-axis 201 and the y-axis 202 as the entire RF coil unit 330, respectively.
  • the value of the electrical phase difference ⁇ k is adjusted so as to satisfy the above formula (2), formula (3), formula (44), formula (5), and formula (45).
  • k is an integer satisfying [N / 2] +2>k> 0.
  • L r m and L l m are the equivalent inductance of the arcuate conductor 303 and the equivalent inductance of the linear conductor 301, respectively, like the RF coil unit 310.
  • Equation (5) and Equation (45) are derived from the equivalent circuit 430 of the RF coil unit 320 in the first quadrant 211 shown in FIG. 9B.
  • This equivalent circuit 430 is shown in FIG. FIG. 10 is a diagram in which the first quadrant 211 portion of the RF coil unit 330 is developed on a plane and represented by an equivalent circuit.
  • C is the value of the first capacitor 306.
  • the equivalent circuit 410 is symmetric with respect to the vertical direction of the paper surface of FIG. 8, the virtual ground plane 413 is set at the midpoint of the linear conductor 301.
  • the equivalent inductance L l k of the linear conductor 301 and the equivalent inductance L r k of the arcuate conductor 303 are also expressed by the same expression as in the case of the RF coil unit 310, and the range of k is [N / 2] +2> k. > 0.
  • the RF coil unit 330 having the above configuration enters a resonance state at the magnetic resonance frequency (f c ) and resonates in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the RF coil unit 330 As in the RF coil unit 310 shown in FIG. 3, if the change in the electrical phase on the elliptical loop conductor 302 in the first quadrant 211 shown in FIG. A resonance mode with uniform distribution is obtained. That is, the sum of the phase differences ⁇ of the loop current 312 flowing in the loop 309 in the first quadrant 211 may be 90 degrees.
  • the RF coil unit 330 is in a resonance state at the magnetic resonance frequency (f c ) as in the case of the RF coil unit 310, and resonates in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the first capacitor 306 is disposed on the arcuate conductor 303, but the arrangement of the first capacitor 306 is not limited to this.
  • the first capacitor 306 may be disposed on the linear conductor 301.
  • FIG. 11 shows an RF coil unit 340 in which the first capacitor 306 is disposed on the linear conductor 301.
  • the RF coil unit 340 shown in FIG. 11 has the same structure as the RF coil unit 310 shown in FIG. 3 except that the first capacitor 306 is arranged on the linear conductor 301 and the arrangement of the feeding points.
  • the first capacitors 306 have the same capacitance, and are adjusted so that the RF coil unit 340 is in a resonance state at the magnetic resonance frequency (f c ) used in the transmission / reception RF coil 105.
  • the first feeding point 304 and the second feeding point 305 are symmetrical with respect to the y-axis 202 or the x-axis 201, and when the feeding point is fed to the other feeding point, They are arranged at positions where the amplitude of the high-frequency current flowing through the feeding point is minimized.
  • the arrangement position is not on the arcuate conductor 303 but on the linear conductor 301.
  • the RF coil unit 340 specifically, as shown in FIGS. 11A and 11B, the RF coil unit 340 is in a line-symmetric relationship with respect to the y-axis 202 and has a difference in electrical phase between each other. Are respectively connected to the first capacitors 306 on the two linear conductors 301 in the range of 75 to 105 degrees.
  • the value of the electrical phase difference ⁇ k between the adjacent loops 309 is the same as that of the RF coil unit 310, the expressions (2), (3), and (4), and the following expression (48): And is adjusted to satisfy equation (49).
  • k is an integer that satisfies N + 1>k>
  • k ′ is an integer that satisfies N> k ′> 0.
  • the above equations (48) and (49) are derived from the equivalent circuit 440 of the RF coil unit 340 shown in FIG.
  • This equivalent circuit 440 is shown in FIG.
  • the first capacitor 306 having the capacity C is regarded as two capacitors having the capacity 2C connected in series.
  • the equivalent circuit 440 can be regarded as symmetrical in the vertical direction of the paper surface of FIG. 12, and therefore, the virtual ground plane 413 is set at the midpoint of the linear conductor 301.
  • V k The voltage V k between the connection point 308 of the k-th linear conductor 301 and the ground plane 413 in the clockwise direction from the top of the y-axis 202 to the elliptical loop-shaped conductor 302 is expressed by the following equation from Kirchhoff's law: 50).
  • I k is a loop current 312 that flows through the k-th loop 309 from the side closer to the y-axis 202 in the first quadrant 211.
  • Expression (52) is obtained from Expression (50) and Expression (51). Solving equation (52) for the real part yields equation (49), and solving for the imaginary part yields equation (48).
  • the equivalent inductance L l k of the linear conductor 301 and the equivalent inductance L r k of the arcuate conductor 303 can be obtained using the equations (17) to (24) similarly to the RF coil unit 310. .
  • the RF coil unit 340 also satisfies the formula (4), and therefore the linear conductor 301 is arranged at a position where the change in the electrical phase difference makes 360 degrees on the elliptical loop conductor 302. Therefore, the resonance state is brought about at the magnetic resonance frequency (f c ), and resonance occurs in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the RF coil unit 340 in which the first capacitor 306 is arranged on the linear conductor 301 is described based on the configuration of the RF coil unit 310.
  • the number and arrangement of the linear conductors 301 are as described above. It is not limited to this.
  • the number of linear conductors 301 may be 2N, and 2N linear conductors 301 may be arranged symmetrically with respect to the x-axis 201 and the y-axis 202.
  • the capacitor may be arranged not only in one of the arcuate conductor 303 and the linear conductor 301 but also in both. Also in this case, one capacitor is disposed for each arcuate conductor 303 and each linear conductor 301, and the capacitance thereof is for each arcuate conductor 303 and each linear conductor 301, that is, for each conductor type to be disposed. Identical. Then, the RF coil unit is adjusted to be in a resonance state at a magnetic resonance frequency (f c ) used in the transmission / reception RF coil 105.
  • the configuration of the RF coil unit may be any of the RF coil units 310, 320, 330, and 340. Here, the RF coil unit 310 will be described as an example.
  • a capacitor disposed on the arcuate conductor 303 is a first capacitor 306, and a capacitor disposed on the straight conductor 301 is a second capacitor. Further, the capacitance of the first capacitor to C, and the value of the second capacitor and C 2.
  • the second capacitor may also be constituted by a plurality of capacitors. In this case, the combined capacity of these capacitors is the capacity of the second capacitor.
  • the RF coil unit 310 includes two feeding points (the first feeding point 304 and the second feeding point 305) has been described as an example.
  • the RF coil unit 310 has two feeding points.
  • Four first feeding point 304, second feeding point 305, third feeding point, fourth feeding point may be provided.
  • the third feeding point is arranged in the first capacitor 306 at a point symmetrical with the first feeding point 304 with respect to the central axis 311, and the fourth feeding point is the second feeding point with respect to the central axis 311.
  • the first capacitor 306 is arranged in a point-symmetrical position with respect to 305. Therefore, the four feeding points are located at positions where the amplitude of the high-frequency current flowing to the other feeding point becomes the minimum when feeding to one feeding point at two feeding points adjacent in the circumferential direction of the elliptical loop conductor 132. Be placed.
  • the first feeding point 304 and the third feeding point are connected to the high frequency synthesizer via a coaxial cable and connected to the QD hybrid, and the second feeding point 305 and the fourth feeding point are connected via a coaxial cable. Connected to the high frequency synthesizer and connected to the QD hybrid.
  • a phase shift circuit for shifting the phase of the signal by 180 degrees is inserted between the third feeding point and the high frequency synthesizer and between the fourth feeding point and the high frequency synthesizer. As a result, the phase difference between the first feeding point 304 and the third feeding point becomes 180 degrees, and a high-frequency signal having the same phase is fed from the first feeding point 304 and the third feeding point to the coil.
  • the phase difference between the second feeding point 305 and the fourth feeding point is 180 degrees, and a high-frequency signal having the same phase is fed from the first feeding point 304 and the third feeding point to the coil. Therefore, the resonance state of the RF coil unit 310 is the same as when there are two feeding points. Therefore, even when there are four feeding points, the RF coil unit 310 is in a resonance state at the magnetic resonance frequency (f c ) and resonates in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the high-frequency coil unit (RF coil unit 310, 320, 330, or 340) of the present embodiment is disposed along the elliptic cylindrical curved surface in parallel with the central axis 311 of the elliptic cylindrical curved surface.
  • a plurality of first capacitors 306 composed of the above capacitors, and both ends of each linear conductor 301 are connected to the elliptical loop conductor 302, and the first capacitor 306 is connected to each straight line.
  • the plurality of linear conductors 301 are arranged symmetrically with respect to the major axis and minor axis of the elliptical loop conductor 302, and the capacitance of the first capacitor 306 has the same value. It is characterized by.
  • the electrical phase difference between the two adjacent arcuate conductors 303 increases from the minor axis direction to the major axis direction of the elliptical loop conductor 302 and is pointed with respect to the center of the elliptical loop conductor 302.
  • the electrical phase difference between the two arcuate conductors 303 at symmetrical positions may be determined to be 180 degrees.
  • the high-frequency coil unit (RF coil unit 310, 320, 330, or 340) of the present embodiment may include a plurality of second capacitors each composed of one or more capacitors. At this time, each of the plurality of second capacitors is arranged on each of the linear conductors 301 and the arcuate conductors 303 on which the first capacitor 306 is not arranged, and the second capacitor Have the same capacity.
  • the distance between the centers of the two adjacent linear conductors 301 is the short axis of the elliptical loop conductor 302. You may comprise so that it may increase toward a major axis direction from a direction.
  • the width of the linear conductor 301 is from the minor axis direction to the major axis direction of the elliptical loop conductor 302. May be configured to increase.
  • the high-frequency coil unit (RF coil unit 310, 320, 330, or 340) of this embodiment supplies two high-frequency signals to the high-frequency coil unit (RF coil unit 310, 320, 330, or 340).
  • four feeding points 304 and 305 may be further provided.
  • the feeding points 304 and 305 are positions that are line-symmetric with respect to either the major axis or the minor axis of the elliptic loop conductor 302 and are adjacent to each other in the circumferential direction of the elliptic loop conductor 302.
  • the two feeding points 304 and 305 that are matched are arranged at positions where the amplitude of the high-frequency current flowing through the other feeding point when the feeding point is fed to the other feeding point is minimized.
  • the magnetic resonance imaging apparatus (MRI apparatus 100) of the present embodiment includes a static magnetic field generating means (magnet 101) for generating a static magnetic field, a gradient magnetic field applying means (gradient magnetic field coil 102) for applying a gradient magnetic field, and a high frequency.
  • a high-frequency magnetic field signal generating means (RF coil 103 for transmission) for generating a magnetic field signal and a high-frequency magnetic field signal input from the high-frequency magnetic field signal generating means (high-frequency magnetic field generator 113) are irradiated to the subject and from the subject.
  • a transmission / reception coil (transmission / reception RF coil 105) for detecting the generated magnetic resonance signal and outputting it as a detection signal; signal processing means (computer 120) for performing signal processing on the detection signal; and the gradient magnetic field applying means; Magnetism comprising: the high-frequency magnetic field signal generation means; and a control means (computer 120) for controlling the operation of the signal processing means.
  • a resonance imaging apparatus as the transmission and reception coil (transmit and receive RF coil 105), using the above-described high frequency coil unit (any one of the RF coil unit 310, 320, and 340).
  • the MRI apparatus of this embodiment is basically the same as that of the first embodiment.
  • a transmission / reception RF coil that performs transmission of a high-frequency magnetic field and reception of a magnetic resonance signal is used.
  • a transmission RF coil that transmits a high-frequency magnetic field and a reception RF coil that receives a magnetic resonance signal are provided separately.
  • the present embodiment will be described focusing on the configuration different from the first embodiment.
  • the coordinate system 200 is used in which the direction of the static magnetic field 140 generated by the horizontal magnetic field type magnet 101 is the z-axis direction.
  • FIG. 13 is a block diagram showing a schematic configuration of the MRI apparatus 110 of the present embodiment.
  • the MRI apparatus 110 of this embodiment includes a horizontal magnetic field type magnet 101, a gradient magnetic field coil 102, a shim coil 106 for adjusting the static magnetic field uniformity, a sequencer 119, and a transmission RF coil 103 that generates a high-frequency magnetic field.
  • a receiving RF coil 104 disposed near the subject 150 and receiving an RF signal generated from the subject 150, a gradient magnetic field power source 112, a shim power source 116, a transmission / reception switch 115, and a high frequency magnetic field generator 113.
  • the gradient magnetic field coil 102 and the shim coil 106 are connected to a gradient magnetic field power source 112 and a shim power source 116, respectively.
  • the transmission RF coil 103 is connected to a transmission / reception switch 115, and the transmission / reception switch 115 is connected to a high-frequency magnetic field generator 113 and a receiver 114.
  • the receiving RF coil 104 is connected to the receiver 114.
  • the magnetic coupling prevention circuit driving device 117 prevents magnetic coupling between the transmission RF coil 103 and the reception RF coil 104.
  • the magnetic coupling prevention circuit driving device 117 is connected to the transmission RF coil 103 and the reception RF coil 104, and outputs a magnetic coupling prevention signal for switching operation / non-operation of both coils in accordance with a command from the sequencer 119. .
  • the magnetic coupling prevention circuit driving device 117 transmits a magnetic coupling prevention signal to the reception RF coil 104 when a high frequency magnetic field is applied to the subject 150 through the transmission RF coil 103.
  • the receiving RF coil 104 is opened and is inoperative. Thereby, magnetic coupling with the transmitting RF coil 103 is avoided.
  • the magnetic coupling prevention circuit driving device 117 transmits the magnetic coupling prevention signal to the transmission RF coil 103 when the reception RF coil 104 receives the magnetic resonance signal (RF signal) generated from the subject 150. . In response to the magnetic coupling prevention signal, the transmitting RF coil 103 is opened and inactivated. This prevents magnetic coupling with the receiving RF coil 104.
  • the transmission RF coil 103 of this embodiment will be described.
  • the case where the RF coil unit 350 shown in FIG. 14 is used as the transmitting RF coil 103 will be described as an example.
  • FIG. 14 (a) is a perspective view of the RF coil unit 350
  • FIG. 14 (b) is a view of the RF coil unit 350 as viewed from the direction of the central axis 311.
  • the RF coil unit 350 of this embodiment basically has the same configuration as the RF coil unit 310 of the first embodiment.
  • the RF coil unit 350 of this embodiment further includes an elliptic cylindrical RF shield 351 and a magnetic coupling prevention circuit 360.
  • the magnetic coupling prevention circuit 360 is inserted into the linear conductor 301.
  • the RF coil unit 350 is arranged so that the central axis 311 is in the z-axis direction, the major axis direction of the elliptical loop conductor 302 is in the x-axis 201 direction, and the minor axis is in the y-axis 202 direction.
  • the elliptic cylindrical RF shield 351 shares the central axis 311 outside the elliptic loop conductor 302, and the distance between the elliptic loop conductor 302 and the elliptic cylindrical RF shield 351 is the circumferential direction of the elliptic loop conductor 302. On the other hand, it arrange
  • the distance between the elliptical loop-shaped conductor 302 and the elliptical cylindrical RF shield 351 is d g .
  • the RF coil unit 350 is resonated at a magnetic resonance frequency (f c ) by a plurality of first capacitors 306 having the same capacity, and is resonated in a resonance mode in which the sensitivity distribution of the coil is uniform. Therefore, like the RF coil unit 310 of the first embodiment, among the 4N linear conductors 301, the N ⁇ 1 linear conductors 301 arranged in the first quadrant 211 are connected at the connection points of the above formula. (1) It arrange
  • the electrical phase difference ⁇ k between the loops 309 is adjusted so as to satisfy the above formulas (2), (3), (4), (5), and (6).
  • the values of the self-inductance L ls k of the linear conductor 301 and the equivalent inductance L r k of the arc-shaped conductor 303 are changed by the elliptic cylindrical RF shield 351.
  • the straight conductor 301 can be regarded as a microstrip line, if one of the approximate equations used for calculating the inductance of the microstrip line is used, the straight conductor 301 when the elliptical cylindrical RF shield 351 is disposed is used.
  • the self-inductance L lss k is expressed by the following formula (54) or formula (55).
  • w k is the width of the linear conductor 301
  • l is the length of the linear conductor 301.
  • the equivalent inductance L r k of the arcuate conductor 303 when the elliptic cylindrical RF shield 351 is disposed, the equivalent inductance L rs k of the arcuate conductor 303 has the following formula (56) or formula (57 ).
  • w r is the width of the arcuate conductors 303
  • l r k is the length of the arcuate conductor 303.
  • the L lss k instead of the self-inductance L ls k linear conductor 301, the L rs k in place of the equivalent inductance L r k of the arcuate conductor 303, using respectively, the formula (5) and (6) Solve.
  • the RF coil unit 350 of the present embodiment also satisfies the formula (4), so that the linear conductor 301 has a change in electrical phase difference of 360 degrees on the elliptical loop conductor 302. It is arranged at the position. Therefore, the resonance state is reached at the magnetic resonance frequency (f c ), and resonance occurs in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the RF coil unit 310 of this embodiment is in a resonance state at the magnetic resonance frequency (f c ) by the plurality of first capacitors 306 having the same capacity, and resonates in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • FIGS. 15A and 15B are diagrams for explaining the details of the magnetic coupling prevention circuit 360 inserted in the RF coil unit 350.
  • FIG. 15A and 15B are diagrams for explaining the details of the magnetic coupling prevention circuit 360 inserted in the RF coil unit 350.
  • the magnetic coupling prevention circuit 360 includes a PIN diode 361 and a control line 362 connected to both ends of the PIN diode 361.
  • the PIN diode 361 has a characteristic in which the value of the direct current flowing in the forward direction of the diode becomes a conductive state when the value of the direct current is equal to or greater than a certain value, and ON / OFF control is performed by the direct current.
  • the PIN diode 361 is connected to the output terminal of the magnetic coupling prevention circuit driving device 117 through a choke coil 363 that electrically insulates a high-frequency signal by a control line 362 connected to both ends thereof.
  • the magnetic coupling prevention circuit 360 uses the RF coil unit 350 as a transmission RF coil when irradiating a high frequency magnetic field.
  • the RF coil unit 350 is made to have a high impedance to prevent interference with the receiving RF coil. Details of this operation will be described later.
  • FIG. 16A is a diagram showing the configuration of the surface coil 510
  • FIG. 16B shows the details of the magnetic coupling prevention circuit 520 inserted into the surface coil 510 and the connection between the magnetic coupling prevention circuit driving device 117. It is a figure for demonstrating a relationship.
  • the surface coil 510 includes a loop conductor 511, a capacitor 512, a matching capacitor 513, a magnetic coupling prevention circuit 520, and a balun 514 for removing common mode noise.
  • the capacitor 512, the matching capacitor 513, and the magnetic coupling prevention circuit 520 are inserted into the loop conductor 511.
  • the balun 514 is connected to the loop conductor 511 through wiring provided at both ends of the matching capacitor 513.
  • the output of the balun 514 is connected to a preamplifier (not shown), and is connected to the receiver 114 via a coaxial cable.
  • the magnetic coupling prevention circuit 520 includes a circuit in which an inductor 521 and a PIN diode 522 are connected in series, and a capacitor 512 connected in parallel to the circuit.
  • the PIN diode 522 has a characteristic in which the value of the direct current flowing in the forward direction of the diode becomes a conductive state when the value of the direct current is equal to or greater than a certain value, and the on / off control is performed by the direct current.
  • Both ends of the PIN diode 522 are connected to the output terminal of the magnetic coupling prevention circuit driving device 117 via the choke coil 363.
  • the PIN diode 522 is ON / OFF controlled by a control current 364 from the magnetic coupling prevention circuit driving device 117, and causes the surface coil 510 to function as a receiving RF coil when receiving a high frequency signal, and causes the surface coil 510 to function when transmitting a high frequency magnetic field.
  • the impedance is increased and control is performed so as not to interfere with the transmission RF coil 103. Details of this operation will be described later.
  • the capacitor 512, the capacitor 523, and the matching capacitor 513 are such that the surface coil 510 resonates at the magnetic resonance frequency set by the MRI apparatus 110 of the present embodiment, and the impedance of the coil viewed from both ends of the matching capacitor 513 is It is adjusted to be a predetermined value. Further, the magnetic coupling prevention circuit 520 is adjusted so that the inductor 522 and the capacitor 523 resonate at the magnetic resonance frequency set in the MRI apparatus 110 when the PIN diode 522 is on.
  • the RF coil unit 350 operates as the transmitting RF coil 103 and the surface coil 510 operates as the receiving RF coil 104.
  • the magnetic coupling prevention circuit driving device 117 includes the PIN diode 522 and the surface coil 510 of the magnetic coupling prevention circuit 360 of the RF coil unit 350.
  • a direct current control current 364 is applied so that the PIN diode 522 of the magnetic coupling prevention circuit 520 is turned on.
  • the RF coil unit 350 In the RF coil unit 350, all the PIN diodes 361 are turned on by the control current 364 flowing through the PIN diodes 361. When all the PIN diodes 361 of the RF coil unit 350 are on, the PIN diode 361 is in a conductive state, so that the RF coil unit 350 is operable. At this time, the RF coil unit 350 resonates in a resonance mode in which the coil sensitivity distribution is uniform, as in the case of the RF coil unit 310 shown in FIG.
  • the PIN diode 522 is turned on by the control current 364, and the magnetic coupling prevention circuit 520 is a parallel resonance circuit including the inductor 521 and the capacitor 523.
  • This parallel resonant circuit becomes high impedance at the magnetic resonance frequency set by the MRI apparatus 110, and the loop conductor 511 of the surface coil 510 is almost open.
  • the surface coil 510 does not resonate at the magnetic resonance frequency set by the MRI apparatus 110, and almost no current flows through the loop conductor 511.
  • the RF coil unit 350 irradiates the subject 150 with a high-frequency magnetic field without moving the resonance frequency due to the magnetic coupling or lowering the Q value of the coil. it can.
  • a high frequency signal is applied by the high frequency magnetic field generator 113.
  • the transmission / reception switch 115 is switched to transmit the high-frequency signal to the transmission RF coil 103, and the high-frequency signal is input to the first feeding point 304 and the second feeding point 305, respectively.
  • the RF coil unit 350 Since the RF coil unit 350 operates in the same manner as the RF coil unit 310 when all the PIN diodes 361 are on, the RF coil unit 350 has two orthogonal high-frequency magnetic fields as in the first embodiment.
  • the subject 150 is irradiated with a high-frequency magnetic field by a method similar to the QD irradiation method of irradiating with one of the phases shifted 90 degrees.
  • the magnetic coupling prevention circuit driving device 117 After receiving the high frequency magnetic field, the magnetic coupling prevention circuit driving device 117 receives the magnetic resonance signal emitted from the subject 150, so that the magnetic coupling prevention circuit 360 of the RF coil unit 350 has the magnetic properties of the PIN diode 361 and the surface coil 510.
  • the value of the control current 364 is set to 0 so that the PIN diode 361 of the coupling prevention circuit 520 is turned off.
  • the PIN diode 361 of the RF coil unit 350 When the value of the control current 364 becomes 0, the PIN diode 361 of the RF coil unit 350 is turned off and enters a high resistance state. As a result, almost no current flows through the conductor of the RF coil unit 350, the RF coil unit 350 does not resonate at the magnetic resonance frequency set by the MRI apparatus 110, and hardly generates a magnetic field.
  • the PIN diode 522 is turned off, and the magnetic coupling prevention circuit 520 operates as a capacitor 523. As a result, the surface coil 510 resonates at the magnetic resonance frequency set by the MRI apparatus 110.
  • the magnetic resonance signal emitted from the subject 150 is received, the magnetic coupling between the surface coil 510 and the RF coil unit 350 is lost, and the surface coil 510 moves the resonance frequency due to the magnetic coupling or lowers the Q value of the coil. None, the magnetic resonance signal can be received with high sensitivity.
  • the signal received by the surface coil 510 is amplified by a preamplifier and sent to the receiver 114.
  • the RF coil unit 350 shown in FIG. 11 operates as the transmission RF coil 103
  • the surface coil 510 shown in FIG. 13 operates as the reception RF coil 104.
  • the surface coil 510 has a high impedance when a high-frequency magnetic field is applied, and the RF coil unit 350 has a high impedance when a magnetic resonance signal is received, thereby resonating at a magnetic resonance frequency.
  • the shape of the elliptical cylindrical RF shield 351 is not limited to the above embodiment.
  • a shape in which the distance between the elliptic cylindrical RF shield 351 and the elliptic loop conductor 302 becomes shorter from the intersection between the elliptic loop conductor 302 and the y axis 202 toward the intersection with the x axis 201 may be employed.
  • An example of the RF coil unit 370 in this case is shown in FIGS. 17 (a) and 17 (b).
  • the electrical phase difference ⁇ k between the loops 309 satisfies the above expressions (2), (3), (4), (5), and (6). Adjust as follows.
  • the distance between the k-th linear conductor 301 and the elliptical cylindrical RF shield 351 from the y-axis 202 counted clockwise in the circumferential direction of the elliptical loop-shaped conductor 302 is d l.
  • k in the first quadrant 211 shown in FIG. 17B, the average of the k-th arc-shaped conductor 303 and the elliptic cylindrical RF shield 351 counted clockwise from the y-axis 202 in the circumferential direction of the elliptical loop-shaped conductor 302.
  • the self-inductance L lss k of the linear conductor 301 when the elliptical cylindrical RF shield 351 is disposed is expressed by Expression (58) or Expression (59).
  • w k is the width of the linear conductor 301
  • l is the length of the linear conductor 301.
  • the equivalent inductance of the arcuate conductor 303 when the elliptical cylindrical RF shield 351 is disposed is expressed by Expression (60) or Expression (61). .
  • the w r width of the arcuate conductor 303, the l r k is the length of the arcuate conductor 303.
  • the L lss k instead of the self-inductance L ls k linear conductor 301, the L rs k in place of the equivalent inductance L r k of the arcuate conductor 303, using respectively, the formula (5) and (6) Solve.
  • the RF coil unit 350 includes 4N linear conductors 301, and the four linear conductors 301 are arranged on the x-axis 201 and the y-axis 202.
  • the arrangement of the linear conductors 301 is not limited to this. Similar to the first embodiment, 4N linear conductors only need to be arranged symmetrically with respect to the x-axis 201 and the y-axis 202. Further, the number of linear conductors 301 is not limited to this. As in the first embodiment, 2N lines arranged symmetrically with respect to the x-axis 201 and the y-axis 202 may be used.
  • the PIN diode 361 is used for the magnetic coupling prevention circuit 360, but a cross diode 365 shown in FIG. 15B may be used instead of the PIN diode 361. In this case, the magnetic coupling prevention circuit driving device 117 may not be provided.
  • the cross diode 365 is turned on by a high frequency signal applied to the RF coil unit 350 and becomes conductive. When this high-frequency signal is no longer applied, it turns off and enters a high resistance state. This operation is the same as that of the PIN diode 361.
  • the RF coil unit 350 By using the cross diode 365, the RF coil unit 350 generates magnetic coupling with the surface coil 510 without being controlled by the magnetic coupling prevention circuit driving device 117. It operates as the RF coil 103 for transmission.
  • the RF coil unit 350 may include a second capacitor inserted into the linear conductor 301 in addition to the first capacitor 306 inserted into the arcuate conductor 303.
  • the RF coil unit 350 operates as the transmission RF coil 103 and the surface coil 510 operates as the reception RF coil 104 is described as an example, but the present invention is not limited thereto.
  • the RF coil unit 350 may be used for both the transmission RF coil 103 and the reception RF coil 104.
  • the magnetic coupling prevention circuit driving device 117 turns on the PIN diode 361 of the RF coil unit 350 and the PIN diode 522 of the surface coil 510.
  • a DC control current 364 is applied so that
  • the control current 364 flows through the PIN diode 361, and all the PIN diodes 361 are turned on.
  • the PIN diode 361 is in a conductive state, so that the RF coil unit 350 is operable.
  • the RF coil unit 350 resonates in a resonance mode in which the coil sensitivity distribution is uniform, as in the case of the RF coil unit 310 shown in FIG.
  • the PIN diode 522 is turned on by the control current 364, and the magnetic coupling prevention circuit 520 is a parallel resonance circuit including the inductor 521 and the capacitor 523.
  • This parallel resonant circuit becomes high impedance at the magnetic resonance frequency set by the MRI apparatus 110, and the loop conductor 511 of the surface coil 510 is almost open.
  • the surface coil 510 does not resonate at the magnetic resonance frequency set by the MRI apparatus 110, and almost no current flows through the loop conductor 511.
  • the RF coil unit 350 irradiates the subject 150 with a high-frequency magnetic field without moving the resonance frequency due to the magnetic coupling or lowering the Q value of the coil. it can.
  • a high frequency signal is applied by the high frequency magnetic field generator 113.
  • the transmission / reception switch 115 is switched to transmit the high-frequency signal to the transmission RF coil 103, and the high-frequency signal is input to the first feeding point 304 and the second feeding point 305, respectively.
  • the RF coil unit 350 Since the RF coil unit 350 operates in the same manner as the RF coil unit 310 when all the PIN diodes 361 are on, the RF coil unit 350 has two orthogonal high-frequency magnetic fields as in the first embodiment.
  • the subject 150 is irradiated with a high-frequency magnetic field by a method similar to the QD irradiation method of irradiating with one of the phases shifted 90 degrees.
  • the magnetic coupling prevention circuit driving device 117 After receiving the high frequency magnetic field, the magnetic resonance signal generated from the subject 150 is received by the RF coil unit 350. Therefore, the magnetic coupling prevention circuit driving device 117 includes the PIN diode 361 of the RF coil unit 350 and the PIN diode of the surface coil 510.
  • the value of the control current 364 is set so that 522 is turned on.
  • all the PIN diodes 361 are turned on by the control current 364 flowing through the PIN diodes 361.
  • the PIN diode 361 is in a conductive state, so that the RF coil unit 350 is operable.
  • the RF coil unit 350 resonates in a resonance mode in which the sensitivity distribution of the coil is uniform.
  • the PIN diode 522 is turned on by the control current 364, and the magnetic coupling prevention circuit 520 is a parallel resonance circuit including the inductor 521 and the capacitor 523.
  • This parallel resonant circuit becomes high impedance at the magnetic resonance frequency set by the MRI apparatus 110, and the loop conductor 511 of the surface coil 510 is almost open.
  • the surface coil 510 does not resonate at the magnetic resonance frequency set by the MRI apparatus 110, and almost no current flows through the loop conductor 511.
  • the magnetic resonance signal emitted from the subject 150 is received, the magnetic coupling between the surface coil 510 and the RF coil unit 350 is lost, and the RF coil unit 350 moves the resonance frequency due to the magnetic coupling or the Q value of the coil.
  • the magnetic resonance signal can be received with high sensitivity without a decrease.
  • the signal received by the RF coil unit 350 is sent to the receiver 114 by the transmission / reception switch 115.
  • the RF coil unit 350 operates as the transmission RF coil 103 and the reception RF coil 104.
  • the high-frequency coil unit (RF coil unit 350) of the present embodiment includes a plurality of linear conductors 301 arranged in parallel with the central axis 311 of the elliptic cylindrical curved surface along the elliptic cylindrical curved surface.
  • Each of the two elliptic loop conductors 302 arranged so that the loop planes are parallel to each other along the elliptic cylindrical curved surface with the point on the central axis 311 as the center, and one or more capacitors, respectively.
  • a plurality of first capacitors 306, and both ends of each linear conductor 301 are connected to the elliptical loop conductor 302, and the first capacitor 306 is provided on each linear conductor 301 and the elliptical loop.
  • One of the plurality of linear conductors 302 is disposed on either one of the arcuate conductors 303 sandwiched between the connection points 308 of the linear conductors 301 adjacent to each other.
  • the high-frequency coil unit (RF coil unit 350 or 370) of this embodiment may further include a cylindrical shield 351 that shares the central axis 311 of the elliptical cylindrical curved surface.
  • the shield 351 may be disposed outside the elliptical cylindrical curved surface.
  • the shield 351 may have a cylindrical shape in which the distance between the shield surface and the elliptical cylindrical curved surface is constant.
  • the shield 351 has a cylindrical shape in which the distance between the shield surface and the elliptic cylindrical curved surface becomes shorter from the minor axis of the cross section perpendicular to the central axis 311 of the elliptic cylindrical curved surface in the major axis direction. May be.
  • the high-frequency coil unit (RF coil unit 350 or 370) of the present embodiment may include magnetic coupling preventing means (magnetic coupling preventing circuit 360) for preventing mutual magnetic coupling.
  • the magnetic coupling preventing means (magnetic coupling preventing circuit 360) may be disposed on the linear conductor 301 or the arcuate conductor 303.
  • the magnetic coupling prevention means (magnetic coupling prevention circuit 360) may be a PIN diode 361.
  • the magnetic coupling preventing means (magnetic coupling preventing circuit 360) may be a circuit 520 in which a capacitor 523 is connected in parallel to a circuit in which a PIN diode 522 and an inductor 521 are connected in series.
  • the magnetic resonance imaging apparatus (MRI apparatus 100) of the present embodiment includes a static magnetic field generating means (magnet 101) for generating a static magnetic field, a gradient magnetic field applying means (gradient magnetic field coil 102) for applying a gradient magnetic field, and a high frequency.
  • a high-frequency magnetic field signal generating means transmitting RF coil 103) for generating a magnetic field signal and a high-frequency magnetic field signal input from the high-frequency magnetic field signal generating means (high-frequency magnetic field generator 113) are applied to the subject 150 and the subject.
  • a transmission / reception coil (transmission / reception RF coil 105) that detects a magnetic resonance signal generated from the signal and outputs it as a detection signal, a signal processing means (computer 120) that performs signal processing on the detection signal, and a gradient magnetic field application means; And a high frequency magnetic field signal generating means and a control means (computer 120) for controlling the operation of the signal processing means.
  • a magnetic resonance imaging apparatus as the transmission and reception coil (transmit and receive RF coil 105) may be used above the RF coil unit (RF coil unit 350 or 370).
  • the magnetic resonance imaging apparatus (MRI apparatus 100) of the present embodiment includes a static magnetic field generating means (magnet 101) for generating a static magnetic field, a gradient magnetic field applying means (gradient magnetic field coil 102) for applying a gradient magnetic field, and a high frequency.
  • a static magnetic field generating means magnet 101
  • gradient magnetic field applying means gradient magnetic field coil 102
  • a high-frequency magnetic field signal generating means (transmitting RF coil 103) for generating a magnetic field signal; a transmitting coil (transmitting RF coil 103) for irradiating the subject 150 with a high-frequency magnetic field signal input from the high-frequency magnetic field signal generating means;
  • a receiving coil (receiving RF coil 104) that detects a magnetic resonance signal generated from the subject 150 and outputs it as a detection signal, a signal processing means (computer 120) that performs signal processing on the detection signal, and the tilt Control means (computer 120) for controlling operations of the magnetic field applying means, the high-frequency magnetic field signal generating means, and the signal processing means
  • a magnetic resonance imaging apparatus comprising, as the transmission coil (transmit RF coil 103) may be used the high frequency coil unit (RF coil unit 350 or 370).
  • the RF coil unit 350 can be used only as the transmission RF coil 103, or the transmission RF coil 103 and the reception RF. It can be used as the coil 104, and the degree of freedom of selection of the receiving coil increases.
  • the combined capacitance value of the capacitors arranged on the ring conductor can be made constant regardless of the arrangement position. Further, the combined capacitance of the capacitors arranged on the rung conductor can be made constant regardless of the arrangement position. Therefore, it is possible to reduce the labor, manufacturing cost, and variation in coil performance when manufacturing the elliptical birdcage coil.
  • the RF coil unit 310 of the first embodiment may also include the RF shield 351.
  • the linear conductor 301 and the elliptical loop conductor 302 may be rod-shaped or sheet-shaped.
  • DESCRIPTION OF SYMBOLS 100 MRI apparatus, 101: Magnet, 102: Gradient magnetic field coil, 103: Transmission RF coil, 104: Reception RF coil, 105: Transmission / reception RF coil, 106: Shim coil, 110: MRI apparatus, 112: Gradient magnetic field power supply , 113: high frequency magnetic field generator, 114: receiver, 115: transmission / reception switch, 116: shim power source, 117: magnetic coupling prevention circuit driving device, 119: sequencer, 120: computer, 121: display device, 122: storage medium , 130: table, 140: static magnetic field, 150: subject, 200: coordinate system, 201: x axis, 202: y axis, 203: z axis, 211: first quadrant, 301: linear conductor, 302: ellipse Loop-shaped conductor 303: Arc-shaped conductor 304: First feeding point 305: Second feeding point 306: First capacitor 308: Connection point 09: Loop,

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

製造時の手間や製造コストを低減し、性能のばらつきの少ない楕円型バードケージコイルを得る。リング導体およびラング導体の少なくとも一方に配置する複数のキャパシタの容量が、配置する導体種毎に統一された楕円型バードケージコイルにより構成される高周波コイルユニットを提供する。そして、この楕円型バードケージコイルにおいて、リング導体およびラング導体は、配置する導体種毎にキャパシタの容量が同一になるようインダクタンスの値および配置が決定される。

Description

高周波コイルユニット及び磁気共鳴イメージング装置
 本発明は、磁気共鳴撮像(MRI:Magnetic Resonance Imaging)技術に関わり、電磁波の照射や磁気共鳴信号の検出を行う技術に関する。
 MRIに用いるMRI装置は、検査対象を横切る任意の断面内の核スピンに磁気共鳴を起こさせ、発生する磁気共鳴信号からその断面内における断層像を得る医用画像診断装置である。静磁場中におかれた被検体に対して傾斜磁場を印加しながら高周波コイル(RFコイル)により高周波磁場を照射すると、被検体内の核スピン、例えば、水素原子の核スピンが励起され、励起された核スピンが平衡状態に戻るときに磁気共鳴信号として円偏波磁界が発生する。この信号をRFコイルで検出し、信号処理を施して生体内の水素原子核分布を画像化する。
 このRFコイルには、高周波磁場の照射専用の送信コイル、磁気共鳴信号の受信専用の受信コイル、或いは両方を兼ねる送受信コイルがある。それぞれ、効率的に高品質の画像を得るため、種々のコイルが開発されている。例えば、被検体内の核スピンを励起する際は、均一な照射強度分布が必要である。その均一度は、画像化する領域において、照射分布の最大値に対して70%以内が望ましい。照射強度の不均一が大きいと、被検体内の部位によって核スピンの励起状態に違いが生じ、得られた画像にコントラストのむらやアーチファクトが生じるためである。このような均一な照射強度分布を持つRFコイルとして、バードケージコイル(例えば、特許文献1、非特許文献1参照)やTEMコイル(例えば、非特許文献2参照)といった円筒状RFコイルが知られている。バードケージコイルは、円筒状の2つのリング導体と、直線状の複数のラング導体と、複数のキャパシタとで構成され、ラング導体の端部とリング導体とが接続され、キャパシタはリング導体またはラング導体に配置される。
 また、照射効率も向上させる必要がある。照射効率を向上させる手法として、直交位相検波(QD:Quadrature Detection)方式がある(例えば、特許文献2、非特許文献3参照)。QD方式は、照射する高周波磁場の向きが互いに直交する2つのRFコイルを用い、それぞれのRFコイルが照射する高周波磁場の時間位相の位相差が90度となるように高周波磁場を照射する方法である。QD方式を用いることにより、水素原子の核スピンを励起する円偏波磁界を高い効率で照射することができるため、1つのRFコイルで照射する場合に比べて、理論的には照射強度が√2倍向上する。また、照射電力に換算すると電力が1/2で済むため、照射効率が2倍向上する。バードケージコイルやTEMコイルの場合、照射に用いる2つの給電ポートを互いに直交した位置に配置することで、一つのコイルでこのQD方式による高周波磁場の照射が可能となる。
 被検体の体幹部は楕円筒に類似した形状を有しているため、円筒状コイルよりも楕円筒状コイルの方が、コイル内部に被検体が占める割合(フィリングファクタ)を高くすることができ、RFコイルの照射効率が向上する。このため楕円筒形状を有する楕円型バードケージコイルが開発されている(例えば、特許文献3、非特許文献4、非特許文献5参照)。
米国特許4916418号明細書 特許第3095402号公報 米国特許5986454号明細書
J.Tropp著、「鳥かご型共振器の理論(The Theory of the Bird-Cage Resonator)」,ジャーナル オブ マグネティックレゾナンス(Journal of Magnetic Resonance),(1989) Vol.82, pp.51-62 J.T.Vaughan他著、「臨床用磁気共鳴イメージングおよび磁気共鳴スペクトロスコピー向け高周波ボリュームコイル(High frequency volume coils for clinical nuclear magnetic resonance imaging and spectroscopy)」、マグネティックレゾナンス イン メディシン(Magnetic Resonance in Medicine)、(1994) Vol.32、 pp.206-218 C.N.Chen他著、「直交位相検波コイル-√2倍以上の感度向上(Quadrature Detection Coils - A Further √2 Improvement in Sensitivity)」、ジャーナル オブ マグネティックレゾナンス(Journal of Magnetic Resonance)、(1983) Vol.54、 pp.308-327 M.C.Leifer著、「直交型楕円バードケージコイルの理論(Theory of the Quadrature Elliptic Birdcage Coil)」、マグネティックレゾナンス イン メディシン(Magnetic Resonance in Medicine)、(1997) Vol.38、 pp.726-732 S.Li他著、「楕円バードケージコイルの最適な電流分布と均一なB1分布の生成方法(A Method to Create an Optimum Current Distribution and Homogeneous B1 Field for Elliptical Birdcage Coils)」、マグネティックレゾナンス イン メディシン(Magnetic Resonance in Medicine)、(1997) Vol.37、 pp.600-608
 円筒状のバードケージコイルと異なり、導体間の距離が様々に異なるため、楕円型バードケージコイルのリング導体やラング導体に配置されるキャパシタの容量は、配置される位置によって異なる。このため、コイル製造時には配置場所ごとに異なる容量のキャパシタを用意する必要がある。ところが、一般的に入手可能なキャパシタの容量は、予め定められたものに限られ、所望の容量を得るためには、複数のキャパシタを直列または並列に接続して組み合わせる必要がある。従って、コイル製造時には、配置場所ごとに異なる組み合わせの複数のキャパシタを用意することになる。これは、手間がかかるとともに、円筒状のバードケージコイルに比べて、用いるキャパシタの容量の種類が大幅に増えるため製造コストが上昇する。また、組み合わせる複数のキャパシタの容量の違いによって、キャパシタのQ値が変化するため、配置場所ごとのキャパシタの高周波特性にばらつきが生じ、コイルの性能のばらつきが増加する。
 本発明は、上記事情に鑑みてなされたもので、製造時の手間や製造コストを低減し、性能のぱらつきの少ない楕円型バードケージコイルを得ることを目的とする。
 本発明は、リング導体およびラング導体の少なくとも一方に配置する複数のキャパシタの容量が、配置する導体種毎に統一された楕円型バードケージコイルにより構成される高周波コイルユニットを提供する。そして、この楕円型バードケージコイルにおいて、リング導体およびラング導体は、配置する導体種毎にキャパシタの容量が同一になるようインダクタンスの値および配置が決定される。
 具体的には、楕円筒状曲面に沿って前記楕円筒状曲面の中心軸に平行に配置される複数の直線状導体と、前記中心軸上の点を中心とし前記楕円筒状曲面に沿ってループ面が互いに平行となるように配置される2つの楕円ループ状導体と、それぞれ1以上のキャパシタから構成される、複数の第一キャパシタと、を備え、前記各直線状導体の両端部は、前記楕円ループ状導体に接続され、前記第一キャパシタは、前記各直線状導体上および前記楕円ループ状導体の隣接する前記直線状導体の接続点で挟まれた弧状導体上のいずれか一方に1つずつ配置され、前記複数の直線状導体は、前記楕円ループ状導体の長軸および短軸に対して、線対称に配置され、前記第一キャパシタの容量は、同一の値であることを特徴とする高周波コイルユニットを提供する。
 また、静磁場を生成する静磁場生成手段と、傾斜磁場を印加する傾斜磁場印加手段と、高周波磁場信号を生成する高周波磁場信号生成手段と、前記高周波磁場信号生成手段から入力される高周波磁場信号を被検体に照射するとともに前記被検体から発生する磁気共鳴信号を検出して検出信号として出力する送受信コイルと、前記検出信号に対し信号処理を行う信号処理手段と、前記傾斜磁場印加手段と、前記高周波磁場信号生成手段と、前記信号処理手段との動作を制御する制御手段と、を備える磁気共鳴イメージング装置であって、前記送受信コイルとして、前述の高周波コイルユニットを用いることを特徴とする磁気共鳴イメージング装置を提供する。
 本発明によれば、容易に低コストで性能のぱらつきの少ない楕円型バードケージコイルを得ることができる。楕円型バードケージコイルの製造時の手間や製造コスト、コイルの性能のばらつきを低減できる。
第一の実施形態のMRI装置の外観を説明するための説明図である。 第一の実施形態のMRI装置の概略構成を示すブロック図である。 (a)および(b)は、第一の実施形態のRFコイルユニットを説明するための説明図である。 (a)および(b)は、第一の実施形態のRFコイルユニットを説明するための説明図である。 第一の実施形態のRFコイルユニットの一部分の等価回路の回路図である。 従来の楕円型バードケージコイルを説明するための説明図である。 (a)および(b)は、第一の実施形態のRFコイルユニットの変形例を説明するための説明図である。 第一の実施形態のRFコイルユニットの変形例の一部分の等価回路の回路図である。 (a)および(b)は、第一の実施形態のRFコイルユニットの変形例を説明するための説明図である。 第一の実施形態のRFコイルユニットの変形例の一部分の等価回路の回路図である。 (a)および(b)は、第一の実施形態のRFコイルユニットの変形例を説明するための説明図である。 第一の実施形態のRFコイルユニットの変形例の一部分の等価回路の回路図である。 第二の実施形態のMRI装置の概略構成を示すブロック図である。 (a)および(b)は、第二の実施形態のRFコイルユニットを説明するための説明図である。 (a)および(b)は、第二の実施形態のRFコイルユニットの磁気結合防止回路を説明するための説明図である。 (a)は、第二の実施形態の表面コイルを説明するための説明図であり、(b)は、第二の実施形態の表面コイルの磁気結合防止回路を説明するための説明図である。 (a)、(b)は、第二の実施形態のRFコイルユニットの変形例を説明するための説明図である。
 <<第一の実施形態>>
 以下、本発明を適用する第一の実施形態について説明する。以下、本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
 まず、本実施形態のMRI装置の全体構成について説明する。図1は本実施形態のMRI装置の外観図である。図1は水平磁場方式のマグネット101を備えるMRI装置100で、被検体150は、テーブル130に寝かせられた状態でマグネット101のボア内の撮像空間に挿入され撮像される。なお、本実施形態では、水平磁場方式のマグネット101が発生する静磁場140(B0)の向きをz軸203方向とする座標系200を用いる。
 図2は、本実施形態のMRI装置100の概略構成を示すブロック図である。図1と同じ要素は同じ符号で示す。本実施形態のMRI装置100は、水平磁場方式のマグネット101(静磁場生成手段)と、傾斜磁場コイル102(傾斜磁場印加手段)と、静磁場均一度を調整するためのシムコイル106と、シーケンサ119と、高周波磁場を発生し磁気共鳴信号を受信する送受信用RFコイル105(送受信コイル)と、送受信切替器115と、傾斜磁場電源112と、高周波磁場発生器113(高周波磁場信号生成手段)と、受信器114と、シム電源116と、記憶媒体122と、計算機120(制御手段)と、表示装置121と、テーブル130とを備える。
 傾斜磁場コイル102およびシムコイル106は、それぞれ傾斜磁場電源112およびシム電源116に接続される。送受信用RFコイル105は、送受信切替器115を介して高周波磁場発生器113及び受信器114に接続される。シーケンサ119は、傾斜磁場電源112、シム電源116及び高周波磁場発生器113に命令を送り、それぞれ傾斜磁場及び高周波磁場を発生させる。高周波磁場は、送受信用RFコイル105を通じて被検体150に印加される。高周波磁場を印加することにより被検体150から発生する磁気共鳴信号は送受信用RFコイル105によって検出され、受信器114で検波が行われる。受信器114での検波の基準とする磁気共鳴周波数は、シーケンサ119によりセットされる。検波された信号はA/D変換器を通して計算機120に送られ、ここで画像再構成などの信号処理が行われる。その結果は、表示装置121に表示される。検波された信号や測定条件は、必要に応じて、記憶媒体122に保存される。シーケンサ119は、予めプログラムされたタイミング、強度で各装置が動作するように制御を行う。
 次に、本実施形態のMRI装置100で送受信用RFコイル105として用いるRFコイルユニット310について説明する。本実施形態のRFコイルユニット310は、被検体150内の照射分布が均一でQD方式の照射が可能な楕円型バードケージコイルである。
 図3および図4は、本実施形態のRFコイルユニット310の構成を説明するための図である。図3(a)は、RFコイルユニット310を斜め横から見た図であり、図3(b)、図4(a)および(b)は、RFコイルユニット310を中心軸311の方向から見た図である。
 RFコイルユニット310は、図3(a)、図3(b)および図4(a)に示すように、長軸直径2aおよび短軸直径2bを有する楕円筒状曲面に沿って楕円筒状曲面の中心軸311と平行に配置される4N(Nは自然数;図ではN=4)本の直線状導体301と、中心軸311上の点を中心とし楕円筒状曲面に沿って配置される2つの楕円ループ状導体302と、8N個(図ではN=4)の第一キャパシタ306と、第一給電点304および第二給電点305と、を備える。
 本実施形態のRFコイルユニット310は、中心軸311方向が座標系200のz軸方向、楕円ループ状導体302が形成する楕円の長軸方向がx軸201方向、短軸方向がy軸202方向となるよう配置されるものとする。
 2つの楕円ループ状導体302は、それぞれのループ面が互いに平行になるよう配置される。また、楕円ループ状導体302が形成する楕円は、楕円筒状曲面同様、その長軸直径は2a、短軸直径は2bとする。以下、本明細書では、楕円ループ状導体302が形成する楕円の長軸、短軸、中心を、それぞれ、楕円ループ状導体302の長軸、短軸、中心と呼ぶ。
 図3(a)に示すように、直線状導体301の両端は、それぞれ楕円ループ状導体302に接続点308で接続される。楕円ループ状導体302において、隣り合う2つの接続点308を両端とする導体部分を弧状導体303と呼ぶ。このとき、隣り合う2本の直線状導体301と両直線状導体301間の2つの弧状導体303とによりループ309が構成される。
 4N本の直線状導体301は、x軸201およびy軸202に対して線対称となるよう配置される。本実施形態では、図3(b)に示すように、4N本の直線状導体301のうち4本の直線状導体301は、楕円ループ状導体302とx軸201およびy軸202のいずれかとの交点を通るようにそれぞれ配置され、残りの4(N-1)本の直線状導体301は、楕円ループ状導体302の長軸および短軸に対して、線対称の位置に配置される。直線状導体301および楕円ループ状導体302の詳細は後述する。
 第一給電点304と第二給電点305とは、y軸202またはx軸201に対して線対称の位置であり、かつ、一方の給電点に給電した時に、他方の給電点に流れる高周波電流の振幅が最小となる位置にそれぞれ配置される。例えば、y軸202またはx軸201に対して線対称の関係にあり、かつ、互いの電気位相差が75~105度の範囲にある2つの第一キャパシタ306にそれぞれ接続される。なお、2つの給電点間の電気位相差が75~105度の場合、一方の給電点に給電したとき、他方の給電点に流れる高周波電流の振幅が最小となることは、シミュレーションにより見出されたものである。ここでは、y軸202に対して線対称の関係にあり、かつ、互いの電気位相の差が75~105度の範囲にある2つの第一キャパシタ306にそれぞれ接続される場合を例示する。
 第一給電点304と第二給電点305とは、同軸ケーブルを介してそれぞれQDハイブリッド(不図示)に接続される。QDハイブリッドの出力は、送受信切替器115に接続される。なお、QDハイブリッドは、2入力・2出力の回路で、1つの入力に対しては、信号波形の位相差が90度となる2つの信号に分配して出力し、2つの入力に対しては、一方の位相を90度シフトさせて合成した信号を出力する。
 第一キャパシタ306は、各弧状導体303に1つずつ配置される。本実施形態では、各第一キャパシタ306の容量は、同一とする。その容量は、送受信用RFコイル105で用いる磁気共鳴周波数(fc)でRFコイルユニット310が共振状態となるよう調整される。なお、第一キャパシタ306は、複数のキャパシタにより構成されていてもよい。第一キャパシタ306が複数のキャパシタにより構成される場合、これらのキャパシタの合成容量を第一キャパシタ306の容量とする。
 次に、RFコイルユニット310を、各第一キャパシタ306を同一容量とし、被検体150内の照射分布が均一でQD方式の照射を実現する楕円型バードケージコイルであって、送受信用RFコイル105で用いる磁気共鳴周波数(fc)で共振する楕円型バードケージコイルとするための、直線状導体301および楕円ループ状導体302の構成を説明する。
 x軸201とy軸202とで規定される座標平面の各象限に配置されるN-1本の直線状導体301の配置を、第一象限211に配置されるN-1(図では3)本を例にあげて説明する。第一象限211に配置されるN-1本の直線状導体301は、その接続点308が、図4(a)に示すように、y軸202となす角Φm(m=1、2、…、N-1)が、以下の式(1)を満たすように配置される。
Figure JPOXMLDOC01-appb-M000001
ここで、Δθkは、第一象限211において、y軸202に近い方からk番目(1≦k≦N-1)のループ309に流れるループ電流Ik312の位相θkとk-1番目のループ309に流れるループ電流Ik-1312の位相θk-1との差である電気位相差(Δθk=θk-θk-1)を表す。ただし、θ0は、第二象限のy軸202に最も近いループ309に流れるループ電流312の位相とし、θNは、第四象限のx軸201に最も近いループ309に流れるループ電流312の位相とする。例えば、第一象限211のy軸202に最も近いループ309を1番目として、時計回りにループ309に番号を付すと、θ0は、4N番目のループ309のループ電流312の位相であり、θNは、N番目のループ309のループ電流312の位相である。
 なお、上述のように、4N本の直線状導体301の接続点308は、楕円ループ状導体302の中心を対称点とし、点対称に楕円ループ状導体302上に配置される。従って、第二象限におけるN-1(図では3)本の直線状導体301は、第一象限211におけるN-1(図では3)本の直線状導体301とy軸202に対して線対称の位置に配置され、第三象限における3本の直線状導体301は、第三象限におけるN-1(図では3)本の直線状導体301とx軸201に対して線対称の位置に配置され、第四象限におけるN-1(図では3)本の直線状導体301は、第一象限211における3本の直線状導体301とx軸201に対して線対称の位置に配置される。
 RFコイルユニット310では、隣接する弧状導体303間の電気位相差Δθkは、以下の式(2)、式(3)、式(4)、式(5)および式(6)を満たすよう、調整される。
 Δθk>0    (2)
 Δθk-1<Δθk   (1<k<N+1)   (3)
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
ここで、kは、N+1>k>0を満たす整数であり、k’は、N>k’>0を満たす整数である。また、Lr m(m=1、2、…、N)は、図3(b)に示す第一象限211において、y軸202上から楕円ループ状導体302の周方向に時計回りに数えてm番目の弧状導体303の等価インダクタンスであり、Ll m(m=1、2、…、N+1)は、y軸202上から楕円ループ状導体302に周方向に時計回りに数えてm番目の直線状導体301の等価インダクタンスである。また、y軸202上に接続点を持つ、直線状導体301の等価インダクタンスをLl 0で表す。
 式(5)および式(6)は、図3(b)に示すRFコイルユニット310の第一象限211の部分の等価回路410から導かれる。この等価回路410を図5に示す。等価回路410は、RFコイルユニット310の第一象限211部分を平面上に展開したものである。Cは、第一キャパシタ306の値である。また、弧状導体303のインダクタンスを411、直線状導体301のインダクタンスを412で示す。ここで、等価回路410は、図5の紙面の上下方向に対して対称であるため、仮想的な接地面413を直線状導体301の中点にとる。
 このとき、y軸202上から楕円ループ状導体302に周方向に時計回りに数えてk番目の直線状導体301の接続点308と接地面413の間の電圧Vkは、キルヒホッフの法則から、式(7)で表される。
Figure JPOXMLDOC01-appb-M000005
ここで、Ikは、第一象限211において、y軸202に近い方からk番目のループ309に流れるループ電流312である。
 また、電圧Vk+1と電圧Vkの差は、図5に示す等価回路410から、式(8)で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、式(7)を式(8)に代入すると、式(9)が得られる。
Figure JPOXMLDOC01-appb-M000007
 ループ電流312であるIkは、式(10)で表わされる。
 Ik=A・exp(j(ωt+θk))   (10)
また、Δθk=θk-θk-1であるため、隣接するループ309のループ電流312の比である、Ik+1/Ik、および、Ik/Ik-1は、式(11)および式(12)で表される。
 Ik+1/Ik=exp(jΔθk+1)   (11)
 Ik/Ik-1=exp(jΔθk)   (12)
 これらを用いて変形すると、式(9)は、式(13)で表される。
Figure JPOXMLDOC01-appb-M000008
ここで、Cは第一キャパシタ306の値であり、一定である。また、ωはコイルの共振角周波数であり、kによらず一定である。
 式(13)のkをk-1に置き換えた式と式(13)とを用いてΔθk+1について解くと、式(14)が得られる。
Figure JPOXMLDOC01-appb-M000009
 式(14)を、実部について解くと、上記式(6)を得る。また、式(14)を、虚部について解くと、式(15)が得られる。
Figure JPOXMLDOC01-appb-M000010
 ここで、Ll 0は、図3(b)に示す第二象限のy軸202に最も近い直線導体のインダクタンスであり、コイルの形状の対称性からLl 2に等しくなる。また、Δθ0についてもコイルの形状の対称性から、Δθ2に等しくなる。よって、Ll 0=Ll 2、Δθ0=Δθ2として、k=1の場合の式(15)を変形すると、k=1の場合の式(5)を得る。
 また、式(15)の右辺第2項に、式(5)のkをk-1とした場合の式を代入すると、式(15)は、式(5)と等価となる。
 また、Ll N+2は、図3(b)に示す第四象限のx軸201に最も近い直線状導体301のインダクタンスであり、コイルの形状の対称性からLl Nに等しくなる。また、ΔθN+2についてもコイルの形状の対称性から、ΔθNに等しくなる。よって、Ll N+2=Ll N、ΔθN+2=ΔθNとして、k=N+1の場合の式(15)を変形すると、k=N+1の場合の式(5)を得る。
 次に、式(5)および式(6)で用いられる、直線状導体301および楕円ループ状導体302(弧状導体303)の等価インダクタンスLl mおよびLr mの算出手法を説明する。
 直線状導体301の等価インダクタンスLl kは、直線状導体301の形状から求められる自己インダクタンスLls kおよび隣り合う直線状導体301との相互インダクタンスMl k,k-1、Ml k,k+1の和として求められる。すなわち、式(16)で表される(非特許文献4参照)。
 Ll k=Lls k+Ml k,k-1+Ml k,k+1   (16)
 幅wk、長さlの直線状導体301の自己インダクタンスLls kは、式(17)で表される。
Figure JPOXMLDOC01-appb-M000011
 また、相互インダクタンスMl k,k-1、Ml k,k+1は、それぞれ、式(18)式(19)で表される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 dk,k-1は、y軸202上から楕円ループ状導体302に周方向に時計回りに数えてk番目とk-1番目の2本の直線状導体301の間の距離であり、式(20)で表される。
Figure JPOXMLDOC01-appb-M000014
 また、φkは、式(21)で表される。
Figure JPOXMLDOC01-appb-M000015
 また、dk,k+1は、y軸202上から楕円ループ状導体302に周方向に時計回りに数えてk番目とk+1番目の2本の直線状導体301の間の距離であり、式(22)で表される。
Figure JPOXMLDOC01-appb-M000016
 このように、等価インダクタンスLl k(k=1、2、…、N+1)は、直線状導体301の寸法と楕円ループ状導体302の長軸aおよび短軸b、電気位相差Δθk(k=1、2、…、N+1)により定まる。
 なお、式(3)と式(5)とから、隣接する2本の直線状導体301の等価インダクタンスLl kおよびLl k+1とは、Ll k>Ll k+1の関係を有する。従って、直線状導体301間の距離(直線状導体301の幅方向の中心間の距離)は、y軸202上から楕円ループ状導体302の周方向に時計回りに、すなわち、短軸方向から長軸方向に向かって増加する。また、直線状導体301の幅wkは、y軸202上から楕円ループ状導体302の周方向に時計回りに、すなわち、短軸方向から長軸方向に向かって増加する傾向を示す。
 また、弧状導体303の等価インダクタンスLr kは、次の式(23)で表される。
Figure JPOXMLDOC01-appb-M000017
ここで、lr kとwrはそれぞれ弧状導体303の長さと幅である。
 弧状導体303の長さlr kは、式(24)で表される。
Figure JPOXMLDOC01-appb-M000018
 このように、弧状導体303の等価インダクタンスLr k(k=1、2、…、N+1)は、弧状導体303の寸法と楕円ループ状導体の長軸aおよび短軸b、電気位相差Δθk(k=1、2、…、N+1)により定まる。
 以上から、Δθk(k=1、2、…、N+1)の値は、式(2)、式(3)、式(4)、式(5)および式(6)を解くことで求められる。なお、式(5)および式(6)は、式(17)から式(24)を用いて求められた直線状導体301の等価インダクタンスLl kと弧状導体303の等価インダクタンスLr kとを代入して解く。
 なお、式(2)および式(3)は、以下の理由から必須となる条件である。
 非特許文献4に開示される、キャパシタの値がそれぞれ異なる楕円型バードケージコイル910を図6に示す。このような楕円型バードケージコイル910では、その感度分布を均一な共振モードとするため、2本の直線状導体301と2つの弧状導体303とにより構成される各ループ309間の電気位相のシフト量(電気位相差)Δθが一定になるよう調整される。すなわち、Δθ1=Δθ2=Δθ3=Δθ4=π/8となるよう各キャパシタの値が調整される。
 図6に示す楕円型バードケージコイル910のサイズを、長軸直径300mm、短軸直径240mm、長さ300mmとし、この楕円型バードケージコイル910を、120MHzで感度分布が均一な共振モードとなるように調整した結果、図6に示す各キャパシタ906の値(C1~C4)は、C1=29pF、C2=26.3pF、C3=23.7pF、C4=21.2pFとなり、各キャパシタ906の値が、x軸201上から楕円ループ状導体302の周方向に反時計回りに向かって減少する傾向を示した。これは、電気位相差Δθが一定の場合は、キャパシタの値が同一にならないことを示す。
 図6に示す楕円型バードケージコイル910において、キャパシタ906の値を一定とするためには、電気位相差(電気位相のシフト量)が一定の条件を取り除く必要がある。例えば、全てのキャパシタ906の値をC1~C4の平均値に合わせるとすると、C1およびC2の値を低下させ、C3およびC4の値を増加させることが必要である。バードケージコイルでは、Ciが増加するとΔθiが減少し、Ciが低下するとΔθiが増加する傾向を示す。従って、キャパシタの値を一定とするためには、Δθ1<Δθ2<Δθ3<Δθ4の条件を満たすことが必要となる。すなわち、上記式(2)および式(3)の条件が必須となる。
 次に、直線状導体301が上記式(1)を満たすよう配置され、隣接する弧状導体303間の電気位相差Δθkが、上記式(2)、式(3)および式(4)を満たすよう、各構成要素が調整、決定されると、本実施形態のRFコイルユニット310が、第一キャパシタ306の値を一定としながらも、磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振することを示す。
 非特許文献1で示されるように、N’本のラングを有するバードケージコイルが、感度分布が均一な共振モードで動作するとき、隣り合う2本のラング導体とその間のリング導体とで構成されるN’個のループのk番目のループに流れる電流は、以下の式(25)で表される。
 Ik=A・exp(j(ωct+θk))   (25)
 このとき、位相θkは、次の式(26)を満たす。
Figure JPOXMLDOC01-appb-M000019
ただし、θk>θk-1、θ0=θN’であり、ωcは磁気共鳴周波数の角周波数、Aはコイルの損失や給電電圧で決まる定数である。
 式(25)は、隣り合う2つのループの間で、流れる電流に、Δθk=θk-θk-1の位相差が生じることを示す。また、式(26)はリング導体上に沿って一周したときに、リング導体上に流れる電流の位相が360度変化することを示す。式(26)の条件は、楕円型バードケージコイルにおいても当てはまる。
 図3に示すRFコイルユニット310の各直線状導体301は、楕円ループ状導体302の長軸および短軸に対して、線対称の関係となるように配置される。形状の対称性から、図3(b)に示す第一象限211における楕円ループ状導体302上の電気位相の変化が90度であれば、リング導体(楕円ループ状導体302)上を1周して360度となり、感度分布が均一な共振モードとなる。
 第一象限211における、各ループ309に流れるループ電流312の位相差Δθの和は、式(27)で表される。
Figure JPOXMLDOC01-appb-M000020
なお、ループ電流312の位相差Δθは、隣り合うループ309の間に生じるものである。従って、両端の位相差(y軸202を挟んで生じる位相差Δθ1およびx軸201を挟んで生じる位相差ΔθN+1)については、コイル形状の対称性から、半分の値を加算する。
 上記式(27)の左辺の第2項を、(Δθk+Δθk+1)/2の和として変形すると、上記式(4)を得る。すなわち、本実施形態のRFコイルユニット310は、式(4)を満たすよう構成されているため、上述のように、第一象限211におけるN-1本の直線状導体301は、楕円ループ状導体302上の電気位相の変化が90度になる位置に接続されるといえる。従って、4N本の直線状導体301がリング導体(楕円ループ状導体302)上を1周して360度となる位置に配置されるため、本実施形態のRFコイルユニット310は、磁気共鳴周波数(fc)で共振時、コイルの感度分布が均一な共振モードで共振する。
 以上のように、本実施形態のRFコイルユニット310では、隣接する2つのループ309に流れるループ電流312の電気位相差が、y軸202方向からx軸201方向に向かって増加するよう設定され、また、RFコイルユニット310の対称性から、電気位相差Δθkは、原点に対して点対称の位置にある2つの弧状導体303の間の電気位相差が180度となるよう設定される。
 次に、以上のように調整されたRFコイルユニット310が、送受信用RFコイル105として動作することを説明する。
 まず、シーケンサ119からの制御信号により、送受信切替器115は、高周波磁場発生器113からRFコイルユニット310に信号を伝送するように切り替えられる。高周波磁場発生器113から磁気共鳴周波数(fc)を搬送波成分とする高周波信号が送受信切替器115を通ってQDハイブリッドに送られると、QDハイブリッドは、一方の電気位相を90度シフトさせて高周波信号を2つに分配し、第一給電点304および第二給電点305にそれぞれ入力する。
 第一給電点304に磁気共鳴周波数(fc)を搬送波成分とする高周波信号が印加されると、RFコイルユニット310は共振状態となる。このとき、楕円ループ状導体302上に流れる高周波電流の電気位相の変化は、楕円ループ状導体302を1周して360度となる。2つの給電点(第一給電点304および第二給電点305)の間の電気位相差は75~105度であるため、一方の給電点に給電した場合、他方の給電点では、楕円ループ状導体302を流れる高周波電流の振幅が最小となる。よって、RFコイルユニット310の第一給電点304および第二給電点305には、互いに干渉することなく高周波信号が印加され、RFコイルユニット310は、コイル内部に回転磁界を照射する。
 回転磁界照射後、磁気共鳴信号が生じる。このとき、シーケンサ119からの制御信号により、送受信切替器115は受信器114に信号を伝送するように切り替えられる。相反定理により、RFコイルユニット310は、照射時と同様の感度分布を持って、磁気共鳴信号を検出する。検出された磁気共鳴信号は、第一給電点304および第二給電点305を通ってQDハイブリッドに送られ、一方の信号が90度シフトされて合成される。合成された信号は、送受信切替器115を通って受信器114に送られる。
 以上のようにRFコイルユニット310は、送受信用RFコイル105として動作する。
 以上説明したように、本実施形態によれば、楕円型バードケージコイルにおいて、直線状導体を、隣り合う2つの弧状導体間の電気位相差が、楕円ループ状導体の長軸から遠ざかるにつれて小さくなるよう配置する。また、直線状導体を、長軸と短軸との間の弧状導体間の電気位相差の合計が90度となるよう配置する。すなわち、楕円型バードケージコイルの対称性から、原点に対して点対称の位置にある2つの弧状導体の電気位相差が180度となるよう配置する。
 このように直線状導体を配置することにより、上述のように、本実施形態によれば、第一キャパシタの容量が同一であっても、磁気共鳴周波数(fc)で共振し、かつ、共振時にコイルの感度分布が均一な共振モードで共振する、楕円型バードケージコイルを実現できる。
 従って、本実施形態によれば、挿入するキャパシタの容量を同一とする楕円型バードケージコイルを提供することができる。これにより、楕円型バードケージコイルの製造時の手間や製造コスト、コイルの性能ばらつきの増大を低減することができる。
 なお、図3に示すRFコイルユニット310では、2本の直線状導体301がx軸201上に、2本の直線状導体301がy軸202上に、それぞれ配置される。しかし、直線状導体301の配置はこれに限らない。4N本の直線状導体301が、x軸201およびy軸202に対して対称に配置されればよい。
 図7に、直線状導体301がx軸201およびy軸202のいずれの軸上にも配置されないRFコイルユニット320の一例を示す。RFコイルユニット320においても、基本的に、各直線状導体301は、x軸201およびy軸202それぞれに線対称に配置され、x軸201およびy軸202で規定される各象限に、それぞれN本の直線状導体301が配置される。
 この場合も、第一キャパシタ306は、各弧状導体303に1つずつ配置され、その容量は同一とする。そして、送受信用RFコイル105で用いる磁気共鳴周波数(fc)でRFコイルユニット320が共振状態となるよう調整される。
 また、第一給電点304と第二給電点305とは、y軸202またはx軸201に対して線対称の位置であり、かつ、一方の給電点に給電したときに、他方の給電点に流れる高周波電流の振幅が最小となる位置にそれぞれ配置される。
 第一象限211におけるN本の直線状導体301は、その接続点308が、図7(a)に示すように、y軸202となす角Φm(m=1、2、…、N)が、以下の式(28)を満たすように配置される。
Figure JPOXMLDOC01-appb-M000021
ここで、Δθkは、第一象限211において、y軸202に近い方からk番目のループ309に流れるループ電流312の位相θkとk-1番目のループ309に流れるループ電流312の位相θk-1との差である電気位相差(Δθk=θk-θk-1)を表す。ただし、ただし、θ0は、第二象限の、y軸202と交差する弧状導体303に隣接するループ309に流れるループ電流312の位相とし、θNは、第四象限の、x軸201と交差する弧状導体303に隣接するループ309に流れるループ電流の位相とする。他の象限の直線状導体301は、上述のように、RFコイルユニット320全体として、x軸201およびy軸202に線対称に配置される。
 RFコイルユニット320では、電気位相差Δθkは、RFコイルユニット310同様、上記式(2)、式(3)、式(29)、式(30)および式(31)を満たすよう調整される。なお、コイルの形状の対称性から、y軸202と交差する弧状導体303によるループ309の、両側のループとの電気位相差Δθ1およびΔθ2は、等しくなる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
ここで、kは、N+1>k>1を満たす整数である。また、Lr m(m=1、2、…、N+1)は、図7(b)に示す第一象限211において、y軸202上から楕円ループ状導体302の周方向に時計回りに数えてm番目の弧状導体303の等価インダクタンスであり、Ll m(m=1、2、…、N)は、y軸202上から楕円ループ状導体302に周方向に時計回りに数えてm番目の直線状導体301の等価インダクタンスである。
 式(30)および式(31)は、図7(b)に示す第一象限211のRFコイルユニット320の等価回路420から導かれる得ることができる。この等価回路420を図8に示す。図8は、RFコイルユニット320の第一象限211部分を、平面上に展開して等価回路で表わした図である。Cは、第一キャパシタ306の値である。また、等価回路410は、図8の紙面の上下方向に対して対称であるため、仮想的な接地面413を直線状導体301の中点にとる。
 y軸202上から楕円ループ状導体302に周方向に時計回りに数えてk番目の直線状導体301の、接続点308と接地面413との間の電圧Vkは、キルヒホッフの法則から式(32)で表される。
Figure JPOXMLDOC01-appb-M000025
ここで、Ikは、第一象限211において、y軸202に近い方からk番目のループ309に流れるループ電流312である。
 また、電圧Vk+1と電圧Vkとの差は、図8に示す等価回路420から、式(33)で表される。
Figure JPOXMLDOC01-appb-M000026
ここで、式(32)を式(33)に代入すると、式(34)が得られる。
Figure JPOXMLDOC01-appb-M000027
 ここで、ループ電流312であるIkは、式(35)で表される。
 Ik=A・exp(j(ωt+θk))   (35)
また、Δθk=θk-θk-1であるため、Ik+1/IkおよびIk/Ik-1は、以下の式(36)、式(37)で表される。
 Ik+1/Ik=exp(jΔθk+1)   (36)
 Ik/Ik-1=exp(jΔθk)   (37)
 これらを用いて変形すると、式(34)は、次の式(38)で表される。
Figure JPOXMLDOC01-appb-M000028
ここで、Cは第一キャパシタ306の値であり、一定である。ωはコイルの共振角周波数であり、kによらず一定である。
 式(38)のkをk-1に置き換えた式と式(38)とを用いてΔθk+1について解くと、式(39)が得られる。
Figure JPOXMLDOC01-appb-M000029
 式(39)を、実部について解くと、式(31)を得る。また、式(39)を、虚部について解くと、次の式(40)が得られる。
Figure JPOXMLDOC01-appb-M000030
 ここで、Ll 0は、図7(b)に示す第二象限のy軸202に最も近い直線導体のインダクタンスであり、コイルの形状の対称性からLl 1に等しくなる。また、Δθ0も、コイルの形状の対称性から、Δθ3に等しくなり、Δθ1もΔθ2に等しくなる。よって、Ll 0=Ll 1、Δθ0=Δθ3、Δθ1=Δθ2として、k=2の場合の式(40)を変形すると、k=2の場合の式(30)を得る。
 また、式(40)の右辺第2項に、式(30)のkをk-1とした場合の式を代入すると、式(40)は、式(30)と等価となる。
 次に、式(30)および式(31)で用いられる、直線状導体301および楕円ループ状導体302(弧状導体303)の等価インダクタンスLl mおよびLr m、の算出手法を説明する。
 RFコイルユニット320の直線状導体301の等価インダクタンスLl kは、RFコイルユニット310の場合と同様に、直線状導体301の形状から求められる自己インダクタンスLls kおよび隣り合う直線状導体301との相互インダクタンスMl k,k-1、Ml k,k+1の和として求められる。すなわち、式(16)で表される。そして、幅wk、長さlの直線状導体301の自己インダクタンスLls k、および、相互インダクタンスMl k,k-1、Ml k,k+1は、式(17)から式(22)で表される。ただし、式(20)の変数φkは、式(41)で表される。
Figure JPOXMLDOC01-appb-M000031
 このように、RFコイルユニット320においても、等価インダクタンスLl k(k=1、2、…、N)は、直線状導体301の寸法と楕円ループ状導体の長軸aおよび短軸b、Δθk(k=1、2、…、N+1)によって定まる。
 また、弧状導体303の等価インダクタンスLr kは、式(23)で表され、弧状導体303の長さlr kは、式(24)で表される。ただし、k=1の場合は、式(42)、k=N+1の場合は、式(43)で表される。
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
 よって、RFコイルユニット320においても、弧状導体303の等価インダクタンスLr k(k=1、2、…、N+1)は、弧状導体303の寸法と楕円ループ状導体の長軸aおよび短軸b、Δθk(k=1、2、…、N+1)によって定まる。
 以上から、Δθk(k=1、2、…、N+1)の値は、式(2)、式(3)および式(29)を満たし、Δθk(k=1、2、…、N+1)を変数に持つ直線状導体301の等価インダクタンスLl kと弧状導体303の等価インダクタンスLr kとを式(30)および式(31)に代入して解くことで求められる。
 次に、上記構成を有するRFコイルユニット320が、磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振することを示す。
 RFコイルユニット320においても、図3に示すRFコイルユニット310の場合と同様に、図7(b)に示す第一象限211における楕円ループ状導体302上の電気位相の変化が90度となれば、感度分布が均一な共振モードとなる。すなわち、第一象限211におけるループ309に流れるループ電流312の位相差Δθの和が90度となればよい。ループ電流の位相差Δθkは、隣り合うループ309の間に生じるため、位相差Δθkの和は、式(29)で表され、これは、第一象限211におけるループ309に流れるループ電流312の電気位相差Δθの和が90度であることを示す。
 よって、図7に示すRFコイルユニット320は、RFコイルユニット310の場合と同様に磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振する。
 また、図7に示すRFコイルユニット320は、x軸201およびy軸202に対して対称な位置に配置される直線状導体301を4N本備えるが、直線状導体301の本数はこれに限られない。例えば、2N本であってもよい。2N本の直線状導体301が、x軸201およびy軸202に対して対象に配置されればよい。
 図9に、x軸201およびy軸202に対して対称な位置に配置された、2N本の直線状導体301を備えるRFコイルユニット330を示す。図9では、N=9とし、y軸202上に直線状導体301が配置される場合を例にあげ、説明する。
 この場合も、第一キャパシタ306は、各弧状導体303に1つずつ配置され、その容量は同一とする。そして、送受信用RFコイル105で用いる磁気共鳴周波数(fc)でRFコイルユニット330が共振状態となるよう調整される。
 また、第一給電点304と第二給電点305とは、y軸202またはx軸201に対して線対称の位置であり、かつ、一方の給電点に給電したときに、他方の給電点に流れる高周波電流の振幅が最小となる位置にそれぞれ配置される。
 第一象限211に配置されるN本の直線状導体301は、その接続点308が、図9(a)に示すように、y軸202となす角Φm(m=1、2、…、[N/2])が、第一の実施形態のRFコイルユニット310の場合と同様に、式(1)を満たすように配置される。ここで、[N/2]は、N/2の整数部分を表す。他の象限の直線状導体301は、それぞれ、RFコイルユニット330全体として、x軸201およびy軸202に線対称に配置される。
 また、電気位相差Δθkの値は、上記式(2)、式(3)、式(44)、式(5)および式(45)を満たすよう調整される。
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
ここで、kは、[N/2]+2>k>0を満たす整数である。Lr m、Ll mは、RFコイルユニット310同様、それぞれ、弧状導体303の等価インダクタンスおよび直線状導体301の等価インダクタンスである。
 式(5)および式(45)は、図9(b)に示す第一象限211のRFコイルユニット320の等価回路430から導かれる。この等価回路430を図10に示す。図10は、RFコイルユニット330の第一象限211部分を、平面上に展開して等価回路で表わした図である。Cは、第一キャパシタ306の値である。また、等価回路410は、図8の紙面の上下方向に対して対称であるため、仮想的な接地面413を直線状導体301の中点にとる。
 図10に示す等価回路430は、図5に示す等価回路410にループ309が一つ増加された以外は同様の回路構成である。したがって、キルヒホッフの法則から、図3に示すRFコイルユニット310の場合と同様に、式(5)および式(6)が導出される。ただし、図10に示す等価回路430においては、コイルの対称性から、k=[N/2]+1においても成り立ち、式(45)となる(図10ではN=9)。
 直線状導体301の等価インダクタンスLl kおよび弧状導体303の等価インダクタンスLr kについても、RFコイルユニット310の場合と同様の式で表され、kの範囲が、[N/2]+2>k>0となる。ただし、k=[N/2]+1における弧状導体303の長さは、次の式(46)で表される。
Figure JPOXMLDOC01-appb-M000036
 よって、直線状導体301の等価インダクタンスLl kおよび弧状導体303の等価インダクタンスLr kは、弧状導体303の寸法と楕円ループ状導体302の長軸aおよび短軸b、Δθk(k=1、2、…、[N/2]+1)によって定まる。
 以上から、Δθk(k=1、2、…、[N/2]+1)の値は、式(2)、式(3)および式(44)を満たし、Δθk(k=1、2、…、[N/2]+1)を変数に持つ直線状導体301の等価インダクタンスLl kと弧状導体303の等価インダクタンスLr kとを式(5)と式(45)に代入して解くことで求められる。
 次に、上記構成を有するRFコイルユニット330が、磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振することを示す。
 RFコイルユニット330においても、図3に示すRFコイルユニット310と同様に、図9(b)に示す第一象限211における楕円ループ状導体302上の電気位相の変化が90度となれば、感度分布が均一な共振モードとなる。すなわち、第一象限211におけるループ309に流れるループ電流312の位相差Δθの和が90度となればよい。
 ループ電流312の位相差Δθkは、隣り合うループ309の間に生じるため、図9(b)におけるy軸202上で生じる位相差Δθkとして、コイルの形状の対称性から半分の値を加算する。その結果、位相差Δθkの和は、次の式(47)で表される。
Figure JPOXMLDOC01-appb-M000037
式(47)を(Δθk+Δθk+1)/2の和として変形すると、式(44)となる。これは、第一象限211におけるループ309に流れるループ電流312の電気位相差Δθの和が90度であることを示す。
 よって、RFコイルユニット330は、RFコイルユニット310の場合と同様に磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振する。
 また、RFコイルユニット310、RFコイルユニット320、RFコイルユニット330では、第一キャパシタ306が弧状導体303上に配置されているが、第一キャパシタ306の配置もこれに限らない。第一キャパシタ306は、直線状導体301の上に配置されても良い。
 図11に、直線状導体301上に第一キャパシタ306を配置したRFコイルユニット340を示す。ここでは、直線状導体301が、RFコイルユニット310と同様の配置を有する場合を例にあげて説明する。従って、図11に示すRFコイルユニット340は、第一キャパシタ306が直線状導体301上に配置される点および給電点の配置以外は、図3に示すRFコイルユニット310と同じ構造を有する。
 第一キャパシタ306の容量は、全て同一であり、送受信用RFコイル105で用いる磁気共鳴周波数(fc)でRFコイルユニット340が共振状態となるよう調整される。
 第一給電点304と第二給電点305とは、RFコイルユニット310同様、y軸202またはx軸201に対して線対称の位置であり、かつ、一方の給電点に給電した時に、他方の給電点に流れる高周波電流の振幅が最小となる位置にそれぞれ配置される。ただし、配置位置は、弧状導体303上ではなく、直線状導体301上である。例えば、RFコイルユニット340では、具体的には、図11(a)および図11(b)に示すように、y軸202に対して線対称の関係にあり、かつ、互いの電気位相の差が75~105度の範囲にある、2つの直線状導体301上の第一キャパシタ306にそれぞれ接続される。
 RFコイルユニット340では、隣接するループ309間の電気位相差Δθkの値は、RFコイルユニット310同様、式(2)、式(3)、および式(4)と、以下の式(48)および式(49)を満たすよう調整される。
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
ここで、kは、N+1>k>0を満たす整数であり、k’は、N>k’>0を満たす整数である。また、Lr m(m=1、2、…、N)は、図3(b)に示す第一象限211において、y軸202上から楕円ループ状導体302の周方向に時計回りに数えてm番目の弧状導体303の等価インダクタンスであり、Ll m(m=1、2、…、N+1)は、y軸202上から楕円ループ状導体302に周方向に時計回りに数えてm番目の直線状導体301の等価インダクタンスである。また、y軸202上に接続点308を持つ、直線状導体301の等価インダクタンスをLl 0で表す。
 上記式(48)および式(49)は、図11(b)に示すRFコイルユニット340の等価回路440から導かれる。この等価回路440を図12に示す。等価回路440では、容量Cの第一キャパシタ306を、容量2Cの2つのキャパシタが直列接続されたものとみなす。これにより、等価回路440は、図12の紙面の上下方向に対称とみなせるため、仮想的な接地面413を、直線状導体301の中点にとる。
 y軸202上から楕円ループ状導体302に周方向に時計回りに数えてk番目の直線状導体301の接続点308と接地面413との間の電圧Vkは、キルヒホッフの法則から、式(50)で表される。
Figure JPOXMLDOC01-appb-M000040
ここで、Ikは、第一象限211において、y軸202に近い方からk番目のループ309に流れるループ電流312である。
 また、電圧Vk+1と電圧Vkの差は、図12に示す等価回路440から、式(51)で表される。
Figure JPOXMLDOC01-appb-M000041
 式(50)と式(51)とから、式(52)が得られる。
Figure JPOXMLDOC01-appb-M000042
式(52)を、実部について解くと、式(49)が得られ、虚部について解くと式(48)が得られる。
 RFコイルユニット340においても、直線状導体301の等価インダクタンスLl kおよび弧状導体303の等価インダクタンスLr kは、RFコイルユニット310と同様に式(17)から式(24)を用いて求められる。
 以上から、各電気位相差Δθk(k=1、2、…、N+1)の値は、式(2)、式(3)および式(4)を満たし、電気位相差Δθk(k=1、2、…、N+1)を変数に持つ直線状導体301の等価インダクタンスLl kと弧状導体303の等価インダクタンスLr kとを式(48)および式(49)に代入して解くことで求められる。
 RFコイルユニット340も、RFコイルユニット310同様、式(4)を満たすため、直線状導体301が、電気位相差の変化が楕円ループ状導体302上を1周して360度となる位置に配置されるため、磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振する。
 なお、ここでは、RFコイルユニット310の構成を基礎に第一キャパシタ306が直線状導体301の上に配置されるRFコイルユニット340を説明したが、直線状導体301の本数、配置は、上述のようにこれに限られない。直線状導体301は2N本であってもよく、2N本の直線状導体301がx軸201およびy軸202に対して対称に配置されればよい。
 また、キャパシタは、弧状導体303および直線状導体301のいずれか一方だけでなく、両方に配置してもよい。この場合も、キャパシタは、各弧状導体303および直線状導体301に、それぞれ1つずつ配置され、その容量は、弧状導体303および直線状導体301毎に、すなわち、配置される導体種毎に、同一とする。そして、送受信用RFコイル105で用いる磁気共鳴周波数(fc)でRFコイルユニットが共振状態となるよう調整される。RFコイルユニットの構成は上記RFコイルユニット310、320、330、340のいずれであってもよいが、ここでは、RFコイルユニット310を例にあげて説明する。
 例えば、弧状導体303上に配置するキャパシタを第一キャパシタ306とし、直線状導体301上に配置するキャパシタを第二キャパシタとする。また、第一キャパシタの容量をC、第二キャパシタの値をC2とする。第二キャパシタも、第一キャパシタ306同様、複数のキャパシタにより構成されていてもよい。この場合、これらのキャパシタの合成容量を、第二キャパシタの容量とする。
 なお、第二キャパシタを備える直線状導体301のインダクタンスLl k’は、式(53)で表される。
Figure JPOXMLDOC01-appb-M000043
従って、図5に示す等価回路410のLl kの代わりにLl k’を用い、電気位相差Δθk(k=1、2、…、N+1)の値を求める。このように、各ループ309の電気位相差Δθk(k=1、2、…、N+1)を決定することにより、第一キャパシタ306および第二キャパシタの値は、それぞれ場所によらず一定とすることができる。
 なお、本実施形態では、RFコイルユニット310が給電点を2つ備える場合(第一給電点304および第二給電点305)を例にあげて説明したが、RFコイルユニット310は、給電点を4つ(第一給電点304、第二給電点305、第三給電点、第四給電点)備えてもよい。
 このとき、第三給電点は、中心軸311に対して第一給電点304と点対称の位置の第一キャパシタ306に配置され、第四給電点は、中心軸311に対して第二給電点305と点対称の位置の第一キャパシタ306に配置される。よって、4つの給電点は、楕円ループ状導体132の周方向に隣り合う2つの給電点において、一方の給電点に給電したときに他方の給電点に流れる高周波電流の振幅が最小となる位置に配置される。
 また、第一給電点304と第三給電点とは、同軸ケーブルを介して高周波合成器に接続されてQDハイブリッドに接続され、第二給電点305と第四給電点とは、同軸ケーブルを介して高周波合成器に接続されてQDハイブリッドに接続される。また、第三給電点と高周波合成器との間および第四給電点と高周波合成器との間に信号の位相を180度シフトさせる位相シフト回路がそれぞれ挿入される。これにより、第一給電点304と第三給電点において位相差が180度となり、第一給電点304と第三給電点から同位相の高周波信号がコイルに給電される。第二給電点305と第四給電点についても同様に位相差が180度となり、第一給電点304と第三給電点から同位相の高周波信号がコイルに給電される。よって、RFコイルユニット310の共振状態は、給電点が2つの場合と同一となる。従って、給電点が4つの場合においても、RFコイルユニット310は、磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振する。
 以上説明したように、本実施形態の高周波コイルユニット(RFコイルユニット310、320、330、または、340)は、楕円筒状曲面に沿って前記楕円筒状曲面の中心軸311に平行に配置される複数の直線状導体301と、前記中心軸311上の点を中心とし前記楕円筒状曲面に沿ってループ面が互いに平行となるように配置される2つの楕円ループ状導体302と、それぞれ1以上のキャパシタから構成される、複数の第一キャパシタ306と、を備え、前記各直線状導体301の両端部は、前記楕円ループ状導体302に接続され、前記第一キャパシタ306は、前記各直線状導体301上および前記楕円ループ状導体302の隣接する前記直線状導体301の接続点308で挟まれた弧状導体303上のいずれか一方に1つずつ配置され、前記複数の直線状導体301は、前記楕円ループ状導体302の長軸および短軸に対して、線対称に配置され、前記第一キャパシタ306の容量は、同一の値であることを特徴とする。
 このとき、隣接する2つの前記弧状導体303間の電気位相差は、前記楕円ループ状導体302の短軸方向から長軸方向に向かって増加し、かつ、前記楕円ループ状導体302の中心に関して点対称の位置にある2つの弧状導体303の電気位相差が180度となるよう決定されてもよい。
 また、本実施形態の高周波コイルユニット(RFコイルユニット310、320、330、または、340)は、それぞれ1以上のキャパシタから構成される、複数の第二キャパシタを備えてもよい。このとき、前記複数の第二キャパシタは、前記各直線状導体301および前記弧状導体303のうち、前記第一のキャパシタ306が配置されていない導体上に、それぞれ1つ配置され、前記第二キャパシタの容量は同一とする。
 また、本実施形態の高周波コイルユニット(RFコイルユニット310、320、330、または、340)は、隣り合う2つの前記直線状導体301の中心間の距離が、前記楕円ループ状導体302の短軸方向から長軸方向に向かって増加するよう構成してもよい。
 また、本実施形態の高周波コイルユニット(RFコイルユニット310、320、330、または、340)は、前記直線状導体301の幅が、前記楕円ループ状導体302の短軸方向から長軸方向に向かって増加するよう構成してもよい。
 また、本実施形態の高周波コイルユニット(RFコイルユニット310、320、330、または、340)は、高周波信号を高周波コイルユニット(RFコイルユニット310、320、330、または、340)に給電する2つまたは4つの給電点304、305をさらに備えてもよい。このとき、前記給電点304、305は、前記楕円ループ状導体302の長軸および短軸のいずれか一方に対して線対称となる位置であって、前記楕円ループ状導体302の周方向に隣り合う2つの前記給電点304、305において、一方の給電点に給電したときに他方の給電点に流れる高周波電流の振幅が最小となる位置に配置される。
 また、本実施形態の磁気共鳴イメージング装置(MRI装置100)は、静磁場を生成する静磁場生成手段(マグネット101)と、傾斜磁場を印加する傾斜磁場印加手段(傾斜磁場コイル102)と、高周波磁場信号を生成する高周波磁場信号生成手段(送信用RFコイル103)と、前記高周波磁場信号生成手段(高周波磁場発生器113)から入力される高周波磁場信号を被検体に照射するとともに前記被検体から発生する磁気共鳴信号を検出して検出信号として出力する送受信コイル(送受信用RFコイル105)と、前記検出信号に対し信号処理を行う信号処理手段(計算機120)と、前記傾斜磁場印加手段と、前記高周波磁場信号生成手段と、前記信号処理手段との動作を制御する制御手段(計算機120)と、を備える磁気共鳴イメージング装置であって、前記送受信コイル(送受信用RFコイル105)として、上述の高周波コイルユニット(RFコイルユニット310、320、330、および340のいずれか1つ)を用いる。
 <<第二の実施形態>>
 次に、本発明を適用する第二の実施形態について説明する。本実施形態のMRI装置は基本的に第一の実施形態と同様である。第一の実施形態では、高周波磁場の送信と磁気共鳴信号の受信とを行う送受信用RFコイルを用いる。一方、本実施形態では、高周波磁場の送信を行う送信用RFコイルと磁気共鳴信号の受信を行う受信用RFコイルとが別個に設けられる。以下、本実施形態について、第一の実施形態と異なる構成を中心に説明する。なお、本実施形態においても、水平磁場方式のマグネット101が発生する静磁場140の向きを、z軸方向とする座標系200を用いる。
 図13は、本実施形態のMRI装置110の概略構成を示すブロック図である。本実施形態のMRI装置110は、水平磁場方式のマグネット101と、傾斜磁場コイル102と、静磁場均一度を調整するためのシムコイル106と、シーケンサ119と、高周波磁場を発生する送信用RFコイル103と、被検体150の近くに配置され被検体150から発生するRF信号を受信する受信用RFコイル104と、傾斜磁場電源112と、シム電源116と、送受信切替器115と、高周波磁場発生器113と、受信器114と、磁気結合防止回路駆動装置117と、記憶媒体122と、計算機120と、表示装置121と、テーブル130と、を備える。
 傾斜磁場コイル102およびシムコイル106とは、それぞれ傾斜磁場電源112およびシム電源116に接続される。送信用RFコイル103は、送受信切替器115に接続され、送受信切替器115は高周波磁場発生器113と受信器114に接続される。受信用RFコイル104は受信器114に接続される。
 磁気結合防止回路駆動装置117は、送信用RFコイル103および受信用RFコイル104間の磁気結合を防止する。磁気結合防止回路駆動装置117は、送信用RFコイル103および受信用RFコイル104に接続され、両コイルの動作/非動作を切り替える磁気結合防止信号を、シーケンサ119からの命令に従って、それぞれに出力する。
 磁気結合防止回路駆動装置117は、高周波磁場が送信用RFコイル103を通じて被検体150に印加される時には、受信用RFコイル104に磁気結合防止信号を送信する。磁気結合防止信号を受け、受信用RFコイル104は開放状態となり、非動作状態となる。これにより、送信用RFコイル103との磁気結合が避けられる。
 また、磁気結合防止回路駆動装置117は、被検体150から発生した磁気共鳴信号(RF信号)を受信用RFコイル104が受波するときは、送信用RFコイル103に磁気結合防止信号を送信する。磁気結合防止信号を受け、送信用RFコイル103は開放状態となり非動作状態となる。これにより、受信用RFコイル104との磁気結合を防止する。
 本実施形態のMRI装置110の、その他の構成及び動作は第一の実施形態のMRI装置と同様である。
 次に、本実施形態の送信用RFコイル103及び受信用RFコイル104について説明する。
 まず、本実施形態の送信用RFコイル103について説明する。ここでは、送信用RFコイル103として、図14に示すRFコイルユニット350を用いる場合を例にあげて説明する。
 図14(a)は、RFコイルユニット350の斜視図であり、図14(b)は、RFコイルユニット350を中心軸311の方向から見た図である。これらの図に示すように、本実施形態のRFコイルユニット350は、基本的に、第一の実施形態のRFコイルユニット310と同様の構成を有する。ただし、本実施形態のRFコイルユニット350は、さらに、楕円筒状RFシールド351と、磁気結合防止回路360とを備える。磁気結合防止回路360は、直線状導体301に挿入される。
 RFコイルユニット350は、RFコイルユニット310同様、中心軸311がz軸方向、楕円ループ状導体302の長軸方向がx軸201方向、短軸がy軸202方向となるよう配置される。
 楕円筒状RFシールド351は、楕円ループ状導体302の外側に、中心軸311を共有し、楕円ループ状導体302と楕円筒状RFシールド351との距離が、楕円ループ状導体302の周方向に対して、一定となるよう配置される。楕円ループ状導体302と楕円筒状RFシールド351との間の距離をdgとする。
 本実施形態においても、RFコイルユニット350を、同一容量の複数の第一キャパシタ306により、磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振させる。このため、第一の実施形態のRFコイルユニット310同様、4N本の直線状導体301のうち、第一象限211に配置されるN-1本の直線状導体301を、その接続点が上記式(1)を満たすよう配置する。また、他の各象限の直線状導体301は、それぞれ、y軸202およびx軸201に線対称に配置される。
 このとき、各ループ309間の電気位相差Δθkは、上記式(2)、式(3)、式(4)、式(5)および式(6)を満たすよう調整される。
 ただし、RFコイルユニット350では、楕円筒状RFシールド351によって、直線状導体301の自己インダクタンスLls kおよび弧状導体303の等価インダクタンスLr kの値が変化する。
 直線状導体301はマイクロストリップラインとみなすことができるため、マイクロストリップラインのインダクタンス計算に用いられる近似式の一つを用いると、楕円筒状RFシールド351が配置されたときの、直線状導体301の自己インダクタンスLlss kは、以下の式(54)または式(55)で表される。
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000045
ここで、wkは直線状導体301の幅、lは、直線状導体301の長さである。
 また、弧状導体303の等価インダクタンスLr kについても同様に、楕円筒状RFシールド351が配置されたときの、弧状導体303の等価インダクタンスLrs kは、以下の式(56)または式(57)で表される。
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
ここで、wrは弧状導体303の幅であり、lr kは弧状導体303の長さである。
 各電気位相差Δθk(k=1、2、…、N+1)の値は、式(2)、式(3)、式(4)、式(5)および式(6)を、解くことで求められる。このとき、直線状導体301の自己インダクタンスLls kの代わりにLlss kを、弧状導体303の等価インダクタンスLr kの代わりにLrs kを、それぞれ用い、式(5)および式(6)を解く。
 本実施形態のRFコイルユニット350も、RFコイルユニット310同様、式(4)を満たすため、直線状導体301が、電気位相差の変化が楕円ループ状導体302上を1周して360度となる位置に配置される。従って、磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振する。
 従って、本実施形態のRFコイルユニット310は、同一容量の複数の第一キャパシタ306により、磁気共鳴周波数(fc)で共振状態となり、コイルの感度分布が均一な共振モードで共振する。
 次に、RFコイルユニット350に挿入される磁気結合防止回路360について説明する。図15(a)および図15(b)は、RFコイルユニット350に挿入される磁気結合防止回路360の詳細を説明するための図である。
 図15(a)に示すように、磁気結合防止回路360は、PINダイオード361とPINダイオード361の両端に接続される制御線362とを備える。PINダイオード361は、ダイオードの順方向に流れる直流電流の値が一定値以上で概ね導通状態となる特性を持ち、直流電流によりオン/オフ制御がなされる。
 PINダイオード361は、その両端に接続される制御線362により、高周波信号を電気的に絶縁するチョークコイル363を介して、磁気結合防止回路駆動装置117の出力端子に接続される。磁気結合防止回路駆動装置117からの制御電流364により、PINダイオード361をオン/オフ制御することで、磁気結合防止回路360は、高周波磁場を照射するときには、RFコイルユニット350を送信用RFコイルとして機能させ、高周波信号を受信するときには、RFコイルユニット350を高インピーダンス化し、受信用RFコイルとの干渉を防止する。本動作の詳細については後述する。
 次に、本実施形態の受信用RFコイル104について説明する。実施形態では、受信用RFコイル104として、図16に示す表面コイル510を用いる場合を例にあげて説明する。図16(a)は、表面コイル510の構成を示す図であり、図16(b)は、表面コイル510に挿入される磁気結合防止回路520の詳細と磁気結合防止回路駆動装置117との接続関係を説明するための図である。
 図16(a)に示すように、表面コイル510は、ループ導体511と、キャパシタ512と、マッチング用キャパシタ513と、磁気結合防止回路520と、コモンモードノイズを除去するバラン514と、を備える。キャパシタ512と、マッチング用キャパシタ513と、磁気結合防止回路520とはループ導体511に挿入される。バラン514は、マッチング用キャパシタ513の両端に設けられる配線を介してループ導体511に接続される。バラン514の出力は、プリアンプ(図不示)に接続され、同軸ケーブルを介して受信器114に接続される。
 磁気結合防止回路520は、図16(b)に示すように、インダクタ521とPINダイオード522とが直列接続された回路と、その回路に並列に接続されたキャパシタ512と、を備える。PINダイオード522は、ダイオードの順方向に流れる直流電流の値が一定値以上で概ね導通状態となる特性を持ち、直流電流によりオン/オフ制御がなされる。
 PINダイオード522の両端は、チョークコイル363を介して、磁気結合防止回路駆動装置117の出力端子に接続される。PINダイオード522は、磁気結合防止回路駆動装置117からの制御電流364によりオン/オフ制御され、高周波信号受信時には、表面コイル510を受信用RFコイルとして機能させ、高周波磁場送信時には、表面コイル510を高インピーダンス化し、送信用RFコイル103と干渉しないよう制御する。本動作の詳細については後述する。
 キャパシタ512とキャパシタ523とマッチング用キャパシタ513とは、表面コイル510が、本実施形態のMRI装置110で設定されている磁気共鳴周波数で共振し、マッチング用キャパシタ513の両端から見たコイルのインピーダンスが所定の値となるように調整される。また、磁気結合防止回路520は、PINダイオード522がオンの場合に、インダクタ522とキャパシタ523とがMRI装置110で設定されている磁気共鳴周波数で共振するよう調整される。
 次に、図13から図16を用いて、RFコイルユニット350が送信用RFコイル103として動作し、表面コイル510が受信用RFコイル104として動作することを説明する。
 まず、高周波磁場発生器113より高周波磁場を照射するための高周波信号を印加する直前に、磁気結合防止回路駆動装置117は、RFコイルユニット350の磁気結合防止回路360のPINダイオード522および表面コイル510の磁気結合防止回路520のPINダイオード522がオンとなるように直流の制御電流364を印加する。
 RFコイルユニット350では、PINダイオード361に流れる制御電流364により、全てのPINダイオード361はオンとなる。RFコイルユニット350のPINダイオード361が全てオンの場合、PINダイオード361が導通状態となるため、RFコイルユニット350は、動作可能な状態となる。このとき、RFコイルユニット350は、図3に示すRFコイルユニット310の場合と同様に、コイルの感度分布が均一な共振モードで共振する。
 一方、表面コイル510では、制御電流364によりPINダイオード522がオンとなり、磁気結合防止回路520は、インダクタ521とキャパシタ523とで構成される並列共振回路となる。この並列共振回路は、MRI装置110で設定されている磁気共鳴周波数で高インピーダンスとなり、表面コイル510のループ導体511は概ね開放状態となる。その結果、表面コイル510は、MRI装置110で設定されている磁気共鳴周波数で共振せず、ループ導体511にはほとんど電流が流れない。従って、RFコイルユニット350と表面コイル510との磁気結合は生じないため、RFコイルユニット350は、磁気結合による共振周波数の移動やコイルのQ値の低下無しに、高周波磁場を被検体150に照射できる。
 磁気結合防止回路駆動装置117による制御電流364の印加後、高周波磁場発生器113によって高周波信号が印加される。このとき、送受信切替器115は、高周波信号を送信用RFコイル103に伝送するように切り替えられ、高周波信号が第一給電点304と第二給電点305にそれぞれ入力される。
 RFコイルユニット350は、PINダイオード361が全てオンの場合、RFコイルユニット310と同様に動作するため、第一の実施形態の場合と同様に、RFコイルユニット350は、直交する2方向の高周波磁場の一方の位相を90度シフトさせて照射するQD照射方式と同様の方法で被検体150に高周波磁場を照射する。
 高周波磁場を照射した後、被検体150から発せられる磁気共鳴信号を受信するため、磁気結合防止回路駆動装置117は、RFコイルユニット350の磁気結合防止回路360のPINダイオード361および表面コイル510の磁気結合防止回路520のPINダイオード361がオフとなるように制御電流364の値を0に設定する。
 制御電流364の値が0となると、RFコイルユニット350のPINダイオード361がオフになり高抵抗状態となる。その結果、RFコイルユニット350の導体にはほとんど電流が流れず、RFコイルユニット350は、MRI装置110で設定されている磁気共鳴周波数で共振せず、磁界もほとんど発生しない。一方、表面コイル510では、PINダイオード522はオフとなり、磁気結合防止回路520はキャパシタ523として動作する。その結果、表面コイル510は、MRI装置110で設定されている磁気共鳴周波数で共振する。
 従って、被検体150から発せられる磁気共鳴信号を受信する際、表面コイル510とRFコイルユニット350との磁気結合が無くなり、表面コイル510は、磁気結合による共振周波数の移動やコイルのQ値の低下無しに、磁気共鳴信号を高感度に受信することができる。表面コイル510で受信した信号は、プリアンプで増幅され、受信器114に送られる。
 以上説明したように、図11に示すRFコイルユニット350は、送信用RFコイル103として動作し、図13に示す表面コイル510は受信用RFコイル104として動作する。
 以上のように、本実施形態によれば、高周波磁場印加時に表面コイル510を高インピーダンス化し、磁気共鳴信号の受信時にRFコイルユニット350を高インピーダンス化することにより、磁気共鳴周波数で共振する送信用RFコイル103と受信用RFコイル104との磁気結合を防止することができ、かつ、送信用RFコイル103としてキャパシタの容量が同一となる楕円型バードケージコイルを提供できる。よって、楕円型バードケージコイルの製造時の手間や製造コスト、コイルの性能ばらつきの増大を低減することができる。
 なお、楕円筒状RFシールド351の形状は上記態様に限られない。例えば、楕円筒状RFシールド351と楕円ループ状導体302との距離が、楕円ループ状導体302とy軸202との交点からx軸201との交点に向かって、短くなるような形状でもよい。この場合のRFコイルユニット370の一例を、図17(a)および図17(b)に示す。
 この場合も、上記RFコイルユニット350同様、各ループ309間の電気位相差Δθkは、上記式(2)、式(3)、式(4)、式(5)および式(6)を満たすよう調整する。
 ただし、図17(b)に示すように、楕円ループ状導体302の周方向に時計回りに数えてy軸202からk番目の直線状導体301と楕円筒状RFシールド351との距離をdl k、図17(b)に示す第一象限211において、y軸202上から楕円ループ状導体302の周方向に時計回りに数えてk番目の弧状導体303と楕円筒状RFシールド351との平均距離をdr kとすると、楕円筒状RFシールド351が配置されたときの、直線状導体301の自己インダクタンスLlss kは、式(58)または式(59)で表される。
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000049
ここで、wkは直線状導体301の幅、lは直線状導体301の長さである。
 弧状導体303の等価インダクタンスLr kについても同様に、楕円筒状RFシールド351が配置されたときの、弧状導体303の等価インダクタンスは、式(60)、または、式(61)で表される。
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051
ここで、wrは弧状導体303の幅、lr kは弧状導体303の長さである。
 各電気位相差Δθk(k=1、2、…、N+1)の値は、式(2)、式(3)、式(4)、式(5)および式(6)を、解くことで求められる。このとき、直線状導体301の自己インダクタンスLls kの代わりにLlss kを、弧状導体303の等価インダクタンスLr kの代わりにLrs kを、それぞれ用い、式(5)および式(6)を解く。
 なお、RFコイルユニット350は、4N本の直線状導体301を備え、その中の4本の直線状導体301がx軸201およびy軸202上に配置される。しかし、直線状導体301の配置はこれに限られない。第一の実施形態同様、4N本の直線状導体が、x軸201およびy軸202に対して対称に配置されていればよい。また、直線状導体301の本数もこれに限られない。第一の実施形態同様、x軸201およびy軸202に対して対称に配置される2N本であってもよい。
 また、本実施形態のRFコイルユニット350では、磁気結合防止回路360にPINダイオード361を用いているが、PINダイオード361の代わりに図15(b)に示すクロスダイオード365を用いてもよい。この場合、磁気結合防止回路駆動装置117は備えなくてもよい。
 クロスダイオード365は、RFコイルユニット350に印加される高周波信号によりオンとなり導通状態となる。この高周波信号が印加されなくなるとオフとなり高抵抗の状態となる。この動作はPINダイオード361の動作と同じであり、クロスダイオード365を用いることで、磁気結合防止回路駆動装置117による制御を行わなくとも、RFコイルユニット350は、表面コイル510と磁気結合を生じることなく、送信用RFコイル103として動作する。
 また、第一の実施形態同様、RFコイルユニット350も、弧状導体303に挿入される第一キャパシタ306に加えて、直線状導体301に第二キャパシタを挿入してもよい。このとき、第二キャパシタの値をC2とすると、第二キャパシタを含む直線状導体301のインダクタンスLl k’は、式(52)で表される。よって、Ll kの代わりにLl k’として、Δθk(k=1、2、…、N+1)の値を求めればよい。従って、第一キャパシタ306と第二キャパシタの値は、それぞれ場所に寄らず一定とすることができる。
 なお、本実施形態では、RFコイルユニット350を送信用RFコイル103として、表面コイル510を受信用RFコイル104として動作する場合を例にあげて説明しているがこれに限られない。例えば、RFコイルユニット350を送信用RFコイル103および受信用RFコイル104の両方に用いても良い。
 送信用RFコイル103を送信用および受信用の両方に用いる場合の動作を以下に示す。
 まず、高周波磁場発生器113より高周波磁場を照射するための高周波信号を印加する直前に、磁気結合防止回路駆動装置117は、RFコイルユニット350のPINダイオード361および表面コイル510のPINダイオード522がオンとなるように直流の制御電流364を印加する。
 RFコイルユニット350では、PINダイオード361に制御電流364が流れ、全てのPINダイオード361はオンとなる。RFコイルユニット350のPINダイオード361が全てオンの場合、PINダイオード361が導通状態となるため、RFコイルユニット350は、動作可能な状態となる。このとき、RFコイルユニット350は、図3に示すRFコイルユニット310の場合と同様に、コイルの感度分布が均一な共振モードで共振する。
 一方、表面コイル510では、制御電流364によりPINダイオード522がオンとなり、磁気結合防止回路520は、インダクタ521とキャパシタ523とで構成される並列共振回路となる。この並列共振回路は、MRI装置110で設定されている磁気共鳴周波数で高インピーダンスとなり、表面コイル510のループ導体511は概ね開放状態となる。その結果、表面コイル510は、MRI装置110で設定されている磁気共鳴周波数で共振せず、ループ導体511にはほとんど電流が流れない。従って、RFコイルユニット350と表面コイル510との磁気結合は生じないため、RFコイルユニット350は、磁気結合による共振周波数の移動やコイルのQ値の低下無しに、高周波磁場を被検体150に照射できる。
 磁気結合防止回路駆動装置117による制御電流364の印加後、高周波磁場発生器113によって高周波信号が印加される。このとき、送受信切替器115は、高周波信号を送信用RFコイル103に伝送するよう切り替えられ、高周波信号が第一給電点304と第二給電点305とにそれぞれ入力される。
 RFコイルユニット350は、PINダイオード361が全てオンの場合、RFコイルユニット310と同様に動作するため、第一の実施形態の場合と同様に、RFコイルユニット350は、直交する2方向の高周波磁場の一方の位相を90度シフトさせて照射するQD照射方式と同様の方法で被検体150に高周波磁場を照射する。
 高周波磁場を照射した後、被検体150から発せられる磁気共鳴信号をRFコイルユニット350で受信するため、磁気結合防止回路駆動装置117は、RFコイルユニット350のPINダイオード361および表面コイル510のPINダイオード522がオンとなるように制御電流364の値を設定する。RFコイルユニット350では、PINダイオード361に流れる制御電流364により全てのPINダイオード361はオンとなる。RFコイルユニット350のPINダイオード361が全てオンの場合、PINダイオード361が導通状態となるため、RFコイルユニット350は、動作可能な状態となる。このとき、RFコイルユニット350は、RFコイルユニット310と同様に、コイルの感度分布が均一な共振モードで共振する。
 一方、表面コイル510では、制御電流364によりPINダイオード522がオンとなり、磁気結合防止回路520は、インダクタ521とキャパシタ523とで構成される並列共振回路となる。この並列共振回路は、MRI装置110で設定されている磁気共鳴周波数で高インピーダンスとなり、表面コイル510のループ導体511は概ね開放状態となる。その結果、表面コイル510は、MRI装置110で設定されている磁気共鳴周波数で共振せず、ループ導体511にはほとんど電流が流れない。
 従って、被検体150から発せられる磁気共鳴信号を受信する際、表面コイル510とRFコイルユニット350との磁気結合が無くなり、RFコイルユニット350は、磁気結合による共振周波数の移動やコイルのQ値の低下無しに、磁気共鳴信号を高感度に受信することができる。RFコイルユニット350で受信した信号は、送受信切替器115により受信器114に送られる。
 以上説明したように、RFコイルユニット350は、送信用RFコイル103および受信用RFコイル104として動作することが示された。
 以上説明したように、本実施形態の高周波コイルユニット(RFコイルユニット350)は、楕円筒状曲面に沿って前記楕円筒状曲面の中心軸311に平行に配置される複数の直線状導体301と、前記中心軸311上の点を中心とし前記楕円筒状曲面に沿ってループ面が互いに平行となるように配置される2つの楕円ループ状導体302と、それぞれ1以上のキャパシタから構成される、複数の第一キャパシタ306と、を備え、前記各直線状導体301の両端部は、前記楕円ループ状導体302に接続され、前記第一キャパシタ306は、前記各直線状導体301上および前記楕円ループ状導体302の隣接する前記直線状導体301の接続点308で挟まれた弧状導体303上のいずれか一方に1つずつ配置され、前記複数の直線状導体301は、前記楕円ループ状導体302の長軸および短軸に対して、線対称に配置され、前記第一キャパシタ306の容量は、同一の値であることを特徴とする。
 また、本実施形態の高周波コイルユニット(RFコイルユニット350または370)は、前記楕円筒状曲面の中心軸311を共有する筒形状のシールド351をさらに備えてもよい。このとき、前記シールド351は、前記楕円筒状曲面の外側に配置されてもよい。
 また、前記シールド351は、前記シールド面と前記楕円筒状曲面との距離が一定となる筒形状を有してもよい。
 また、前記シールド351は、前記シールド面と前記楕円筒状曲面との距離が、前記楕円筒状曲面の中心軸311に直交する断面の短軸から長軸方向に向かって短くなる筒形状を有してもよい。
 また、本実施形態の高周波コイルユニット(RFコイルユニット350または370)は、互いの磁気結合を防止する磁気結合防止手段(磁気結合防止回路360)を備えてもよい。このとき、前記磁気結合防止手段(磁気結合防止回路360)は、前記直線状導体301もしくは前記弧状導体303に配置されてもよい。
 また、前記磁気結合防止手段(磁気結合防止回路360)は、PINダイオード361であってもよい。
 また、前記磁気結合防止手段(磁気結合防止回路360)は、PINダイオード522とインダクタ521とを直列接続した回路にキャパシタ523を並列接続した回路520であってもよい。
 また、本実施形態の磁気共鳴イメージング装置(MRI装置100)は、静磁場を生成する静磁場生成手段(マグネット101)と、傾斜磁場を印加する傾斜磁場印加手段(傾斜磁場コイル102)と、高周波磁場信号を生成する高周波磁場信号生成手段(送信用RFコイル103)と、前記高周波磁場信号生成手段(高周波磁場発生器113)から入力される高周波磁場信号を被検体150に照射するとともに前記被検体から発生する磁気共鳴信号を検出して検出信号として出力する送受信コイル(送受信用RFコイル105)と、前記検出信号に対し信号処理を行う信号処理手段(計算機120)と、前記傾斜磁場印加手段と、前記高周波磁場信号生成手段と、前記信号処理手段との動作を制御する制御手段(計算機120)と、を備える磁気共鳴イメージング装置であって、前記送受信コイル(送受信用RFコイル105)として、上述の高周波コイルユニット(RFコイルユニット350または370)を用いてもよい。
 また、本実施形態の磁気共鳴イメージング装置(MRI装置100)は、静磁場を生成する静磁場生成手段(マグネット101)と、傾斜磁場を印加する傾斜磁場印加手段(傾斜磁場コイル102)と、高周波磁場信号を生成する高周波磁場信号生成手段(送信用RFコイル103)と、前記高周波磁場信号生成手段から入力される高周波磁場信号を被検体150に照射する送信コイル(送信用RFコイル103)と、前記被検体150から発生する磁気共鳴信号を検出して検出信号として出力する受信コイル(受信用RFコイル104)と、前記検出信号に対し信号処理を行う信号処理手段(計算機120)と、前記傾斜磁場印加手段と、前記高周波磁場信号生成手段と、前記信号処理手段との動作を制御する制御手段(計算機120)と、を備える磁気共鳴イメージング装置であって、前記送信コイル(送信用RFコイル103)として、上記高周波コイルユニット(RFコイルユニット350または370)を用いてもよい。
 このため、本実施形態によれば、磁気結合防止回路駆動装置117の制御電流を切り替えることにより、RFコイルユニット350を、送信用RFコイル103のみとして用いたり、送信用RFコイル103および受信用RFコイル104として用いたりすることが可能であり、受信用コイルの選択自由度が増加する。
 従って、本実施形態によれば、リング導体に配置されるキャパシタの合成容量値を、配置位置によらず、一定にすることができる。また、ラング導体に配置されるキャパシタの合成容量を、配置位置によらず、一定にすることができる。従って、楕円型バードケージコイルの製造時の手間や製造コスト、コイル性能のばらつきを低減することができる。
 なお、第一の実施形態のRFコイルユニット310についても、RFシールド351を備えてもよい。
 また、上記各実施形態において、直線状導体301および楕円ループ状導体302(弧状導体303)は、棒状であってもよいし、シート形状であってもよい。
 100:MRI装置、101:マグネット、102:傾斜磁場コイル、103:送信用RFコイル、104:受信用RFコイル、105:送受信用RFコイル、106:シムコイル、110:MRI装置、112:傾斜磁場電源、113:高周波磁場発生器、114:受信器、115:送受信切替器、116:シム電源、117:磁気結合防止回路駆動装置、119:シーケンサ、120:計算機、121:表示装置、122:記憶媒体、130:テーブル、140:静磁場、150:被検体、200:座標系、201:x軸、202:y軸、203:z軸、211:第一象限、301:直線状導体、302:楕円ループ状導体、303:弧状導体、304:第一給電点、305:第二給電点、306:第一キャパシタ、308:接続点、309:ループ、310:RFコイルユニット、311:中心軸、312:ループ電流、320:RFコイルユニット、330:RFコイルユニット、340:RFコイルユニット、350:RFコイルユニット、351:楕円筒状RFシールド、360:磁気結合防止回路、361:PINダイオード、362:制御線、363:チョークコイル、364:制御信号365:クロスダイオード、370:RFコイルユニット、410:等価回路、411:弧状導体のインダクタンス412:直線状導体のインダクタンス413:接地面、420:等価回路、430:等価回路、440:等価回路、510:表面コイル、511:ループ導体、512:キャパシタ、513:マッチング用キャパシタ、514:バラン、520:磁気結合防止回路、906:キャパシタ、910:楕円型バードケージコイル

Claims (14)

  1.  楕円筒状曲面に沿って前記楕円筒状曲面の中心軸に平行に配置される複数の直線状導体と、
     前記中心軸上の点を中心とし前記楕円筒状曲面に沿ってループ面が互いに平行となるように配置される2つの楕円ループ状導体と、
     それぞれ1以上のキャパシタから構成される、複数の第一キャパシタと、を備え、
     前記各直線状導体の両端部は、前記楕円ループ状導体に接続され、
     前記第一キャパシタは、前記各直線状導体上および前記楕円ループ状導体の隣接する前記直線状導体の接続点で挟まれた弧状導体上のいずれか一方に1つずつ配置され、
     前記複数の直線状導体は、前記楕円ループ状導体の長軸および短軸に対して、線対称に配置され、
     前記第一キャパシタの容量は、同一の値であること
     を特徴とする高周波コイルユニット。
  2.  請求項1記載の高周波コイルユニットであって、
     隣接する2つの前記弧状導体間の電気位相差は、前記楕円ループ状導体の短軸方向から長軸方向に向かって増加し、かつ、前記楕円ループ状導体の中心に関して点対称の位置にある2つの弧状導体の電気位相差が180度となるよう決定されること
     を特徴とする高周波コイルユニット。
  3.  請求項2記載の高周波コイルユニットであって、
     それぞれ1以上のキャパシタから構成される、複数の第二キャパシタを備え、
     前記複数の第二キャパシタは、前記各直線状導体および前記弧状導体のうち、前記第一のキャパシタが配置されていない導体上に、それぞれ1つ配置され、
     前記第二キャパシタの容量は同一であること、
     を特徴とする高周波コイルユニット。
  4.  請求項2記載の高周波コイルユニットであって、
     隣り合う2つの前記直線状導体の中心間の距離が、前記楕円ループ状導体の短軸方向から長軸方向に向かって増加すること、
     を特徴とする高周波コイルユニット。
  5.  請求項4記載の高周波コイルユニットであって、
     前記直線状導体の幅は、前記楕円ループ状導体の短軸方向から長軸方向に向かって増加すること、
     を特徴とする高周波コイルユニット。
  6.  請求項2記載の高周波コイルユニットであって、
     高周波信号を高周波コイルユニットに給電する2つまたは4つの給電点をさらに備え、
     前記給電点は、前記楕円ループ状導体の長軸および短軸のいずれか一方に対して線対称となる位置であって、前記楕円ループ状導体の周方向に隣り合う2つの前記給電点において、一方の給電点に給電したときに他方の給電点に流れる高周波電流の振幅が最小となる位置に配置されること、
     を特徴とする高周波コイルユニット。
  7.  請求項1記載の高周波コイルユニットであって、
     前記楕円筒状曲面の中心軸を共有する筒形状のシールドをさらに備え、
     前記シールドは、前記楕円筒状曲面の外側に配置されること、
     を特徴とする高周波コイルユニット。
  8.  請求項7項記載の高周波コイルユニットであって、
     前記シールドは、前記シールド面と前記楕円筒状曲面との距離が一定となる筒形状を有すること
     を特徴とする高周波コイルユニット。
  9.  請求項7項記載の高周波コイルユニットであって、
     前記シールドは、前記シールド面と前記楕円筒状曲面との距離が、前記楕円筒状曲面の中心軸に直交する断面の短軸から長軸方向に向かって短くなる筒形状を有すること
     を特徴とする高周波コイルユニット。
  10.  請求項7記載の高周波コイルユニットであって、
     互いの磁気結合を防止する磁気結合防止手段を備え、
     前記磁気結合防止手段は、前記直線状導体もしくは前記弧状導体に配置されること、
     を特徴とする高周波コイルユニット。
  11.  請求項10記載の高周波コイルユニットであって、
     前記磁気結合防止手段は、PINダイオードであること
     を特徴とする高周波コイルユニット。
  12.  請求項10記載の高周波コイルユニットであって、
     前記磁気結合防止手段は、PINダイオードとインダクタとを直列接続した回路にキャパシタを並列接続した回路であること
     を特徴とする高周波コイルユニット。
  13.  静磁場を生成する静磁場生成手段と、傾斜磁場を印加する傾斜磁場印加手段と、高周波磁場信号を生成する高周波磁場信号生成手段と、前記高周波磁場信号生成手段から入力される高周波磁場信号を被検体に照射するとともに前記被検体から発生する磁気共鳴信号を検出して検出信号として出力する送受信コイルと、前記検出信号に対し信号処理を行う信号処理手段と、前記傾斜磁場印加手段と前記高周波磁場信号生成手段と前記信号処理手段との動作を制御する制御手段と、を備える磁気共鳴イメージング装置であって、
     前記送受信コイルとして、請求項1記載の高周波コイルユニットを用いること
     を特徴とする磁気共鳴イメージング装置。
  14.  静磁場を生成する静磁場生成手段と、傾斜磁場を印加する傾斜磁場印加手段と、高周波磁場信号を生成する高周波磁場信号生成手段と、前記高周波磁場信号生成手段から入力される高周波磁場信号を被検体に照射する送信コイルと、前記被検体から発生する磁気共鳴信号を検出して検出信号として出力する受信コイルと、前記検出信号に対し信号処理を行う信号処理手段と、前記傾斜磁場印加手段と前記高周波磁場信号生成手段と前記信号処理手段との動作を制御する制御手段と、を備える磁気共鳴イメージング装置であって、
     前記送信コイルとして、請求項10記載の高周波コイルユニットを用いること
     を特徴とする磁気共鳴イメージング装置。
PCT/JP2012/059574 2011-04-11 2012-04-06 高周波コイルユニット及び磁気共鳴イメージング装置 WO2012141106A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/001,221 US9541614B2 (en) 2011-04-11 2012-04-06 High frequency coil unit and magnetic resonance imaging apparatus
CN201280007147.2A CN103338696B (zh) 2011-04-11 2012-04-06 磁共振成像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011087146A JP5685476B2 (ja) 2011-04-11 2011-04-11 磁気共鳴イメージング装置
JP2011-087146 2011-04-11

Publications (1)

Publication Number Publication Date
WO2012141106A1 true WO2012141106A1 (ja) 2012-10-18

Family

ID=47009279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059574 WO2012141106A1 (ja) 2011-04-11 2012-04-06 高周波コイルユニット及び磁気共鳴イメージング装置

Country Status (4)

Country Link
US (1) US9541614B2 (ja)
JP (1) JP5685476B2 (ja)
CN (1) CN103338696B (ja)
WO (1) WO2012141106A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122517A (zh) * 2013-04-25 2014-10-29 西门子公司 用于磁共振断层造影系统的天线装置
KR102290276B1 (ko) * 2014-06-12 2021-08-17 삼성전자주식회사 Rf 표면 코일부 및 이를 포함하는 자기공명영상 시스템
EP3341765B1 (en) 2015-08-24 2023-01-04 Commonwealth Scientific and Industrial Research Organisation On-line magnetic resonance measurement of conveyed material
CN107765201B (zh) * 2016-08-19 2020-08-25 华东师范大学 一种具有保护电路的磁共振成像接收线圈
US11112471B2 (en) * 2017-01-31 2021-09-07 Koninklijke Philips N.V. Inductively feeding an RF coil for magnetic resonance imaging
US10976388B2 (en) 2017-03-24 2021-04-13 Quality Electrodynamics, Llc Minimizing intravascular magnetic resonance imaging (MRI) guidewire heating with single layer MRI transmit/receive radio frequency coil
US11156682B2 (en) 2017-03-24 2021-10-26 Quality Electrodynamics, Llc Single layer magnetic resonance imaging transmit/receive radio frequency coil for different anatomies
EP4382160A3 (en) * 2017-04-10 2024-08-14 St. Jude Medical, Cardiology Division, Inc. Electroporation system and method of energizing a catheter
US10649048B2 (en) * 2017-04-28 2020-05-12 Quality Electrodynamics, Llc Single layer magnetic resonance imaging (MRI) transmit/receive (TX/RX) radio frequency (RF) coil with integrated shimming
US11193992B2 (en) 2017-05-05 2021-12-07 Quality Electrodynamics, Llc Single layer magnetic resonance imaging (MRI) transmit/receive (Tx/Rx) radio frequency (RF) coil with induced current failsafe protection
US10838028B2 (en) 2017-06-19 2020-11-17 Quality Electrodynamics, Llc Decoupling magnetic resonance imaging (MRI) radio frequency (RF) coil elements with high acceleration factor in parallel transmit (pTx) or receive (Rx) coils using fewer channels
EP3470864A1 (en) * 2017-10-12 2019-04-17 Koninklijke Philips N.V. Feeding a coil for magnetic resonance imaging
JP6886908B2 (ja) * 2017-11-01 2021-06-16 株式会社日立製作所 アレイコイル及び磁気共鳴撮像装置
EP3527999B1 (de) * 2018-02-16 2024-03-27 Siemens Healthineers AG Sendeantenne für eine magnetresonanzeinrichtung
EP3531156B1 (de) * 2018-02-21 2024-03-27 Siemens Healthineers AG Einstellen einer feldverteilung einer antennenanordnung einer magnetresonanzanlage
US11280859B2 (en) * 2018-05-31 2022-03-22 General Electric Company Method and systems for a radio frequency coil assembly
US11307274B2 (en) * 2018-06-06 2022-04-19 General Electric Company Method and systems for a radio frequency coil assembly
CN209471228U (zh) * 2019-01-28 2019-10-08 上海联影医疗科技有限公司 磁共振数据传输装置和磁共振系统
KR102487465B1 (ko) * 2019-12-02 2023-01-11 고려대학교 세종산학협력단 고주파 몸통 코일의 자장 균일도 및 효율 향상을 위한 타원형의 새장 몸통 형상을 갖는 자기공명영상 획득 장치
JP7557767B2 (ja) * 2020-09-28 2024-09-30 富士フイルム株式会社 高周波コイルユニットおよび磁気共鳴イメージング装置
CN113436863A (zh) * 2021-05-19 2021-09-24 湖南迈太科医疗科技有限公司 去耦器件、射频环路线圈阵列、行波天线阵列及mri设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244239A (ja) * 1985-08-19 1987-02-26 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 磁気共鳴イメ−ジング装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567647B1 (fr) * 1984-07-10 1987-12-18 Thomson Cgr Dispositif de creation et/ou de reception d'un champ magnetique alternatif pour appareil exploitant la resonance magnetique nucleaire
US4766383A (en) * 1987-02-24 1988-08-23 Kabushiki Kaisha Toshiba Quadrature antenna for magnetic resonance imaging using elliptical coils
US4916418A (en) 1989-03-31 1990-04-10 Varian Associates, Inc. Double tuned bird cage coil
US5177441A (en) * 1989-06-16 1993-01-05 Picker International, Inc. Elliptical cross section gradient oil
JP3095402B2 (ja) 1989-07-18 2000-10-03 株式会社東芝 磁気共鳴イメージング装置の送受信装置
JP2601653Y2 (ja) * 1991-03-19 1999-11-29 ジーイー横河メディカルシステム株式会社 バードケージコイル
JP3269536B2 (ja) 1993-02-19 2002-03-25 株式会社デンソー 半導体装置
JP3483652B2 (ja) * 1995-04-19 2004-01-06 ジーイー横河メディカルシステム株式会社 バードケージコイル製造方法
DE19702256A1 (de) * 1997-01-23 1998-07-30 Philips Patentverwaltung MR-Gerät mit einer MR-Spulenanordnung
US5986454A (en) 1997-03-21 1999-11-16 Varian, Inc. Quadrature elliptical birdcage coil for NMR
DE10213565B3 (de) * 2002-03-26 2004-01-08 Siemens Ag Hochfrequenzantenne für eine Magnetresonanzanlage
DE10314215B4 (de) * 2003-03-28 2006-11-16 Siemens Ag Magnetresonanzantenne und Verfahren zur Verstimmung deren Eigenresonanzfrequenz
JP2007511315A (ja) * 2003-11-18 2007-05-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mri用のハイブリッドtem/バードケージコイル
JP2007097971A (ja) * 2005-10-07 2007-04-19 Hitachi Ltd Rfコイル
JP4789254B2 (ja) * 2006-05-01 2011-10-12 株式会社日立メディコ 水平静磁場方式の楕円筒状ガントリおよびそれに適合するアクティブシールド型傾斜磁場コイル装置を有する磁気共鳴イメージング装置
JP4844310B2 (ja) * 2006-09-13 2011-12-28 株式会社日立製作所 高周波コイルおよび磁気共鳴撮像装置
US20110018539A1 (en) * 2007-08-03 2011-01-27 Raju Viswanathan Hybrid imaging coils for magnetic resonance imaging
JP2011505956A (ja) * 2007-12-13 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エンドリングモードを供給するのに適した二重同調ボリュームコイル
DE102008006117B4 (de) * 2008-01-25 2013-12-12 Siemens Aktiengesellschaft Magnetresonanzanlage, Antennensystem, Verfahren zum Aufbau einer Magnetresonanzanlage und Verfahren zur Erzeugung von Magnetresonanzaufnahmen
WO2011016398A1 (ja) * 2009-08-05 2011-02-10 株式会社 日立メディコ 磁気共鳴計測装置
WO2011065532A1 (ja) * 2009-11-30 2011-06-03 株式会社 日立メディコ 高周波コイルユニット及び磁気共鳴撮像装置
JP5968318B2 (ja) * 2011-07-30 2016-08-10 株式会社日立製作所 バードケージ型高周波コイル及び磁気共鳴イメージング装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244239A (ja) * 1985-08-19 1987-02-26 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 磁気共鳴イメ−ジング装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARK C. LEIFER: "Theory of the quadrature elliptic birdcage coil", MAGNETIC RESONANCE IN MEDICINE, vol. 38, no. 5, November 1997 (1997-11-01), pages 726 - 732, XP000741760 *
NICOLA DE ZANCHE ET AL.: "Sensitivity calculations and comparisons for shielded elliptical and circular birdcage coils", MAGNETIC RESONANCE IN MEDICINE, vol. 47, no. 2, February 2002 (2002-02-01), pages 364 - 371 *
SHIZHE LI ET AL.: "A method to create an optimum current distribution and homogeneous B1 field for elliptical birdcage coils", MAGNETIC RESONANCE IN MEDICINE, vol. 37, no. 4, April 1997 (1997-04-01), pages 600 - 608, XP055038257, DOI: doi:10.1002/mrm.1910370420 *

Also Published As

Publication number Publication date
US20140103931A1 (en) 2014-04-17
JP2012217675A (ja) 2012-11-12
CN103338696B (zh) 2016-06-08
US9541614B2 (en) 2017-01-10
CN103338696A (zh) 2013-10-02
JP5685476B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5685476B2 (ja) 磁気共鳴イメージング装置
JP5675921B2 (ja) 高周波コイルおよびそれを用いた磁気共鳴撮像装置
US9274189B2 (en) High-frequency coil unit and magnetic resonance imaging device
US8089280B2 (en) RF coil and MRI system
US8193810B2 (en) MRI apparatus with RF surface coil having at least three resonance frequencies
US8742759B2 (en) High-frequency coil and magnetic resonance imaging device
US5689189A (en) Technique for designing distributed radio frequency coils and distributed radio frequency coils designed thereby
US10823797B2 (en) Apparatus and method for spatial encoding using a radio frequency signal in magnetic resonance tomography
JP2007325826A (ja) 2重同調rfコイル
JPH0348817B2 (ja)
JP2008295737A (ja) 磁場コイル及び磁気共鳴撮像装置
JPWO2008075614A1 (ja) 核磁気共鳴計測装置およびコイルユニット
JP6461356B2 (ja) 高周波コイルおよび磁気共鳴撮像装置
JP7126452B2 (ja) 磁気共鳴イメージング装置のための選択可能な駆動ポートを有するrf送信システム
JP2013505764A (ja) 自由にアクセス可能な検査ボリュームを持つmr撮像システム
JPH0636025B2 (ja) Nmr用無線周波コイル
JP6163553B2 (ja) 高周波コイル及び磁気共鳴撮像装置
WO2010064197A1 (en) Magnetic resonance imaging system with satellite gradient coils
US11029376B2 (en) Radio-frequency coil for magnetic resonance device
US6452393B1 (en) Nuclear magnetic resonance birdcage coil with Cassinian oval former
US11105870B2 (en) Coil arrangement for transmitting high-frequency radiation
JP6745244B2 (ja) アレイコイル及び磁気共鳴撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14001221

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12770945

Country of ref document: EP

Kind code of ref document: A1