WO2012137488A1 - 温度推定方法、温度推定装置及びプログラム - Google Patents

温度推定方法、温度推定装置及びプログラム Download PDF

Info

Publication number
WO2012137488A1
WO2012137488A1 PCT/JP2012/002326 JP2012002326W WO2012137488A1 WO 2012137488 A1 WO2012137488 A1 WO 2012137488A1 JP 2012002326 W JP2012002326 W JP 2012002326W WO 2012137488 A1 WO2012137488 A1 WO 2012137488A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
strain
echo shift
target region
calculated
Prior art date
Application number
PCT/JP2012/002326
Other languages
English (en)
French (fr)
Inventor
リ ラン
シュウ フェン ファン
コク セン チョン
アン ツアン トラン
近藤 敏志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012533401A priority Critical patent/JPWO2012137488A1/ja
Priority to US13/698,823 priority patent/US20130066584A1/en
Publication of WO2012137488A1 publication Critical patent/WO2012137488A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation

Definitions

  • the present invention relates to a temperature estimation method, a temperature estimation device, and a program for estimating a temperature of a predetermined part inside a living body by using an ultrasonic signal, for example.
  • HIFU treatment using high-focus ultrasound has been performed.
  • HIFU treatment a powerful ultrasonic signal is focused on a treatment target site such as a tumor through the patient's body surface, thereby raising the temperature of the treatment target site to a predetermined temperature (for example, about 80 to 90 ° C.).
  • a predetermined temperature for example, about 80 to 90 ° C.
  • This is a treatment method that necroses the target site.
  • a temperature estimation method using an ultrasonic signal for example, see Patent Documents 1 to 3 and Non-Patent Documents 1 and 2 is performed.
  • the temperature estimation method using the conventional ultrasonic signal has a problem that the temperature cannot be accurately estimated and the temperature range in which the temperature can be estimated is narrow.
  • the present invention solves the above-described conventional problems, and an object of the present invention is to estimate a temperature with high accuracy and to estimate a temperature in a wide temperature range, a temperature estimation device, and Is to provide a program.
  • a temperature estimation method is a temperature estimation method for estimating a temperature of a target region using an ultrasonic signal, and scans the target region with an ultrasonic signal. And an echo shift, which is a change amount that changes depending on the temperature of the target region based on the scan signal.
  • An echo shift calculation step to calculate, and a strain that is a change rate in which the moving distance when the ultrasonic signal passes through the target region apparently changes depending on the temperature of the target region based on the calculated echo shift.
  • a strain calculation step for calculating the strain, and a strain rate that is a temporal change rate of the strain is calculated based on the calculated strain. Including a train rate calculating step, using the relationship between the predetermined strain and strain rate and temperature, and a temperature estimation step of estimating the temperature of the target region corresponding to the calculated strain and strain rate, a.
  • the present invention can be realized not only as a method but also as an apparatus using processing steps as steps constituting the method, as a program for causing a computer to execute the steps, or as a computer readable recording of the program. It can also be realized as a recording medium such as a CD-ROM or as information, data or a signal indicating the program. These programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • the temperature of the target region corresponding to the calculated strain and strain rate is estimated using a predetermined relationship between the strain, the strain rate, and the temperature, so that the temperature is accurately determined.
  • the temperature can be estimated over a wide temperature range.
  • FIG. 1 is a block diagram showing a configuration of a temperature estimation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining the scan signal.
  • FIG. 3 is a block diagram specifically illustrating the configuration of the signal processing unit of FIG.
  • FIG. 4 is a block diagram specifically illustrating the configuration of the preprocessing unit.
  • FIG. 5 is a diagram illustrating a damaged frame generated in the scan signal.
  • FIG. 6 is a block diagram specifically illustrating the configuration of the echo shift calculation unit.
  • FIG. 7 is a diagram for explaining an echo shift calculation step.
  • FIG. 8 is a diagram for explaining the abnormal value correcting step.
  • FIG. 9 is a block diagram specifically illustrating the configuration of the strain calculation unit.
  • FIG. 10 is a block diagram specifically showing the configuration of the strain rate calculation unit.
  • FIG. 11 is a block diagram specifically illustrating the configuration of the temperature estimation unit.
  • FIG. 12 is a flowchart showing a flow of temperature estimation by the temperature estimation method according to Embodiment 1 of the present invention.
  • FIG. 13 is a diagram for explaining the temperature estimation step.
  • FIG. 14 is a diagram showing experimental results comparing the temperature estimation method of the present invention and the conventional temperature estimation method.
  • FIG. 15 is a diagram showing experimental results comparing the temperature estimation method of the present invention and the conventional temperature estimation method.
  • FIG. 16 is a block diagram showing the configuration of the temperature estimation apparatus according to Embodiment 2 of the present invention.
  • FIG. 17 is a block diagram showing a configuration of a temperature estimation apparatus according to Embodiment 3 of the present invention.
  • FIG. 18 is a diagram showing the relationship between the modeled temperature and the strain in the conventional temperature estimation method.
  • FIG. 18 is a diagram showing the relationship between the modeled temperature and the strain in the conventional temperature estimation method.
  • the temperature of the treatment target site or the like is estimated by utilizing the fact that the speed of the ultrasonic signal changes depending on the temperature. For example, before and after performing the HIFU treatment by focusing the heating ultrasonic signal on the treatment target site, the speed of the temperature estimation ultrasonic signal changes as the temperature of the treatment target site changes. As the velocity of the ultrasonic signal changes in this way, the moving distance when the ultrasonic signal passes through the treatment target site apparently changes. This change rate of the movement distance is referred to as a strain.
  • the strain is calculated based on the difference between the ultrasonic signal before the treatment and the ultrasonic signal during the treatment, and then the temperature is calculated based on the model equation indicating the relationship between the temperature and the strain.
  • this model equation is approximated by a quadratic function.
  • the temperature can be estimated only in a relatively low temperature range (about 30 to 50 ° C.).
  • a relatively high temperature range about 70 to 90 ° C.
  • (Conventional temperature estimation method 3) In the conventional temperature estimation method 3, a bio-heat transfer equation is used as a model formula. First, parameters of the model formula are obtained at the time of calibration, and further, a relational expression indicating the relationship between temperature and strain is obtained. For example, at the time of HIFU treatment, the temperature of the treatment target site is estimated based on the model formula. After that, the strain is obtained from the estimated temperature by calculation based on the above relational expression, and the parameters of the model expression are successively set so that the error between the calculated strain and the strain obtained from the RF (Radio Frequency) signal is reduced. Correct it.
  • RF Radio Frequency
  • the conventional temperature estimation method 3 has a problem that it is difficult to obtain a parameter of the model formula, and thus it is difficult to put it to practical use.
  • a temperature estimation method is a temperature estimation method for estimating a temperature of a target region using an ultrasonic signal, and the target region is detected by an ultrasonic signal.
  • the time required for the ultrasonic signal to pass through the target region based on the scan signal is a change amount that changes depending on the temperature of the target region based on the scan signal.
  • An echo shift calculating step for calculating an echo shift, and a rate of change in which the moving distance when the ultrasonic signal passes through the target region apparently changes depending on the temperature of the target region based on the calculated echo shift
  • a strain calculation step for calculating a strain, and a strain rate that is a temporal change rate of the strain based on the calculated strain.
  • a strain rate calculating step to be output; and a temperature estimating step of estimating a temperature of the target region corresponding to the calculated strain and the strain rate using a predetermined strain and a relationship between the strain rate and the temperature. .
  • the temperature can be estimated with high accuracy, and the temperature can be estimated in a wide temperature range.
  • the linear model equation indicating the relationship between the strain, the strain rate, and the temperature is used to correspond to the calculated strain and the strain rate. You may comprise so that the temperature of an object area
  • region may be estimated.
  • the temperature can be predicted by using the linear model expression indicating the relationship between the strain, the strain rate, and the temperature.
  • the method further includes a preprocessing step of removing a damaged frame generated in the scan signal due to a disturbance.
  • the damaged frame is detected in the preprocessing step.
  • An echo shift may be calculated based on the removed scan signal.
  • the damaged frame generated in the scan signal can be removed as preprocessing before calculating the echo shift.
  • the echo shift calculation step includes an echo shift calculation step of calculating a raw echo shift based on the received scan signal, and the calculated raw echo
  • An abnormal value correction step for obtaining an echo shift caused by a temperature change by correcting an abnormal value not caused by a temperature change in the shift, and a noise attenuation for attenuating noise included in the echo shift caused by the temperature change by a noise filter And a step.
  • the echo shift caused by the temperature change can be obtained by correcting the abnormal value not caused by the temperature change in the calculated raw echo shift.
  • the abnormal value correction step includes echo shift prediction for calculating a predicted echo shift based on the raw echo shift calculated in the echo shift calculation step.
  • a parameter adjusting step for adjusting parameters of the model, a predicted echo shift calculating step for calculating the predicted echo shift based on the optimized echo shift prediction model, and scanning the predicted echo shift and the target region.
  • a threshold value setting step for setting a threshold value based on the RF signal obtained from the above, and among the data points of the raw echo shift, a data point that is the abnormal value exceeding the threshold value Data point to be modified based on the corresponding data point
  • correction step may be configured to include.
  • an abnormal value can be detected.
  • the echo shift prediction model may be configured to be an error function or a complementary error function.
  • the echo shift prediction model can be configured with an error function or a complementary error function.
  • the threshold setting step includes an interval setting step of setting an interval between the upper threshold and the lower threshold as the threshold, and the intensity of the RF signal May be configured to include a threshold adjustment step of adjusting the upper threshold and the lower threshold.
  • the scan signal is calculated using a model formula for predicting an echo shift based on a product of depth and time and a depth.
  • the strain rate may be calculated so that the error between the echo shift calculated based on the above and the echo shift predicted based on the model formula is minimized.
  • the strain rate can be calculated.
  • the model formula used in the strain rate calculation step may be a linear model formula.
  • the model formula used in the strain rate calculation step can be configured by a linear model formula.
  • the algorithm parameter of the linear model formula used in the temperature estimation step is an alignment step of aligning the position of the thermocouple with respect to the target region to be heated.
  • You may comprise.
  • the positioning step includes a step of aligning the position of the thermocouple with respect to the target region to be heated using a B-mode image; Activating a heating source that outputs an ultrasonic signal to change the temperature; measuring the temperature of the target region with the thermocouple while displacing the heating source in space; and the thermocouple. And a step of stopping the displacement of the heating source when the temperature measured by the step is minimized.
  • the position of the thermocouple can be aligned with the target region to be heated.
  • the temperature estimation method further includes a temperature correction step of correcting the temperature estimated by the temperature estimation step based on an objective function that takes into account the spatial continuity of the temperature. You may comprise.
  • the temperature estimated by the temperature estimation step can be corrected in consideration of the spatial continuity of the temperature.
  • the temperature estimation step is further based on an objective function that takes into account the distance between the heat source position heated by the heating ultrasonic signal and the target region.
  • a temperature correction step for correcting the temperature estimated by the above may be included.
  • the temperature estimated by the temperature estimation step can be corrected in consideration of the distance between the heat source position heated by the heating ultrasonic signal (for example, HIFU) and the target region.
  • the heating ultrasonic signal for example, HIFU
  • a temperature estimation device is a temperature estimation device that estimates a temperature of a target region using an ultrasonic signal, and receives a scan signal obtained by scanning the target region with an ultrasonic signal. And an echo shift calculation unit that calculates an echo shift that is a change amount that varies depending on the temperature of the target region based on the scan signal, and the time required for the ultrasonic signal to pass through the target region; Based on the calculated echo shift, a strain calculation unit that calculates a strain that is a change rate in which the moving distance when the ultrasonic signal passes through the target region apparently changes depending on the temperature of the target region; A strain rate calculation unit that calculates a strain rate, which is a temporal change rate of the strain, based on the calculated strain; Using the relationship between the strain and the strain rate and temperature, corresponding to the calculated strain and strain rate and a temperature estimation unit that estimates a temperature of the target area.
  • the temperature can be estimated with high accuracy, and the temperature can be estimated in a wide temperature range.
  • a program is a program for estimating a temperature of a target region using an ultrasonic signal, and receives a scan signal obtained by scanning the target region with an ultrasonic signal, Based on the scan signal, an echo shift calculating step for calculating an echo shift, which is a change amount that varies depending on the temperature of the target region, the time required for the ultrasonic signal to pass through the target region is calculated.
  • a strain calculating step for calculating a strain, which is a change rate in which the moving distance when the ultrasonic signal passes through the target region apparently changes depending on the temperature of the target region, based on the echo shift, The strain rate calculation step is used to calculate the strain rate, which is the rate of change of the strain over time, based on the strain.
  • flop using a relationship between the predetermined strain and strain rate and temperature, to perform a temperature estimation step of estimating the temperature of the target region corresponding to the calculated strain and strain rate, to the computer.
  • the temperature can be estimated with high accuracy, and the temperature can be estimated in a wide temperature range.
  • FIG. 1 is a block diagram showing a configuration of a temperature estimation apparatus according to Embodiment 1 of the present invention.
  • the temperature estimation apparatus 10 according to the present embodiment includes a main body 101 and an ultrasonic transducer 102.
  • the ultrasonic transducer 102 transmits an ultrasonic signal to a target region 51 (for example, a treatment target site in HIFU treatment) inside the living body 50, and the target region 51 is scanned and reflected by the target region 51. Receive an ultrasonic signal.
  • a target region 51 for example, a treatment target site in HIFU treatment
  • the main body unit 101 includes a transmission unit 103, a reception unit 104, a signal processing unit 105, a display unit 106, and a control unit 107.
  • the transmission unit 103 generates an ultrasonic signal in the ultrasonic transducer 102 by supplying an electrical signal (transmission signal) to the ultrasonic transducer 102 according to the control of the control unit 107.
  • the receiving unit 104 receives an electrical signal (received signal) from the ultrasonic transducer 102 under the control of the control unit 107.
  • the signal processing unit 105 estimates the temperature of the target region 51 by processing the electrical signal (scan signal) supplied from the receiving unit 104. A temperature estimation method by the signal processing unit 105 will be described later.
  • the display unit 106 displays the temperature estimated by the signal processing unit 105 under the control of the control unit 107.
  • the display unit 106 is configured by, for example, a liquid crystal display.
  • the control unit 107 controls the temperature estimation apparatus 10 by controlling the transmission unit 103, the reception unit 104, the signal processing unit 105, and the display unit 106, respectively.
  • the control unit 107 is composed of, for example, a microprocessor.
  • FIG. 2 is a diagram for explaining the scan signal.
  • the scan signal has three dimensions: depth direction (d), line direction (l), and frame direction (n). ing.
  • the depth direction is a direction from the body surface of the living body 50 toward the inside of the living body 50
  • the line direction is a direction substantially perpendicular to the depth direction.
  • the frame direction is a time direction in which the frames are switched. In general, the time in the depth direction is referred to as a fast time, and the time in the frame direction is referred to as a slow time.
  • the speed of the ultrasonic signal that is, the speed of sound changes.
  • the time required for the ultrasonic signal to pass through the target region 51 changes.
  • the amount of change in which the time required for the ultrasonic signal to pass through the target region 51 varies depending on the temperature of the target region 51 is referred to as echo shift.
  • the time shift generated between the RF signal (scan signal) in frame 1 and the RF signal in frame 2 that is the next frame of frame 1 is an echo shift.
  • the ultrasonic signal travels along the depth direction from the body surface of the living body 50 toward the inside thereof.
  • the distance (depth) from the body surface of the living body 50 to the first part 51a of the target area 51 is d 1
  • the distance from the body surface of the living body 50 to the second part 51b of the target area 51 is d 2
  • the sound speed when the temperature of the target region 51 is T 0 ° C. is c 0 .
  • the time (fast time) t f0 required for the ultrasonic signal to pass through the target region 51 is: It is.
  • the strain ⁇ which is a change rate at which the moving distance when the ultrasonic signal passes through the target region 51 apparently changes depending on the temperature of the target region 51, is: It is represented by In equation 5, since c system is a constant, the strain ⁇ is It is represented by
  • the speed of sound c 1 and the temperature T are the following second order polynomials: It is known to satisfy.
  • Each of a 1 , a 2 and a 3 is a constant temperature coefficient.
  • the amount of change of speed of sound varies depending on the temperature of the target region 51, it is known that sufficiently smaller than the speed of sound c 0. That is, It is.
  • Equation 5 and Equation 7 Is obtained.
  • Equation 9 a 4 , a 5 and a 6 are respectively It is a constant.
  • the model formula of Formula 9 is the same as the model formula used in the conventional temperature estimation method 1 described above.
  • the temperature of the target region 51 is estimated using the model formula (16) (described later) derived by combining the model formula (9) and the Pennes bioheat transfer equation.
  • the Pennes bio-heat transfer equation is a differential equation representing heat conduction inside the living body, It is represented by In Equation 11, Q met : metabolic fever, ⁇ T: environmental temperature rise, ⁇ : tissue density, ⁇ : tissue specific heat, ⁇ b : blood density, ⁇ b : blood specific heat, ⁇ : blood perfusion ratio, ⁇ : Tissue thermal conductivity.
  • Equation 11 is It can be rewritten as In Equation 12, a 7 and a 8 are respectively It is a constant that satisfies
  • the strain rate is obtained by calculating the partial derivatives for both sides of the above equation (9).
  • is the strain rate.
  • the strain rate ⁇ is a temporal change rate of the strain ⁇ .
  • the strain rate ⁇ is a mixed partial derivative of the echo shift ⁇ along the depth d and time (slow time) n, It is.
  • Equation 9 Combining Equation 9 and Equation 15 to eliminate the second order term (T 2 ), Is obtained.
  • Equation 16 a 12 , a 13 and a 14 are respectively It is a constant that satisfies
  • the model formula of Formula 16 is a linear model formula indicating the relationship among a predetermined strain ⁇ , strain rate ⁇ , and temperature T.
  • the temperature of the target region 51 is estimated using this model formula as described later.
  • FIG. 3 is a block diagram specifically illustrating the configuration of the signal processing unit of FIG.
  • the signal processing unit 105 includes a preprocessing unit 201, an echo shift calculation unit 202, a strain calculation unit 203, a strain rate calculation unit 204, and a temperature estimation unit 205.
  • FIG. 4 is a block diagram specifically showing the configuration of the preprocessing unit.
  • the preprocessing unit 201 includes a damaged frame removal unit 301 and a noise filter 302.
  • the damaged frame removal unit 301 removes a damaged frame generated in the scan signal due to disturbance (for example, environmental noise, an external processing signal, and a highly focused ultrasonic wave used in HIFU treatment) from the scan signal (preprocessing step).
  • disturbance for example, environmental noise, an external processing signal, and a highly focused ultrasonic wave used in HIFU treatment
  • scan signals (d, l, n) and the like in FIG. 3 and subsequent figures, d represents a dimension in the depth direction, l represents a dimension in the line direction, and n represents a dimension in the frame direction.
  • FIG. 5 is a diagram showing a damaged frame generated in the scan signal. As shown in FIG. 5, in the damaged frame, the amplitude of the intensity of the scan signal (RF signal) becomes abnormally large.
  • the damaged frame removing unit 301 After detecting the upper envelope and the lower envelope in the scan signal intensity graph, the damaged frame removing unit 301 calculates the difference between the upper envelope and the lower envelope by calculation for each frame. . Thereafter, the damaged frame removing unit 301 determines that a frame in which the difference between the two envelopes is equal to or greater than a predetermined threshold is the above-described damaged frame, and removes the damaged frame from the scan signal. Note that the frame in which the difference between the two envelopes is equal to or greater than the predetermined threshold corresponds to a heating stage in which highly focused ultrasound is irradiated in, for example, HIFU treatment.
  • a frame in which the difference between the two envelopes is smaller than the predetermined threshold corresponds to a cooling stage after irradiation with high-focus ultrasound, for example, in HIFU treatment. Accordingly, the scan signal frame in the cooling phase of the HIFU treatment is used for temperature estimation in a temperature estimation unit 205 described later, and the scan signal frame in the heating phase of the HIFU treatment (that is, a damaged frame) is used in the temperature estimation unit. It is not used for temperature estimation at 205.
  • the scan signal output from the damaged frame removing unit 301 is output as a filtering signal (ie, a filtered scan signal) from the noise filter 302 after the noise is attenuated in the noise filter 302.
  • a filtering signal ie, a filtered scan signal
  • the pre-processing unit 201 can also perform processing in consideration of compensation for body movement and blood flow.
  • the movement of the body is detected by using an ultrasonic signal (or image) in the motion estimation technique, or by using an acceleration sensor or the like.
  • Blood flow is detected by using ultrasonic Doppler signal processing.
  • FIG. 6 is a block diagram specifically showing the configuration of the echo shift calculation unit.
  • the echo shift calculation unit 202 includes an echo shift calculation unit 303, an abnormal value correction unit 304, and an echo shift noise filter 305.
  • the echo shift calculation unit 202 calculates an echo shift based on the filtering signal (scan signal) (echo shift calculation step).
  • the echo shift calculation unit 303 calculates a raw echo shift based on the filtering signal output from the preprocessing unit 201 (echo shift calculation step).
  • Methods for calculating the raw echo shift include, for example, autocorrelation methods and cross-correlation methods.
  • the SDopp estimation method In the autocorrelation method, for example, the SDopp estimation method is used.
  • ⁇ (d, n) is an echo shift at depth d th and time (slow time) n th .
  • k is the number of samples in the depth direction for which the echo shift is calculated
  • y is the number of frames for which the echo shift is calculated.
  • I (d, n) is an IQ segment selected from the depth d th and the time (slow time) n th .
  • the size of the (k * y) window may be a constant value, or may be variable according to a change in the characteristics of the scan signal (for example, a change in amplitude or energy).
  • the cross-correlation method is expressed mathematically by the following equation 18, for example.
  • Equation 18 S n is an RF segment in frame n, and S n + 1 is an RF segment in frame n + 1 adjacent to frame n.
  • S n mean and S n RMS are the average and root mean square of the segments, respectively.
  • k is the length of the segment window
  • q is the search range in the RF line of the frame
  • is the cross-correlation coefficient.
  • is equal to the echo shift between the two segments when ⁇ ( ⁇ ) is the maximum value.
  • FIG. 7 is a diagram for explaining an echo shift calculation step.
  • the echo shift calculation section 303 first, in a state of being displaced to the upper end of the search range q in the frame n + 1 window (S n + 1), the segments S n to the window (S n + 1 ) Multiply. This calculation step is performed for each data point, and the total value is stored as a variable. Thereafter, the echo shift calculation section 303, until the window (S n + 1) reaches the lower end of the search range q, while displacing the window (S n + 1) for each sample to repeat the calculation described above.
  • the echo shift calculation unit 303 determines ⁇ when ⁇ ( ⁇ ) reaches the maximum value as a raw echo shift.
  • the abnormal value correcting unit 304 corrects an abnormal value that is not caused by a temperature change in the raw echo shift calculated by the echo shift calculating unit 303 (abnormal value correcting step).
  • the raw echo shift includes an echo shift caused by a temperature change and an abnormal value not caused by the temperature change (eg, caused by vibration). This outlier significantly reduces the accuracy of temperature estimation. By correcting this abnormal value, an echo shift due to a temperature change can be obtained.
  • the abnormal value correcting unit 304 removes abnormal values based on, for example, an echo shift prediction model. This echo shift prediction model is composed of an error function or a complementary error function.
  • FIG. 8 is a diagram for explaining the abnormal value correcting step.
  • parameters of an echo shift prediction model for calculating a predicted echo shift are adjusted based on the raw echo shift calculated in the echo shift calculation step (parameter adjustment step).
  • a predicted echo shift is calculated based on the optimized echo shift prediction model (predicted echo shift calculation step).
  • the upper threshold value and the lower threshold value are set based on the predicted echo shift and the RF signal obtained by scanning the target region 51 (threshold setting step).
  • this threshold value setting step an interval between the upper threshold value and the lower threshold value is set based on a preliminary experiment or the like (interval setting step), and the intensity of the RF signal is used as a weight, whereby the upper threshold value is set. And the lower threshold is adjusted (threshold adjustment step). After that, among the plurality of data points of the raw echo shift, the data point that is an abnormal value exceeding the upper threshold value and the lower threshold value is corrected to the corresponding data point of the predicted echo shift (data point correction step). .
  • the echo shift noise filter 305 attenuates noise included in the echo shift by increasing the SN ratio of the echo shift caused by temperature change (noise attenuation step).
  • the echo shift noise filter 305 is composed of, for example, a low pass filter or a band pass filter.
  • the echo shift whose noise is reduced by the echo shift noise filter 305 is output from the echo shift noise filter 305.
  • FIG. 9 is a block diagram specifically showing the configuration of the strain calculation unit.
  • the strain calculation unit 203 includes a strain calculation unit 306 and a strain noise filter 307.
  • the strain calculation unit 306 calculates the partial derivative of the echo shift ⁇ along the depth d, that is, the strain ⁇ , as shown in Equation 6 (strain calculation step).
  • the strain calculation unit 306 calculates the strain using, for example, a weighted least square algorithm.
  • the weighted least squares algorithm is a least squares method by leading the weight associated with each data point to a suitable criterion.
  • the strain calculation unit 306 calculates a strain using an echo shift from three or three or more samples using a weighted least square algorithm. This adjusts the parameters of the linear function to match the set data, i.e. minimizes the mean square error between the model and the data.
  • the strain ⁇ is Determined by. In Equation 19, N is the number of samples, ⁇ is the echo shift at the sample point, and d is the depth index of the sample point.
  • each echo shift sample is weighted at a rate of RF point intensity.
  • a sample point can be emphasized with a higher S / N ratio. Therefore, the strain ⁇ in Equation 19 is As amended.
  • I is the RF point intensity for calculating the displacement of the sample.
  • the strain noise filter 307 attenuates noise generated in the strain due to a small environmental disturbance.
  • the strain noise filter 307 is, for example, a two-dimensional median filter along the depth and time.
  • the strain whose noise is reduced by the strain noise filter 307 is output from the strain noise filter 307.
  • FIG. 10 is a block diagram specifically showing the configuration of the strain rate calculation unit.
  • the strain rate calculation unit 204 includes a strain rate calculation unit 308 and a strain rate noise filter 309.
  • the strain rate calculation unit 204 calculates a strain rate based on the calculated strain (strain rate calculation step).
  • the strain rate ⁇ is a mixed partial derivative of the echo shift ⁇ along the depth d and time (slow time) n (see Equation 14).
  • the strain rate calculation unit 308 calculates the strain rate indirectly or directly from the echo shift.
  • Indirect strain rate calculation methods include, for example, strain based on strain (partial derivative of echo shift along depth) or speed (partial derivative of echo shift along time (slow time)). There is a method for calculating the rate, but it is not limited to this.
  • the echo shift ⁇ has depth d and time (slow time) n as independent variables. It is represented by
  • Another example of the method for directly calculating the strain rate is a least squares method.
  • the echo shift is assumed to match the following curve:
  • Equation 24 Is the value of the echo shift matched at the point (d i , n j ).
  • strain rate ⁇ is Is defined as
  • Equation 24 a linear model equation for predicting echo shift based on the product and depth of depth and time (slow time) is obtained.
  • This linear model formula is It is represented by For a set of data (d 1 , n 1 , ⁇ 1,1 ), (d 1 , n 2 , ⁇ 1 , 2 ),... (D n , n m , ⁇ n, m ), As described above, the value of ⁇ is determined such that the error between the echo shift ⁇ i, j calculated based on the scan signal and the echo shift predicted based on the linear model equation of Equation 26 is minimized.
  • Equation 27 k and y are the number of samples and the number of frames in the depth direction where the strain rate is calculated and predicted, respectively. All d i, n i and ⁇ i, j are known, while ⁇ , b and ⁇ are unknown coefficients. In order to obtain the least square error, first derivatives are generated for the unknown coefficients ⁇ , b and ⁇ .
  • the value of the strain rate ⁇ can be obtained by solving Equation 28.
  • the strain rate noise filter 309 attenuates noise generated in the strain rate.
  • the strain rate whose noise is reduced by the strain rate noise filter 309 is output from the strain rate noise filter 309.
  • FIG. 11 is a block diagram specifically showing the configuration of the temperature estimation unit.
  • the temperature estimation unit 205 includes a parameter calculation unit 310 and a temperature calculation unit 311.
  • the temperature estimation unit 205 estimates the temperature based on the calculated strain and strain rate (temperature estimation step).
  • the parameter calculation unit 310 calculates algorithm parameters a 12 , a 13, and a 14 of the linear model expression of Expression 16 based on the calculated strain and strain rate. These algorithm parameters are identified by performing the following steps:
  • thermocouple (not shown) is aligned with the target region 51 to be heated (alignment step). Then, the temperature of the object area
  • first derivatives are generated for the unknown coefficients a 12 , a 13 and a 14 .
  • the temperature calculation unit 311 estimates the temperature by applying the calculated algorithm parameter to Equation 16 and calculating the temperature based on the calculated strain and strain rate.
  • the alignment step described above it is necessary to accurately align the position of the thermocouple with respect to the target region 51 to be heated in order to cover the entire range of temperature change.
  • the position of the thermocouple is aligned with the target region 51 to be heated by the B-mode image. Thereafter, in order to change the temperature of the target region 51, a heating source (not shown) that outputs an ultrasonic signal is operated, and the temperature of the target region 51 is measured by a thermocouple while the heating source is displaced in the space. To do. Thereafter, when the temperature measured by the thermocouple becomes minimum, the displacement of the heating source is stopped. In this way, the relative positional relationship between the thermocouple and the heating source is determined.
  • FIG. 12 is a flowchart showing a flow of temperature estimation by the temperature estimation method according to Embodiment 1 of the present invention.
  • FIG. 13 is a diagram for explaining the temperature estimation step.
  • a scan signal obtained by scanning the target area 51 with an ultrasonic signal is received, and a damaged frame generated in the scan signal due to disturbance is removed (pre-processing step) (S11). Then, an echo shift is calculated based on the scan signal from which the damaged frame is removed (echo shift calculation step) (S12). Thereafter, a strain is calculated based on the calculated echo shift (strain calculation step) (S13), and a strain rate is calculated based on the calculated strain (strain rate calculation step) (S14). Then, as shown in FIG. 13, based on the calculated strain and strain rate, the temperature of the target region 51 is estimated using the linear model equation of Equation 16 (temperature estimation step) (S15).
  • FIG. 14 is a diagram showing experimental results comparing the temperature estimation method of the present invention and the conventional temperature estimation method.
  • the solid line graph indicates the time change of the temperature estimated by the temperature estimation method of the first embodiment
  • the alternate long and short dash line graph indicates the time change of the temperature estimated by the conventional temperature estimation method 1 described above. Is shown.
  • the broken line graph shows the time variation of the recorded actual temperature.
  • the temperature estimated by the temperature estimation method of the first embodiment has a smaller error from the actual temperature than the temperature estimated by the conventional temperature estimation method 1. From this experimental result, it can be understood that the temperature estimation method of the present embodiment can estimate the temperature with high accuracy.
  • FIG. 15 is a diagram showing experimental results comparing the temperature estimation method of the present invention and the conventional temperature estimation method.
  • the upper graph is a result of performing nine experiments for obtaining an error (specifically, root mean square error) between the temperature estimated by the conventional temperature estimation method 1 and the recorded actual temperature. Is shown.
  • the lower graph shows the result of nine experiments for obtaining an error between the temperature estimated by the temperature estimation method of the first embodiment and the recorded actual temperature.
  • the standard deviation of the temperature estimated by the temperature estimation method of the first embodiment is smaller than the standard deviation of the temperature estimated by the conventional temperature estimation method 1. Also from this experimental result, it can be understood that the temperature estimation method of the present embodiment can estimate the temperature with high accuracy.
  • FIG. 16 is a block diagram showing the configuration of the temperature estimation apparatus according to Embodiment 2 of the present invention.
  • the signal processing unit 105A further includes a memory 321 and a temperature correction unit 322.
  • the memory 321 stores the temperature of one frame (or a plurality of frames) estimated by the temperature estimation unit 205.
  • the temperature correction unit 322 corrects the temperature of one frame (or a plurality of frames) stored in the memory 321 based on the objective function f 1 considering the spatial continuity of temperature (temperature correction step).
  • the temperature correction step is executed after the above-described temperature estimation step.
  • the objective function f 1 described above is It is represented by In Equation 31, Is a temperature corrected by the temperature correction unit 322, and T d, l is a temperature estimated by the temperature estimation unit 205.
  • ⁇ 1 and g are weighting functions, respectively. Note that the weighting function g is configured with a Huber function, for example.
  • d represents a spatial position in the depth direction
  • l represents a spatial position in the line direction.
  • the first term is a term for bringing the temperature correction value closer to the estimated temperature value
  • the second term is a term for spatially differentiating the estimated temperature value.
  • the temperature correction unit 322 obtains a temperature correction value that minimizes the objective function f 1 of Equation 31, for example, by performing numerical calculation such as a conjugate gradient method. Thereby, the temperature estimated by the temperature estimation unit 205 can be corrected to a temperature in which spatial continuity is considered.
  • FIG. 17 is a block diagram showing a configuration of a temperature estimation apparatus according to Embodiment 3 of the present invention.
  • the signal processing unit 105B includes a temperature correction unit 323 instead of the temperature correction unit 322 of the second embodiment.
  • the temperature correction unit 323 is for one frame (or for a plurality of frames) accumulated in the memory 321 based on the objective function f 2 considering the distance between the heat source position heated by the ultrasonic signal and the target region 51. Is corrected (temperature correction step).
  • the temperature correction step is executed after the above-described temperature estimation step.
  • Equation 32 The objective function f 2 described above is It is represented by In Equation 32, ⁇ 2 and ⁇ are weighting functions, respectively.
  • the first term is a term for bringing the temperature correction value closer to the estimated temperature value
  • the second term is to obtain the temperature and correction value at the heat source position (d 0 , l 0 ). This is the difference from the temperature at the position (d, l)
  • the third term is a term that is inversely proportional to the cube of the distance from the heat source position.
  • Temperature correction unit 323 for example, by performing the numerical calculation, such as the conjugate gradient method, to obtain a correction value of the temperature such that the objective function f 2 of the formula 32 to a minimum.
  • the temperature estimated by the temperature estimation unit 205 can be corrected to a temperature that takes into account the distance between the heat source position and the target region.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the software that realizes the temperature estimation method and the like of each of the above embodiments is the following program.
  • this program receives a scan signal obtained by scanning the target area with an ultrasonic signal, and based on the scan signal, the time required for the ultrasonic signal to pass through the target area is the target.
  • An echo shift calculation step for calculating an echo shift that is a change amount that changes depending on the temperature of the region, and a moving distance when the ultrasonic signal passes through the target region based on the calculated echo shift is the target.
  • the above program can be read by a computer in a nonvolatile recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc (registered trademark)) and What was recorded on the semiconductor memory etc. may be used.
  • a nonvolatile recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc (registered trademark)) and What was recorded on the semiconductor memory etc.
  • the temperature estimation method, the temperature estimation device, and the program according to one or more aspects of the present invention have been described in the first to third embodiments.
  • the present invention is limited to the first to third embodiments. It is not a thing.
  • various modifications conceivable by those skilled in the art are applied to the first to third embodiments, and a form constructed by combining components in different embodiments is also one of the present invention. It may be included within the scope of multiple embodiments.
  • the present invention can be applied as a temperature estimation method, a temperature estimation device, and a program capable of estimating temperature with high accuracy and estimating temperature in a wide temperature range.
  • Temperature estimation apparatus 50 Living body 51 Target area 101 Main body part 102 Ultrasonic vibrator 103 Transmission part 104 Reception part 105,105A, 105B Signal processing part 106 Display part 107 Control part 201 Preprocessing part 202 Echo shift calculation part 203 Strain calculation part 204 Strain rate calculation unit 205 Temperature estimation unit 301 Damaged frame removal unit 302 Noise filter 303 Echo shift calculation unit 304 Abnormal value correction unit 305 Echo shift noise filter 306 Strain calculation unit 307 Strain noise filter 308 Strain rate calculation unit 309 Strain rate noise filter 310 Parameter Calculation Unit 311 Temperature Calculation Unit 321 Memory 322, 323 Temperature Correction Unit

Abstract

 超音波信号によって対象領域をスキャンすることにより得られるスキャン信号を受信し、スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出ステップと、算出されたエコーシフトに基づいて、超音波信号が対象領域を通過する際の移動距離が対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出ステップと、算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出ステップと、予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する対象領域の温度を推定する温度推定ステップと、を含む。

Description

温度推定方法、温度推定装置及びプログラム
 本発明は、超音波信号を用いることによって、例えば生体内部の所定部位の温度を推定する温度推定方法、温度推定装置及びプログラムに関する。
 近年、高集束超音波(HIFU:High Intensity Focused Ultrasound)を利用したHIFU治療が行われている。HIFU治療とは、強力な超音波信号を患者の体表を介して腫瘍等の治療対象部位に集束させることにより、治療対象部位の温度を所定温度(例えば80~90℃程度)まで上昇させて治療対象部位を壊死させる治療法である。このHIFU治療においては、確実な治療を行う観点から、治療対象部位が所定温度まで上昇したことを確認するために、治療対象部位の温度を推定する必要がある。また、安全性の確保の観点から、治療対象部位の周辺の部位の温度が必要以上に上昇していないことを確認するために、治療対象部位の周辺の温度を推定する必要がある。
 このように治療対象部位等の温度を推定する方法として、例えば、超音波信号を用いた温度推定方法(例えば、特許文献1~3並びに非特許文献1及び2参照)が行われている。
米国特許第4452081号明細書 米国特許第7211044号明細書 米国特許出願公開第2007/0106157号明細書
Miller,N.R.,J.C.Bamber,and P.M. Meaney,Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation.Ultrasound in medicine & biology,2002.28(10):p.1319. Valvano, J.W., Bioheat transfer,in Encyclopedia of Medical Devices and Instrumentation.2005,Wiley.
 しかしながら、従来の超音波信号を用いた温度推定方法では、精度良く温度を推定することができず、温度を推定可能な温度範囲が狭いという問題がある。
 本発明は、上記従来の課題を解決するものであり、その目的は、高精度に温度を推定することができるとともに、広い温度範囲で温度を推定することができる温度推定方法、温度推定装置及びプログラムを提供することである。
 上記目的を達成するために、本発明の一態様に係る温度推定方法は、超音波信号を用いて対象領域の温度を推定する温度推定方法であって、超音波信号によって前記対象領域をスキャンすることにより得られるスキャン信号を受信し、前記スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が前記対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出ステップと、算出されたエコーシフトに基づいて、超音波信号が前記対象領域を通過する際の移動距離が前記対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出ステップと、算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出ステップと、予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する温度推定ステップと、を含む。
 なお、本発明は、方法として実現できるだけでなく、方法を構成するステップを処理手段とする装置として実現したり、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能なCD-ROM等の記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現することもできる。それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。
 本発明の温度推定方法では、予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する対象領域の温度を推定することにより、高精度に温度を推定することができるとともに、広い温度範囲で温度を推定することができる。
図1は、本発明の実施の形態1に係る温度推定装置の構成を示すブロック図である。 図2は、スキャン信号を説明するための図である。 図3は、図1の信号処理部の構成を具体的に示すブロック図である。 図4は、前処理部の構成を具体的に示すブロック図である。 図5は、スキャン信号に生じた破損フレームを示す図である。 図6は、エコーシフト算出部の構成を具体的に示すブロック図である。 図7は、エコーシフト計算ステップを説明するための図である。 図8は、異常値修正ステップを説明するための図である。 図9は、ストレイン算出部の構成を具体的に示すブロック図である。 図10は、ストレインレート算出部の構成を具体的に示すブロック図である。 図11は、温度推定部の構成を具体的に示すブロック図である。 図12は、本発明の実施の形態1に係る温度推定方法による温度の推定の流れを示すフローチャートである。 図13は、温度推定ステップを説明するための図である。 図14は、本発明の温度推定方法と従来の温度推定方法とを比較した実験結果を示す図である。 図15は、本発明の温度推定方法と従来の温度推定方法とを比較した実験結果を示す図である。 図16は、本発明の実施の形態2に係る温度推定装置の構成を示すブロック図である。 図17は、本発明の実施の形態3に係る温度推定装置の構成を示すブロック図である。 図18は、従来の温度推定方法における、モデル化された温度とストレインとの関係を示す図である。
 (本発明の基礎となった知見)
 まず、本発明の実施の形態を説明する前に、本発明者が見出した、従来の温度推定方法において生じる不具合について説明する。
 (従来の温度推定方法1)
 図18は、従来の温度推定方法における、モデル化された温度とストレインとの関係を示す図である。従来の温度推定方法1では、超音波信号の速度が温度に依存して変化することを利用して、治療対象部位等の温度を推定する。例えば、治療対象部位に加熱用の超音波信号を集束させてHIFU治療を行う前後において、治療対象部位の温度が変化することに伴って、温度推定用の超音波信号の速度が変化する。このように超音波信号の速度が変化することにより、超音波信号が治療対象部位を通過する際の移動距離が見かけ上変化する。この移動距離の変化割合をストレイン(strain)という。
 従来の温度推定方法1では、治療前における超音波信号と治療中における超音波信号との差に基づいてストレインを計算により求めた後に、温度とストレインとの関係を示すモデル式に基づいて温度を推定する。図18中の実線のグラフ401で示すように、このモデル式は、2次関数で近似されている。
 しかしながら、上述したモデル式では、図18に示すように、温度変化に対するストレイン変化が小さい領域であるフラットレンジ(flat range)402が存在し、このフラットレンジ402においては、ノイズに対する影響が大きくなる。そのため、従来の温度推定方法1では、精度良く温度を推定することができないという問題がある。
 (従来の温度推定方法2)
 従来の温度推定方法2では、上述と同様に、例えばHIFU治療前における超音波信号とHIFU治療中における超音波信号との差に基づいてストレインを計算により求めた後に、温度とストレインとの関係を示すモデル式に基づいて温度を推定する。図18中の破線のグラフ403で示すように、このモデル式は、1次関数で近似されている。
 しかしながら、上述したモデル式では、比較的低い温度領域(30~50℃程度)でしか温度を推定することができない。HIFU治療では、比較的高い温度領域(70~90℃程度)で温度を推定する必要があるため、従来の温度推定方法2をHIFU治療における温度の推定に用いることが難しいという問題がある。
 (従来の温度推定方法3)
 従来の温度推定方法3では、モデル式として生体伝熱方程式(Bio-Heat Transfer Equation)が用いられる。まず、モデル式のパラメータをキャリブレーション時に求め、さらに、温度とストレインとの関係を示す関係式を求めておく。例えば、HIFU治療時には、モデル式に基づいて治療対象部位の温度を推定する。その後、推定した温度からストレインを上記関係式に基づいて計算により求め、計算により求めたストレインとRF(Radio Frequency)信号から得られたストレインとの誤差が小さくなるように、モデル式のパラメータを逐次修正する。
 しかしながら、従来の温度推定方法3では、モデル式のパラメータを求めるのが困難であるため、実用化が難しいという問題がある。
 上述のような問題を解決するために、本発明の一態様に係る温度推定方法は、超音波信号を用いて対象領域の温度を推定する温度推定方法であって、超音波信号によって前記対象領域をスキャンすることにより得られるスキャン信号を受信し、前記スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が前記対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出ステップと、算出されたエコーシフトに基づいて、超音波信号が前記対象領域を通過する際の移動距離が前記対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出ステップと、算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出ステップと、予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する温度推定ステップと、を含む。
 本態様によれば、高精度に温度を推定することができるとともに、広い温度範囲で温度を推定することができる。
 例えば、本発明の一態様に係る温度推定方法において、前記温度推定ステップにおいては、ストレインとストレインレートと温度との関係を示す線形モデル式を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定するように構成してもよい。
 本態様によれば、ストレインとストレインレートと温度との関係を示す線形モデル式を用いて、温度を予測することができる。
 例えば、本発明の一態様に係る温度推定方法において、さらに、外乱によって前記スキャン信号に生じた破損フレームを除去する前処理ステップを含み、前記エコーシフト算出ステップでは、前記前処理ステップにおいて破損フレームが除去されたスキャン信号に基づいて、エコーシフトを算出するように構成してもよい。
 本態様によれば、エコーシフトを算出する前の前処理として、スキャン信号に生じた破損フレームを除去することができる。
 例えば、本発明の一態様に係る温度推定方法において、前記エコーシフト算出ステップは、受信された前記スキャン信号に基づいて生のエコーシフトを計算するエコーシフト計算ステップと、計算された前記生のエコーシフトにおいて温度変化に起因しない異常値を修正することにより、温度変化に起因するエコーシフトを得る異常値修正ステップと、前記温度変化に起因するエコーシフトに含まれるノイズをノイズフィルタにより減衰させるノイズ減衰ステップと、を含むように構成してもよい。
 本態様によれば、計算された生のエコーシフトにおいて温度変化に起因しない異常値を修正することにより、温度変化に起因するエコーシフトを得ることができる。
 例えば、本発明の一態様に係る温度推定方法において、前記異常値修正ステップは、前記エコーシフト計算ステップにおいて計算された前記生のエコーシフトに基づいて、予測エコーシフトを計算するためのエコーシフト予測モデルのパラメータを調整するパラメータ調整ステップと、最適化された前記エコーシフト予測モデルに基づいて、前記予測エコーシフトを計算する予測エコーシフト計算ステップと、前記予測エコーシフト及び前記対象領域をスキャンすることにより得られるRF信号に基づいて、閾値を設定する閾値設定ステップと、前記生のエコーシフトの複数のデータポイントのうち、前記閾値を超えた前記異常値であるデータポイントを、前記予測エコーシフトの対応するデータポイントに基づいて修正するデータポイント修正ステップと、を含むように構成してもよい。
 本態様によれば、異常値の検出を行うことができる。
 例えば、本発明の一態様に係る温度推定方法において、前記エコーシフト予測モデルは、誤差関数又は相補誤差関数であるように構成してもよい。
 本態様によれば、エコーシフト予測モデルを誤差関数又は相補誤差関数で構成することができる。
 例えば、本発明の一態様に係る温度推定方法において、前記閾値設定ステップは、前記閾値としての上側の閾値と下側の閾値との間の間隔を設定する間隔設定ステップと、前記RF信号の強度を重みとして用いることにより、前記上側の閾値及び前記下側の閾値を調節する閾値調節ステップと、を含むように構成してもよい。
 本態様によれば、異常値を検出するための閾値を設定することができる。
 例えば、本発明の一態様に係る温度推定方法において、前記ストレインレート算出ステップにおいては、深さ及び時間の積と深さとに基づいてエコーシフトを予測するためのモデル式を用いて、前記スキャン信号に基づいて算出されたエコーシフトと前記モデル式に基づいて予測されたエコーシフトとの誤差が最小となるように、ストレインレートを算出するように構成してもよい。
 本態様によれば、ストレインレートを算出することができる。
 例えば、本発明の一態様に係る温度推定方法において、前記ストレインレート算出ステップにおいて用いられる前記モデル式は、線形モデル式であるように構成してもよい。
 本態様によれば、ストレインレート算出ステップにおいて用いられるモデル式を線形モデル式で構成することができる。
 例えば、本発明の一態様に係る温度推定方法において、前記温度推定ステップにおいて用いられる前記線形モデル式のアルゴリズムパラメータは、加熱すべき前記対象領域に対して熱電対の位置を位置合わせする位置合わせステップと、前記熱電対によって前記対象領域の温度を測定する温度測定ステップと、前記対象領域をスキャンすることにより得られる前記スキャン信号に基づいて、前記対象領域の推定温度を導出する推定温度導出ステップと、前記温度測定ステップにおいて測定された温度と前記推定温度導出ステップにおいて導出された推定温度との誤差が最小となるように、前記アルゴリズムパラメータを同定するアルゴリズムパラメータ同定ステップと、を実行することにより同定されるように構成してもよい。
 本態様によれば、温度推定ステップにおいて用いられる線形モデル式のアルゴリズムパラメータを同定することができる。
 例えば、本発明の一態様に係る温度推定方法において、前記位置合わせステップは、Bモード画像によって、加熱すべき前記対象領域に対して前記熱電対の位置を位置合わせするステップと、前記対象領域の温度を変化させるために、超音波信号を出力する加熱源を作動させるステップと、前記加熱源を空間内で変位させながら、前記熱電対によって前記対象領域の温度を測定するステップと、前記熱電対により測定された温度が最小となったときに前記加熱源の変位を停止させるステップと、を含むように構成してもよい。
 本態様によれば、加熱すべき対象領域に対して熱電対の位置を位置合わせすることができる。
 例えば、本発明の一態様に係る温度推定方法において、さらに、温度の空間的な連続性を考慮した目的関数に基づいて、前記温度推定ステップにより推定された温度を補正する温度補正ステップを含むように構成してもよい。
 本態様によれば、温度の空間的な連続性を考慮して、温度推定ステップにより推定された温度を補正することができる。
 例えば、本発明の一態様に係る温度推定方法において、さらに、加熱用の超音波信号により加熱された熱源位置と前記対象領域との間の距離を考慮した目的関数に基づいて、前記温度推定ステップにより推定された温度を補正する温度補正ステップを含むように構成してもよい。
 本態様によれば、加熱用の超音波信号(例えばHIFU)により加熱された熱源位置と対象領域との間の距離を考慮して、温度推定ステップにより推定された温度を補正することができる。
 本発明の一態様に係る温度推定装置は、超音波信号を用いて対象領域の温度を推定する温度推定装置であって、超音波信号によって前記対象領域をスキャンすることにより得られるスキャン信号を受信し、前記スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が前記対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出部と、算出されたエコーシフトに基づいて、超音波信号が前記対象領域を通過する際の移動距離が前記対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出部と、算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出部と、予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する温度推定部と、を備える。
 本態様によれば、高精度に温度を推定することができるとともに、広い温度範囲で温度を推定することができる。
 本発明の一態様に係るプログラムは、超音波信号を用いて対象領域の温度を推定するためのプログラムであって、超音波信号によって前記対象領域をスキャンすることにより得られるスキャン信号を受信し、前記スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が前記対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出ステップと、算出されたエコーシフトに基づいて、超音波信号が前記対象領域を通過する際の移動距離が前記対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出ステップと、算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出ステップと、予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する温度推定ステップと、をコンピュータに実行させる。
 本態様によれば、高精度に温度を推定することができるとともに、広い温度範囲で温度を推定することができる。
 なお、これらの全般的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又は記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム又は記録媒体の任意な組み合わせで実現されてもよい。
 (実施の形態)
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置、ステップ及びステップの順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 (温度推定装置の全体構成)
 図1は、本発明の実施の形態1に係る温度推定装置の構成を示すブロック図である。図1に示すように、本実施の形態の温度推定装置10は、本体部101及び超音波振動子102を備えている。
 超音波振動子102は、生体50の内部の対象領域51(例えば、HIFU治療における治療対象部位)に対して超音波信号を送信するとともに、対象領域51をスキャンして対象領域51で反射された超音波信号を受信する。
 本体部101は、送信部103、受信部104、信号処理部105、表示部106及び制御部107を備えている。送信部103は、制御部107の制御に従って、超音波振動子102に対して電気信号(送信信号)を供給することにより、超音波振動子102に超音波信号を発生させる。受信部104は、制御部107の制御に従って、超音波振動子102からの電気信号(受信信号)を受信する。
 信号処理部105は、受信部104から供給された電気信号(スキャン信号)を処理することにより、対象領域51の温度を推定する。信号処理部105による温度推定方法については後述する。表示部106は、制御部107の制御に従って、信号処理部105により推定された温度を表示する。表示部106は、例えば液晶ディスプレイ等で構成される。
 制御部107は、送信部103、受信部104、信号処理部105及び表示部106をそれぞれ制御することにより、温度推定装置10の全体制御を行う。制御部107は、例えばマイクロプロセッサ等で構成される。
 (温度推定のモデル)
 図2は、スキャン信号を説明するための図である。図2に示すように、スキャン信号は、3つの次元、即ち、深さ方向(depth direction)(d)、ライン方向(line direction)(l)及びフレーム方向(frame direction)(n)を有している。深さ方向は、生体50の体表から生体50の内部に向かう方向であり、ライン方向は、深さ方向に対して略垂直な方向である。フレーム方向は、フレームが切り替わる時間方向である。一般に、深さ方向における時間をファストタイム(fast time)、フレーム方向における時間をスロータイム(slow time)という。
 対象領域51の温度が変化することに伴って、超音波信号の速度、即ち、音速が変化する。このように超音波信号の速度が変化することにより、超音波信号が対象領域51を通過するのに要する時間が変化する。このように、超音波信号が対象領域51を通過するのに要する時間が対象領域51の温度に依存して変化する変化量をエコーシフト(echo shift)という。例えば、図2に示すように、フレーム1におけるRF信号(スキャン信号)と、フレーム1の次のフレームであるフレーム2におけるRF信号との間に生じる時間的なずれがエコーシフトである。
 図1に示すように、超音波信号は、生体50の体表からその内部に向けて深さ方向に沿って走行する。生体50の体表から対象領域51の第1の部位51aまでの距離(深さ)をd、生体50の体表から対象領域51の第2の部位51bまでの距離をd、対象領域51の深さ方向における大きさをd(=d-d)、対象領域51の温度がT℃である場合における音速をcとする。このとき、超音波信号が対象領域51を通過するのに要する時間(ファストタイム)tf0は、
Figure JPOXMLDOC01-appb-M000001
である。なお、式1以降において、tはファストタイムを表し、nはスロータイムを表す。対象領域51の温度がT℃からT℃に変化した際には、超音波信号が対象領域51を通過するのに要する時間(ファストタイム)tf1は、
Figure JPOXMLDOC01-appb-M000002
である。なお、式2において、cは、対象領域51の温度がT℃である場合における音速である。
 従って、対象領域51の温度がT℃からT℃に変化した際のエコーシフトψは、
Figure JPOXMLDOC01-appb-M000003
で表される。
 対象領域51の温度がT℃からT℃に変化した際における、超音波信号が対象領域51を通過する際の移動距離の見かけ上の変化量Δdisは、
Figure JPOXMLDOC01-appb-M000004
である。式4において、csystemは、超音波画像システムにおいて音速として用いられる定数であり、一般に、csystem=1540m/secである。
 ここで、超音波信号が対象領域51を通過する際の移動距離が対象領域51の温度に依存して見かけ上変化する変化割合であるストレインεは、
Figure JPOXMLDOC01-appb-M000005
で表される。式5において、csystemは定数であるので、ストレインεは、
Figure JPOXMLDOC01-appb-M000006
で表される。
 ここで、音速c及び温度Tは、下記の二次多項式、
Figure JPOXMLDOC01-appb-M000007
を満たすことが知られている。a,a及びaはそれぞれ、一定の温度係数である。一般に、対象領域51の温度に依存して音速が変化する変化量は、音速cよりも十分に小さいことが知られている。即ち、
Figure JPOXMLDOC01-appb-M000008
である。これにより、式5と式7とを組み合わせることにより、
Figure JPOXMLDOC01-appb-M000009
が得られる。式9において、a,a及びaはそれぞれ、
Figure JPOXMLDOC01-appb-M000010
であり、定数である。なお、式9のモデル式は、上述した従来の温度推定方法1で用いられるモデル式と同様である。
 本実施の形態の温度推定方法では、式9のモデル式とPennesの生体伝熱方程式とを組み合わせることにより導出される式16のモデル式(後述する)を用いて、対象領域51の温度を推定する。Pennesの生体伝熱方程式は、生体の内部の熱伝導を表す微分方程式であり、
Figure JPOXMLDOC01-appb-M000011
で表される。式11において、Qmet:代謝発熱、ΔT:環境上の温度上昇、ρ:組織密度、υ:組織の比熱、ρ:血液密度、υ:血液の比熱、ω:血液のかん流比率、κ:組織の熱伝導率である。
 ここで、1)フレーム方向における対象領域51の温度変化のみが考慮され、2)組織及び血液の各々の特性は時間とともに変化せず、3)組織の温度分布は測定前において均一であり、4)組織の代謝発熱は時間とともに変化しない、と仮定する。これにより、ΔT=T-T及び温度の基準を示すTはそれぞれ定数である。また、Qmet,ρ,υ,ρ,υ,ω及びκはそれぞれ定数である。さらに、∇Tは、時間変化しないので定数である。従って、式11は、
Figure JPOXMLDOC01-appb-M000012
と書き換えられる。式12において、a,aはそれぞれ、
Figure JPOXMLDOC01-appb-M000013
を満たす定数である。
 次に、ストレイン及び温度の関数はいずれもスロータイムに沿って連続的であるので、上記式9の両辺について偏導関数を計算することにより、ストレインレート(strain-rate)が得られる。
Figure JPOXMLDOC01-appb-M000014
 式13において、ξはストレインレートである。ストレインレートξは、ストレインεの時間的な変化割合である。換言すると、ストレインレートξは、深さ方向の深さd及び時間(スロータイム)nに沿ったエコーシフトψの混合偏導関数、
Figure JPOXMLDOC01-appb-M000015
である。
 Pennesの生体伝熱方程式により推定された温度が実際の温度と等しいと仮定すると、式12と式13とを組み合わせることにより、次式15が得られる。
Figure JPOXMLDOC01-appb-M000016
 式9と式15とを組み合わせて二次の項(T)を消去すると、
Figure JPOXMLDOC01-appb-M000017
が得られる。式16において、a12,a13及びa14はそれぞれ、
Figure JPOXMLDOC01-appb-M000018
を満たす定数である。
 式16のモデル式は、予め定められたストレインεとストレインレートξと温度Tとの関係を示す線形モデル式である。本実施の形態の温度推定方法では、このモデル式を用いて、後述するようにして対象領域51の温度を推定する。
 (信号処理部の構成)
 図3は、図1の信号処理部の構成を具体的に示すブロック図である。図3に示すように、信号処理部105は、前処理部201、エコーシフト算出部202、ストレイン算出部203、ストレインレート算出部204及び温度推定部205を有している。
 図4は、前処理部の構成を具体的に示すブロック図である。図4に示すように、前処理部201は、破損フレーム除去部301及びノイズフィルタ302を有している。破損フレーム除去部301は、外乱(例えば、環境ノイズ、外部の処理信号及びHIFU治療で使用される高集束超音波等)によってスキャン信号に生じた破損フレームをスキャン信号から除去する(前処理ステップ)。なお、図3以降における「スキャン信号(d,l,n)」等では、dは深さ方向の次元、lはライン方向の次元、nはフレーム方向の次元を表している。
 図5は、スキャン信号に生じた破損フレームを示す図である。図5に示すように、破損フレームにおいては、スキャン信号(RF信号)の強度の振幅が異常に大きくなる。
 破損フレーム除去部301は、スキャン信号の強度のグラフにおける上側の包絡線及び下側の包絡線をそれぞれ検出した後に、上側の包絡線と下側の包絡線との差分をフレーム毎に計算により求める。その後、破損フレーム除去部301は、2つの包絡線の差分が所定の閾値以上であるフレームを上述した破損フレームと判定し、スキャン信号から破損フレームを除去する。なお、2つの包絡線の差分が上記所定の閾値以上であるフレームは、例えばHIFU治療において高集束超音波が照射される加熱段階に対応する。2つの包絡線の差分が上記所定の閾値よりも小さいフレームは、例えばHIFU治療において高集束超音波が照射された後の冷却段階に対応する。これにより、HIFU治療の冷却段階におけるスキャン信号のフレームは、後述する温度推定部205における温度の推定に使用され、HIFU治療の加熱段階におけるスキャン信号のフレーム(即ち、破損フレーム)は、温度推定部205における温度の推定には使用されない。
 破損フレーム除去部301から出力されたスキャン信号は、ノイズフィルタ302においてノイズが減衰された後に、ノイズフィルタ302からフィルタリング信号(即ち、フィルタリングされたスキャン信号)として出力される。
 なお、前処理部201においては、体の動きの補償及び血液の流れの補償を考慮した処理を行うこともできる。体の動きは、動き推定技術における超音波信号(又は画像)を用いることにより、或いは、加速度センサ等を用いることにより検出される。血液の流れは、超音波ドプラ信号処理を用いることにより検出される。
 図6は、エコーシフト算出部の構成を具体的に示すブロック図である。図6に示すように、エコーシフト算出部202は、エコーシフト計算部303、異常値修正部304及びエコーシフトノイズフィルタ305を有している。エコーシフト算出部202は、後述するようにして、フィルタリング信号(スキャン信号)に基づいてエコーシフトを算出する(エコーシフト算出ステップ)。
 エコーシフト計算部303は、前処理部201から出力されたフィルタリング信号に基づいて、生のエコーシフトを計算する(エコーシフト計算ステップ)。生のエコーシフトを計算する方法として、例えば、自己相関方法及び相互相関方法がある。
 自己相関方法では、例えばSDopp推定方法が用いられる。このSDopp推定方法では、空間的に接触された多数のIQデータを用いることにより、エコーシフトが計算される。SDopp推定方法により計算されるエコーシフトは、
Figure JPOXMLDOC01-appb-M000019
で表される。式17において、ψ(d,n)は、深さdth及び時間(スロータイム)nthでのエコーシフトである。式17において、kは、エコーシフトが計算された深さ方向におけるサンプルの数であり、yは、エコーシフトが計算されたフレームの数である。式17において、I(d,n)は、深さdth及び時間(スロータイム)nthから選択されたIQセグメントである。SDopp推定方法において、(ky)の窓の大きさは、一定値としてもよく、或いは、スキャン信号の特性の変化(例えば、振幅又はエネルギーの変化)に応じて可変することもできる。
 相互相関方法は、例えば、数学的に次式18によって表される。
Figure JPOXMLDOC01-appb-M000020
 式18において、Sは、フレームnにおけるRFセグメントであり、Sn+1は、フレームnと隣接するフレームn+1におけるRFセグメントである。式18において、S mean及びS RMSはそれぞれ、セグメントの平均及び二乗平均平方根である。式18において、kは、セグメントの窓の長さであり、qは、フレームのRFラインにおける探索範囲であり、γは、相互相関係数である。βは、γ(β)が最大値であるときの2つのセグメント間におけるエコーシフトと等しい。
 図7は、エコーシフト計算ステップを説明するための図である。図7に示すように、エコーシフト計算部303は、まず、フレームn+1における探索範囲qの上端に窓(Sn+1)を変位させた状態で、セグメントSに窓(Sn+1)を乗じる。この計算のステップは、データポイント毎に行われ、合計値は変数で蓄えられる。その後、エコーシフト計算部303は、窓(Sn+1)が探索範囲qの下端に到達するまで、サンプル毎に窓(Sn+1)を変位させながら、上述した計算を繰り返し行う。エコーシフト計算部303は、γ(β)が最大値に到達したときのβを、生のエコーシフトとして決定する。
 異常値修正部304は、エコーシフト計算部303により計算された生のエコーシフトにおいて、温度変化に起因しない異常値を修正する(異常値修正ステップ)。生のエコーシフトには、温度変化に起因するエコーシフト及び温度変化に起因しない(例えば、振動によって生じた)異常値が含まれる。この異常値は、温度推定の正確性を著しく低下させる。この異常値を修正することにより、温度変化に起因するエコーシフトを得ることができる。異常値修正部304は、例えば、エコーシフト予測モデルに基づいて異常値を除去する。このエコーシフト予測モデルは、誤差関数又は相補誤差関数で構成される。
 エコーシフト予測モデルとして誤差関数を用いた場合には、上述した異常値修正ステップは、次のようにして行われる。図8は、異常値修正ステップを説明するための図である。まず、エコーシフト計算ステップにおいて計算された生のエコーシフトに基づいて、予測エコーシフトを計算するためのエコーシフト予測モデルのパラメータを調整する(パラメータ調整ステップ)。次に、最適化されたエコーシフト予測モデルに基づいて、予測エコーシフトを計算する(予測エコーシフト計算ステップ)。その後、予測エコーシフト及び対象領域51をスキャンすることにより得られるRF信号に基づいて、上側の閾値及び下側の閾値を設定する(閾値設定ステップ)。この閾値設定ステップにおいては、上側の閾値と下側の閾値との間の間隔を予備的実験等に基づいて設定し(間隔設定ステップ)、RF信号の強度を重みとして用いることにより、上側の閾値及び下側の閾値を調節する(閾値調節ステップ)。その後、生のエコーシフトの複数のデータポイントのうち、上側の閾値及び下側の閾値を超えた異常値であるデータポイントを、予測エコーシフトの対応するデータポイントに修正する(データポイント修正ステップ)。
 エコーシフトノイズフィルタ305は、温度変化に起因するエコーシフトのSN比を増大させることにより、エコーシフトに含まれるノイズを減衰させる(ノイズ減衰ステップ)。エコーシフトノイズフィルタ305は、例えば、ローパスフィルタ又はバンドパスフィルタで構成される。エコーシフトノイズフィルタ305によりノイズが低減されたエコーシフトは、エコーシフトノイズフィルタ305より出力される。
 図9は、ストレイン算出部の構成を具体的に示すブロック図である。ストレイン算出部203は、ストレイン計算部306及びストレインノイズフィルタ307を有している。ストレイン計算部306は、上記式6に示すように、深さdに沿ったエコーシフトψの偏導関数、即ち、ストレインεを計算する(ストレイン算出ステップ)。
 ストレイン計算部306は、例えば、加重最小二乗アルゴリズム(weighted least square algorithm)を用いてストレインを計算する。加重最小二乗アルゴリズムは、各データポイントに関連する重みを適した基準に導くことによる最小二乗法である。ストレイン計算部306は、まず、加重最小二乗アルゴリズムを用いて、3個又は3個以上のサンプルからエコーシフトを用いてストレインを計算する。これにより、設定されたデータにより一致させるために一次関数のパラメータを調整する、即ち、モデルとデータとの間の平均平方誤差を最小化する。加重最小二乗アルゴリズムを用いることにより、ストレインεは、
Figure JPOXMLDOC01-appb-M000021
によって決定される。式19において、Nはサンプルの数であり、ψはサンプル点におけるエコーシフトであり、dはサンプル点の深さ指数である。
 SN比を増大させるために、加重線形回帰が導入される。具体的には、ストレイン値を計算するために、各エコーシフトのサンプルには、RFポイントの強度の割合で重みが付けられる。これにより、より高いSN比でサンプル点を強調することができる。従って、式19のストレインεは、
Figure JPOXMLDOC01-appb-M000022
として修正される。式20において、Iは、サンプルの変位を計算するためのRFポイントの強度である。
 ストレインノイズフィルタ307は、小さな環境外乱によってストレインに生じたノイズを減衰させる。ストレインノイズフィルタ307は、例えば、深さ及び時間に沿った2次元メジアンフィルタである。ストレインノイズフィルタ307によりノイズが低減されたストレインは、ストレインノイズフィルタ307から出力される。
 図10は、ストレインレート算出部の構成を具体的に示すブロック図である。図10に示すように、ストレインレート算出部204は、ストレインレート計算部308及びストレインレートノイズフィルタ309を有している。ストレインレート算出部204は、算出されたストレインに基づいて、ストレインレートを算出する(ストレインレート算出ステップ)。上述したように、ストレインレートξは、深さd及び時間(スロータイム)nに沿ったエコーシフトψの混合偏導関数である(式14参照)。
 ストレインレート計算部308は、エコーシフトから間接的に又は直接的にストレインレートを計算する。間接的にストレインレートを計算する方法としては、例えば、ストレイン(深さに沿ったエコーシフトの偏導関数)又は速度(時間(スロータイム)に沿ったエコーシフトの偏導関数)に基づいてストレインレートを計算する方法があるが、これに限定されない。
 直接的にストレインレートを計算する方法としては、例えば、数値微分法(numeric differentiation method)がある。エコーシフトψは、深さd及び時間(スロータイム)nを独立変数として、
Figure JPOXMLDOC01-appb-M000023
で表される。
 エコーシフトの混合偏導関数は、d-n平面で連続的であるので、
Figure JPOXMLDOC01-appb-M000024
と表される。
 式22の混合偏導関数を数値解析することにより、
Figure JPOXMLDOC01-appb-M000025
が得られる。式23において、a=di+1―di、=nj+1―n=n-nj-1であり、i,jはそれぞれ、データポイントの添え字である。
 直接的にストレインレートを計算する方法の他の例として、最小二乗法(least squares method)がある。エコーシフトは、下記の曲線に一致すると仮定される。
Figure JPOXMLDOC01-appb-M000026
 式24において、
Figure JPOXMLDOC01-appb-M000027
は、ポイント(d,n)で一致されたエコーシフトの値である。
 ストレインレートξは、
Figure JPOXMLDOC01-appb-M000028
として定義される。
 式24及び式25を組み合わせることにより、深さ及び時間(スロータイム)の積と深さとに基づいてエコーシフトを予測するための線形モデル式が得られる。この線形モデル式は、
Figure JPOXMLDOC01-appb-M000029
で表される。一組のデータ(d,n,ψ1,1),(d,n,ψ1,2),・・・(d,n,ψn,m)について、次式27のように、スキャン信号に基づいて算出されたエコーシフトψi,jと、式26の線形モデル式に基づいて予測されたエコーシフトとの誤差が最小になるようなξの値を求める。
Figure JPOXMLDOC01-appb-M000030
 式27において、k,yはそれぞれ、ストレインレートが算出及び予測された深さ方向におけるサンプル数及びフレーム数である。全てのdi,及びψi,jは既知である一方、ξ,b及びκは未知係数である。最小二乗誤差を得るために、未知係数ξ,b及びκについて、一次導関数を生成する。
Figure JPOXMLDOC01-appb-M000031
 式28を解くことにより、ストレインレートξの値を得ることができる。
 ストレインレートノイズフィルタ309は、ストレインレートに生じたノイズを減衰させる。ストレインレートノイズフィルタ309によりノイズが低減されたストレインレートは、ストレインレートノイズフィルタ309から出力される。
 図11は、温度推定部の構成を具体的に示すブロック図である。図11に示すように、温度推定部205は、パラメータ計算部310及び温度計算部311を有している。温度推定部205は、算出されたストレイン及びストレインレートに基づいて、温度を推定する(温度推定ステップ)。
 パラメータ計算部310は、算出されたストレイン及びストレインレートに基づいて、式16の線形モデル式のアルゴリズムパラメータa12,a13及びa14を計算する。これらのアルゴリズムパラメータは、次のようなステップを実行することにより同定される。
 まず、加熱すべき対象領域51に対して熱電対(図示せず)の位置を位置合わせする(位置合わせステップ)。その後、熱電対によって対象領域51の温度を測定する(温度測定ステップ)。熱電対によって測定された温度は、
Figure JPOXMLDOC01-appb-M000032
であると仮定される。その後、対象領域51をスキャンすることにより得られるスキャン信号に基づいて、対象領域51の推定温度を導出する(推定温度導出ステップ)。ストレイン及びストレインレートに基づいて推定される温度は、次の一組のデータ、
Figure JPOXMLDOC01-appb-M000033
におけるストレイン及びストレインレートを式16に代入することにより求められる。温度測定ステップで測定された温度と推定温度導出ステップで導出された推定温度との誤差は、残差平方和として表現される。
Figure JPOXMLDOC01-appb-M000034
 式29における関数errを最小化するために、未知係数a12,a13及びa14について一次導関数を生成する。
Figure JPOXMLDOC01-appb-M000035
 式30を解くことにより、アルゴリズムパラメータa12,a13及びa14が同定される(アルゴリズムパラメータ同定ステップ)。
 温度計算部311は、計算されたアルゴリズムパラメータを式16に適用し、算出されたストレイン及びストレインレートに基づいて温度を計算することにより、温度を推定する。
 なお、上述した位置合わせステップにおいては、温度変化の全範囲をカバーするために、加熱すべき対象領域51に対して熱電対の位置を正確に位置合わせする必要がある。位置合わせステップにおいて、まず、Bモード画像によって、加熱すべき対象領域51に対して熱電対の位置を位置合わせする。その後、対象領域51の温度を変化させるために、超音波信号を出力する加熱源(図示せず)を作動させ、加熱源を空間内で変位させながら、熱電対によって対象領域51の温度を測定する。その後、熱電対により測定された温度が最小となったときに、加熱源の変位を停止させる。このようにして、熱電対と加熱源との相対的な位置関係が決定される。
 (温度推定方法)
 図12は、本発明の実施の形態1に係る温度推定方法による温度の推定の流れを示すフローチャートである。図13は、温度推定ステップを説明するための図である。
 まず、超音波信号によって対象領域51をスキャンすることにより得られるスキャン信号を受信し、外乱によってスキャン信号に生じた破損フレームを除去する(前処理ステップ)(S11)。その後、破損フレームが除去されたスキャン信号に基づいてエコーシフトを算出する(エコーシフト算出ステップ)(S12)。その後、算出されたエコーシフトに基づいてストレインを算出し(ストレイン算出ステップ)(S13)、さらに、算出されたストレインに基づいてストレインレートを算出する(ストレインレート算出ステップ)(S14)。その後、図13に示すように、算出されたストレイン及びストレインレートに基づいて、式16の線形モデル式を用いて対象領域51の温度を推定する(温度推定ステップ)(S15)。
 以上のような温度推定方法によって、従来よりも高精度に温度を推定することができる。図14は、本発明の温度推定方法と従来の温度推定方法とを比較した実験結果を示す図である。図14において、実線のグラフは、実施の形態1の温度推定方法により推定された温度の時間変化を示し、一点鎖線のグラフは、上述した従来の温度推定方法1により推定された温度の時間変化を示している。破線のグラフは、記録された実際の温度の時間変化を示している。図14から明らかなように、実施の形態1の温度推定方法により推定された温度は、従来の温度推定方法1により推定された温度と比べて、実際の温度との誤差が小さい。この実験結果から、本実施の形態の温度推定方法では、高精度に温度を推定することができることが理解できる。
 図15は、本発明の温度推定方法と従来の温度推定方法とを比較した実験結果を示す図である。図15において、上側のグラフは、従来の温度推定方法1により推定された温度と記録された実際の温度との誤差(具体的には、二乗平均平方根誤差)を求める実験を9回行った結果を示している。下側のグラフは、実施の形態1の温度推定方法により推定された温度と記録された実際の温度との誤差を求める実験を9回行った結果を示している。図15から明らかなように、実施の形態1の温度推定方法により推定された温度の標準偏差は、従来の温度推定方法1により推定された温度の標準偏差よりも小さくなる。この実験結果からも、本実施の形態の温度推定方法では、高精度に温度を推定することができることが理解できる。
 (実施の形態2)
 図16は、本発明の実施の形態2に係る温度推定装置の構成を示すブロック図である。本実施の形態の温度推定装置では、信号処理部105Aは、さらに、メモリ321及び温度補正部322を有している。メモリ321には、温度推定部205により推定された1フレーム分(又は複数フレーム分)の温度が蓄積されている。温度補正部322は、温度の空間的な連続性を考慮した目的関数fに基づいて、メモリ321に蓄積された1フレーム分(又は複数フレーム分)の温度を補正する(温度補正ステップ)。なお、温度補正ステップは、上述した温度推定ステップの後に実行される。
 上述した目的関数fは、
Figure JPOXMLDOC01-appb-M000036
で表される。式31において、
Figure JPOXMLDOC01-appb-M000037
は、温度補正部322により補正された温度であり、Td,lは、温度推定部205により推定された温度である。λ,gはそれぞれ、重み付け関数である。なお、重み付け関数gは、例えばHuber関数で構成される。dは深さ方向における空間位置を表し、lはライン方向における空間位置を表している。
 式31において、第1の項は、温度の補正値を温度の推定値に近付けるための項であり、第2の項は、温度の推定値を空間微分するための項である。温度補正部322は、例えば共役勾配法等の数値計算を行うことにより、式31の目的関数fを最小にするような温度の補正値を求める。これにより、温度推定部205により推定された温度を、空間的な連続性が考慮された温度に補正することができる。
 (実施の形態3)
 図17は、本発明の実施の形態3に係る温度推定装置の構成を示すブロック図である。本実施の形態の温度推定装置では、信号処理部105Bは、上記実施の形態2の温度補正部322に代えて、温度補正部323を有している。温度補正部323は、超音波信号により加熱された熱源位置と対象領域51との間の距離を考慮した目的関数fに基づいて、メモリ321に蓄積された1フレーム分(又は複数フレーム分)の温度を補正する(温度補正ステップ)。なお、温度補正ステップは、上述した温度推定ステップの後に実行される。
 上述した目的関数fは、
Figure JPOXMLDOC01-appb-M000038
で表される。式32において、λ,αはそれぞれ、重み付け関数である。
 式32において、第1の項は、温度の補正値を温度の推定値に近付けるための項であり、第2の項は、熱源位置(d,l)における温度と補正値を求めるべき位置(d,l)における温度との差分であり、第3の項は、熱源位置からの距離の3乗に反比例する項である。温度補正部323は、例えば共役勾配法等の数値計算を行うことにより、式32の目的関数fを最小にするような温度の補正値を求める。これにより、温度推定部205により推定された温度を、熱源位置と対象領域との間の距離が考慮された温度に補正することができる。
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサ等のプログラム実行部が、ハードディスク又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の温度推定方法等を実現するソフトウェアは、次のようなプログラムである。
 即ち、このプログラムは、超音波信号によって前記対象領域をスキャンすることにより得られるスキャン信号を受信し、前記スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が前記対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出ステップと、算出されたエコーシフトに基づいて、超音波信号が前記対象領域を通過する際の移動距離が前記対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出ステップと、算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出ステップと、予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する温度推定ステップをコンピュータに実行させる。
 また、上記プログラムをコンピュータ読み取り可能な不揮発性の記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc(登録商標))及び半導体メモリ等に記録したものでもよい。
 以上、本発明の一つ又は複数の態様に係る温度推定方法、温度推定装置及びプログラムについて、実施の形態1~3について説明したが、本発明は、これら実施の形態1~3に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思い付く各種変形を実施の形態1~3に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。
 本発明は、高精度に温度を推定することができるとともに、広い温度範囲で温度を推定することができる温度推定方法、温度推定装置及びプログラムとして適用することができる。
10 温度推定装置
50 生体
51 対象領域
101 本体部
102 超音波振動子
103 送信部
104 受信部
105,105A,105B 信号処理部
106 表示部
107 制御部
201 前処理部
202 エコーシフト算出部
203 ストレイン算出部
204 ストレインレート算出部
205 温度推定部
301 破損フレーム除去部
302 ノイズフィルタ
303 エコーシフト計算部
304 異常値修正部
305 エコーシフトノイズフィルタ
306 ストレイン計算部
307 ストレインノイズフィルタ
308 ストレインレート計算部
309 ストレインレートノイズフィルタ
310 パラメータ計算部
311 温度計算部
321 メモリ
322,323 温度補正部

Claims (15)

  1.  超音波信号を用いて対象領域の温度を推定する温度推定方法であって、
     超音波信号によって前記対象領域をスキャンすることにより得られるスキャン信号を受信し、前記スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が前記対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出ステップと、
     算出されたエコーシフトに基づいて、超音波信号が前記対象領域を通過する際の移動距離が前記対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出ステップと、
     算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出ステップと、
     予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する温度推定ステップと、を含む
     温度推定方法。
  2.  前記温度推定ステップにおいては、ストレインとストレインレートと温度との関係を示す線形モデル式を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する
     請求項1に記載の温度推定方法。
  3.  さらに、外乱によって前記スキャン信号に生じた破損フレームを除去する前処理ステップを含み、
     前記エコーシフト算出ステップでは、前記前処理ステップにおいて破損フレームが除去されたスキャン信号に基づいて、エコーシフトを算出する
     請求項1又は2に記載の温度推定方法。
  4.  前記エコーシフト算出ステップは、
     受信された前記スキャン信号に基づいて生のエコーシフトを計算するエコーシフト計算ステップと、
     計算された前記生のエコーシフトにおいて温度変化に起因しない異常値を修正することにより、温度変化に起因するエコーシフトを得る異常値修正ステップと、
     前記温度変化に起因するエコーシフトに含まれるノイズをノイズフィルタにより減衰させるノイズ減衰ステップと、を含む
     請求項1~3のいずれか1項に記載の温度推定方法。
  5.  前記異常値修正ステップは、
     前記エコーシフト計算ステップにおいて計算された前記生のエコーシフトに基づいて、予測エコーシフトを計算するためのエコーシフト予測モデルのパラメータを調整するパラメータ調整ステップと、
     最適化された前記エコーシフト予測モデルに基づいて、前記予測エコーシフトを計算する予測エコーシフト計算ステップと、
     前記予測エコーシフト及び前記対象領域をスキャンすることにより得られるRF信号に基づいて、閾値を設定する閾値設定ステップと、
     前記生のエコーシフトの複数のデータポイントのうち、前記閾値を超えた前記異常値であるデータポイントを、前記予測エコーシフトの対応するデータポイントに基づいて修正するデータポイント修正ステップと、を含む
     請求項4に記載の温度推定方法。
  6.  前記エコーシフト予測モデルは、誤差関数又は相補誤差関数である
     請求項5に記載の温度推定方法。
  7.  前記閾値設定ステップは、
     前記閾値としての上側の閾値と下側の閾値との間の間隔を設定する間隔設定ステップと、
     前記RF信号の強度を重みとして用いることにより、前記上側の閾値及び前記下側の閾値を調節する閾値調節ステップと、を含む
     請求項5又は6に記載の温度推定方法。
  8.  前記ストレインレート算出ステップにおいては、
     深さ及び時間の積と深さとに基づいてエコーシフトを予測するためのモデル式を用いて、前記スキャン信号に基づいて算出されたエコーシフトと前記モデル式に基づいて予測されたエコーシフトとの誤差が最小となるように、ストレインレートを算出する
     請求項1~7のいずれか1項に記載の温度推定方法。
  9.  前記ストレインレート算出ステップにおいて用いられる前記モデル式は、線形モデル式である
     請求項8に記載の温度推定方法。
  10.  前記温度推定ステップにおいて用いられる前記線形モデル式のアルゴリズムパラメータは、
     加熱すべき前記対象領域に対して熱電対の位置を位置合わせする位置合わせステップと、
     前記熱電対によって前記対象領域の温度を測定する温度測定ステップと、
     前記対象領域をスキャンすることにより得られる前記スキャン信号に基づいて、前記対象領域の推定温度を導出する推定温度導出ステップと、
     前記温度測定ステップにおいて測定された温度と前記推定温度導出ステップにおいて導出された推定温度との誤差が最小となるように、前記アルゴリズムパラメータを同定するアルゴリズムパラメータ同定ステップと、を実行することにより同定される
     請求項2に記載の温度推定方法。
  11.  前記位置合わせステップは、
     Bモード画像によって、加熱すべき前記対象領域に対して前記熱電対の位置を位置合わせするステップと、
     前記対象領域の温度を変化させるために、超音波信号を出力する加熱源を作動させるステップと、
     前記加熱源を空間内で変位させながら、前記熱電対によって前記対象領域の温度を測定するステップと、
     前記熱電対により測定された温度が最小となったときに前記加熱源の変位を停止させるステップと、を含む
     請求項10に記載の温度推定方法。
  12.  さらに、温度の空間的な連続性を考慮した目的関数に基づいて、前記温度推定ステップにより推定された温度を補正する温度補正ステップを含む
     請求項1~11のいずれか1項に記載の温度推定方法。
  13.  さらに、加熱用の超音波信号により加熱された熱源位置と前記対象領域との間の距離を考慮した目的関数に基づいて、前記温度推定ステップにより推定された温度を補正する温度補正ステップを含む
     請求項1~11のいずれか1項に記載の温度推定方法。
  14.  超音波信号を用いて対象領域の温度を推定する温度推定装置であって、
     超音波信号によって前記対象領域をスキャンすることにより得られるスキャン信号を受信し、前記スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が前記対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出部と、
     算出されたエコーシフトに基づいて、超音波信号が前記対象領域を通過する際の移動距離が前記対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出部と、
     算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出部と、
     予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する温度推定部と、を備える
     温度推定装置。
  15.  超音波信号を用いて対象領域の温度を推定するためのプログラムであって、
     超音波信号によって前記対象領域をスキャンすることにより得られるスキャン信号を受信し、前記スキャン信号に基づいて、超音波信号が前記対象領域を通過するのに要する時間が前記対象領域の温度に依存して変化する変化量であるエコーシフトを算出するエコーシフト算出ステップと、
     算出されたエコーシフトに基づいて、超音波信号が前記対象領域を通過する際の移動距離が前記対象領域の温度に依存して見かけ上変化する変化割合であるストレインを算出するストレイン算出ステップと、
     算出されたストレインに基づいて、ストレインの時間的な変化割合であるストレインレートを算出するストレインレート算出ステップと、
     予め定められたストレインとストレインレートと温度との関係を用いて、算出されたストレイン及びストレインレートに対応する前記対象領域の温度を推定する温度推定ステップと、をコンピュータに実行させる
     プログラム。
PCT/JP2012/002326 2011-04-07 2012-04-03 温度推定方法、温度推定装置及びプログラム WO2012137488A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012533401A JPWO2012137488A1 (ja) 2011-04-07 2012-04-03 温度推定方法、温度推定装置及びプログラム
US13/698,823 US20130066584A1 (en) 2011-04-07 2012-04-03 Temperature estimation method, temperature estimation apparatus, and program thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-085719 2011-04-07
JP2011085719 2011-04-07

Publications (1)

Publication Number Publication Date
WO2012137488A1 true WO2012137488A1 (ja) 2012-10-11

Family

ID=46968897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002326 WO2012137488A1 (ja) 2011-04-07 2012-04-03 温度推定方法、温度推定装置及びプログラム

Country Status (3)

Country Link
US (1) US20130066584A1 (ja)
JP (1) JPWO2012137488A1 (ja)
WO (1) WO2012137488A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106264607A (zh) * 2016-09-18 2017-01-04 天津大学 基于时间信号偏移的实时超声波温度成像方法及设备
JP2018501875A (ja) * 2014-12-30 2018-01-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 患者特有超音波熱歪温度較正

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130051241A (ko) * 2011-11-09 2013-05-20 삼성전자주식회사 진단영상을 생성하는 방법, 이를 수행하는 장치 및 의료영상시스템
KR20130075533A (ko) * 2011-12-27 2013-07-05 삼성전자주식회사 온도 추정 방법 및 이를 이용한 온도 추정 장치
CN106999159B (zh) * 2014-11-18 2020-08-14 皇家飞利浦有限公司 用于将组织性质可视化的装置
CN109975477A (zh) * 2017-12-27 2019-07-05 科仕环境控制设备(上海)有限公司 一种窄带物联网空气质量传感器装置及处理方法
CN110569567B (zh) * 2019-08-21 2023-02-28 中南大学 焦炉火道温度的测量方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122923A (ja) * 1986-11-13 1988-05-26 Agency Of Ind Science & Technol 超音波測温装置
JP2001145628A (ja) * 1999-11-19 2001-05-29 Aloka Co Ltd 音波計測装置
US20070106157A1 (en) * 2005-09-30 2007-05-10 University Of Washington Non-invasive temperature estimation technique for hifu therapy monitoring using backscattered ultrasound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401975C (zh) * 2004-06-04 2008-07-16 北京源德生物医学工程有限公司 超声反演法测量人或动物体内的温度
US7894874B2 (en) * 2006-05-08 2011-02-22 Luna Innovations Incorporated Method and apparatus for enhancing the detecting and tracking of moving objects using ultrasound
US9399148B2 (en) * 2009-06-02 2016-07-26 Koninklijke Philips N.V. MR imaging guided theraphy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122923A (ja) * 1986-11-13 1988-05-26 Agency Of Ind Science & Technol 超音波測温装置
JP2001145628A (ja) * 1999-11-19 2001-05-29 Aloka Co Ltd 音波計測装置
US20070106157A1 (en) * 2005-09-30 2007-05-10 University Of Washington Non-invasive temperature estimation technique for hifu therapy monitoring using backscattered ultrasound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501875A (ja) * 2014-12-30 2018-01-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 患者特有超音波熱歪温度較正
CN106264607A (zh) * 2016-09-18 2017-01-04 天津大学 基于时间信号偏移的实时超声波温度成像方法及设备
CN106264607B (zh) * 2016-09-18 2019-10-25 天津大学 基于时间信号偏移的实时超声波温度成像方法及设备

Also Published As

Publication number Publication date
JPWO2012137488A1 (ja) 2014-07-28
US20130066584A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
WO2012137488A1 (ja) 温度推定方法、温度推定装置及びプログラム
JP6737889B2 (ja) 粘弾性媒体の粘弾性パラメータ検出方法及び装置
JP2019524221A5 (ja)
WO2020044769A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2004527351A (ja) 誤差補正を用いるmriベースの温度マッピング
US8734350B2 (en) System and method for correcting errors in shear wave measurements arising from ultrasound beam geometry
JPH01299537A (ja) 音響特性測定装置及び測温装置
BR112017023279B1 (pt) Método e dispositivo de detecção de elasticidade
US10085714B2 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
KR20150114419A (ko) 초음파에 의한 열치료 절제 검출
Schneider et al. Ex vivo cortical porosity and thickness predictions at the tibia using full-spectrum ultrasonic guided-wave analysis
US20130116562A1 (en) Method and apparatus for generating diagnostic image and medical image system
JP6185670B2 (ja) 対象体の弾性特性を獲得する方法及びその装置
KR20150096272A (ko) 조직의 온도 제어 방법 및 이를 이용한 온도 제어 장치
JP2012200386A (ja) 超音波診断装置
CN112799078B (zh) 一种剪切波传播速度的检测方法、系统和超声成像设备
JP7357007B2 (ja) 熱アブレーションのレベルを推定するための装置及び方法
Nagaoka et al. Modified high-resolution wavenumber analysis for detection of pulse wave velocity using coefficient of variation of arterial wall acceleration waveforms
US20130165779A1 (en) Temperature estimation method and temperature estimation apparatus using the same
US20140364740A1 (en) Ultrasound measurement apparatus and ultrasound measurement method
WO2019187647A1 (ja) 超音波診断装置および超音波診断装置の制御方法
Foiret et al. Spatial and temporal control of hyperthermia using real time thermal strain imaging with motion compensation
WO2017122411A1 (ja) 超音波診断装置および音速定量化方法
KR102176049B1 (ko) 전단파를 이용하는 비파괴 방식의 조직공학용 지지체 물성측정장치 및 방법
Zambacevičienė et al. RF Ultrasound Based Longitudinal Motion Estimation of Carotid Artery Wall: Feasibility Study

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012533401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13698823

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768351

Country of ref document: EP

Kind code of ref document: A1