JP2004527351A - 誤差補正を用いるmriベースの温度マッピング - Google Patents

誤差補正を用いるmriベースの温度マッピング Download PDF

Info

Publication number
JP2004527351A
JP2004527351A JP2003500592A JP2003500592A JP2004527351A JP 2004527351 A JP2004527351 A JP 2004527351A JP 2003500592 A JP2003500592 A JP 2003500592A JP 2003500592 A JP2003500592 A JP 2003500592A JP 2004527351 A JP2004527351 A JP 2004527351A
Authority
JP
Japan
Prior art keywords
temperature change
unheated
heated
measured
distinct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003500592A
Other languages
English (en)
Inventor
デビッド フロイントリヒ
イェルカム シャピラ
Original Assignee
インサイテック−テキソニックス リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インサイテック−テキソニックス リミテッド filed Critical インサイテック−テキソニックス リミテッド
Publication of JP2004527351A publication Critical patent/JP2004527351A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4804Spatially selective measurement of temperature or pH

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

熱処理を受ける組織塊の加熱部分の磁気共鳴温度変化モニタリングは、熱MR画像化の間に、塊の運動および/または磁場の一時的な変化によって引き起こされた誤った温度変化計測を補償することによって正確に達成される。この補償は、加熱部分の隣接に配置された組織塊の1つ以上の未加熱部分の「明瞭な温度変化計測」を減算除去することに基づき、これにより、組織塊領域の温度バイアスマップを形成する。磁気共鳴画像化技術を用いて組織塊の加熱部分の温度の変化をモニタリングするための制御システムであって、加熱部分の明瞭な温度変化を計測し、加熱部分の隣接部において配置された組織塊の未加熱部分の明瞭な温度変化を計測するように構成され、制御システムが、未加熱部分の計測された明瞭な温度変化に少なくとも部分的に基づいて加熱部分の計測された明瞭な温度変化を調整するようにさらに構成されることを特徴とする。

Description

【技術分野】
【0001】
(発明の背景)
(1.発明の分野)
本発明は概して、磁気共鳴画像(MRI)技術を用いて組織を画像化するためのシステムおよび方法に関し、より詳細には、温度計測のために使用されたMR画像の取得の間に、組織塊(tissue mass)の動きならびに/あるいは磁場強度または磁場均一性の動的変化に起因する誤差を補償することによって加熱された組織塊の高精度な温度計測を取得することに関する。
【背景技術】
【0002】
(2.背景)
癌腫瘍等の特定のタイプの組織は、加熱によって破壊され得る。これらの組織を加熱するための1つの従来の方法は、レーザエネルギー(例えばカテーテルによって運ばれたレーザ源)を組織に向けることによるものである。別の従来の方法は、例えば圧電トランスデューサの整相アレイ(phased−array)を用いて、組織に高強度の超音波をフォーカスすることである。これらのアプローチの両方は、組織を除去するための侵襲性の手術に対する必要性を低減するかまたは取り除きさえもする。
【0003】
処理に対する決定的な重要性は、標的組織構造または加熱されるその組織構造の一部を死滅させるために超音波エネルギーの各印加の間に、十分な温度に到達されたことを検証することである。これは、MR画像化技術を用いる加熱プロセスの間に加熱される組織構造の部分の温度変化(上昇)を計測することによってなされ得る。MR技術を用いる温度変化を計測する1つの公知の方法は、水分子の(in water)プロトン共鳴周波数(PRF)の温度依存性を利用する。PRFの温度依存性は、主に、水分子の水素結合の温度に起因する切断、伸縮または変角に主に起因する。純水の温度依存性は、0.0107ppm/℃、および他の水性組織(water−based tissue)がこの値に近い。
【0004】
MRI装置内の不均質な磁場のために、絶対PRF計測は可能ではない。その代わり、PRFの変化は、最初に熱の送達前にMR画像を撮影し、そして以後の計測からこの基線値を減算することによって計測される。特に、全体の画像化時間が、比較的安定であるように維持するために、基線値に対して比較的短くしなければならない。なぜなら、磁場のドリフトが経時的に発生し得るためである。
【0005】
次いで、PRFの温度に起因する変化が、MR信号の位相変化または所定のMR画像化シーケンスの周波数シフトの変化を計測することによって推定される。不幸にも、MR画像化プロセスの間に、画像化されるオブジェクトの運動、あるいは磁場強度および/または不均一性の動的変化はまた、位相シフトを導き得る。位相シフトは、温度に起因する位相シフトと誤解され得る。その結果、所与の位相シフトは、獲得された画像間の温度変化、動き、磁場の変化、またはいくつかのこれらの組み合わせの内の任意の1つに起因し得る。このあいまいさは、加熱される組織塊からのMR信号に依存するのみである組織塊の温度変化を決定することを困難にする。このような動きおよび不均一な磁場の「歪み」は、それ自体または組み合わせて作用する異なる原因(患者の動き、動的な器官の呼吸または運動(例えば心臓)、あるいは、標的組織領域内にまたはそこに隣接して位置する血管を介した血の運動)を有し得る。
【発明の開示】
【課題を解決するための手段】
【0006】
(発明の要旨)
本発明の一般的な局面によると、熱処置を受ける組織塊の加熱部分のMR温度変化モニタリングは、加熱部分の隣接部に位置付けられた組織塊の1つ以上の未加熱部分から生じた同様の明瞭な温度変化計測を減算除去することによって、MR画像の獲得の間の塊の運動および/または磁場変化によって引き起こされた明瞭な温度変化計測を補償するように調整されることにより、組織塊領域の温度バイアスマップを形成する。
【0007】
本発明の一つのインプリメンテーションは、磁気共鳴画像技術を用いて加熱部分の温度変化を決定するために構成されたシステムである。
【0008】
一実施形態では、システムは、塊の加熱部分の温度の明瞭な変化を計測し、加熱部分の隣接部に位置付けられた塊の未加熱部分の明瞭な温度変化を計測し、そして未加熱部分の温度の計測された明瞭な変化に少なくとも部分的に基づいた加熱部分の温度の計測された明瞭な変化を調整するための手段を含む。
【0009】
一実施形態では、塊の加熱部分および未加熱部分の各々の温度の明瞭な変化は、加熱部分が加熱される前後の両方の温度に関連した特性を計測することによって決定され、次いで、計測された特性の変化に基づく温度変化を導く。非制限例によって、計測された特性は各部分から放出された電磁波信号の位相であり得、明瞭な温度変化は、信号内の位相シフトから導かれる。
【0010】
温度変化の計測の精度を増大させるために、加熱部分の隣接部の塊の複数の未加熱部分の明瞭な温度変化が加熱部分の領域の温度バイアスフィールドをより正確に識別するために使用され得る。いくつかの温度エネルギー伝達によって引き起こされた加熱部分に直接隣接する未加熱部分の明瞭な温度変化の影響を低減するために、加熱部分に対する未加熱部分の相対場所もまた考慮され得る。
【0011】
本発明の他の局面および特徴が開示され説明された好適な実施形態の観点から明らかになる。
【0012】
図は本発明の好適な実施形態の設計および有用性の両方を示す。
【発明を実施するための最良の形態】
【0013】
(好適な実施形態の詳細な説明)
本発明の局面および特徴は、位相シフトに基づく温度変化計測(すなわち、PRFシフトに依存する)を利用する磁気共鳴画像化技術に関してここで説明される。当業者に明らかであるように、本発明の局面、概念、および特徴が、他の磁気共鳴温度変化画像化技術に等しく適用可能である。従って、本発明は、そのような明示的な限定記載が特定の特許請求の範囲の文言に含まれない限り、PRFシフトの実施形態に限定されない。
【0014】
用語「隣接部」は、本明細書中では、例えば、磁気共鳴画像内の所与のアレイサイズのピクセル等の位置的領域を記述するために使用される。用語は幅広く構成され、「隣接部」であると考えられ得る領域の大きさに関する限定がなされない。第1のオブジェクトが第2のオブジェクトの「隣接部に」存在するとする場合、第1のオブジェクトが第2のオブジェクトのほぼ近傍に配置されるが、必ずしも第2のオブジェクトと直接接触し、隣接し、または近くにある必要はなく、「隣接部に」は、このような可能性を含むことを意味しているに過ぎない。
【0015】
用語「明瞭な」は、本明細書中では、オブジェクトの磁気共鳴画像化が、オブジェクトがある期間にわたって温度変化したことを示す(例えばPRFシフトによって示されたような)場合、計測された温度変化を修正または説明するために使用される。示された温度変化は、実際には部分的にまたは完全に温度バイアスフィールドの結果であり得るために(すなわち、オブジェクトの実際の温度が変更されないか、または少なくとも画像化結果によって示されたのと同じ程度に変更されていない)、この変化は「明瞭な」と呼ばれる。特に、「明瞭な」の使用は、計測された温度変化が補正されるかまたは実質的に補正される可能性を除外しない。従って、用語「明瞭な」は限定されないが、誤差が温度変化計測において存在する場合に用語が不確定になる場合には、より明確に識別するためのみに使用される。
【0016】
本発明の一般的な局面によると、被検体の動きおよび/またはMRI磁場の時間変動の不規則性に関連付けられ得るバイアス温度フィールドによってPRFシフト計測が影響されることが観測されてきた。このバイアス温度フィールドの変動は、MR画像の所与の局所的な隣接部において一般的にほぼ直線である(例えば、組織塊で加熱部分または「スポット」のピクセルの100×100ブロックにおいて)。
【0017】
例示の目的のために、図1および図2は、組織塊領域の磁気共鳴画像14のx軸に沿った相対的な位置の関数であるバイアス温度フィールド12を示す。バイアス温度フィールド12はまた、画像のy軸に沿った位置に依存し得るが、この依存性は、図示の容易さのために図において説明されない。特に、バイアス温度フィールド12(ほぼ直線として示される)は、実際の温度変化によるものではないが、その代わりMRI磁場の時間変動の動きおよび/または不規則性によるものである組織塊の第1の画像と第2の(以後)画像との間のPRFシフトとして示される「明瞭な」温度変化の量を表す。バイアス温度フィールド12のために、加熱される組織領域の部分10のための位相に基づく温度変化計測は、位置依存性であるバイアス誤差を含む。言い換えると、温度変化計測におけるバイアス誤差の量は、加熱部分10がバイアス温度フィールド12に配置される関数である。
【0018】
例えば、図1に示されるように、加熱部分10は、x軸に沿った位置p1において配置される場合、加熱部分の中心C1に対応するバイアス誤差はT1である。しかし、加熱部分10が位置p2(図2に示されるようにx軸に沿った位置P1の右側にある)において配置される場合、塊10の中央c2に対応するバイアス誤差はT2となる。その結果、温度変化計測Tmが取得される場合、それは、加熱部分10の中心が位置c1に配置される場合にΔ1の温度上昇、加熱部分10の中心が位置c2に配置される場合にΔ2の温度上昇、または加熱部分10の中心が位置c1とc2との間のいずれかに配置される場合にΔ1およびΔ2の間のいずれかの温度上昇に対応する。
【0019】
図1および図2におけるバイアス温度フィールドが図の簡略化のために2次元および直線として示されるが、実際には、このフィールドは、3次元空間で変化し得、そしてx軸またはy軸のいずれかに沿った直線または平面ではないかもしれないことが当業者に理解される。さらに、バイアス誤差を加熱部分の中央において計測することは近似であり、そして実際のバイアス誤差が組織領域の加熱部分の境界によって定義された3次元量の積分としてより正確に表されることが理解される。従って、加熱部分に導入されたバイアス誤差は、組織塊の加熱部分における特定の点のxおよびy位置の両方の関数である。
【0020】
この観測を意図的に行うと、本発明の一般的な局面は、制御システムがバイアス温度フィールドの影響を補償するアルゴリズムを、熱処理の間モニタリングするMR温度変化の一部として利用することである。このようなアルゴリズムの一実施形態は図3に示される。
【0021】
図3を参照すると、互いに取得されるステップS51〜S54の目的は、加熱される組織塊を含むMR画像領域におけるバイアス温度フィールドの性質を決定することである。一旦、バイアス温度フィールドの性質が決定されると、バイアス誤差の寄与は、ステップS55〜S56において実行されたように、組織塊の加熱部分の温度変化計測において補償され得る。
【0022】
ステップS51では、バイアス温度フィールドが加熱部分の隣接において配置された加熱されない(「未加熱部分」)組織塊の複数の部分において計測される。単一の未加熱部分に関する限りでは、バイアス温度変化を計測することは本発明の範囲内にあると企図されるが、システムが、バイアス温度フィールドをより正確に特徴付けるために、複数の未加熱部分に対するバイアス温度変化を計測することが好ましい。
【0023】
この目的のために、線形バイアスフィールドを評価するためには、少なくとも2つのバイアス温度変化(または単に「バイアス」)、および好ましくは異なる場所における組織塊の異なる3つの未加熱部分が必要であり、好ましくは互いにできる限り離れている計測された領域を有している。より好ましくは、バイアスは、バイアス温度フィールドのより正確な特性を提供するために3つより多い未加熱部分に対して計測される。
【0024】
図4をさらに参照すると、1つの好適なアプローチは、矩形領域20の角をほぼ形成する4つの点24および領域20の各面の中央付近の4つの点26におけるバイアスを計測することである。好ましくは、選択された点24、26は、領域20の実際の輪郭からずれており、計測された点の周辺の「近接部の平均化」を可能にし、かつ境界過渡を避けることの両方を行う。例えば、選択された点24、26は、領域20の境界から約20ピクセル離れて配置され得る。
【0025】
選択された未加熱部分24、26の各々に対するバイアスは、各部分において単一の画像ピクセルを計測することによって決定され得る。あるいは、ランダムな局所的なノイズの効果を低減するために、選択された部分24、26に対するバイアスは、各部分に直接隣接して配置された各複数のピクセルを計測することによって決定され得る。例えば、各部分24、26を取り囲む5×5ブロックのバイアスが計測され得る。次いで、取り囲まれているピクセルの平均計測が計算され、対応する未加熱部分に対する温度計測として使用される。当業者に理解されるように、任意の数のピクセルが誤差補償プロセス対追加されたシステム複雑さの所望の精度に依存して使用され得る。代替の実施形態では、別のノイズ低減アルゴリズムは、取り囲んでいるピクセルの計測のメジアンを取ること等によって平均計測を使用する代わりに使用され得る。メジアンは特に効率的である。なぜなら、
「ノイズの多い」範囲外の場所の影響を完全に無視するためである。
【0026】
ステップS52では、ステップS51における各未加熱部分に対して決定されことを読み取るバイアス温度変化が閾値と比較される。予測された実際のバックグランド温度変化から大幅に異なる計測(例えばヒト被験者に対して37℃)が棄却される。使用された閾値の値が、例えば、理論的には、予測されたバイアス温度変化よりも低くそしてその温度よりも高く設定され得る。
【0027】
あるいは、閾値は、全体の画像にわたって実行された前述の計測に基づいて設定され得る。例えば、その領域全体にわたる全てのピクセルの値のサンプルのヒストグラムが作成され得、そして母集団の20THおよび80THの百分位数の値が、より低いおよびより高い閾値として使用され得る。任意に、これらの平均からのこれらの統計的な値の偏差が、例えば、以下の式を用いて所定の係数によって乗算され得る。
THLO=P20−KLO*(Mean−P20
THHI=P80−KHI*(P80−Mean)
ここで、THLO=THHIは、それぞれ低閾値および高閾値であり、P20およびP は、それぞれヒストグラムからの20THおよび80THの百分位数のサンプルの値であり、KLOおよびKHIは、それぞれ低閾値および高閾値に対する所定の係数である。「Mean」は、ヒストグラムにおける全てのサンプルの平均である。
【0028】
ステップS52では、ピクセルのブロック内の未加熱部分の温度の標準偏差もまた計算され得る。標準偏差が選択された閾値(例えば1〜5℃)を超えるブロック内の温度のサンプルは、「あまりにもノイズが多い」場所、あるいは血流または任意の他の理由による大規模な磁場不均一が存在する場所において計測された場合に拒否され得る。
【0029】
代替の実施形態では、ステップS52において閾値テストを、各選択された部分に対してステップS51において獲得された温度に適用する代わりに、閾値テストは、各個々のピクセルに対してピクセル毎をベースとして適用され得る。これらの実施形態では、任意の1つのピクセルがステップS51におけるノイズ低減アルゴリズムによって処理される前に、上閾値および下閾値と比較され、そしてこのピクセルがこれらの閾値の外部になる場合、棄却される。次いで、各部分に対するこのノイズ低減計算(例えば、平均、メジアン等)は、棄却されないこれらのピクセルのみを用いて計算され得る。
【0030】
ステップS53では、加熱部分22に近すぎる部分に対するバイアス温度計測が棄却される(すなわち、選択された未加熱部分24、26の内の任意の1つが加熱部分22の最大可能な寸法(例えば、約20mm)よりも近い場合)。いくつかの実施形態では、隣接または「近すぎる」未加熱部分から読み取る計測は、加熱部分22からさらに離れている他の未加熱部分からバイアス計測によって置換され得る。もちろん、加熱部分22の位置が前もって知られていない状況(例えば、システム構成ステージ)では、このステップがスキップされ得る。このような状況では、ステップS51におけるピクセルのより大きいブロックを使用し、そしてメジアンを使用してこれらのピクセルを処理することが好ましい。加熱部分22がフィルタリング隣接部の半分よりも著しく小さい限り、加熱されるピクセルは、メジアンによって無視される。特に、精密な温度計測は、通常、システム較正ステージで必要とされない。従って、加熱部分が正確に予測されない場合のバイアスフィールド推定の問題は、制限された重要性である。
【0031】
ステップS54では、ステップS52およびS53において除去されなかった全ての部分からのバックグランド温度計測が、バイアス温度フィールドのパラメータを推定するために使用される。バイアス温度フィールドが加熱される部分の近傍における局所的な領域にわたってほぼ直線状であるために、以下の式は、局所的な領域のマップにわたるバイアス温度変化を記述するために使用され得る。
BIAS(x,y)=A+Bx+Cy
ここで、A、B、およびCは定数であり、TBIASは、任意の所与の場所(x,y)に対する計算されたバイアス値である。この式は未知の値を含むので、3つの計測が直線上で得られない場合、3つの異なる位置におけるフィールドの3つの計測は、パラメータA、B、およびCの値を生じるのに十分である。
【0032】
しかし、より良好な推定を獲得するために、多数の計測を収集し、パラメータA、B、およびCについて解くためにこれらの計測を使用すること(ステップS51と共に上述されたように)が好ましい。バイアス温度フィールドを近似する式が直線であるために、最小自乗推定を用いることがフィールドを特徴付けるために適切な方法である。
【0033】
代替的な数学アプローチが、当業者に理解されるようにフィールドを特徴付けるために使用され得る。例えば、バイアスフィールドマップの非線形モデルが使用され得(例えば、二次依存性(quadratic dependence)を有する)、フィールドを記述するパラメータに対する解が、例えば最小自乗推定の反復スキームを用いて見出され得る。これらのアプローチは、明らかにより多くの計測点(例えば、二次依存性を有するフィールドマップに対して少なくとも6つの点)を必要とする。
【0034】
ステップS55において決定されたバイアス温度フィールド特性を用いると、温度変化計測が組織塊の加熱される部分において配置されたピクセルに対してなされる。あるいは、温度変化計測が加熱部分のすぐ近傍に配置され、そして例えば、ピクセルの5×5ブロックからの平均またはメジアンを形成することによってランダムノイズを除去するために処理されたブロック内の各ピクセルに対してなされ得る。
【0035】
ステップS56では、加熱部分に対する温度変化計測は、加熱部分の領域において存在するバイアス温度フィールドの値を保証するために調整される。これは、好ましくは、フィールドを記述するパラメータに基づいて計測された量の各点において存在するバイアス温度フィールドの値を計算し、その後その点に対するバイアス温度計測から計算された値を減算することによって達成される。マップ内の任意の場所(x,y)におけるこの補正された温度計測は、以下の式によって表され得る。
BEST−ESTIMATE(x,y)=TMEASURED(x,y)−TBIAS(x,y)
ここで、TMEASUREDは、MR画像から直接計測された値であり、TBIASは、フィールドのマップに基づいた関心のある場所に対して計算されたバイアス値であり、そしてTBEST−ESTIMATEは、関心のある場所における実際の温度変化に対する最終推定である。線形モデルが温度マップとして使用される場合、位置(x,y)において配置された点に対してこれは以下の式と等価である。
【0036】
BEST−ESTIMATE=TMEASURED−(A+Bx+Cy)
【0037】
式{A+B x+C y}が代替的に使用され得る(「i」の下付き文字は、計測された量内に満たされた温度を表す画像内の点のそれぞれわたって延びている(running over)カウンタを指す)。全体の温度バイアスフィールドの計算は、フィールド(すなわち、冷たい(cold)温度バックグランド)全体にわたるバイアス「温度変化」が予測されることを補償するために有用である。
【0038】
上述の実施形態は、温度処置手順の間に組織塊の加熱部分のより正確な温度変化計測を有利に提供し、これにより十分な熱が標的組織に送達され、さらにフィールド付近の健康な組織に関連するリスクを低減するための制御システムによってより正確な制御を可能にする。
【0039】
上述のアルゴリズムは、好ましくは、適切にプログラムされた画像プロセッサ(例えば、MRI誘導(guided)熱処置システムに関連付けられたコンピュータまたはマイクロプロセッサ)を有する制御システムにおいてインプリメントされる。例えば、このプログラムは、ハードドライブ、フロッピー(R)ディスク、CD−ROM、RAM、ROM、EPROM、EEPROM等を含む任意の適切なデータ記憶媒体に格納され得る。随意に、既存の画像プロセッサは、上述のアルゴリズムをインプリメントするために再プログラムされ得る。
【0040】
本発明が上述の好適な実施形態の点から記述されそして説明されてきたが、添付の特許請求の範囲およびその均等物によってのみ規定されたように本発明の範囲から逸脱することなく、種々の改変がこれらの実施形態に対してなされ得、そして種々の均等物が置換され得ることが当業者に理解される。
【図面の簡単な説明】
【0041】
【図1】図1は、温度バイアスフィールドにおける第1の位置に配置された塊の加熱部分と共に、処置される組織塊の領域における温度バイアスフィールドを示すグラフである。
【図2】図2は、温度バイアスフィールドにおける第2の位置に配置された塊の加熱部分と共に、処置される組織塊の領域における温度バイアスフィールドを示すグラフである。
【図3】図3は、加熱部分を囲む温度バイアスフィールドによる誤差を調整することによって組織塊の加熱部分の温度変化を決定するために本発明を具現化する制御システムによってインプリメントされた好適なアルゴリズムのフローチャートである。
【図4】図4は、組織塊において加熱される特定の部分および加熱部分を囲む隣接領域の図である。

Claims (17)

  1. 磁気共鳴画像化技術を用いて組織塊の加熱部分の温度の変化をモニタリングするための制御システムであって、
    該加熱部分の明瞭な温度の変化を計測し、
    該加熱部分の隣接部において配置された組織塊の未加熱部分の明瞭な温度の変化を計測するように構成され、
    該制御システムが、該未加熱部分の計測された明瞭な温度の変化に少なくとも部分的に基づいて該加熱部分の該計測された明瞭な温度の変化を調整するようにさらに構成されることを特徴とする、制御システム。
  2. 各加熱部分および未加熱部分の明瞭な温度の変化が、
    各部分に対して、該加熱部分が加熱される前に、温度に関連した特性を計測し、
    各部分に対して、該加熱部分が加熱された後に、該同じ特性を計測し、
    各部分に対して、変化がある場合、該計測された特性における変化に基づいて明瞭な温度変化値を導くことによって計測される、請求項1に記載のシステム。
  3. 前記計測された特性が、前記各部分から放出された電磁波信号の位相であり、前記明瞭な温度変化値が前記各信号の位相シフトから導かれる、請求項2に記載のシステム。
  4. 前記加熱部分の計測された明瞭な温度の変化は、該加熱部分の計測された明瞭な温度変化から前記未加熱部分の計測された明瞭な温度変化を減算することによって調整される、請求項3に記載のシステム。
  5. 前記システムは、
    前記加熱部分の隣接部において配置された組織塊の複数の未加熱部分の各々の明瞭な温度変化を計測し、
    該加熱部分の明瞭な温度変化を計測し、
    該未加熱部分の計測された明瞭な温度の変化に少なくとも部分的に基づいて該加熱部分の計測された温度の変化を調整するように構成される、請求項1に記載のシステム。
  6. 前記加熱部分および前記未加熱部分の各々の明瞭な温度の変化が、
    各部分に対して、該加熱部分が加熱される前に、温度に関連した特性を計測し、
    各部分に対して、該加熱部分が加熱された後に、同じ特性を計測し、
    各部分に対して、変化がある場合、該計測された特性における変化に基づいて明瞭な温度変化値を導くことによって計測される、請求項5に記載のシステム。
  7. 前記複数の未加熱部分は、4つの未加熱部分を含み、該未加熱の4つの部分は、矩形の4つの角をほぼ含み、該加熱部分は、該矩形内部に配置される、請求項5に記載のシステム。
  8. 各未加熱部分は、画像化された場合、複数のピクセルを含み、各未加熱部分の前記明瞭な温度変化は、該各々の部分の各ピクセルに対する明瞭な温度変化値を計測し、そして前記値の平均を計算することによって決定される、請求項5に記載のシステム。
  9. 各未加熱部分は、画像化された場合、複数のピクセルを含み、各未加熱部分の前記明瞭な温度変化は、該各々の部分の各ピクセルに対する明瞭な温度変化値を計測し、そして前記値のメジアンを計算することによって決定される、請求項5に記載のシステム。
  10. 前記加熱部分の明瞭な温度の変化は、前記計測が所定の最大閾値を超えるか、または所定の最小閾値未満にある場合、任意の未加熱部分に対する明瞭な温度変化計測を棄却することによって調整される、請求項5に記載のシステム。
  11. 前記システムは、
    前記未加熱部分の明瞭な温度変化計測の標準偏差を計算し、
    前記加熱部分の計測された温度変化を調整する際に、該計測は該計算された標準偏差を超える場合、任意の未加熱部分に対する明瞭な温度変化計測を棄却するようにさらに構成された、請求項5に記載のシステム。
  12. 前記加熱部分の計測された温度の明瞭な変化が、該加熱部分に直接隣接して配置された任意の未加熱部分に対する明瞭な温度変化計測を放棄することによって調整される、請求項5に記載のシステム。
  13. 前記加熱部分の温度の計測された明瞭な変化が、該加熱部分から所定の距離内部に配置された任意の未加熱部分に対する明瞭な温度変化計測を棄却することによって調整される、請求項5に記載のシステム。
  14. 前記所定の距離は、画像化された場合、約20ピクセルである、請求項13に記載のシステム。
  15. 前記システムは、
    前記加熱された部分の隣接部において配置された塊の複数の未加熱部分の各々の明瞭な温度変化を計測し、
    該複数の未加熱部分の計測された明瞭な温度変化に基づいてバイアス温度フィールドの特性を決定し、
    該加熱部分の明瞭な温度変化を計測し、
    該決定されたバイアス温度フィールド特性に基づいて該加熱部分の位置に対応するバイアス温度変化値を計算し、
    該計算されたバイアス温度変化値に基づいて該加熱部分の温度変化計測を調整するように構成された、請求項1に記載のシステム。
  16. 前記塊の少なくとも3つの未加熱部分の明瞭な温度変化が計測され、前記バイアス温度フィールドの前記特性が、該未加熱部分の該温度変化計測および該少なくとも3つの未加熱部分の磁気共鳴画像化における各x、y位置に基づいた式
    BIAS(x,y)=A+Bx+Cy
    に対するパラメータA、B、およびCを計算することによって決定される、請求項15に記載のシステム。
  17. 前記加熱部分の位置に対応する前記バイアス温度変化値は、前記計算されたパラメータA、B、およびC、ならびに前記画像化における前記加熱された部分のx、y位置を使用する式TBIAS(x,y)=A+Bx+Cyに基づいて計算され、
    該加熱部分の温度変化計測は、前記明瞭な温度計測から該計算されたバイアス温度変化値を減算することによって調整される、請求項16に記載のシステム。
JP2003500592A 2001-05-30 2002-05-28 誤差補正を用いるmriベースの温度マッピング Pending JP2004527351A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/871,464 US6559644B2 (en) 2001-05-30 2001-05-30 MRI-based temperature mapping with error compensation
PCT/IL2002/000418 WO2002097466A1 (en) 2001-05-30 2002-05-28 Mri-based temperature mapping with error compensation

Publications (1)

Publication Number Publication Date
JP2004527351A true JP2004527351A (ja) 2004-09-09

Family

ID=25357496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003500592A Pending JP2004527351A (ja) 2001-05-30 2002-05-28 誤差補正を用いるmriベースの温度マッピング

Country Status (4)

Country Link
US (1) US6559644B2 (ja)
EP (1) EP1405093A1 (ja)
JP (1) JP2004527351A (ja)
WO (1) WO2002097466A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114927A1 (ja) * 2012-01-30 2013-08-08 株式会社日立メディコ 磁気共鳴撮影装置

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1229839A4 (en) 1999-10-25 2005-12-07 Therus Corp USING FOCUSED ULTRASOUND FOR VASCULAR SEALING
US6626855B1 (en) 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US8088067B2 (en) * 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
US7611462B2 (en) * 2003-05-22 2009-11-03 Insightec-Image Guided Treatment Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
US7377900B2 (en) * 2003-06-02 2008-05-27 Insightec - Image Guided Treatment Ltd. Endo-cavity focused ultrasound transducer
JP4639045B2 (ja) * 2003-07-11 2011-02-23 財団法人先端医療振興財団 磁気共鳴断層画像法による自己参照型・体動追従型の非侵襲体内温度分布計測方法及びその装置
US6995559B2 (en) * 2003-10-30 2006-02-07 Ge Medical Systems Global Technology Company, Llc Method and system for optimized pre-saturation in MR with corrected transmitter frequency of pre-pulses
CN1993628B (zh) 2004-08-02 2011-05-04 皇家飞利浦电子股份有限公司 一种磁共振成像系统和计算温度差值图的方法
US8409099B2 (en) 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
US20060064002A1 (en) * 2004-09-20 2006-03-23 Grist Thomas M Method for monitoring thermal heating during magnetic resonance imaging
US7918795B2 (en) 2005-02-02 2011-04-05 Gynesonics, Inc. Method and device for uterine fibroid treatment
US8801701B2 (en) * 2005-03-09 2014-08-12 Sunnybrook Health Sciences Centre Method and apparatus for obtaining quantitative temperature measurements in prostate and other tissue undergoing thermal therapy treatment
US7771418B2 (en) * 2005-03-09 2010-08-10 Sunnybrook Health Sciences Centre Treatment of diseased tissue using controlled ultrasonic heating
US20070016039A1 (en) * 2005-06-21 2007-01-18 Insightec-Image Guided Treatment Ltd. Controlled, non-linear focused ultrasound treatment
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US20070083120A1 (en) * 2005-09-22 2007-04-12 Cain Charles A Pulsed cavitational ultrasound therapy
US8057408B2 (en) * 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US20070213616A1 (en) 2005-10-20 2007-09-13 Thomas Anderson Systems and methods for arteriotomy localization
EP1960993B1 (en) * 2005-11-23 2016-11-02 Insightec-Image Guided Treatment, Ltd. Hierarchical switching in ultra-high density ultrasound array
US11259825B2 (en) 2006-01-12 2022-03-01 Gynesonics, Inc. Devices and methods for treatment of tissue
US7874986B2 (en) 2006-04-20 2011-01-25 Gynesonics, Inc. Methods and devices for visualization and ablation of tissue
US20070161905A1 (en) * 2006-01-12 2007-07-12 Gynesonics, Inc. Intrauterine ultrasound and method for use
US9357977B2 (en) * 2006-01-12 2016-06-07 Gynesonics, Inc. Interventional deployment and imaging system
US10058342B2 (en) 2006-01-12 2018-08-28 Gynesonics, Inc. Devices and methods for treatment of tissue
US7815571B2 (en) * 2006-04-20 2010-10-19 Gynesonics, Inc. Rigid delivery systems having inclined ultrasound and needle
US8206300B2 (en) 2008-08-26 2012-06-26 Gynesonics, Inc. Ablation device with articulated imaging transducer
US20100056926A1 (en) * 2008-08-26 2010-03-04 Gynesonics, Inc. Ablation device with articulated imaging transducer
US10595819B2 (en) 2006-04-20 2020-03-24 Gynesonics, Inc. Ablation device with articulated imaging transducer
US8235901B2 (en) * 2006-04-26 2012-08-07 Insightec, Ltd. Focused ultrasound system with far field tail suppression
US20100030076A1 (en) * 2006-08-01 2010-02-04 Kobi Vortman Systems and Methods for Simultaneously Treating Multiple Target Sites
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
US8088072B2 (en) * 2007-10-12 2012-01-03 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US20090287081A1 (en) * 2008-04-29 2009-11-19 Gynesonics , Inc Submucosal fibroid ablation for the treatment of menorrhagia
US8024025B2 (en) * 2008-05-05 2011-09-20 General Electric Company T1-corrected proton resonance frequency shift thermometry
DE102008049605A1 (de) 2008-09-30 2009-12-10 Siemens Aktiengesellschaft Verfahren zur Darstellung einer nicht-invasiv ermittelten Temperaturinformation sowie medizinisches Temperaturmessgerät
US8425424B2 (en) * 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
US20100179425A1 (en) * 2009-01-13 2010-07-15 Eyal Zadicario Systems and methods for controlling ultrasound energy transmitted through non-uniform tissue and cooling of same
CN101810468B (zh) * 2009-02-20 2012-11-14 西门子公司 减少磁共振温度测量误差的方法
US8262574B2 (en) 2009-02-27 2012-09-11 Gynesonics, Inc. Needle and tine deployment mechanism
JP5624346B2 (ja) * 2009-04-03 2014-11-12 株式会社東芝 磁気共鳴イメージング装置
US8617073B2 (en) * 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
WO2010143072A1 (en) * 2009-06-10 2010-12-16 Insightec Ltd. Acoustic-feedback power control during focused ultrasound delivery
US9623266B2 (en) * 2009-08-04 2017-04-18 Insightec Ltd. Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
CA2770452C (en) 2009-08-17 2017-09-19 Histosonics, Inc. Disposable acoustic coupling medium container
US9289154B2 (en) 2009-08-19 2016-03-22 Insightec Ltd. Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
US20110046475A1 (en) * 2009-08-24 2011-02-24 Benny Assif Techniques for correcting temperature measurement in magnetic resonance thermometry
US9177543B2 (en) * 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
AU2010289775B2 (en) * 2009-08-26 2016-02-04 Histosonics, Inc. Devices and methods for using controlled bubble cloud cavitation in fractionating urinary stones
EP2470267B1 (en) 2009-08-26 2015-11-11 The Regents Of The University Of Michigan Micromanipulator control arm for therapeutic and imaging ultrasound transducers
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US20160059044A1 (en) 2009-10-12 2016-03-03 Kona Medical, Inc. Energy delivery to intraparenchymal regions of the kidney to treat hypertension
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
US20110092880A1 (en) 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US11998266B2 (en) 2009-10-12 2024-06-04 Otsuka Medical Devices Co., Ltd Intravascular energy delivery
US8517962B2 (en) 2009-10-12 2013-08-27 Kona Medical, Inc. Energetic modulation of nerves
US20110118600A1 (en) 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
WO2011045669A2 (en) 2009-10-14 2011-04-21 Insightec Ltd. Mapping ultrasound transducers
US8368401B2 (en) 2009-11-10 2013-02-05 Insightec Ltd. Techniques for correcting measurement artifacts in magnetic resonance thermometry
WO2011090990A2 (en) * 2010-01-19 2011-07-28 Insightec Ltd. Hybrid referenceless and multibaseline prf-shift magnetic resonance thermometry
WO2011112251A1 (en) 2010-03-09 2011-09-15 Profound Medical Inc. Fluid circuits for temperature control in a thermal therapy system
US9707413B2 (en) 2010-03-09 2017-07-18 Profound Medical Inc. Controllable rotating ultrasound therapy applicator
WO2011112250A1 (en) 2010-03-09 2011-09-15 Profound Medical Inc. Ultrasonc therapy applicator
US11027154B2 (en) 2010-03-09 2021-06-08 Profound Medical Inc. Ultrasonic therapy applicator and method of determining position of ultrasonic transducers
WO2011115664A2 (en) * 2010-03-14 2011-09-22 Profound Medical Inc. Mri-compatible motor and positioning system
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
CN102258362B (zh) * 2010-05-31 2014-09-17 西门子公司 减少磁共振温度测量误差的方法
DE102010039737B4 (de) * 2010-08-25 2013-02-21 Siemens Aktiengesellschaft Verfahren zur Ermittlung eines die Temperaturverteilung innerhalb eines zu vermessenden Objekts beschreibenden Untersuchungsbilddatensatzes und Magnetresonanzeinrichtung
US9981148B2 (en) 2010-10-22 2018-05-29 Insightec, Ltd. Adaptive active cooling during focused ultrasound treatment
WO2012178184A2 (en) * 2011-06-23 2012-12-27 Children's Hospital Los Angeles Removable protective shell for imaging agents and bioactive substances
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
EP2768396A2 (en) 2011-10-17 2014-08-27 Butterfly Network Inc. Transmissive imaging and related apparatus and methods
EP2642310A1 (en) 2012-03-22 2013-09-25 Koninklijke Philips N.V. Interpolated three-dimensional thermal dose estimates using magnetic resonance imaging
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
JP2015516233A (ja) 2012-04-30 2015-06-11 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン ラピッドプロトタイピング方法を使用した超音波トランスデューサー製造
WO2014003855A1 (en) 2012-06-27 2014-01-03 Monteris Medical Corporation Image-guided therapy of a tissue
US20140073907A1 (en) 2012-09-12 2014-03-13 Convergent Life Sciences, Inc. System and method for image guided medical procedures
WO2014055906A1 (en) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US9667889B2 (en) 2013-04-03 2017-05-30 Butterfly Network, Inc. Portable electronic devices with integrated imaging capabilities
EP3016594B1 (en) 2013-07-03 2023-01-25 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
WO2015027164A1 (en) 2013-08-22 2015-02-26 The Regents Of The University Of Michigan Histotripsy using very short ultrasound pulses
US9433383B2 (en) 2014-03-18 2016-09-06 Monteris Medical Corporation Image-guided therapy of a tissue
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
US20150265353A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
US9473142B2 (en) * 2014-12-12 2016-10-18 Mediatek Inc. Method for performing signal driving control in an electronic device with aid of driving control signals, and associated apparatus
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
EP3313517B1 (en) 2015-06-24 2023-06-07 The Regents Of The University Of Michigan Histotripsy therapy systems for the treatment of brain tissue
EP4156204A1 (en) 2016-11-11 2023-03-29 Gynesonics, Inc. Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data
CN111511439A (zh) * 2017-10-30 2020-08-07 博放医疗有限公司 使用基于mri的温度不确定度图利用动态解剖边界的热疗法
US11471053B2 (en) 2017-10-30 2022-10-18 Profound Medical Inc. Thermal therapy with dynamic anatomical boundaries using MRI-based temperature uncertainty maps
CA3120586A1 (en) 2018-11-28 2020-06-04 Histosonics, Inc. Histotripsy systems and methods
JP2023513012A (ja) 2020-01-28 2023-03-30 ザ リージェンツ オブ ザ ユニバーシティー オブ ミシガン ヒストトリプシー免疫感作のためのシステムおよび方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3160351B2 (ja) * 1992-03-13 2001-04-25 株式会社東芝 磁気共鳴診断装置
US5492122A (en) * 1994-04-15 1996-02-20 Northrop Grumman Corporation Magnetic resonance guided hyperthermia
US5711300A (en) 1995-08-16 1998-01-27 General Electric Company Real time in vivo measurement of temperature changes with NMR imaging
AU1062397A (en) * 1995-11-28 1997-06-19 Dornier Medical Systems, Inc. Method and system for non-invasive temperature mapping of tissue
WO1999021024A1 (en) 1997-10-16 1999-04-29 Koninklijke Philips Electronics N.V. Method of and device for determining a temperature distribution in an object by means of magnetic resonance
JPH11225991A (ja) * 1998-02-19 1999-08-24 Toshiba Corp 体温監視装置及び体温監視方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114927A1 (ja) * 2012-01-30 2013-08-08 株式会社日立メディコ 磁気共鳴撮影装置
US9851424B2 (en) 2012-01-30 2017-12-26 Hitachi, Ltd. Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
EP1405093A1 (en) 2004-04-07
WO2002097466A1 (en) 2002-12-05
US6559644B2 (en) 2003-05-06
US20020180438A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
JP2004527351A (ja) 誤差補正を用いるmriベースの温度マッピング
US9289154B2 (en) Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
de Senneville et al. MR thermometry for monitoring tumor ablation
US6522142B1 (en) MRI-guided temperature mapping of tissue undergoing thermal treatment
US10677866B1 (en) Systems and methods for correcting measurement artifacts in MR thermometry
de Senneville et al. Motion correction in MR thermometry of abdominal organs: a comparison of the referenceless vs. the multibaseline approach
US20150016682A1 (en) Reference-based motion tracking during non-invasive therapy
JP2019522517A (ja) 非侵襲的処理中の動きトラッキング
US8024025B2 (en) T1-corrected proton resonance frequency shift thermometry
Gorny et al. MR guided focused ultrasound: technical acceptance measures for a clinical system
US20220288424A1 (en) Aberration corrections for dynamically changing media during ultrasound therapy
Dragonu et al. Non‐invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry
Ye et al. Model-based ultrasound temperature visualization during and following HIFU exposure
US20220179023A1 (en) System and Method for Free-Breathing Quantitative Multiparametric MRI
WO2022166982A1 (zh) 一种消融计算方法及消融计算系统
US20190320904A1 (en) Method and system for correcting focus location in magnetic resonance guided focused ultrasound surgery
Sumi et al. Reconstruction of thermal property distributions of tissue phantoms from temperature measurements—thermal conductivity, thermal capacity and thermal diffusivity
JP4574781B2 (ja) 磁気共鳴装置及び温熱治療装置
Plata et al. A feasibility study on monitoring the evolution of apparent diffusion coefficient decrease during thermal ablation
Ong et al. Sliding window dual gradient echo (SW-dGRE): T1 and proton resonance frequency (PRF) calibration for temperature imaging in polyacrylamide gel
CN114814689B (zh) 一种磁共振温度成像方法
Kokuryo et al. Evaluation of a vessel‐tracking‐based technique for dynamic targeting in human liver
JP4731863B2 (ja) 変位計測方法及び超音波装置
Huang et al. Anatomical Phase Extraction (APE) Method: A Novel Method to Correct Detrimental Effects of Tissue‐Inhomogeneity in Referenceless MR Thermometry—Preliminary Ex Vivo Investigation
Arthur et al. Temperature dependence of ultrasonic backscattered energy in images compensated for tissue motion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060508