JPH11225991A - 体温監視装置及び体温監視方法 - Google Patents

体温監視装置及び体温監視方法

Info

Publication number
JPH11225991A
JPH11225991A JP10037481A JP3748198A JPH11225991A JP H11225991 A JPH11225991 A JP H11225991A JP 10037481 A JP10037481 A JP 10037481A JP 3748198 A JP3748198 A JP 3748198A JP H11225991 A JPH11225991 A JP H11225991A
Authority
JP
Japan
Prior art keywords
temperature
subject
body temperature
magnetic resonance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10037481A
Other languages
English (en)
Inventor
Yasutoshi Ishihara
康利 石原
Masaaki Umeda
匡朗 梅田
Hidehiro Watanabe
英宏 渡邉
Kazuya Okamoto
和也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10037481A priority Critical patent/JPH11225991A/ja
Priority to US09/251,488 priority patent/US6194899B1/en
Priority to DE19907137A priority patent/DE19907137B4/de
Publication of JPH11225991A publication Critical patent/JPH11225991A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4804Spatially selective measurement of temperature or pH

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Surgical Instruments (AREA)

Abstract

(57)【要約】 【課題】本発明の目的は、低体温療法期間中の被検体の
脳等の局部的な体温の経時的な変化を、高精度にして高
時間分解能で計測することのできる体温監視装置を提供
することにある。 【解決手段】本発明は、一様な静磁場中に配置された被
検体に高周波磁場及び傾斜磁場を印加して、被検体から
の磁気共鳴信号を収集し、この磁気共鳴信号に基づいて
被検体の体温を計測する体温監視装置において、磁気共
鳴信号の周波数情報に基づいて被検体の体温を絶対温度
で計測すること及び磁気共鳴信号の位相情報に基づいて
被検体の体温を相対温度で計測することが可能に構成さ
れている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、頭部疾病や頭部障
害に対して主に施される脳低体温療法期間中に、被検体
内部の温度を監視するために、磁気共鳴現象を利用して
被検体内部の温度変化を収得し、これを表示する磁気共
鳴装置及び体温監視装置に関する。
【0002】
【従来の技術】従来、脳障害(頭部外傷、脳血管障害、
心肺停止時の低酸素脳症等)に対する治療は、虚血に伴
う脳浮腫、頭蓋内圧亢進によって治療成績が支配される
ため、頭蓋内圧や内頸静脈洞血酸素飽和度計測結果をも
とに患者管理が行われてきた。
【0003】一方、脳障害後の再灌流に起因する脳内熱
貯留によって二次的な病態が脳浮腫に先行して生じるこ
とが近年明らかにされ、脳の温度を管理する治療法の重
要性が指摘されつつある。このような脳損傷を保護し、
かつ、脳を蘇生するために、脳の温度を一度32〜34
゜Cに低下させ、この状態を2日〜1週間程度(症例に
因っては〜2週間程度)維持する脳低温療法が注目され
ている(総合医学社、集中治療9(6)、613−68
9,(1997) )。
【0004】しかし、この脳低温療法期間中に脳の温度
を精度良く、かつ、実時間で計測することは困難であ
り、従来は、脳温形成の主要因を成す血液温度を内頚静
脈に設置したカテーテルセンサによって計測し、これを
脳温として代用している。
【0005】
【発明が解決しようとする課題】しかし、このような内
頚静脈血温度は、正常な被検体の場合には脳温とほぼ一
致することが報告されているが(林、集中治療7
(3)、267−274(1997))、脳障害が生じ
た患者の場合には脳内に温度分布が生じることが指摘さ
れており、非侵襲、かつ、高精度な温度計測法が望まれ
ていた。
【0006】本発明はこのような点に鑑みてなされたも
のであり、低体温療法期間中の被検体の脳等の局部的な
体温の経時的な変化を、高精度にして高時間分解能で計
測することのできる体温監視装置を提供することを目的
とする。
【0007】
【課題を解決するための手段】本発明は、請求項1に示
したように、一様な静磁場中に配置された被検体に高周
波磁場及び傾斜磁場を印加して、前記被検体からの磁気
共鳴信号を収集し、この磁気共鳴信号に基づいて前記被
検体の体温を計測する体温監視装置において、前記磁気
共鳴信号の周波数情報に基づいて前記被検体の体温を絶
対温度で計測する手段と、前記磁気共鳴信号の位相情報
に基づいて前記被検体の体温を相対温度で計測する手段
とを具備したものである。
【0008】請求項2に示したように、前記計測された
相対温度を、前記計測された絶対温度に基づいて、絶対
温度に換算する手段がさらに備えられている。請求項3
に示したように、前記周波数情報に基づいて前記被検体
の体温を絶対温度で計測する対象領域を前記被検体に関
する画像上で指定するための手段がさらに備えられてい
る。
【0009】また、本発明は、請求項4に示したよう
に、一様な静磁場中に配置された被検体に高周波磁場及
び傾斜磁場を印加して、前記被検体からの磁気共鳴信号
を収集し、この磁気共鳴信号に基づいて前記被検体の体
温を計測する体温監視方法において、前記磁気共鳴信号
の周波数情報に基づいて前記被検体の体温を絶対温度で
計測する第1ステップと、前記第1ステップの後に、前
記磁気共鳴信号の位相情報に基づいて前記被検体の体温
を相対温度で計測する第2ステップとを具備したもので
ある。
【0010】請求項5に示したように、前記第2ステッ
プの後に、前記第2ステップで計測された相対温度を、
前記第1ステップで計測された絶対温度に基づいて、絶
対温度に換算する第3ステップがさらに備えられてい
る。
【0011】請求項6に示したように、前記第2ステッ
プは、前記第1ステップの後に繰り返し実行される 請求項7に示したように、前記第1ステップを実行し、
前記第1ステップの後に前記第2ステップを繰り返すと
いうルーチンを繰り返し実行するとき、各ルーチンで計
測された前記被検体の体温に関する経時的な温度変化
は、連結され連続的に表示される。 (作用)請求項1に記載の発明によれば、絶対温度と相
対温度とを計測することができる。
【0012】請求項2によれば、相対温度を、絶対温度
に換算することができる。請求項3によれば、絶対温度
を計測する対象領域を簡易に且つ正確に指定することが
できる。
【0013】請求項4に記載の発明によれば、絶対温度
と相対温度との両方を計測することができる。請求項5
によれば、相対温度を、絶対温度に換算することができ
る。
【0014】請求項6によれば、絶対温度の計測のため
の磁気共鳴信号の収集時間よりも、相対温度の計測のた
めの磁気共鳴信号の収集時間の方が短いので、被検体の
体温変化を高い時間分解能で監視することができる。
【0015】請求項7によれば、同一の被検体に関する
体温変化を時間を隔てて計測する場合、例えば複数の被
検体を対象として交代で体温変化を計測するような場
合、不連続な体温変化を連続的に観ることができる。
【0016】
【発明の実施の形態】以下、図面を参照して、本発明の
体温監視装置を好ましい実施形態により詳細に説明す
る。図1は、本実施形態による体温監視装置の構成をブ
ロック図により示している。この体温計測は、水プロト
ンの化学シフトが温度依存性を示すことを利用して被検
体から磁気共鳴現象を使って収集した磁気共鳴信号に基
づいて体温を計測することをその原理としており、従っ
て、この体温監視装置の構成は、磁気共鳴装置の構成に
酷似している。
【0017】図1において、静磁場磁石1と、その内側
に設けられたシムコイル4とにより、図示しない被検体
に一様な静磁場が印加される。この静磁場の向きと平行
に、説明の便宜上、z軸を規定するものとする。また、
シムコイル4の内側に設けられた傾斜磁場コイル2によ
り、直交3軸(x、y、z)の線形傾斜磁場とが印加さ
れる。傾斜磁場コイル2は、傾斜磁場電源5により駆動
され、シムコイル4はシムコイル電源6により駆動され
る。傾斜磁場コイル2の内側であって、被検体に最も近
い場所に設けられた高周波プローブ3は、高周波コイル
と、この高周波コイルの共振周波数を同調するためのチ
ューニング・マッチング部分とから構成されていて、対
象核種、例えば水プロトンの共鳴周波数で同調をとるこ
とができるようになっている。
【0018】送信部7は、高周波プローブ3からの対象
核種の共鳴周波数に応じた周波数の高周波磁場パルスを
発生させるために、当該共鳴周波数で振動する高周波の
電流パルスを高周波プローブ3に供給する。受信部8
は、被検体内の対象核種の磁化スピンから生じる磁気共
鳴信号を高周波プローブ3を介して受信し、これを増幅
し、検波する。なお、高周波プローブ3への高周波パル
スの送信、ならびに、対象核種からの磁気共鳴信号の受
信は図示しないデュプレクサと呼ばれる送受信切り替え
部によって行われる。また、高周波プローブ3は、送受
信兼用でも、送信専用コイルと受信専用コイルとを別に
備えていても良い。
【0019】データ収集部10は、受信部8で受信され
た磁気共鳴信号をディジタル信号に変換し、収集し、そ
して計算機システム11に転送する。シーケンス制御部
9は、傾斜磁場コイル電源5、シムコイル電源6、送信
部7、受信部8及びデータ収集部10を制御して、被検
体の体内の画像を任意のコントラストで映像化するため
のパルスシーケンスの他に、後述するような絶対温度計
測用と相対温度計測用との2種類のパルスシーケンスを
実行することができるように構成されている。実際に
は、映像化用のパルスシーケンス及び上記温度計測用の
2種類のパルスシーケンスデータを保管し、いずれかを
ロードしてこれに従って上記各部5〜8,10の動作を
時間的に制御する。このシーケンス制御部9は、コンソ
ール12からの指令に従って機能する計算機システム1
1の制御下にある。
【0020】計算機システム11は、データ収集部10
からの磁気共鳴信号に対してフーリエ変換等の処理を施
し、その処理結果に基づいて被検体の体温を限局領域毎
に計測(計算)したり、相対温度を絶対温度に換算した
り、計測した体温を表示する等に関する体温監視のため
に必要とされる各種機能を備えている。この計測結果
は、ディスプレイ13に送出され表示される。
【0021】図2は、被検体の局部的な体温を高精度に
して高時間分解能で計測するための手順を示している。
まず、手順(a)では、被検体が体温監視装置、つまり
磁気共鳴装置の撮影領域内に載置される。この際、被検
体が運ばれる可動式ベッド(移動式ベッド)上から磁気
共鳴装置寝台上への移動がし易いように、可動式ベッド
天板が磁気共鳴装置寝台へスライドできる等の機構が備
えられていることが望ましい。また、点滴、その他の装
置がその天板に固定されている構造を採用していること
が、操作の上から望ましい。
【0022】次に、手順(b)では、シーケンス制御部
9により、一般的な2DFTのスピンエコー法等の映像
化用のパルスシーケンスが実行され、体温観測対象付近
のMRI画像が取得される。得られた画像を利用して治
療方針が決定されるが、この際、計測時間を短縮すると
いう観点からは限局した1つの体温監視領域(ボクセ
ル)から磁気共鳴信号を観測することが望ましいが、被
検体の脳疾患が広がっている場合や、この段階で脳浮
腫、梗塞巣等が認められない場合もあるので、適宜、複
数の体温監視領域を指定し、複数の体温監視領域から磁
気共鳴信号を取得し、体温監視領域毎に体温を計測する
ことが良好な温度管理を行う上で必要となる。この体温
監視領域は、図5に示すように、手順(b)で取得した
画像上に指定し、決定される。
【0023】ここで低体温療法が適応される場合には、
適宜循環ポンプ、冷却マット、その他モニタカテーテル
の準備、設定を行う。ただし、循環ポンプ等は静磁場の
影響を受けないように超音波モータ等によって駆動され
るか、ポンプ本体は静磁石本体から離れた場所に設置す
る必要がある。
【0024】低体温療法の開始に同期して、被検体の脳
の一部分の体温の計測、監視が開始される。なお、監視
とは、体温計測を繰り返して、体温変化を経時的に観測
することとして定義される。
【0025】まず、最初に、手順(c)で、図3(a)
に示す絶対温度計測用のパルスシーケンスを実行して、
その磁気共鳴信号から温度依存性を示す化学シフトの周
波数変化を観測し、被検体の脳内の絶対温度分布を得
る。例えば、水のプロトンの化学シフトは、1゜C当た
り、−0.01ppm変化するが、脂肪は温度依存性を
示さない。このため、脂肪を基準にして、この脂肪の共
鳴周波数に対する水プロトンの共鳴周波数の差から、絶
体温度を計測することができる。
【0026】絶対温度計測用のパルスシーケンスにより
得られた磁気共鳴信号をフーリエ変換等の再構成法を用
いて処理して、図3(b)に一例を示すようなスペクト
ルデータを得る。
【0027】ここで、水プロトンの温度依存性は非常に
小さいため、高い周波数分解能でスペクトルデー夕を取
得することが必要となるが、このためには信号観測時間
を伸長する必要がある。あるいは、信号S/Nの観点か
ら、概ねT2*程度の時間で信号観測を打ち切り、その
データに必要データ数となるようゼロ詰めしてみかけ上
周波数分解能を向上させることが考えられる。また、非
線形最小自乗法等のスペクトルデータ処理によって超分
解能化することで温度計測精度を向上することが有効で
ある。
【0028】このような処理によって得られた水のスペ
クトルピーク周波数と、周波数依存性を示さない物質、
ここでは脂肪のスペクトルピーク周波数との差を、手順
(d)で算出し、温度依存性の係数を考慮して絶対温度
を算出する。手順(e)では、算出された絶対温度が、
必要に応じてディスプレイに表示される。あるいは、心
電計、血圧計、脳波計、静脈血飽和度計等の計測機器の
出力と同様にプロッタ出力することも可能である。
【0029】周知の通り、低体温療法では、治療開始か
ら数時間かけて脳温を4度程度低下させるが、この誘導
期、ならびに、治療後の復温期の温度管理が重要となる
が、上記周波数の差から絶対温度を算出する方法(以
下、周波数法と略)では、そのためのパルスシーケンス
の繰り返し時間が長く、また複数の体温監視領域から体
温を観測するのに長時間を要するので、実時間モニタと
しては不十分、つまり高い時間分解能で体温を計測する
ことはできない。
【0030】そこで、絶対温度を最初に計測した後に、
手順(f)において、図4に示されたような高速のFE
(Field Echo)のパルスシーケンスを実行し、そして、手
順(g)において、手順(f)で収集された磁気共鳴信
号の位相が直前の位相からどの程度変化したかという情
報に基づいて、相対温度、つまり現在の体温が直前の体
温からどの程度変化したかを、次の式に従って、算出す
る(位相法)。 △T(r) =T(r) after −T(r) before ={θ(r) after −θ(r) before)/(α・γ・τ・B
0 ) r:空間ベクトル α:水プロトン化学シフトの温度依存性を示す係数 γ:核磁気回転比 τ:エコー時間 B0 :静磁場強度 θ(r) after :前回の位相画像 θ(r) before :今回の位相画像 次に、手順(h)によって、最初に計測した絶対温度を
初期温度として、手順(g)で算出した相対温度を次々
と加算していくことにより、その時々の相対温度を絶対
温度に換算することができる。この絶対温度は、数値と
して、また温度変化グラフとしてディスプレイ13ある
いは図示しないプロッタから出力される(手順
(i))。
【0031】ここで、周波数法は、計測時間等の面から
比較的少数の体温監視領域(1ボクセル)、あるいは比
較的少ないマトリクスの温度データしか得られていない
ため、位相法で相対温度が計測された全ての場所で、絶
対温度が計測されていない場合がある。このような場合
には、周波数法で得られたデータを補間して位相法に対
応した場所の絶対温度を算出する方法、あるいは、周波
数法で絶対温度を計測した場所だけで相対温度を絶対温
度に換算したり、その場所の温度変化しか表示を行わな
い等の対処が考えられる。このため、治療成績向上の面
から手順(b)で設定する周波数法で絶対温度を計測す
る場所や箇所(ボクセル数)が重要となる。
【0032】以上の手順により、低温療法の誘導期を終
えた被検体は、以降24時間体制で集中管理下に置か
れ、血圧、呼吸、頭蓋内圧、補液管理を行うために、こ
れらの管理に必要な生体計測が行われる。この間、温度
計測を常時行う事が望ましいが、他の被検体の誘導期、
復温期には温度計測をする必要があるため、体温維持、
被検体の状態維持が確認される場合には、被検体を磁気
共鳴装置から抜き出し、集中治療室等に運搬することが
ある。このような磁気共鳴装置からの被検体の出し入れ
により、被検体の位置ずれに起因する磁場不均一性の影
響で位相法では正確な温度変化を算出することが困難で
ある。このように体温計測が中断するような場合には、
再度、周波数法で絶対温度を計測し、その後に位相法で
相対温度を計測し、これを絶対温度に換算する。
【0033】また、位相法を繰り返し行って相対温度を
繰り返し計測し、絶対温度への換算を繰り返している体
温の監視中に、被検体の動きによって計測温度に明らか
な誤差が含まれたと推察された場合には、その都度、周
波数法で絶対温度の計測を実行して、その絶対温度を基
準に換算を校正する必要がある。このように周波数法を
利用した校正によって継続した温度変化、あるいは、絶
対温度を算出することが可能となる。また、このような
校正時や、複数の被検体を交代で計測するような場合に
は、計測の中断が必要になるが、中断の前後で取った温
度の経時的な変化を表すグラフを、連結して連続的なも
のとして表示することが状態管理の上で望まれる。
【0034】以上のように、本実施形態によると、低体
温療法期間中の被検体の脳等の局部的な体温を、絶対温
度で高精度にして高時間分解能で計測することができる
ようになる。なお、本発明は、上述した実施形態に限定
されることなく、種々変形して実施可能である。
【0035】
【発明の効果】本発明によれば、低体温療法期間中の被
検体の脳等の局部的な体温の経時的な変化を、高精度に
して高時間分解能で計測することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る体温監視装置の構成を
示す図。
【図2】本実施形態による被検体の体温計測の手順を示
す流れ図。
【図3】本実施形態による絶対温度計測用のパルスシー
ケンスの一例を示す図。
【図4】本実施形態による相対温度計測用のパルスシー
ケンスの一例を示す図。
【図5】絶対温度計測対象領域の指定方法を示す図。
【符号の説明】
1…静磁場磁石、 2…傾斜磁場コイル、 3…高周波プローブ、 4…シムコイル、 5…傾斜磁場コイル電源、 6…シムコイル電源、 7…送信部、 8…受信部、 9…シーケンス制御部、 10…データ収集部、 11…計算機システム、 12…コンソール、 13…ディスプレイ。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 和也 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】一様な静磁場中に配置された被検体に高周
    波磁場及び傾斜磁場を印加して、前記被検体からの磁気
    共鳴信号を収集し、この磁気共鳴信号に基づいて前記被
    検体の体温を計測する体温監視装置において、 前記磁気共鳴信号の周波数情報に基づいて前記被検体の
    体温を絶対温度で計測する手段と、 前記磁気共鳴信号の位相情報に基づいて前記被検体の体
    温を相対温度で計測する手段とを具備したことを特徴と
    する体温監視装置。
  2. 【請求項2】前記計測された相対温度を、前記計測され
    た絶対温度に基づいて、絶対温度に換算する手段をさら
    に備えたことを特徴とする請求項1記載の体温監視装
    置。
  3. 【請求項3】 前記周波数情報に基づいて前記被検体の
    体温を絶対温度で計測する対象領域を前記被検体に関す
    る画像上で指定するための手段をさらに備えたことを特
    徴とする請求項1記載の体温監視装置。
  4. 【請求項4】一様な静磁場中に配置された被検体に高周
    波磁場及び傾斜磁場を印加して、前記被検体からの磁気
    共鳴信号を収集し、この磁気共鳴信号に基づいて前記被
    検体の体温を計測する体温監視方法において、 前記磁気共鳴信号の周波数情報に基づいて前記被検体の
    体温を絶対温度で計測する第1ステップと、 前記第1ステップの後に、前記磁気共鳴信号の位相情報
    に基づいて前記被検体の体温を相対温度で計測する第2
    ステップとを具備したことを特徴とする体温監視方法。
  5. 【請求項5】前記第2ステップの後に、前記第2ステッ
    プで計測された相対温度を、前記第1ステップで計測さ
    れた絶対温度に基づいて、絶対温度に換算する第3ステ
    ップをさらに備えたことを特徴とする請求項4記載の体
    温監視方法。
  6. 【請求項6】前記第2ステップは、前記第1ステップの
    後に繰り返し実行されることを特徴とする請求項4記載
    の体温監視方法。
  7. 【請求項7】前記第1ステップを実行し、前記第1ステ
    ップの後に前記第2ステップを繰り返すというルーチン
    を繰り返し実行するとき、各ルーチンで計測された前記
    被検体の体温に関する経時的な温度変化を連結して連続
    的に表示することを特徴とした請求項1記載の体温監視
    方法。
  8. 【請求項8】一様な静磁場中に配置された被検体に高周
    波磁場及び傾斜磁場を印加して、前記被検体からの磁気
    共鳴信号を収集し、この磁気共鳴信号に基づいて前記被
    検体の内部情報を取得する磁気共鳴装置において、 前記磁気共鳴信号の周波数情報に基づいて前記被検体の
    体温を絶対温度で計測するシーケンスと、前記磁気共鳴
    信号の位相情報に基づいて前記被検体の体温を相対温度
    で計測するシーケンスとの両方を実行することができる
    ように構成されたことを特徴とする磁気共鳴装置。
JP10037481A 1998-02-19 1998-02-19 体温監視装置及び体温監視方法 Pending JPH11225991A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10037481A JPH11225991A (ja) 1998-02-19 1998-02-19 体温監視装置及び体温監視方法
US09/251,488 US6194899B1 (en) 1998-02-19 1999-02-17 Temperature monitoring method, temperature monitoring apparatus and magnetic resonance apparatus
DE19907137A DE19907137B4 (de) 1998-02-19 1999-02-19 Temperaturüberwachungsverfahren, Temperaturüberwachungsgerät und Magnetresonanzgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10037481A JPH11225991A (ja) 1998-02-19 1998-02-19 体温監視装置及び体温監視方法

Publications (1)

Publication Number Publication Date
JPH11225991A true JPH11225991A (ja) 1999-08-24

Family

ID=12498722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10037481A Pending JPH11225991A (ja) 1998-02-19 1998-02-19 体温監視装置及び体温監視方法

Country Status (3)

Country Link
US (1) US6194899B1 (ja)
JP (1) JPH11225991A (ja)
DE (1) DE19907137B4 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157466A (ja) * 2011-01-31 2012-08-23 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置
JP2014529315A (ja) * 2011-07-25 2014-11-06 ニューロセーブ インコーポレイテッド 選択的脳冷却のための非侵襲的なシステム、機器、および方法
KR20180060795A (ko) * 2016-11-29 2018-06-07 (주)아이티로그 최소자승법을 이용한 체온 관리 시스템
KR20180129247A (ko) * 2017-05-26 2018-12-05 금오공과대학교 산학협력단 다항식의 최소자승법을 이용한 체온 관리 시스템

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334846B1 (en) * 1995-03-31 2002-01-01 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus
US6261312B1 (en) * 1998-06-23 2001-07-17 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US7371254B2 (en) * 1998-01-23 2008-05-13 Innercool Therapies, Inc. Medical procedure
US6231595B1 (en) 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US6464716B1 (en) 1998-01-23 2002-10-15 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6383210B1 (en) 2000-06-02 2002-05-07 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using cooling catheter
US6719779B2 (en) 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US6379378B1 (en) 2000-03-03 2002-04-30 Innercool Therapies, Inc. Lumen design for catheter
US6585752B2 (en) * 1998-06-23 2003-07-01 Innercool Therapies, Inc. Fever regulation method and apparatus
US6471717B1 (en) * 1998-03-24 2002-10-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US7458984B2 (en) * 1998-01-23 2008-12-02 Innercool Therapies, Inc. System and method for inducing hypothermia with active patient temperature control employing catheter-mounted temperature sensor and temperature projection algorithm
US6096068A (en) 1998-01-23 2000-08-01 Innercool Therapies, Inc. Selective organ cooling catheter and method of using the same
US6312452B1 (en) 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6974463B2 (en) 1999-02-09 2005-12-13 Innercool Therapies, Inc. System and method for patient temperature control employing temperature projection algorithm
US6325818B1 (en) 1999-10-07 2001-12-04 Innercool Therapies, Inc. Inflatable cooling apparatus for selective organ hypothermia
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US6338727B1 (en) 1998-08-13 2002-01-15 Alsius Corporation Indwelling heat exchange catheter and method of using same
GB2341449B (en) * 1998-09-11 2003-03-26 Oxford Magnet Tech Stabilisation of a magnetic field of a magnetic reasonance imaging apparatus
US7914564B2 (en) * 1999-02-09 2011-03-29 Innercool Therapies, Inc. System and method for patient temperature control employing temperature projection algorithm
JP3781166B2 (ja) * 1999-03-26 2006-05-31 株式会社日立メディコ 磁気共鳴イメージング装置および静磁場均一度維持方法
US6377834B1 (en) * 1999-05-19 2002-04-23 Wisconsin Alumni Research Foundation Real time in vivo measurement of temperature changes with contrast enhanced NMR imaging
JP4526648B2 (ja) * 1999-09-09 2010-08-18 株式会社日立メディコ 磁気共鳴イメージング装置
US6648906B2 (en) 2000-04-06 2003-11-18 Innercool Therapies, Inc. Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US6641520B2 (en) * 2001-01-29 2003-11-04 Electro Magnetic Resources Corp. Magnetic field generator for therapeutic applications
US6559644B2 (en) * 2001-05-30 2003-05-06 Insightec - Txsonics Ltd. MRI-based temperature mapping with error compensation
US7542793B2 (en) * 2002-08-22 2009-06-02 Mayo Foundation For Medical Education And Research MR-guided breast tumor ablation and temperature imaging system
US7794230B2 (en) * 2002-09-10 2010-09-14 University Of Vermont And State Agricultural College Mathematical circulatory system model
US7300453B2 (en) * 2003-02-24 2007-11-27 Innercool Therapies, Inc. System and method for inducing hypothermia with control and determination of catheter pressure
US7078903B2 (en) * 2003-05-23 2006-07-18 Johns Hopkins University Steady state free precession based magnetic resonance thermometry
US20070293753A1 (en) * 2003-07-07 2007-12-20 Abdel-Monem El-Sharkawy Radiometric Approach to Temperature Monitoring Using a Magnetic Resonance Scanner
US20060064002A1 (en) * 2004-09-20 2006-03-23 Grist Thomas M Method for monitoring thermal heating during magnetic resonance imaging
US9207299B2 (en) * 2006-02-28 2015-12-08 Kabushiki Kaisha Toshiba Magnetic resonance imaging system and magnetic resonance imaging apparatus
US7271591B1 (en) * 2006-03-15 2007-09-18 General Electric Company Methods and apparatus for MRI shims
US7786729B2 (en) * 2006-10-31 2010-08-31 Regents Of The University Of Minnesota Method for magnetic resonance imaging
WO2008137495A1 (en) * 2007-05-04 2008-11-13 Wisconsin Alumni Research Foundation Magnetic resonance thermometry in the presence of water and fat
DE102008049605A1 (de) * 2008-09-30 2009-12-10 Siemens Aktiengesellschaft Verfahren zur Darstellung einer nicht-invasiv ermittelten Temperaturinformation sowie medizinisches Temperaturmessgerät
US9289154B2 (en) * 2009-08-19 2016-03-22 Insightec Ltd. Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
US20110046475A1 (en) * 2009-08-24 2011-02-24 Benny Assif Techniques for correcting temperature measurement in magnetic resonance thermometry
US8368401B2 (en) * 2009-11-10 2013-02-05 Insightec Ltd. Techniques for correcting measurement artifacts in magnetic resonance thermometry
US8810246B2 (en) * 2010-01-19 2014-08-19 Insightec Ltd. Hybrid referenceless and multibaseline PRF-shift magnetic resonance thermometry
US8326010B2 (en) 2010-05-03 2012-12-04 General Electric Company System and method for nuclear magnetic resonance (NMR) temperature monitoring
EP2500740A1 (en) * 2011-03-17 2012-09-19 Koninklijke Philips Electronics N.V. Accelerated magnetic resonance thermometry
US11119169B2 (en) * 2019-04-10 2021-09-14 New York University Multi-nuclear absolute MR thermometry
CN112834542B (zh) * 2020-02-27 2024-03-22 苏州纽迈分析仪器股份有限公司 一种同时测量岩心分层含水率和孔径分布的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315541A (ja) * 1993-03-12 1994-11-15 Toshiba Corp 画像診断装置を用いた治療装置
JPH09168524A (ja) * 1995-08-16 1997-06-30 General Electric Co <Ge> 被検体内の温度変化を示す画像を作成する方法及び装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558279A (en) 1983-03-07 1985-12-10 University Of Cincinnati Methods for detecting and imaging a temperature of an object by nuclear magnetic resonance
JP3160351B2 (ja) 1992-03-13 2001-04-25 株式会社東芝 磁気共鳴診断装置
JP3346800B2 (ja) 1992-09-18 2002-11-18 株式会社東芝 磁気共鳴診断装置
US5492122A (en) * 1994-04-15 1996-02-20 Northrop Grumman Corporation Magnetic resonance guided hyperthermia
JP3586047B2 (ja) * 1995-09-13 2004-11-10 株式会社東芝 磁気共鳴診断装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315541A (ja) * 1993-03-12 1994-11-15 Toshiba Corp 画像診断装置を用いた治療装置
JPH09168524A (ja) * 1995-08-16 1997-06-30 General Electric Co <Ge> 被検体内の温度変化を示す画像を作成する方法及び装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157466A (ja) * 2011-01-31 2012-08-23 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置
JP2014529315A (ja) * 2011-07-25 2014-11-06 ニューロセーブ インコーポレイテッド 選択的脳冷却のための非侵襲的なシステム、機器、および方法
KR20180060795A (ko) * 2016-11-29 2018-06-07 (주)아이티로그 최소자승법을 이용한 체온 관리 시스템
KR101880629B1 (ko) * 2016-11-29 2018-07-20 (주)아이티로그 최소자승법을 이용한 체온 관리 시스템
KR20180129247A (ko) * 2017-05-26 2018-12-05 금오공과대학교 산학협력단 다항식의 최소자승법을 이용한 체온 관리 시스템

Also Published As

Publication number Publication date
DE19907137B4 (de) 2007-05-03
DE19907137A1 (de) 1999-09-02
US6194899B1 (en) 2001-02-27

Similar Documents

Publication Publication Date Title
JPH11225991A (ja) 体温監視装置及び体温監視方法
JP3160351B2 (ja) 磁気共鳴診断装置
Salomir et al. Reference-free PRFS MR-thermometry using near-harmonic 2-D reconstruction of the background phase
US7542793B2 (en) MR-guided breast tumor ablation and temperature imaging system
US6922580B2 (en) Blood flow gated MRI
US20050065429A1 (en) Method for three plane interleaved acquisition for three dimensional temperature monitoring with MRI
Marx et al. Toward volumetric MR thermometry with the MASTER sequence
Cernicanu et al. Validation of fast MR thermometry at 1.5 T with gradient‐echo echo planar imaging sequences: phantom and clinical feasibility studies
WO2020214725A1 (en) System and method for free-breathing quantitative multiparametric mri
US20100087729A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
Grist et al. Gated cardiac MR imaging and P-31 MR spectroscopy in humans at 1.5 T. Work in progress.
JP3519486B2 (ja) 磁気共鳴診断装置
Rempp et al. MR temperature monitoring applying the proton resonance frequency method in liver and kidney at 0.2 and 1.5 T: segment-specific attainable precision and breathing influence
JP2889871B1 (ja) 磁気共鳴診断装置
Mase et al. Non-invasive measurement of intracranial compliance using cine MRI in normal pressure hydrocephalus
US20220283251A1 (en) Simultaneous Multi-Orientation Magnetic Resonance Imaging
JP7487061B2 (ja) 磁気共鳴イメージング装置、および、被検体位置合わせ方法
JP4250255B2 (ja) 温度計測方法及び磁気共鳴イメージング装置
JP4718698B2 (ja) 磁気共鳴映像装置
JP4152138B2 (ja) 磁気共鳴イメージング装置
US20240353514A1 (en) Systems and methods for magnetic resonance based skull thermometry
Bolomey et al. Recent trends in noninvasive thermal control
JP3583763B2 (ja) 磁気共鳴画像装置
JPH0880290A (ja) 磁気共鳴診断装置
JP7357516B2 (ja) 磁気共鳴撮像装置、及び、その制御方法