WO2013114927A1 - 磁気共鳴撮影装置 - Google Patents

磁気共鳴撮影装置 Download PDF

Info

Publication number
WO2013114927A1
WO2013114927A1 PCT/JP2013/050290 JP2013050290W WO2013114927A1 WO 2013114927 A1 WO2013114927 A1 WO 2013114927A1 JP 2013050290 W JP2013050290 W JP 2013050290W WO 2013114927 A1 WO2013114927 A1 WO 2013114927A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
information
magnetic resonance
voxel
imaging apparatus
Prior art date
Application number
PCT/JP2013/050290
Other languages
English (en)
French (fr)
Inventor
亨 白猪
尾藤 良孝
陽 谷口
智嗣 平田
悦久 五月女
高橋 哲彦
板垣 博幸
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Priority to JP2013556292A priority Critical patent/JP5797782B2/ja
Priority to US14/375,488 priority patent/US9851424B2/en
Publication of WO2013114927A1 publication Critical patent/WO2013114927A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4625Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4804Spatially selective measurement of temperature or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels

Definitions

  • the present invention relates to magnetic resonance imaging technology.
  • the present invention relates to a magnetic resonance spectroscopy (MRS) technique for calculating a temperature image from a resonance frequency difference between water and a metabolite, and a magnetic resonance spectroscopy imaging (MRSI) technique.
  • MRS magnetic resonance spectroscopy
  • MRSI magnetic resonance spectroscopy imaging
  • the magnetic resonance imaging apparatus is an apparatus that acquires physical and chemical information of a measurement target by inducing a magnetic resonance phenomenon by irradiating a measurement target placed in a static magnetic field with a high-frequency magnetic field having a specific frequency.
  • Magnetic Resonance Imaging which is currently widely used, mainly uses the nuclear magnetic resonance phenomenon of hydrogen nuclei in water molecules to visualize differences in hydrogen nuclei density and relaxation time that vary depending on biological tissues. It is a method to do. As a result, tissue differences can be imaged, which is highly effective in diagnosing diseases.
  • MRS and MRSI separate the nuclear magnetic resonance signals for each molecule based on the difference in the resonance frequency (chemical shift) due to the difference in the chemical bond of the molecule (metabolite), and the concentration and relaxation time for each molecular species. This is a method of measuring the difference between the two.
  • MRS is a method of observing molecular species in a selected spatial region
  • MRSI is a method of imaging for each molecular species.
  • target nuclei include 1 H (proton), 31 P, 13 C, and 19 F.
  • MRS / MRSI proton MRSI
  • MRS / MRSI proton MRSI
  • NAA N-acetylaspartic acid
  • MRS / MRSI can be applied not only to the measurement of metabolite concentration, but also to in-vivo temperature measurement using the resonance frequency difference between water and metabolite. It is known that the resonance frequency of water shifts with the temperature, and the shift amount has a temperature coefficient of ⁇ 0.01 ppm / ° C. (for example, Non-Patent Document 1). On the other hand, it is known that the resonance frequency of metabolites such as NAA does not change in the temperature range under the biological environment. There is a technique for measuring the temperature in a living body from the difference in resonance frequency between water and a metabolite using these characteristics (for example, see Non-Patent Document 2).
  • the calculation of the temperature information is performed by fitting with a model function as follows, for example. First, water and metabolites (here, NAA is taken as an example) are measured individually or simultaneously. Then, the spectrum is obtained by performing Fourier transform in the time direction. The measured water and NAA spectrum peak regions (spectrum peaks) are fitted using, for example, the Lorentz function of the following equation (1).
  • is the frequency
  • L i is the signal intensity
  • ⁇ i is the resonance frequency of the target substance
  • a i is the half width of the spectrum peak
  • I i is the height of the spectrum peak
  • ⁇ i is the phase
  • c is a constant. Term.
  • the fitting result depends on the spectrum quality such as the half width of the peak and the signal-to-noise ratio, and the calculated temperature varies.
  • the operator cannot grasp the accuracy of the calculated temperature. Since the calculated temperature accuracy (reliability) is essential information for diagnosis, the temperature is calculated by measuring a plurality of times and the accuracy of the temperature calculated from the standard deviation thereof is confirmed. For this reason, it takes a lot of time to measure the temperature of one subject and the burden on the subject is also great.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for acquiring in-vivo temperature information and its accuracy information, which can be completed in a short time and has less burden on the subject.
  • a static magnetic field generation unit that generates a static magnetic field in a space in which the subject is placed, a high-frequency magnetic field irradiation unit that irradiates the subject with a high-frequency magnetic field, and a gradient magnetic field application that applies a gradient magnetic field to the subject
  • a control unit a receiving unit that receives a nuclear magnetic resonance signal generated from the subject, a gradient magnetic field applying unit, the high-frequency magnetic field irradiating unit, and the receiving unit to control operations of two substances having different resonance frequencies
  • a magnetic resonance imaging apparatus comprising: a measurement unit that obtains a nuclear magnetic resonance signal; an arithmetic unit that performs arithmetic processing on the nuclear magnetic resonance signal; and a display device that displays information after the arithmetic processing.
  • a spectrum calculation unit for calculating the spectrum of each of the two magnetic resonance signals of the two substances having different resonance frequencies, and calculating temperature information in the subject based on each of the calculated spectrum peaks.
  • a temperature information calculation unit that calculates temperature accuracy information that indicates the accuracy of the temperature information based on the calculated spectrum peaks, and the display based on the temperature information and the temperature accuracy information.
  • a magnetic resonance imaging apparatus comprising: a display information generation unit that generates display information to be displayed on the apparatus.
  • in-vivo temperature information and accuracy information thereof can be acquired in a short time and with a low burden on the subject.
  • (A)-(c) is an external view of the magnetic resonance imaging apparatus of embodiment of this invention.
  • 1 is a functional configuration diagram of a magnetic resonance imaging apparatus according to an embodiment of the present invention. It is a functional block diagram of the computer with which the magnetic resonance imaging apparatus of embodiment of this invention is provided. It is a flowchart for demonstrating the flow of the whole temperature information and temperature accuracy information calculation measurement of embodiment of this invention. It is explanatory drawing for demonstrating an example of the MRSI sequence of embodiment of this invention.
  • (A)-(c) is explanatory drawing for demonstrating the area
  • FIG. 1 is an external view of the MRI apparatus of this embodiment.
  • FIG. 1A shows a horizontal magnetic field type MRI apparatus 100 using a tunnel magnet that generates a static magnetic field with a solenoid coil.
  • FIG. 1B shows a hamburger type (open type) vertical magnetic field type MRI apparatus 120 in which magnets are separated into upper and lower sides in order to enhance the feeling of opening.
  • FIG. 1C shows an MRI apparatus 130 that uses the same tunnel-type magnet as in FIG. 1A and has a feeling of openness by shortening the depth of the magnet and tilting it obliquely. In the present embodiment, any of these MRI apparatuses having these appearances can be used.
  • the MRI apparatus of the present embodiment is not limited to these forms.
  • various known MRI apparatuses can be used regardless of the form and type of the apparatus.
  • the MRI apparatus 100 is representative.
  • FIG. 2 is a functional configuration diagram of the MRI apparatus 100 of the present embodiment.
  • the MRI apparatus 100 includes a static magnetic field generation unit including a static magnetic field coil 102 that generates a static magnetic field in a space where a subject 101 is placed, an x direction, and a y direction.
  • a gradient magnetic field coil 103 gradient magnetic field application unit
  • a shim coil 104 that adjusts the static magnetic field distribution
  • a high frequency magnetic field for the measurement region of the subject 101 includes a static magnetic field generation unit including a static magnetic field coil 102 that generates a static magnetic field in a space where a subject 101 is placed, an x direction, and a y direction.
  • a gradient magnetic field coil 103 gradient magnetic field application unit
  • a shim coil 104 that adjusts the static magnetic field distribution
  • a high frequency magnetic field for the measurement region of the subject 101 includes a high frequency magnetic field for the measurement region of the subject 101.
  • Irradiating high-frequency magnetic field irradiation coil 105 (hereinafter simply referred to as a transmission coil; a high-frequency magnetic field irradiation unit) and a nuclear magnetic resonance signal receiving coil 106 for receiving a nuclear magnetic resonance signal generated from the subject 101 (hereinafter simply referred to as a reception coil); Receiver), transmitter 107, receiver 108, calculator 109, gradient magnetic field power supply 112, shim power supply 113, and sequence control device 1 It includes a 4, a.
  • the gradient magnetic field coil 103 and the shim coil 104 are driven by a gradient magnetic field power supply unit 112 and a shim power supply unit 113, respectively.
  • a case where separate transmission coils 105 and reception coils 106 are used will be described as an example.
  • the transmission coil 105 and the reception coil 106 are configured as a single coil. May be.
  • the high-frequency magnetic field irradiated by the transmission coil 105 is generated by the transmitter 107.
  • the nuclear magnetic resonance signal detected by the receiving coil 106 is sent to the computer 109 through the receiver 108.
  • the sequence control device 114 is configured such that the gradient magnetic field power supply unit 112 that is a power supply for driving the gradient magnetic field coil 103, the shim power supply unit 113 that is the power supply for driving the shim coil 104, the transmitter 107, and the receiver 108 in accordance with instructions from the computer 109. And the timing of application of the gradient magnetic field and high frequency magnetic field and reception of the nuclear magnetic resonance signal are controlled.
  • the control time chart is called a pulse sequence, is preset according to measurement, and is stored in a storage device or the like included in the computer 109 described later.
  • the computer 109 performs various arithmetic processes on the received nuclear magnetic resonance signal to generate image information, spectrum information, temperature information, and temperature accuracy information, and gives an instruction to the sequence control device 114, and the entire MRI apparatus 100 To control the operation.
  • the computer 109 is an information processing device that includes a CPU, a memory, a storage device, and the like, and a display device 110 such as a display, an external storage device 111, an input device 115, and the like are connected to the computer 109.
  • the display device 110 is an interface for displaying results obtained by the arithmetic processing to the operator.
  • the input device 115 is an interface for an operator to input conditions, parameters, and the like necessary for the arithmetic processing performed in the present embodiment.
  • the external storage device 111 holds, together with the storage device, data used for various arithmetic processes executed by the computer 109, data obtained by the arithmetic processes, input conditions, parameters, and the like.
  • the MRI apparatus 100 calculates temperature information and an index indicating its accuracy (reliability) in one measurement.
  • the function of the computer 109 of this embodiment that realizes this will be described.
  • FIG. 3 is a functional block diagram of the computer 109 of this embodiment.
  • the computer 109 of this embodiment includes a measurement unit 210 and a calculation unit 220.
  • the measurement unit 210 operates the sequence control device 114 according to the pulse sequence and controls each unit to perform measurement to obtain a nuclear magnetic resonance signal.
  • the calculation unit 220 performs various calculation processes on the nuclear magnetic resonance signal obtained by the measurement, and generates image information, spectrum information, temperature information, temperature accuracy information, and the like.
  • the calculation unit 220 converts the nuclear magnetic resonance signal obtained by measurement into a spectrum, calculates temperature information and temperature accuracy information, and generates display information to be displayed on the display device 110.
  • the calculation unit 220 of the present embodiment includes a spectrum calculation unit 230 that converts a nuclear magnetic resonance signal obtained by measurement into a spectrum, and a temperature information calculation unit that calculates temperature information inside the subject 101 from the spectrum. 240, a temperature accuracy information calculation unit 250 that calculates the accuracy of the calculated temperature information, and a display information generation unit 260.
  • the temperature accuracy information calculation unit 250 also calculates temperature accuracy information using a spectrum from which the temperature information calculation unit 240 calculates temperature information.
  • the various functions realized by the computer 109 are realized by the CPU loading a program held in the storage device into the memory and executing it.
  • at least one of the various functions realized by the computer 109 is an information processing apparatus independent of the MRI apparatus 100 and is realized by an information processing apparatus capable of transmitting and receiving data to and from the MRI apparatus 100. It may be.
  • FIG. 4 is a processing flow of the overall flow of temperature information and temperature accuracy information calculation measurement of the present embodiment.
  • spectrum information of two substances having different resonance frequencies is used.
  • NAA a metabolite
  • the measurement unit 210 performs non-water suppression measurement (step S1101) to obtain a nuclear magnetic resonance signal of water. Thereafter, water suppression measurement is performed (step S1102), and a nuclear magnetic resonance signal of the metabolite is obtained.
  • Both non-water suppression measurement and water suppression measurement are realized by controlling the sequence controller 114 according to a predetermined pulse sequence. An example of the predetermined pulse sequence will be described later.
  • the nuclear magnetic resonance signals of water and NAA are obtained by separate measurements, but the water and NAA are measured by measuring while leaving a certain amount of signal without completely suppressing the water signal. These nuclear magnetic resonance signals may be obtained simultaneously.
  • the spectrum calculation unit 230 performs Fourier transform on the obtained water and NAA nuclear magnetic resonance signals to calculate water and NAA spectra (step S1103).
  • the temperature information calculation part 240 calculates the temperature (temperature information) in a subject from the spectrum of water and NAA (step S1104).
  • the temperature accuracy information calculation unit 250 calculates an index (temperature accuracy information) indicating the temperature accuracy from the spectrum of water and NAA (step S1105).
  • the display information generation unit 260 generates display information from the calculated temperature information and temperature accuracy information and displays the display information on the display device 110 (step S1106).
  • a pulse sequence of non-water suppression measurement and water suppression measurement executed by the measurement unit 210 in steps S1101 and S1102 will be described.
  • a pulse sequence (hereinafter referred to as MRSI sequence) of region selective magnetic resonance spectroscopic imaging for imaging metabolites will be described as an example.
  • FIG. 5 is an example of the MRSI sequence 300.
  • RF indicates the application timing of the high-frequency magnetic field pulse.
  • Gx, Gy, and Gz indicate application timings of gradient magnetic field pulses in the x, y, and z directions, respectively.
  • a / D indicates a signal measurement period.
  • the MRSI sequence 300 shown in FIG. 5 is the same as the known MRSI sequence, and selectively excites a predetermined region of interest (voxel) using one excitation pulse RF1 and two inversion pulses RF2 and RF3.
  • An FID signal (free induction attenuation) FID1 is obtained from this region of interest (voxel).
  • FIGS. 6A and 6B are positioning scout images obtained by measurement performed prior to the main measurement.
  • FIG. 6A shows a transformer image 410
  • FIG. 6B shows a sagittal image 420
  • FIG. Coronal image 430 the relationship between the operation of each unit and the excited region will be described with reference to FIGS. 5 and 6A, 6B, and 6C.
  • a high-frequency magnetic field RF1 and gradient magnetic field pulses Gs1 and Gs1 'in the z direction are applied to excite the cross section 401 in the z direction.
  • a high frequency magnetic field RF2 and a gradient magnetic field pulse Gs2 in the y direction are applied after TE / 4 (where TE is an echo time).
  • TE is an echo time
  • the high frequency magnetic field RF3 and the gradient magnetic field pulse Gs3 in the x direction are applied after TE / 2 from the application of the high frequency magnetic field RF2.
  • the gradient magnetic field pulses Gd1 to Gd3 and Gd1 ′ to Gd3 ′ in each direction rephase the phase of nuclear magnetization excited by the high-frequency magnetic field RF1, and dephase the phase of nuclear magnetization excited by RF2 and RF3. It is a gradient magnetic field. Further, the phase encode gradient magnetic fields Gp1 and Gp2 are applied after the high-frequency magnetic field RF3. Thus, a nuclear magnetic resonance signal of the region of interest (voxel) 404 is obtained.
  • the spectrum calculation unit 230 calculates the nuclear magnetic resonance signals of water and NAA of each region of interest (voxel) 404 measured in the MRSI sequence 300 in step S1103 in the time direction. Fourier transform is performed to calculate the spectrum of water and NAA in each region of interest (voxel) 404.
  • the temperature information calculation unit 240 of the present embodiment calculates the resonance frequency of water and NAA, and converts the difference between the two (resonance frequency difference) into temperature, thereby obtaining temperature information of each region of interest (voxel) 404.
  • the resonance frequencies of water and NAA are obtained by fitting water and NAA spectral peaks with a predetermined function.
  • FIG. 7 is a process flow of the temperature information calculation process of the present embodiment.
  • the temperature information calculation unit 240 calculates the resonance frequencies of water and NAA, respectively (step S4101).
  • the obtained water and NAA spectral peaks are fitted using a Lorentzian function or the like shown in Formula (1) to obtain the resonance frequency ⁇ W of water and the resonance frequency ⁇ NAA of NAA , respectively.
  • the temperature information calculation unit 240 calculates the resonance frequency difference ⁇ by taking the difference between the resonance frequency ⁇ W of water and the resonance frequency ⁇ NAA of NAA (step S4102).
  • the temperature information calculation unit 240 calculates temperature information by converting the frequency difference to temperature using a temperature conversion formula for converting the frequency difference to temperature (step S4103).
  • the temperature conversion formula is created in advance and held in a storage device or the like.
  • An example of the temperature conversion formula used in this embodiment is shown in Formula (2).
  • T p ⁇ ⁇ + q (2)
  • T temperature
  • p a coefficient having a temperature / frequency dimension
  • q is a constant term.
  • the temperature accuracy information calculation unit 250 of the present embodiment determines a model function that represents each of the spectral peaks of water and NAA, and obtains a plurality of virtual temperature information by adding random noise to the model function multiple times.
  • the temperature accuracy information of the temperature information of each region of interest (voxel) 404 is obtained by statistically processing it.
  • the model function adds and changes a plurality of different noises equivalent to the noise obtained from the spectrum obtained by measurement. In the present embodiment, for example, the standard deviation of noise obtained from the spectrum is calculated, noise groups having the same standard deviation are generated randomly, and added to the model function.
  • FIG. 8 is a processing flow of temperature accuracy information calculation processing of the present embodiment.
  • the temperature accuracy information calculation unit 250 calculates water peak information and a standard deviation of water noise (step S5101).
  • the water peak information of this embodiment is each parameter of a function used for fitting.
  • the resonance frequency ⁇ W of water, the half-value width a W of the spectrum peak, the height I W of the spectrum peak, the phase ⁇ W , and the constant term c W It is.
  • the water peak measured using the Lorentz type function described in Formula (1) is fitted, and each parameter of the used function is determined. Specifically, the resonance frequency ⁇ W of water, the half-value width a W of the spectrum peak, the height I W of the spectrum peak, the phase ⁇ W , and the constant term c W are obtained.
  • the standard deviation ⁇ W of water noise is calculated using a plurality of signal values N W in a noise region (region where there is no water or metabolite signal) of the obtained water spectrum.
  • the signal-to-noise ratio (SNR W ) may be further calculated.
  • the water signal-to-noise ratio SNR W is calculated by I W / ⁇ W.
  • the temperature accuracy information calculation unit 250 calculates metabolite (NAA) peak information and the standard deviation of NAA noise (step S5102).
  • the NAA peak information of this embodiment is the same as the water peak information. Therefore, similarly to the above-described method for calculating the water peak information, the NAA peak measured using the Lorentz type function described in Equation (1) is fitted to the fitting, and each parameter of the used function is determined. Specifically, the resonance frequency ⁇ NAA of the NAA peak, the half-value width a NAA of the spectrum peak, the height I NAA of the spectrum peak, the phase ⁇ NAA , and the constant term c NAA are calculated.
  • the NAA noise standard deviation ⁇ NAA is calculated by using a plurality of signal values N NAA in the noise region of the obtained NAA spectrum. At this time, the signal-to-noise cost (SNR NAA ) may also be calculated for NAA .
  • SNR NAA signal-to-noise cost
  • the NAA signal-to-noise ratio SNR NAA is calculated as I NAA / ⁇ NAA .
  • the temperature accuracy information calculation unit 250 calculates a model function related to the frequency ⁇ using the water peak information and the NAA peak information (step S5103).
  • the Lorentz function shown in Expression (1) used for fitting is used as the model function.
  • the water model information L W ( ⁇ ) is calculated using the water peak information
  • the NAA model function L NAA ( ⁇ ) is calculated using the NAA peak information.
  • the temperature accuracy information calculation unit 250 calculates a virtual temperature from each of a plurality of virtual spectra created by adding virtual noise to the model function.
  • M M is a natural number
  • the temperature accuracy information calculation unit 250 sets the counter m (m is an integer from 1 to M) to 1 (step S5104).
  • the temperature accuracy information calculation unit 250 calculates virtual noises N W ( ⁇ ) and N NAA ( ⁇ ) having the same standard deviation as the noise standard deviations ⁇ W and ⁇ NAA , for example, A random number is used for random determination (step S5105).
  • the determined mth virtual noises N W ( ⁇ , m) and N NAA ( ⁇ , m) satisfy the following equations (3) and (4).
  • var (N W ( ⁇ , m)) ⁇ W (3)
  • var (N NAA ( ⁇ , m )) ⁇ NAA ⁇ (4)
  • var () is an operator that calculates the standard deviation in ().
  • the temperature accuracy information calculation unit 250 converts the determined noises N W ( ⁇ , m) and N NAA ( ⁇ , m) into a model function L W ( ⁇ ) and L NAA ( ⁇ ) are added to generate model functions (virtual model functions) L W ( ⁇ , m) and L NAA ( ⁇ , m) after addition of the m-th virtual noise (step S5106).
  • L W ( ⁇ , m) m L W ( ⁇ ) + N W ( ⁇ , m)
  • L NAA ( ⁇ , m) m L NAA ( ⁇ ) + N NAA ( ⁇ , m) (6)
  • the temperature accuracy information calculation unit 250 has a virtual model function L W ( ⁇ , m) in which the water spectrum and NAA spectrum calculated by the spectrum calculation unit 230 are equal to the noise standard deviations ⁇ W and ⁇ NAA. ) And L NAA ( ⁇ , m).
  • the temperature accuracy information calculation unit 250 calculates a virtual temperature from the virtual model functions L W ( ⁇ , m) and L NAA ( ⁇ , m) (step S5107).
  • the calculation of the virtual temperature is the same as the temperature information calculation process by the temperature information calculation unit 240.
  • the virtual model functions L W ( ⁇ , m) and L NAA ( ⁇ , m) are fitted with the Lorentzian function of Equation (1), and the respective resonance frequencies ⁇ W (m) and ⁇ NAA (m ) Is calculated. Thereafter, a resonance frequency difference ⁇ (m) is calculated, and a virtual temperature in the mth subject 101 is calculated using a predetermined conversion formula (for example, formula (2)).
  • the temperature accuracy information calculation unit 250 repeats the above steps S5104 to S5106 M times (steps S5108 and S5109), and calculates M virtual temperatures.
  • step S5105 virtual noises N W ( ⁇ , m) and N NAA ( ⁇ , m) having the same standard deviation as the noise standard deviations ⁇ W and ⁇ NAA are determined randomly. .
  • temperature accuracy information calculating unit 250 calculates a standard deviation sigma T of M virtual temperature (step S5110).
  • the temperature accuracy information calculation unit 250 of this embodiment performs temperature accuracy information (which is an index of the temperature accuracy of the temperature calculated from the water and NAA spectra obtained by the measurements in Steps S1101 and S1102).
  • the standard deviation is calculated.
  • the standard deviation ⁇ T of M virtual temperatures is calculated as the temperature accuracy information, but the present invention is not limited to this.
  • the obtained M virtual temperatures can be statistically processed, and various values serving as temperature accuracy indexes can be calculated as temperature accuracy information.
  • the temperature accuracy information may be, for example, variance or standard error.
  • FIG. 9 is an explanatory diagram for explaining display information displayed on the display screen 116 of the display device 110 according to the present embodiment.
  • the display information generated by the display information generation unit 260 of the present embodiment is, for example, a temperature in which the temperature information of each region of interest (voxel) 404 calculated by the temperature information calculation unit 240 is associated with a matrix measured by the MRSI sequence 300.
  • the temperature accuracy information of each region of interest (voxel) 404 calculated by the temperature image 502 using the values of the table 501 and the temperature table 501 as pixel values and the temperature accuracy information calculation unit 250 is associated with the matrix measured by the MRSI sequence 300.
  • the temperature accuracy table 511 and the temperature accuracy image 512 using the values of the temperature accuracy table 511 as pixel values.
  • a temperature difference image may be calculated as display information.
  • the temperature difference image is obtained by subtracting the temperature of the reference voxel from the temperature of a voxel other than the reference voxel with an arbitrary voxel as a reference.
  • the display information displayed on the display device 110 is not limited to the above.
  • the display information may include various calculation results such as water peak information and NAA peak information obtained during the calculation of temperature information and temperature accuracy information. Further, temperature information, temperature accuracy information, water peak information, and NAA peak information may be displayed for each voxel of the matrix measured by the MRSI sequence 300. Further, the temperature image and the temperature difference image may be displayed by being superimposed on various images such as an MR image, a CT image, a PET image, and a SPECT image.
  • the MRI apparatus 100 includes a static magnetic field generation unit (static magnetic field coil 102) that generates a static magnetic field in a space where a subject is placed, and a high-frequency magnetic field that irradiates the subject with a high-frequency magnetic field.
  • An irradiation unit transmission coil 105
  • a gradient magnetic field application unit gradient magnetic field coil 103
  • a reception unit reception coil 106
  • a measuring unit 210 that controls operations of the gradient magnetic field applying unit, the high-frequency magnetic field irradiating unit, and the receiving unit to obtain nuclear magnetic resonance signals of two substances having different resonance frequencies, and for the nuclear magnetic resonance signal
  • the magnetic resonance imaging apparatus includes a calculation unit 220 that performs calculation processing and a display device 110 that displays information after the calculation processing, and the calculation unit 220 has different resonance frequencies.
  • a temperature accuracy information calculation unit 250 that calculates temperature accuracy information indicating the accuracy of the temperature information based on each spectrum peak, and generates display information to be displayed on the display device 110 based on the temperature information and the temperature accuracy information.
  • a display information generation unit 260 A display information generation unit 260.
  • the temperature information calculation unit 240 determines a function representing each of the calculated spectrum peaks, and based on the function, calculates a resonance frequency of each of the two substances, and the two determined resonances A conversion unit that converts the frequency difference into temperature information.
  • the temperature accuracy information calculation unit 240 adds a plurality of virtual noises to each of the determined model functions, a model function calculation unit that calculates a model function representing each calculated spectrum peak, and the 2 A virtual model function generation unit that generates a plurality of virtual model functions for each substance, and a virtual temperature calculation unit that calculates a virtual temperature from each of the virtual model functions, statistically processing the plurality of virtual temperatures, Obtain temperature accuracy information.
  • each of a plurality of substances having different resonance frequencies is measured once by MRS / MRSI, thereby calculating the temperature in the subject and the accuracy information of the temperature.
  • MRS / MRSI MRS / MRSI
  • the temperature accuracy information calculation unit 250 obtains a plurality of virtual temperatures and calculates the temperature accuracy information, but the calculation procedure of the temperature accuracy information is not limited to this.
  • the temperature accuracy information may be obtained numerically using, for example, an error propagation method based on a model function. A temperature calculation method using the error propagation method will be described below.
  • FIG. 10 is a processing flow of temperature accuracy information calculation processing using the error propagation method of this embodiment.
  • the temperature accuracy information calculation unit 250 calculates water peak information (step S5201). This is the same as step S5101. Further, metabolite (NAA) peak information is calculated (step S5202). This is also the same as step S5102. That is, each peak information is obtained by fitting each spectrum peak with a predetermined model function and determining the coefficient of the model function.
  • NAA metabolite
  • the frequency accuracy information is calculated as an index of the accuracy of the peak frequency (step S5203).
  • the standard deviation of the peak frequency is calculated as the frequency accuracy information.
  • the error propagation method of this modification when the measured spectral data is fitted with, for example, a Lorentz type function described in Equation (1), an error occurring in each parameter of the fitting function (hereinafter referred to as a fitting parameter). Estimate the amount and calculate the standard deviation.
  • the deviation included in the measurement data of the signal intensity L (f k ) is denoted by ⁇ L.
  • ⁇ L the deviation included in the measurement data of the signal intensity
  • F1, F2 represent those obtained by substituting the end points of the frequency domain
  • f k is the frequency point
  • L (B, f) is each element b i of the B model function used for the fitting to be used for fitting.
  • ⁇ B follows the distribution given by equation (8) below.
  • D (B, F, k) i is a noise component N defined by the equation (8).
  • This represents the coefficient of (f k ).
  • Each element of ⁇ B than assume that the [Delta] b i variance var ([Delta] b i) is given by the following equation (9). Therefore, the standard deviation ⁇ w1 of the resonance frequency (water peak frequency) ⁇ w of the water peak of the present embodiment can be calculated by taking i 2 as the square root of var ( ⁇ b 1 ).
  • the standard deviation ⁇ w1 of the water peak frequency ⁇ w and the standard deviation ⁇ NAA1 of the NAA peak frequency ⁇ NAA can be calculated.
  • step S5204 frequency difference accuracy information (standard deviation) is used as an indicator of the accuracy of the peak frequency difference as a propagation error.
  • the standard deviation ⁇ df of the peak frequency difference between the water peak and the NAA peak is calculated from the standard deviation ⁇ w1 of the resonance frequency ⁇ w of the water peak and the standard deviation ⁇ NAA1 of the resonance frequency ⁇ NAA of the NAA peak by the equation (10). It can be calculated.
  • temperature accuracy information is calculated from the calculated standard deviation ⁇ df of the peak frequency difference (step S5205).
  • the standard deviation ⁇ T of the calculated temperature can be calculated, for example, by converting ⁇ df to temperature using the temperature conversion formula described in Non-Patent Document 2. Specifically, the absolute value
  • the temperature accuracy information (in this case, standard deviation) of the temperature calculated from the spectrum information of water obtained by measurement and the spectrum information of NAA can be calculated analytically.
  • the temperature accuracy information calculation unit 250 calculates the model function representing the two calculated spectrum peaks, and the resonance frequency accuracy information of each of the two substances based on the model function.
  • a frequency accuracy calculation unit that calculates the accuracy information of the resonance frequency difference between the two substances from the accuracy information of the two resonance frequencies, and a temperature difference from the accuracy information of the resonance frequency difference. The accuracy information may be calculated.
  • the calculated temperature accuracy information may be other statistical values such as variance and standard error.
  • the display information generation unit 260 generates a temperature table, a temperature image, and a temperature difference image as display information.
  • the display information to be generated is not limited to these.
  • a temperature image or a temperature difference image having an arbitrary spatial resolution may be generated as display information by interpolation or the like.
  • the display information generation unit 260 may generate a high-resolution temperature image as the display information by interpolating the temperature information of each voxel. For example, a temperature image with higher resolution than the original temperature image is created by interpolating temperature information of adjacent target voxels to obtain temperature information of a new intermediate voxel.
  • a high-resolution temperature difference image (high-resolution temperature difference image) is created by the following procedure from the original temperature difference image.
  • the flow of processing in which the display information generation unit 260 generates a temperature difference image (high resolution temperature difference image) with higher resolution than the original resolution by interpolation will be described with reference to the flowchart of FIG.
  • Step S6101 the selection of the reference voxel from the temperature image (hereinafter referred to as a low-resolution temperature image) matrix (each voxel) obtained from the result measured by the MRSI sequence 300 by the above-described method is accepted and set. (Step S6101). Two or more voxels may be selected.
  • the temperature of the reference voxel is calculated (step S6102).
  • the temperature of the voxel is set as the reference voxel temperature.
  • an average value of the temperatures of the selected voxels is calculated.
  • the sum of the water peak and NAA peak of the reference voxel is calculated, and then the resonance frequency of water and NAA is calculated by fitting, and the above equation (2), etc.
  • the temperature may be calculated by a conversion formula of
  • a target voxel for calculating a temperature difference image
  • a target voxel There may be at least one target voxel, or the entire measurement region.
  • step S6104 the difference between the temperature of each voxel included in the target voxel and the temperature of the reference voxel is calculated, and a temperature difference image is calculated (step S6104).
  • a high-resolution temperature difference image is generated by interpolation from the temperature difference image (step S6105).
  • a known method such as cubic interpolation or spline interpolation may be used in addition to linear interpolation.
  • step S6105 the high-resolution temperature difference image calculated in step S6105 is displayed on the display device 110 (step S6106).
  • the display information generation unit 260 receives a reference voxel receiving unit that receives a reference voxel as a reference from the voxels, and calculates a difference between the temperature information of each voxel and the temperature information of the reference voxel.
  • a temperature difference information calculation unit that calculates information, and interpolates the temperature difference information of each voxel to generate a temperature difference image with a desired resolution as the display information.
  • the method for generating the high-resolution temperature difference image is not limited to this.
  • the flow of processing by the display information generation unit 260 for generating a high-resolution temperature difference image according to another procedure will be described with reference to the flowchart of FIG.
  • a high-resolution temperature image is generated by interpolating a low-resolution temperature image obtained from the result measured by the MRSI sequence 300 (step S6201).
  • a known method such as cubic interpolation or spline interpolation may be used in addition to linear interpolation.
  • selection of a region of interest (ROI: Region Of Interest) as a reference on the interpolated high-resolution temperature image is received and set (step S6202).
  • ROI Region Of Interest
  • the number of voxels included in the selected reference ROI may be two or more.
  • the shape of the reference ROI may be an arbitrary shape other than a circle, an ellipse, or a rectangle.
  • the temperature (reference temperature) within the reference ROI is calculated (step S6203).
  • the temperature information of each voxel included in the region selected as the reference ROI is set as the reference temperature.
  • an average value of the temperatures of the selected voxels is calculated as a reference temperature.
  • the selection of the ROI (herein referred to as the target ROI) for calculating the temperature difference image on the high resolution temperature image is received and set (step S6204).
  • the target ROI There may be at least one target ROI. Moreover, the whole measurement area
  • step S6205 a difference between the temperature of each voxel included in the target ROI and the reference temperature is calculated, and a high-resolution temperature difference image having the result as a pixel value is calculated.
  • step S6205 the high-resolution temperature difference image calculated in step S6205 is displayed on the display device 110 (step S6206).
  • the display information generation unit 260 interpolates the temperature information of each voxel to generate a temperature image with a desired resolution, and a reference region of interest on the temperature image with the desired resolution.
  • a reference region-of-interest receiving unit that receives a selection; a reference temperature information calculating unit that calculates temperature information of the voxel in the reference region of interest as reference temperature information; and temperature information of each voxel of the temperature image of the desired resolution
  • a temperature difference information calculation unit that calculates a difference between the reference temperature information and the reference temperature information as temperature difference information, and generates a temperature difference image using the temperature difference information of each voxel as a pixel value as the display information.
  • high-resolution water and NAA spectrum data are calculated by spatially interpolating the water and NAA spectrum data obtained from the results measured by the MRSI sequence 300 (step S6301).
  • a known method such as cubic interpolation or spline interpolation may be used in addition to linear interpolation.
  • temperature information is calculated from the high-resolution water, NAA, and spectrum data by the method of the present embodiment, and a high-resolution temperature image (high-resolution temperature image) is generated (step S6302).
  • the temperature information calculation process may be configured such that the display information generation unit 260 causes the temperature information calculation unit 240 to calculate.
  • a region of interest ROI serving as a reference on the high resolution temperature image is received and set (step S6303).
  • the number of voxels included in the reference ROI may be two or more.
  • the shape of the reference ROI may be an arbitrary shape other than a circle, an ellipse, or a rectangle.
  • the temperature (reference temperature) within the reference ROI is calculated (step S6304).
  • the temperature information of each voxel included in the region selected as the reference ROI is set as the reference temperature.
  • an average value of the temperatures of the selected voxels is calculated as a reference temperature.
  • a target ROI selection and setting of an ROI for calculating a temperature difference image on the high resolution temperature image (referred to here as a target ROI) is received and set (step S6305).
  • a target ROI There may be at least one target ROI. Moreover, the whole measurement area
  • step S6306 a difference between the temperature of each voxel included in the target ROI and the reference temperature is calculated, and a high-resolution temperature difference image having the result as a pixel value is calculated.
  • step S6306 the high-resolution temperature difference image calculated in step S6306 is displayed on the display device 110 (step S6307).
  • the display information generation unit 260 spatially interpolates the spectrum of each voxel measured in the sequence to obtain spectrum data with a desired resolution, and the interpolated voxel from the interpolated spectrum data.
  • a temperature image generation unit that generates a temperature image with the resolution using the calculated temperature information as pixel values, and a reference region of interest that receives a selection of a region of interest serving as a reference on the temperature image with the resolution
  • a receiving unit a reference temperature information calculating unit that calculates the temperature information of each interpolated voxel in the reference region of interest as reference temperature information, and a voxel of each interpolated voxel in the temperature image of the desired resolution.
  • a temperature difference information calculation unit that calculates a difference between temperature information and the reference temperature information as temperature difference information, and the temperature difference information of the voxel after each interpolation The generating a temperature difference image to the pixel value as the display information.
  • an ROI for calculating a temperature image is selected on the high-resolution temperature image generated in step S6302, and each of the included ROIs included in the target ROI is selected.
  • the voxel temperature be the pixel value of each pixel of the high-resolution temperature image.
  • the display information generation unit 260 includes an interpolation unit that spatially interpolates the spectrum for each voxel measured in the sequence to obtain spectrum data with a desired resolution, and each of the interpolated spectrum data is subjected to interpolation. Voxel temperature information is calculated, and a temperature image having the resolution with the calculated temperature information as a pixel value is generated as the display information.
  • the display information displayed on the display device 110 may be provided with a switch 520 that switches execution / non-execution of the interpolation process.
  • the switch 520 is pressed, the display information generation unit 260 performs an interpolation process.
  • the temperature accuracy information obtained by the method of the present embodiment may be used for determining measurement parameters. For example, a plurality of MR images are acquired by changing measurement parameters for one subject 101 in advance. Then, a plurality of pieces of temperature accuracy information are obtained by the above method using the plurality of acquired MR images. At this time, the obtained temperature accuracy information is stored in the storage device in association with the measurement parameter. At the time of measurement, measurement parameters that can obtain the best temperature accuracy under the constraint conditions such as measurement time are employed.
  • the temperature accuracy information may be calculated for each VOI of various sizes at various positions, and the temperature accuracy information may be held in association with the positions.
  • a histogram of pixel values of each voxel constituting the VOI for which the temperature accuracy information is calculated, instead of the measurement parameter and the measurement position, and the temperature accuracy information may be stored in association with each other.
  • the pulse sequence used in the non-water suppression measurement and the water suppression measurement has been described as an example.
  • the pulse sequence used in the non-water suppression measurement and the water suppression measurement is described here. Not limited. Any pulse sequence that can obtain the spectrum of the substance to be measured of each voxel may be used.
  • a sequence for measuring a single region called a magnetic resonance spectrum copy pulse sequence (MRS sequence), a high-speed MRSI sequence using an oscillating gradient magnetic field called an echo planar spectroscopic image sequence (EPSI sequence), etc. It may be.
  • MRS sequence magnetic resonance spectrum copy pulse sequence
  • EPSI sequence echo planar spectroscopic image sequence
  • DESCRIPTION OF SYMBOLS 100 MRI apparatus, 101: Subject, 102: Static magnetic field coil, 103: Gradient magnetic field coil, 104: Shim coil, 105: Transmission coil, 106: Reception coil, 107: Transmitter, 108: Receiver, 109: Calculator, 110: Display device, 111: External storage device, 112: Power supply unit for gradient magnetic field, 113: Power supply unit for shim, 114: Sequence control device, 115: Input device, 116: Display screen, 120: MRI device, 130: MRI Apparatus: 14: claim, 210: measurement unit, 220: calculation unit, 230: spectrum calculation unit, 240: temperature information calculation unit, 250: temperature accuracy information calculation unit, 260: display information generation unit, 300: MRSI sequence, 401: Cross section, 402: Cross section, 403: Cross section, 404: Voxel 410: Trans image, 420: Sagittal image, 430: Ronaru image, 501: temperature table, 50

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

短時間で済み、被検者の負担も少ない、生体内の温度情報およびその精度情報取得技術を提供する。共鳴周波数が異なる2つの物質を、MRS/MRSIにより計測し、得られた2つの物質それぞれの核磁気共鳴信号のスペクトルを各々算出するスペクトル算出部と、前記算出した各々のスペクトルピークから前記被検体内の温度情報を算出する温度情報算出部と、前記算出した各々のスペクトルピークから前記温度情報の精度を示す温度精度情報を算出する温度精度情報算出部と、前記温度情報および前記温度精度情報とから前記表示装置に表示する表示情報を生成する表示情報生成部と、を備える。

Description

磁気共鳴撮影装置
 本発明は、磁気共鳴撮影技術に関する。特に、水と代謝物との共鳴周波数差から温度画像を算出する磁気共鳴スペクトロスコピー(MRS:Magnetic Resonance Spectroscopy)、および、磁気共鳴スペクトロスコピックイメージング(MRSI:Magnetic Resonance Spectroscopic Imaging)技術に関する。
 磁気共鳴撮影装置は、静磁場中に置かれた測定対象に特定周波数の高周波磁場を照射して磁気共鳴現象を誘起し、測定対象の物理的、化学的情報を取得する装置である。現在、広く普及している磁気共鳴イメージング(MRI:Magnetic Resonance Imaging)は、主として水分子中の水素原子核の核磁気共鳴現象を用い、生体組織によって異なる水素原子核密度や緩和時間の差などを画像化する方法である。これにより組織の差異を画像化でき、疾病の診断に高い効果を挙げている。
 これに対し、MRSやMRSIは、分子(代謝物)の化学結合の違いによる共鳴周波数の差異(化学シフト)を元に分子毎に核磁気共鳴信号を分離し、分子種毎の濃度や緩和時間の差などを計測する方法である。MRSは、ある選択された空間領域の分子種を観測する方法であり、MRSIは、分子種毎に画像化する方法である。対象とする原子核としてはH(プロトン)、31P、13C、19Fなどがある。
 プロトンを対象核種としたプロトンMRSやプロトンMRSI(以降は単にMRS/MRSIと呼ぶ)で検出できる人体の主な代謝物には、コリン、クレアチン、N-アセチルアスパラギン酸(NAA)、乳酸等がある。これら代謝物の量から、がん等の代謝異常疾患の進行度判定や早期診断、悪性度診断を非侵襲的に行うことが期待されている。
 MRS/MRSIは、代謝物濃度の測定だけでなく、水と代謝物の共鳴周波数差を用いた生体内の温度測定にも応用できる。水の共鳴周波数は、温度によって共鳴周波数がシフトし、そのシフト量は-0.01ppm/℃の温度係数を持つことが知られている(例えば非特許文献1)。一方、NAAなどの代謝物の共鳴周波数は、生体環境下の温度範囲では変化しないことが知られている。これらの特性を利用して、水と代謝物との共鳴周波数差から生体内の温度を測定する技術がある(例えば、非特許文献2参照)。
 温度情報の算出は、例えば、以下のようにモデル関数でフィッティングすることにより行う。まず、水と代謝物(ここでは例としてNAAを挙げる)を個別または同時に計測する。そして、時間方向にフーリエ変換して、それぞれスペクトルを得る。計測した水とNAAのスペクトルのピーク領域(スペクトルピーク)を、例えば、以下の式(1)のローレンツ型関数を使ってフィッティングする。
Figure JPOXMLDOC01-appb-M000001
ここで、νは周波数、Liは信号強度、νiは対象とする物質の共鳴周波数、aiはスペクトルピークの半値幅、Iiはスペクトルピークの高さ、φiは位相、cは定数項である。計測した水とNAAとのスペクトルピークをそれぞれ式(1)でフィッティングし、水とNAAの共鳴周波数を、それぞれフィッティングパラメータである共鳴周波数νiとして得る。その後、水とNAAの共鳴周波数差を算出し、例えば、非特許文献2に記載の温度換算式などから温度を算出する。
Hindman J. C.、"Proton Resonance Shift of Water in the Gas and Liqiud States" The Journal Of Chemical Physics、1966年、44巻、4582-4592頁 Cady  E. B.他、"The Estimation of Local Brain Temperature by in Vivo 1H Magnetic Resonance Spectroscopy" Magnetic Resonance in Medicine、1995年、33巻、862-867頁
 上述のとおり、モデル関数のフィッティングを使った温度情報算出方法では、例えば、ピークの半値幅や信号対雑音比などのスペクトルの質によってフィッティング結果が左右され、算出される温度が変動する。しかしながら、この手法では、オペレータは、算出した温度の精度を把握することはできない。算出された温度の精度(信頼度)は、診断には必須の情報であるため、複数回計測して温度を算出し、それらの標準偏差などから算出した温度の精度を確認することとなる。このため、一人の被検者の温度を測定するためには多大な時間がかかるとともに被検者の負担も大きい。
 本発明は、上記事情に鑑みて成されたもので、短時間で済み、被検者の負担も少ない、生体内の温度情報およびその精度情報取得技術を提供することを目的とする。
 本発明は、共鳴周波数が異なる2つの物質を、MRS/MRSIにより、それぞれ1回計測することにより得られたスペクトルから、温度情報だけでなく、その精度も算出し、温度情報とともにオペレータに提示する。
 具体的には、被検体が置かれる空間に静磁場を発生させる静磁場発生部と、前記被検体に高周波磁場を照射する高周波磁場照射部と、前記被検体に傾斜磁場を印加する傾斜磁場印加部と、前記被検体から発生する核磁気共鳴信号を受信する受信部と、前記傾斜磁場印加部と前記高周波磁場照射部と前記受信部との動作を制御して共鳴周波数が異なる2つの物質の核磁気共鳴信号を得る計測部と、前記核磁気共鳴信号に対して演算処理する演算部と、前記演算処理後の情報を表示する表示装置と、を備える磁気共鳴撮影装置であって、前記演算部は、前記共鳴周波数が異なる2つの物質それぞれの核磁気共鳴信号のスペクトルを各々算出するスペクトル算出部と、前記算出した各々のスペクトルピークに基づいて前記被検体内の温度情報を算出する温度情報算出部と、前記算出した各々のスペクトルピークに基づいて前記温度情報の精度を示す温度精度情報を算出する温度精度情報算出部と、前記温度情報および前記温度精度情報に基づいて前記表示装置に表示する表示情報を生成する表示情報生成部と、を備えることを特徴とする磁気共鳴撮影装置を提供する。
 本発明によれば、短時間、かつ、被検者にとって低負担で、生体内の温度情報およびその精度情報を取得できる。
(a)~(c)は、本発明の実施形態の磁気共鳴撮影装置の外観図である。 本発明の実施形態の磁気共鳴撮影装置の機能構成図である。 本発明の実施形態の磁気共鳴撮影装置が備える計算機の機能ブロック図である。 本発明の実施形態の温度情報および温度精度情報算出計測全体の流れを説明するためのフローチャートである。 本発明の実施形態のMRSIシーケンスの一例を説明するための説明図である。 (a)~(c)は、本発明の実施形態のMRSIシーケンスにより励起される領域を説明するための説明図である。 本発明の実施形態の温度情報算出処理のフローチャートである。 本発明の実施形態の温度精度情報算出処理のフローチャートである。 本発明の実施形態の表示情報生成部で実行される表示情報の表示例を説明するための説明図である。 本発明の実施形態の温度精度情報算出処理の他の例のフローチャートである。 本発明の実施形態の高分解能温度差画像生成処理のフローチャートである。 本発明の実施形態の高分解能温度差画像生成処理の他の例のフローチャートである。 本発明の実施形態の高分解能温度差画像生成処理の他の例のフローチャートである。
 以下、本発明を適用する実施形態について説明する。以下、実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
 まず、本実施形態の磁気共鳴撮影装置(MRI装置)について説明する。図1は、本実施形態のMRI装置の外観図である。図1(a)は、ソレノイドコイルで静磁場を生成するトンネル型磁石を用いた水平磁場方式のMRI装置100である。図1(b)は、開放感を高めるために磁石を上下に分離したハンバーガー型(オープン型)の垂直磁場方式のMRI装置120である。また、図1(c)は、図1(a)と同じトンネル型磁石を用い、磁石の奥行を短くし且つ斜めに傾けることによって、開放感を高めたMRI装置130である。本実施形態では、これらの外観を有するMRI装置のいずれを用いることもできる。なお、これらは一例であり、本実施形態のMRI装置はこれらの形態に限定されるものではない。本実施形態では、装置の形態やタイプを問わず、公知の各種のMRI装置を用いることができる。以下、特に区別する必要がない場合は、MRI装置100で代表する。
 図2は、本実施形態のMRI装置100の機能構成図である。本図に示すように、本実施形態のMRI装置100は、被検体101が置かれる空間に、静磁場を発生させる静磁場コイル102などで構成される静磁場発生部と、x方向、y方向、z方向にそれぞれ傾斜磁場を発生させ、被検体101に印加する傾斜磁場コイル103(傾斜磁場印加部)と、静磁場分布を調整するシムコイル104と、被検体101の計測領域に対し高周波磁場を照射する高周波磁場照射コイル105(以下、単に送信コイルという;高周波磁場照射部)と、被検体101から発生する核磁気共鳴信号を受信する核磁気共鳴信号受信コイル106(以下、単に受信コイルという;受信部)と、送信機107と、受信機108と、計算機109と、傾斜磁場用電源部112と、シム用電源部113と、シーケンス制御装置114と、を備える。
 静磁場コイル102は、図1(a)、図1(b)、図1(c)にそれぞれ示した各MRI装置100、120、130の構造に応じて、種々の形態のものが採用される。傾斜磁場コイル103及びシムコイル104は、それぞれ傾斜磁場用電源部112及びシム用電源部113により駆動される。なお、本実施形態では、送信コイル105と受信コイル106とに別個のものを用いる場合を例にあげて説明するが、送信コイル105と受信コイル106との機能を兼用する1のコイルで構成してもよい。送信コイル105が照射する高周波磁場は、送信機107により生成される。受信コイル106が検出した核磁気共鳴信号は、受信機108を通して計算機109に送られる。
 シーケンス制御装置114は、計算機109からの指示に従って傾斜磁場コイル103の駆動用電源である傾斜磁場用電源部112、シムコイル104の駆動用電源であるシム用電源部113、送信機107及び受信機108の動作を制御し、傾斜磁場、高周波磁場の印加および核磁気共鳴信号の受信のタイミングを制御する。制御のタイムチャートはパルスシーケンスと呼ばれ、計測に応じて予め設定され、後述する計算機109が備える記憶装置等に格納される。
 計算機109は、受け取った核磁気共鳴信号に対して様々な演算処理を行い、画像情報やスペクトル情報、温度情報、温度精度情報を生成するとともに、シーケンス制御装置114に指示を与え、MRI装置100全体の動作を制御する。計算機109は、CPU、メモリ、記憶装置などを備える情報処理装置であり、計算機109にはディスプレイ等の表示装置110、外部記憶装置111、入力装置115などが接続される。
 表示装置110は、演算処理で得られた結果等をオペレータに表示するインタフェースである。入力装置115は、本実施形態で行われる演算処理に必要な条件、パラメータ等をオペレータが入力するためのインタフェースである。外部記憶装置111は、記憶装置とともに、計算機109が実行する各種の演算処理に用いられるデータ、演算処理により得られるデータ、入力された条件、パラメータ等を保持する。
 上述のように、本実施形態のMRI装置100は、1回の計測で温度情報とその精度(信頼度)を示す指標を算出する。これを実現する本実施形態の計算機109の機能について説明する。図3は、本実施形態の計算機109の機能ブロック図である。
 本図に示すように、本実施形態の計算機109は、計測部210と、演算部220とを備える。計測部210は、パルスシーケンスに従ってシーケンス制御装置114を動作させるとともに各部を制御して計測を行い、核磁気共鳴信号を得る。演算部220は、計測により得た核磁気共鳴信号に様々な演算処理を施し、画像情報、スペクトル情報、温度情報、および温度精度情報等を生成する。
 演算部220は、計測により得た核磁気共鳴信号をスペクトルに変換し、温度情報と温度精度情報を算出し、表示装置110に表示する表示情報を生成する。これを実現するため、本実施形態の演算部220は、計測により得た核磁気共鳴信号をスペクトルに変換するスペクトル算出部230と、スペクトルから被検体101内部の温度情報を算出する温度情報算出部240と、算出した温度情報の精度を算出する温度精度情報算出部250と、表示情報生成部260と、を備える。本実施形態では、温度精度情報算出部250も、温度情報算出部240が温度情報を算出するスペクトルを用い、温度精度情報を算出する。
 なお、計算機109が実現する各種の機能は、記憶装置が保持するプログラムを、CPUがメモリにロードして実行することにより実現される。また、計算機109が実現する各種の機能のうち、少なくとも一つの機能は、MRI装置100とは独立した、情報処理装置であって、MRI装置100とデータの送受信が可能な情報処理装置により実現されていてもよい。
 以下、本実施形態の計算機109の各機能による、本実施形態の、温度情報および温度精度情報算出計測全体の流れについて簡単に説明する。図4は、本実施形態の温度情報および温度精度情報算出計測全体の流れの処理フローである。本実施形態では、温度情報および温度精度情報を算出するために、2つの共鳴周波数の異なる物質のスペクトル情報を用いる。以下、本実施形態では、2つの共鳴周波数の異なる物質として水と代謝物(NAA)とを用いる場合を例にあげて説明する。
 まず、計測部210は、非水抑圧計測を行い(ステップS1101)、水の核磁気共鳴信号を得る。その後、水抑圧計測を行い(ステップS1102)、代謝物の核磁気共鳴信号を得る。非水抑圧計測および水抑圧計測は、ともに、予め定められたパルスシーケンスに従って、シーケンス制御装置114を制御することにより実現する。予め定められたパルスシーケンスの一例は後述する。なお、本実施形態では、水とNAAの核磁気共鳴信号を別個の計測で得ているが、水信号を完全に抑制せずに、ある程度の信号量を残しながら計測するなどして水とNAAの核磁気共鳴信号を同時に得てもよい。
 その後、スペクトル算出部230は、得られた水およびNAAの核磁気共鳴信号をフーリエ変換し、水とNAAのスペクトルを算出する(ステップS1103)。そして、温度情報算出部240は、水とNAAのスペクトルから被検体内の温度(温度情報)を算出する(ステップS1104)。また、温度精度情報算出部250は、水とNAAのスペクトルから温度精度を表す指標(温度精度情報)を算出する(ステップS1105)。その後、表示情報生成部260は、算出した温度情報と温度精度情報とから表示情報を生成し表示装置110に表示する(ステップS1106)。
 ここで、上記ステップS1101およびステップS1102で計測部210がそれぞれ実行する非水抑圧計測および水抑圧計測のパルスシーケンスの一例について説明する。ここでは、代謝物を画像化する領域選択型磁気共鳴スペクトロスコピックイメージングのパルスシーケンス(以降、MRSIシーケンスと呼ぶ)を例にあげて説明する。
 図5は、MRSIシーケンス300の一例である。図5において、RFは高周波磁場パルスの印加タイミングを示す。Gx、Gy、Gzは、それぞれ、x、y、z方向の傾斜磁場パルスの印加タイミングを示す。A/Dは、信号の計測期間を示す。図5に示すMRSIシーケンス300は、公知のMRSIシーケンスと同じであり、1つの励起パルスRF1と2つの反転パルスRF2およびRF3とを用いて、所定の関心領域(ボクセル)を選択的に励起し、この関心領域(ボクセル)からFID信号(自由誘導減衰)FID1を得る。
 このMRSIシーケンス300に従って、励起される領域を図6に示す。図6は、本計測に先立って行われる計測により得る位置決め用スカウト画像であって、それぞれ、図6(a)はトランス像410、図6(b)はサジタル像420、図6(c)はコロナル像430である。以下、各部の動作と励起される領域との関係を図5および図6(a)、(b)、(c)を用いて説明する。
 まず高周波磁場RF1とz方向の傾斜磁場パルスGs1、Gs1’とを印加して、z方向の断面401を励起する。TE/4(ここで、TEはエコー時間)時間後に、高周波磁場RF2とy方向の傾斜磁場パルスGs2とを印加する。その結果、z方向の断面401とy方向の断面402とが交差する領域における核磁化の位相のみがリフェイズする(戻る)。続いて、高周波磁場RF2印加からTE/2後に高周波磁場RF3とx方向の傾斜磁場パルスGs3とを印加する。それによって、z方向の断面401、y方向の断面402、x方向の断面403が交差する関心領域(ボクセル)404における核磁化の位相のみがリフェイズされ、ここから自由誘導減衰信号FID1が生じる。この自由誘導減衰信号FID1を計測する。なお、各方向の傾斜磁場パルスGd1~Gd3およびGd1’~Gd3’は、高周波磁場RF1で励起された核磁化の位相をリフェイズし、RF2、RF3で励起された核磁化の位相をディフェイズするための傾斜磁場である。また、高周波磁場RF3の後には、位相エンコード傾斜磁場Gp1、Gp2を印加する。以上により、関心領域(ボクセル)404の核磁気共鳴信号を得る。
 上述のように、本実施形態のスペクトル算出部230は、上記ステップS1103において、このMRSIシーケンス300で計測した、各関心領域(ボクセル)404の、水とNAAとの核磁気共鳴信号を時間方向にフーリエ変換し、各関心領域(ボクセル)404の水とNAAとのスペクトルを算出する。
 次に、上記ステップS1104の、温度情報算出部240による温度情報の算出について説明する。本実施形態の温度情報算出部240は、水およびNAAの共鳴周波数を算出し、両者の差(共鳴周波数差)を温度に変換することにより、各関心領域(ボクセル)404の温度情報を得る。水およびNAAの共鳴周波数は、水およびNAAのスペクトルピークを予め定めた関数でフィッティングすることにより得る。
 本実施形態の温度情報算出部240による温度情報算出処理の流れを説明する。図7は、本実施形態の温度情報算出処理の処理フローである。
 まず、温度情報算出部240は、水とNAAの共鳴周波数をそれぞれ算出する(ステップS4101)。本実施形態では、得られた水およびNAAのスペクトルピークを、式(1)に示すローレンツ型関数等を用いてフィッティングし、水の共鳴周波数νWとNAAの共鳴周波数νNAAとをそれぞれ得る。
 次に、温度情報算出部240は、水の共鳴周波数νWとNAAの共鳴周波数νNAAとの差分を取り、共鳴周波数差Δνを算出する(ステップS4102)。
 次に、温度情報算出部240は、周波数差を温度に換算する温度換算式を用いて周波数差を温度に換算することにより、温度情報を算出する(ステップS4103)。温度換算式は、予め作成し、記憶装置等に保持する。本実施形態で用いる温度換算式の例を式(2)に示す。
   T=p×Δν+q   (2)
ここで、Tは温度、pは温度/周波数の次元を持つ係数、qは定数項である。式(2)のpおよびqは、文献に記された公知の値や、実験的に求めた値を用いる。
 次に、上記ステップS1105の、温度精度情報算出部250による温度精度情報の算について説明する。本実施形態の温度精度情報算出部250は、水およびNAAそれぞれのスペクトルピークを表すモデル関数を決定し、そのモデル関数にランダムなノイズを複数回付加することにより複数の仮想的な温度情報を得、それを統計処理することにより、各関心領域(ボクセル)404の温度情報の温度精度情報を得る。モデル関数は、計測で得られたスペクトルから得たノイズと同等の複数の異なるノイズを加え、変化させる。本実施形態では、例えば、スペクトルから得たノイズの標準偏差を算出し、標準偏差が同じとなるノイズ群を乱数的に発生させ、モデル関数に加える。
 本実施形態の温度精度情報算出部250による温度精度情報算出処理の流れを説明する。図8は、本実施形態の温度精度情報算出処理の処理フローである。
 まず、温度精度情報算出部250は、水ピーク情報と水のノイズの標準偏差とを算出する(ステップS5101)。
 本実施形態の水ピーク情報は、フィッティングに用いる関数の各パラメータである。例えば、フィッティングに式(1)に示すローレンツ型関数を用いる場合、水の共鳴周波数νW、スペクトルピークの半値幅aW、スペクトルピークの高さIW、位相φW、および、定数項cWである。ここでは、式(1)に記すローレンツ型関数を用いて計測した水ピークをフィッティングし、用いた関数の各パラメータを決定する。具体的には、水の共鳴周波数νW、スペクトルピークの半値幅aW、スペクトルピークの高さIW、位相φW、定数項cWを得る。
 また、水のノイズの標準偏差σWは、得られた水のスペクトルの、ノイズ領域(水や代謝物の信号のない領域)の、複数の信号値NWを用いて算出する。なお、このとき、さらに信号対雑音比(SNRW)を算出してもよい。水のスペクトルのノイズの標準偏差をσWとしたとき、水の信号対雑音比SNRWは、IW/σWで算出される。
 次に、温度精度情報算出部250は、代謝物(NAA)ピーク情報とNAAのノイズの標準偏差とを算出する(ステップS5102)。
 本実施形態のNAAピーク情報は、上記水ピーク情報と同様である。従って、上述の水ピーク情報の算出手法と同様に、フィッティングに式(1)に記すローレンツ型関数を用いて計測したNAAピークをフィッティングし、用いた関数の各パラメータを決定する。具体的には、NAAピークの共鳴周波数νNAA、スペクトルピークの半値幅aNAA、スペクトルピークの高さINAA、位相φNAA、定数項cNAAを算出する。
 また、NAAのノイズ標準偏差σNAAは、得られたNAAのスペクトルの、ノイズ領域の、複数の信号値NNAAを用いて算出する。なお、このとき、NAAについても、さらに、信号対雑音費(SNRNAA)を算出してもよい。NAAのスペクトルのノイズの標準偏差をσNAAとしたとき、NAAの信号対雑音比SNRNAAは、INAA/σNAAで算出される。
 次に、温度精度情報算出部250は、水ピーク情報およびNAAピーク情報を用いて、周波数νに関するモデル関数を算出する(ステップS5103)。本実施形態では、モデル関数として、フィッティングに用いた式(1)に示すローレンツ型関数を用いる。水ピーク情報を用い、水のモデル関数LW(ν)を算出し、NAAピーク情報を用い、NAAのモデル関数LNAA(ν)を算出する。
 次に、温度精度情報算出部250は、仮想的なノイズをモデル関数に加えて作成した複数の仮想的なスペクトルからそれぞれ仮想温度を算出する。本実施形態では、M個(Mは自然数)の仮想温度を算出するものとする。従って、まず、温度精度情報算出部250は、カウンタm(mは1以上M以下の整数)を1とする(ステップS5104)。
 次に、温度精度情報算出部250は、水およびNAAそれぞれについて、ノイズ標準偏差σWおよびσNAAと同じ標準偏差を持つ仮想的なノイズNW(ν)およびNNAA(ν)を、例えば、乱数を用いてランダムに決定する(ステップS5105)。決定したm番目の仮想的なノイズNW(ν,m)およびNNAA(ν,m)は、以下の式(3)および(4)を満たす。
   var(NW(ν,m))=σW・・・(3)
   var(NNAA(ν,m))=σNAA・・・(4)
なお、var()は()内の標準偏差を算出する演算子である。
 そして、温度精度情報算出部250は、決定したノイズNW(ν,m)およびNNAA(ν,m)を、以下の式(5)、(6)に示すように、モデル関数LW(ν)およびLNAA(ν)にそれぞれ足し合わせ、m番目の仮想ノイズ付加後のモデル関数(仮想モデル関数)LW(ν,m)およびLNAA(ν,m)を生成する(ステップS5106)。
   LW(ν,m)m=LW(ν)+NW(ν,m)・・・(5)
   LNAA(ν,m)m=LNAA(ν)+NNAA(ν,m)・・・(6)
 以上の手順により、温度精度情報算出部250は、スペクトル算出部230が算出した水のスペクトルとNAAのスペクトルと、ノイズの標準偏差σWおよびσNAAが等しくなる仮想モデル関数LW(ν,m)およびLNAA(ν,m)を得る。
 なお、このとき、水ピークの信号対雑音比(SNRW)およびNAAピークの信号対雑音比(SNRNAA)を算出している場合、信号対雑音比が同等となるよう仮想モデル関数を決定してもよい。
 次に、温度精度情報算出部250は、仮想モデル関数LW(ν,m)およびLNAA(ν,m)から、仮想温度を算出する(ステップS5107)。仮想温度の算出は、上記温度情報算出部240による温度情報算出処理と同様である。具体的には、仮想モデル関数LW(ν,m)およびLNAA(ν,m)を式(1)のローレンツ型関数でフィッティングし、それぞれの共鳴周波数νW(m)とνNAA(m)を算出する。その後、共鳴周波数差Δν(m)を算出し、予め定めた換算式(例えば、式(2))を用い、m番目の被検体101内の仮想温度を算出する。
 そして、温度精度情報算出部250は、上記のステップS5104~ステップS5106をM回数繰り返し(ステップS5108、S5109)、仮想温度をM個算出する。なお、繰り返しに当たり、ステップS5105では、ノイズ標準偏差σWとσNAAと同じ標準偏差を持つ仮想的なノイズNW(ν,m)およびNNAA(ν,m)は、乱数的に決定される。
 最後に、温度精度情報算出部250は、温度精度の指標(温度精度情報)として、M個の仮想温度の標準偏差σTを算出する(ステップS5110)。
 以上の手順により、本実施形態の温度精度情報算出部250は、上記ステップS1101およびステップS1102における計測により得た水およびNAAのスペクトルから算出される温度が持つ温度精度の指標となる温度精度情報(ここでは、標準偏差)を算出する。
 なお、本実施形態では、温度精度情報としてM個の仮想温度の標準偏差σTを算出したが、これに限られない。得られたM個の仮想温度を統計処理し、温度精度の指標となる各種の値を温度精度情報として算出することができる。温度精度情報として、例えば、分散や標準誤差などであってもよい。
 次に、上記ステップS1106の表示情報生成部260が算出する本実施形態の表示情報について説明する。図9は、本実施形態の表示装置110の表示画面116に表示される表示情報を説明するための説明図である。
 本実施形態の表示情報生成部260が生成する表示情報は、例えば、温度情報算出部240が算出した各関心領域(ボクセル)404の温度情報を、MRSIシーケンス300で計測したマトリクスに対応させた温度テーブル501、温度テーブル501の各値を画素値とした温度画像502、温度精度情報算出部250が算出した各関心領域(ボクセル)404の温度精度情報を、MRSIシーケンス300で計測したマトリクスに対応させた温度精度テーブル511、温度精度テーブル511の各値を画素値とした温度精度画像512、である。
 また、温度画像502の代わりに、温度差画像を表示情報として算出してもよい。温度差画像は、任意のボクセルを基準として、基準ボクセル以外のボクセルの温度から基準ボクセルの温度を引くことにより得る。
 なお、表示装置110に表示する表示情報は、上記に限られない。表示情報には、温度情報および温度精度情報を算出する途中で得た水ピーク情報、NAAピーク情報など様々な演算結果が含まれてもよい。また、MRSIシーケンス300で計測したマトリクスのボクセルごとに、温度情報や温度精度情報、水ピーク情報およびNAAピーク情報を表示してもよい。また、温度画像や温度差画像は、MR画像、CT画像、PET画像、SPECT画像など様々な画像と重ね合わせて表示してもよい。
 以上説明したように、本実施形態のMRI装置100は、被検体が置かれる空間に静磁場を発生させる静磁場発生部(静磁場コイル102)と、前記被検体に高周波磁場を照射する高周波磁場照射部(送信コイル105)と、前記被検体に傾斜磁場を印加する傾斜磁場印加部(傾斜磁場コイル103)と、前記被検体から発生する核磁気共鳴信号を受信する受信部(受信コイル106)と、前記傾斜磁場印加部と前記高周波磁場照射部と前記受信部との動作を制御して共鳴周波数が異なる2つの物質の核磁気共鳴信号を得る計測部210と、前記核磁気共鳴信号に対して演算処理する演算部220と、前記演算処理後の情報を表示する表示装置110と、を備える磁気共鳴撮影装置であって、前記演算部220は、前記共鳴周波数が異なる2つの物質それぞれの核磁気共鳴信号のスペクトルを各々算出するスペクトル算出部230と、前記算出した各々のスペクトルピークに基づいて前記被検体内の温度情報を算出する温度情報算出部240と、前記算出した各々のスペクトルピークに基づいて前記温度情報の精度を示す温度精度情報を算出する温度精度情報算出部250と、前記温度情報および前記温度精度情報に基づいて前記表示装置110に表示する表示情報を生成する表示情報生成部260と、を備える。
 前記温度情報算出部240は、前記算出した各々のスペクトルピークを表す関数を決定し、当該関数に基づき、前記2つの物質それぞれの共鳴周波数を算出する共鳴周波数算出部と、前記決定した2つの共鳴周波数の差を温度情報に換算する換算部と、を備える。また、前記温度精度情報算出部240は、前記算出した各々のスペクトルピークを表すモデル関数を算出するモデル関数算出部と、前記決定したモデル関数各々に複数の仮想的なノイズを付加し、前記2つの物質毎に複数の仮想モデル関数を生成する仮想モデル関数生成部と、前記仮想モデル関数各々から仮想温度を算出する仮想温度算出部と、を備え、前記複数の仮想温度を統計処理し、前記温度精度情報を得る。
 このように、本実施形態によれば、共鳴周波数の異なる複数の物質各々をMRS/MRSIによりそれぞれ1回計測することにより、被検体内の温度と、その温度の精度情報とを算出し、オペレータに提示できる。すなわち、生体内の温度情報とその精度情報とを両物質各々1回の計測で得ることができる。従って、短時間に、被検体への負担も少ない手法で、温度およびその精度情報を得ることができる。
 なお、本実施形態では、温度精度情報算出部250は、複数の仮想温度を得、温度精度情報を算出しているが、温度精度情報の算出手順はこれに限られない。温度精度情報は、例えば、モデル関数に基づく誤差伝搬法を用い、数値解析的に求めてもよい。誤差伝播法を用いた温度算出手法を以下に説明する。図10は、本実施形態の、誤差伝搬法を用いた温度精度情報算出処理の処理フローである。
 まず、温度精度情報算出部250は、水ピーク情報を算出する(ステップS5201)。これは、上記ステップS5101と同様である。また、代謝物(NAA)ピーク情報を算出する(ステップS5202)。これも、上記ステップS5102と同様である。すなわち、各スペクトルピークを予め定めたモデル関数でフィッティングし、モデル関数の係数を決定することにより、各ピーク情報を得る。
 次に誤差伝播法を用いて、ピーク周波数の精度の指標として周波数精度情報を算出する(ステップS5203)ここでは、周波数精度情報として、ピーク周波数の標準偏差を算出する。本変形例の誤差伝播法では、計測したスペクトルデータを、例えば、式(1)に記すローレンツ型関数でフィッティングしたときに、フィッティング関数の各パラメータ(以下、フィッティングパラメータと呼ぶ。)に生じる誤差の量を見積もり、上記標準偏差を算出する。
 以下、ローレンツ型関数に限定せず、フィッティング関数を一般化し、上記標準偏差の算出手法を説明する。以下の計算では、計測したスペクトルデータの各点fkに混入しているノイズ成分N(fk)は、同一の分布に従い、かつ、平均が0、分散σは十分小さいと仮定する。
 フィッティング関数として用いる関数の、フィッティングパラメータをベクトルB={bi}と表す。また、信号強度L(fk)の計測データに含まれる偏差をΔLとする。ここで、ΔLと、各フィッティングパラメータのベクトルB={bi}に含まれる偏差ΔBとの関係は次の近似式(7)で与えられる。
Figure JPOXMLDOC01-appb-M000002
ここで、F1、F2はフィッティングに用いる周波数領域の端点、fkは周波数点、L(B,f)はフィッティングに用いるモデル関数にBの各要素biを代入したものを表す。例えば、水ピークに関して、ローレンツ型関数を用いる場合は、各要素biは、ステップS5201で算出した水ピーク情報、すなわち、b1=νw、b2=Iw、b3=aw、b4=φw、b5=cwであり、L(B,f)は、式(1)に各要素biを代入したものである。
 仮定より、式(7)のΔL(fk)は、ノイズ成分N(fk)とみなせるため、ΔBは次の式(8)で与えられる分布に従う。
Figure JPOXMLDOC01-appb-M000003
ここで、Fはスペクトルデータの各点fの組{fk}k=F1,・・・,F2を表し、D(B,F,k)iは式(8)で定義されるノイズ成分N(fk)の係数を表す。仮定よりΔBの各要素をΔbiとすると分散var(Δbi)は次の式(9)で与えられる。
Figure JPOXMLDOC01-appb-M000004
従って、本実施形態の水ピークの共鳴周波数(水ピーク周波数)νwの標準偏差σw1は、i=1として、var(Δb1)の平方根をとることで算出できる。
 同様に、NAAピークの共鳴周波数(NAAピーク周波数)νNAAの標準偏差σNAA1は、D(B,F,k)iにb1=νNAA、b2=INAA、b3=aNAA、b4=φNAA、b5=cNAAを代入し、式(8)を用いて、var(Δb1)の平方根をとって算出する。
 以上の方法により、水ピーク周波数νwの標準偏差σw1およびNAAピーク周波数νNAAの標準偏差σNAA1を算出できる。
 次に、水ピーク周波数νwの標準偏差σw1とNAAピーク周波数νNAAの標準偏差σNAA1のとから、伝播する誤差として、ピーク周波数差の精度の指標として周波数差精度情報(標準偏差)を算出する(ステップS5204)。水ピークとNAAピークとのピーク周波数差の標準偏差σdfは、水ピークの共鳴周波数νwの標準偏差σw1とNAAピークの共鳴周波数νNAAの標準偏差σNAA1とから、式(10)により算出できる。
Figure JPOXMLDOC01-appb-M000005
 次に、算出したピーク周波数差の標準偏差σdfから温度精度情報(標準偏差)を算出する(ステップS5205)。算出温度の標準偏差σTは、例えば、非特許文献2に記載の温度換算式を用いて、σdfを温度に換算することで算出できる。具体的には、上記式(2)における係数pの絶対値|p|にピーク周波数差の標準偏差σdfを乗算し、算出温度の標準偏差σTを得る。
 以上の手順により、計測により得た水のスペクトル情報およびNAAのスペクトル情報から算出される温度が持つ温度精度情報(ここでは、標準偏差)を、解析的に算出できる。
 このように、前記温度精度情報算出部250が、前記算出した2つのスペクトルピークを表すモデル関数を算出するモデル関数算出部と、前記モデル関数に基づき、前記2つの物質それぞれの共鳴周波数の精度情報を算出する周波数精度算出部と、前記2つの共鳴周波数の精度情報から2つの物質の共鳴周波数差の精度情報を算出する周波数差精度算出部と、を備え、前記共鳴周波数差の精度情報から温度精度情報を算出するものであってもよい。
 なお、本変形例においても、算出する温度精度情報は、分散や標準誤差などのその他の統計値であってもよい。
 また、本実施形態では、表示情報生成部260は、温度テーブル、温度画像、温度差画像を表示情報として生成しているが、生成する表示情報は、これらに限られない。例えば、補間等により任意の空間分解能の温度画像または温度差画像を表示情報として生成してもよい。
 すなわち、表示情報生成部260は、各ボクセルの温度情報を補間することにより、高分解能の温度画像を前記表示情報として生成してもよい。例えば、元の温度画像より高分解能の温度画像は、隣接する対象ボクセルの温度情報を補間することにより、新規の中間のボクセルの温度情報を得ることにより作成する。
 また、元の温度差画像より、高分解能の温度差画像(高分解能温度差画像)は、以下の手順により作成する。以下、表示情報生成部260が、補間により、元の分解能より高い分解能の温度差画像(高分解能温度差画像)を生成する処理の流れを図11のフローチャートに従って説明する。
 まず、上述の手法で、MRSIシーケンス300で計測した結果から得た温度画像(以後、低分解能の温度画像と呼ぶ。)マトリクス(各ボクセル)の中から、基準となるボクセルの選択を受け付けて設定する(ステップS6101)。なお、選択されるボクセルは2つ以上でもよい。
 次に、基準ボクセルの温度を算出する(ステップS6102)。1のボクセルが基準ボクセルとして選択された場合は、そのボクセルの温度を、基準ボクセルの温度とする。複数のボクセルが基準ボクセルとして選択された場合は、選択したボクセルの温度の平均値を算出する。なお、複数のボクセルを基準ボクセルとして選択したときは、基準ボクセルの水ピークの和とNAAピークの和をとってから、フィッティングにより水とNAAとの共鳴周波数を算出し、上記式(2)等の換算式により、温度を算出してもよい。
 次に、温度差画像を算出するボクセル(ここでは対象ボクセルと呼ぶ)の選択を受け付け、設定する(ステップS6103)。対象ボクセルは少なくとも1つ以上であればよく、計測領域全体でもよい。
 次に、対象ボクセルに含まれる各ボクセルの温度と基準ボクセルの温度との差分をそれぞれとり、温度差画像を算出する(ステップS6104)。
 そして、温度差画像から補間により高分解能温度差画像を生成する(ステップS6105)。この時用いる補間処理は、線形補間の他、キュービック補間やスプライン補間など公知の方法を用いてもよい。
 最後に、ステップS6105で算出した高分解能温度差画像を表示装置110に表示する(ステップS6106)。
 すなわち、前記表示情報生成部260は、前記各ボクセルの中から基準とする基準ボクセルの選択を受け付ける基準ボクセル受付部と、前記各ボクセルの温度情報と前記基準ボクセルの温度情報との差分を温度差情報として算出する温度差情報算出部と、を備え、前記各ボクセルの温度差情報を補間することにより所望の分解能の温度差画像を前記表示情報として生成する。
 なお、高分解能温度差画像の生成方法は、これに限られない。表示情報生成部260による、他の手順による高分解能温度差画像を生成する処理の流れを図12のフローチャートに従って説明する。
 まず、MRSIシーケンス300で計測した結果から得た低分解能の温度画像を補間して高分解能の温度画像を生成する(ステップS6201)。この時用いる補間処理は、線形補間の他、キュービック補間やスプライン補間など公知の方法を用いてもよい。
 次に、補間処理した高分解能温度画像上で基準となる関心領域(ROI:Region Of Interest)の選択を受け付け、設定する(ステップS6202)。なお、選択された基準ROI内に含まれるボクセル数は2つ以上でもよい。また、基準ROIの形状は円や楕円、矩形の他、任意の形状であってよい。
 次に、基準ROI内の温度(基準温度)を算出する(ステップS6203)。ここでは、基準ROIとして選択した領域に含まれる各ボクセルの温度情報を、基準温度とする。なお、複数のボクセルを基準ボクセルとして選択したときは、選択したボクセルの温度の平均値を基準温度として算出する。
 次に、高分解能温度画像上で温度差画像を算出するROI(ここでは対象ROIと呼ぶ)の選択を受け付け、設定する(ステップS6204)。対象ROIは少なくとも1つ以上であればよい。また、計測領域全体でもよい。
 次に、対象ROI内に含まれる各ボクセルの温度と基準温度との差分をそれぞれとり、その結果を画素値とする高分解能温度差画像を算出する(ステップS6205)。
 最後に、ステップS6205で算出した高分解能温度差画像を表示装置110に表示する(ステップS6206)。
 すなわち、前記表示情報生成部260は、前記各ボクセルの温度情報を補間することにより所望の分解能の温度画像を生成する補間部と、前記所望の分解能の温度画像上で、基準となる関心領域の選択を受け付ける基準関心領域受付部と、前記基準となる関心領域内の前記ボクセルの温度情報を基準温度情報として算出する基準温度情報算出部と、前記所望の分解能の温度画像の各ボクセルの温度情報と前記基準温度情報との差分を温度差情報として算出する温度差情報算出部と、を備え、前記各ボクセルの温度差情報を画素値とする温度差画像を、前記表示情報として生成する。
 以上の手順とはさらに異なる他の手順による高分解能温度差画像を算出する処理の流れを図13のフローチャートを使って説明する。
 まず、MRSIシーケンス300で計測した結果から得た水とNAAのスペクトルデータをそれぞれ空間的に補間して高分解能の水とNAAのスペクトルデータを算出する(ステップS6301)。この時用いる補間処理は、線形補間の他、キュービック補間やスプライン補間など公知の方法を用いてもよい。
 次に高分解能の水とNAAとスペクトルデータから、上記本実施形態の手法により温度情報を算出し、高分解能の温度画像(高分解能温度画像)を生成する(ステップS6302)。なお、温度情報算出処理は、表示情報生成部260が温度情報算出部240に算出させるよう構成してもよい。
 次に、高分解能温度画像上で基準となる関心領域ROI(基準ROI)の選択を受け付け、設定する(ステップS6303)。なお、基準ROI内に含まれるボクセル数は2つ以上でもよい。また、基準ROIの形状は円や楕円、矩形の他、任意の形状でよい。
 次に、基準ROI内の温度(基準温度)を算出する(ステップS6304)。ここでは、基準ROIとして選択した領域に含まれる各ボクセルの温度情報を、基準温度とする。なお、複数のボクセルを基準ボクセルとして選択したときは、選択したボクセルの温度の平均値を基準温度として算出する。
 次に、高分解能温度画像上で温度差画像を算出するROI(ここでは対象ROIと呼ぶ)の選択を受け付け、設定する(ステップS6305)。対象ROIは少なくとも1つ以上であればよい。また、計測領域全体でもよい。
 次に、対象ROI内に含まれる各ボクセルの温度と基準温度との差分をそれぞれとり、その結果を画素値とする高分解能温度差画像を算出する(ステップS6306)。
 最後に、ステップS6306で算出した高分解能温度差画像を表示装置110に表示する(ステップS6307)。
 すなわち、前記表示情報生成部260は、前記シーケンスで計測したボクセル毎のスペクトルを空間的に補間して所望の分解能のスペクトルデータを得る補間部と、前記補間後のスペクトルデータからそれぞれ補間後のボクセルの温度情報を算出し、算出した各温度情報を画素値とする前記分解能の温度画像を生成する温度画像生成部と、前記分解能の温度画像上で基準となる関心領域の選択を受け付ける基準関心領域受付部と、前記基準となる関心領域内の各補間後のボクセルの前記温度情報を基準温度情報として算出する基準温度情報算出部と、前記所望の分解能の温度画像内の各補間後のボクセルの温度情報と前記基準温度情報との差分を温度差情報として算出する温度差情報算出部と、を備え、前記各補間後のボクセルの温度差情報を画素値とする温度差画像を前記表示情報として生成する。
 なお、本手順により高分解能の温度画像を算出する場合は、上記ステップS6302で生成した高分解能温度画像上で、温度画像を算出するROI(対象ROI)を選択し、対象ROI内に含まれる各ボクセルの温度を、高分解能温度画像の各画素の画素値とする。
 すなわち、前記表示情報生成部260は、前記シーケンスで計測したボクセル毎のスペクトルを空間的に補間して所望の分解能のスペクトルデータを得る補間部を備え、前記補間後のスペクトルデータからそれぞれ補間後のボクセルの温度情報を算出し、算出した各温度情報を画素値とする前記分解能の温度画像を、前記表示情報として生成する。
 なお、表示情報生成部260が、補間処理を行う場合、表示装置110に表示される表示情報には、補間処理の実行/非実行を切り替えるスイッチ520を設けてもよい。本スイッチ520の押下を受け、表示情報生成部260は、補間処理を実行する。
 本実施形態の手法による温度精度情報は、計測パラメータの決定に用いてもよい。例えば、予め、1の被検体101に関して計測パラメータを変化させて複数のMR画像を取得する。そして、取得した複数のMR画像を用いて、上記手法により複数の温度精度情報を得る。このとき、得られた温度精度情報を、計測パラメータに対応づけて記憶装置に保持する。そして、計測時に、計測時間等の制約条件下で、最良の温度精度を得られる計測パラメータを採用する。
 このとき、例えば、1のMR画像において、様々な位置の、様々なサイズのVOI毎に温度精度情報を算出し、さらに、位置にも対応付けて温度精度情報を保持するよう構成してもよい。さらに、計測パラメータ、計測位置ではなく、温度精度情報を算出したVOIを構成する各ボクセルの画素値のヒストグラムと、温度精度情報とを対応づけて保持するよう構成しもよい。
 なお、本実施形態では、非水抑圧計測および水抑圧計測で用いるパルスシーケンスとして、MRSIシーケンスを用いる場合を例にあげて説明したが、非水抑圧計測および水抑圧計測で用いるパルスシーケンスはこれに限られない。各ボクセルの、計測対象物質のスペクトルが得られるパルスシーケンスであればよい。例えば、磁気共鳴スペクトルスコピーのパルスシーケンス(MRSシーケンス)と呼ばれる単一の領域を計測対象とするシーケンス、エコープラナースペクトロスコピックイメージシーケンス(EPSIシーケンス)とよばれる振動傾斜磁場を用いた高速MRSIシーケンス等であってもよい。
 100:MRI装置、101:被検体、102:静磁場コイル、103:傾斜磁場コイル、104:シムコイル、105:送信コイル、106:受信コイル、107:送信機、108:受信機、109:計算機、110:表示装置、111:外部記憶装置、112:傾斜磁場用電源部、113:シム用電源部、114:シーケンス制御装置、115:入力装置、116:表示画面、120:MRI装置、130:MRI装置、14:請求項、210:計測部、220:演算部、230:スペクトル算出部、240:温度情報算出部、250:温度精度情報算出部、260:表示情報生成部、300:MRSIシーケンス、401:断面、402:断面、403:断面、404:ボクセル410:トランス像、420:サジタル像、430:コロナル像、501:温度テーブル、502:温度画像、520:スイッチ、511:温度精度テーブル、512:温度精度画像

Claims (14)

  1.  被検体が置かれる空間に静磁場を発生させる静磁場発生部と、前記被検体に高周波磁場を照射する高周波磁場照射部と、前記被検体に傾斜磁場を印加する傾斜磁場印加部と、前記被検体から発生する核磁気共鳴信号を受信する受信部と、前記傾斜磁場印加部と前記高周波磁場照射部と前記受信部との動作を制御して共鳴周波数が異なる2つの物質の核磁気共鳴信号を得る計測部と、前記核磁気共鳴信号に対する演算処理を行う演算部と、前記演算処理後の情報を表示する表示装置と、を備える磁気共鳴撮影装置であって、
     前記演算部は、
     前記共鳴周波数が異なる2つの物質それぞれの核磁気共鳴信号のスペクトルを各々算出するスペクトル算出部と、
     前記算出した各々のスペクトルピークに基づいて前記被検体内の温度情報を算出する温度情報算出部と、
     前記算出した各々のスペクトルピークに基づいて前記温度情報の精度を示す温度精度情報を算出する温度精度情報算出部と、
     前記温度情報および前記温度精度情報に基づいて前記表示装置に表示する表示情報を生成する表示情報生成部と、を備えること
     を特徴とする磁気共鳴撮影装置。
  2.  請求項1記載の磁気共鳴撮影装置であって、
     前記温度情報算出部は、
     前記算出した各々のスペクトルピークを表す関数を決定し、当該関数に基づき、前記2つの物質それぞれの共鳴周波数を算出する共鳴周波数算出部と、
     前記決定した2つの共鳴周波数の差を温度情報に換算する換算部と、を備える
     を特徴とする磁気共鳴撮影装置。
  3.  請求項1記載の磁気共鳴撮影装置であって、
     前記温度精度情報算出部は、
     前記算出した各々のスペクトルピークを表すモデル関数を算出するモデル関数算出部と、
     前記モデル関数各々に複数の仮想的なノイズを付加し、前記2つの物質毎に複数の仮想モデル関数を生成する仮想モデル関数生成部と、
     前記仮想モデル関数各々から仮想温度を算出する仮想温度算出部と、を備え、
     前記複数の仮想温度を統計処理し、前記温度精度情報を得ること
     を特徴とする磁気共鳴撮影装置。
  4.  請求項1記載の磁気共鳴撮影装置であって、
     前記温度精度情報算出部は、
     前記算出した各々のスペクトルピークを表すモデル関数を算出するモデル関数算出部と、
     前記モデル関数に基づき、前記2つの物質それぞれの共鳴周波数の精度情報を算出する周波数精度算出部と、
     前記2つの共鳴周波数の精度情報から2つの物質の共鳴周波数差の精度情報を算出する周波数差精度算出部と、を備え、
     前記共鳴周波数差の精度情報から温度精度情報を算出すること
     を特徴とする磁気共鳴撮影装置。
  5.  請求項1記載の磁気共鳴撮影装置であって、
     前記共鳴周波数が異なる2つの物質は、水と代謝物であること
     を特徴とする磁気共鳴撮影装置。
  6.  請求項1から5いずれか1項記載の磁気共鳴撮影装置であって、
     前記計測部は、磁気共鳴スペクトロスコピーシーケンスに従って、前記各物質の磁気共鳴信号を得ること
     を特徴とする磁気共鳴撮影装置。
  7.  請求項1から5いずれか1項記載の磁気共鳴撮影装置であって、
     前記計測部は、磁気共鳴スペクトロスコピックイメージングシーケンスおよびエコープラナースペクトロスコピックイメージングシーケンスのいずれか一方のシーケンスに従って、前記各物質の磁気共鳴信号を得ること
     を特徴とする磁気共鳴撮影装置。
  8.  請求項7記載の磁気共鳴撮影装置であって、
     前記温度情報算出部は、前記温度情報を、前記シーケンスで計測したボクセル毎に算出し、
     前記表示情報生成部は、前記各ボクセルの温度情報を補間することにより高分解能の温度画像を前記表示情報として生成すること
     を特徴とする磁気共鳴撮像装置。
  9.  請求項7記載の磁気共鳴撮影装置であって、
     前記温度情報算出部は、前記温度情報を、前記シーケンスで計測したボクセル毎に算出し、
     前記表示情報生成部は、
     前記各ボクセルの中から基準とする基準ボクセルの選択を受け付ける基準ボクセル受付部と、
     前記各ボクセルの温度情報と前記基準ボクセルの温度情報との差分を温度差情報として算出する温度差情報算出部と、を備え、
     前記各ボクセルの温度差情報を補間することにより所望の分解能の温度差画像を前記表示情報として生成すること
     を特徴とする磁気共鳴撮影装置。
  10.  請求項7記載の磁気共鳴撮影装置であって、
     前記温度情報算出部は、前記温度情報を、前記シーケンスで計測したボクセル毎に算出し、
     前記表示情報生成部は、
     前記各ボクセルの温度情報を補間することにより所望の分解能の温度画像を生成する補間部と、
     前記所望の分解能の温度画像上で、基準となる関心領域の選択を受け付ける基準関心領域受付部と、
     前記基準となる関心領域内の前記ボクセルの温度情報を基準温度情報として算出する基準温度情報算出部と、
     前記所望の分解能の温度画像の各ボクセルの温度情報と前記基準温度情報との差分を温度差情報として算出する温度差情報算出部と、を備え、
     前記各ボクセルの温度差情報を画素値とする温度差画像を、前記表示情報として生成すること
     を特徴とする磁気共鳴撮像装置。
  11.  請求項7記載の磁気共鳴撮影装置であって、
     前記表示情報生成部は、
     前記シーケンスで計測したボクセル毎のスペクトルを空間的に補間して所望の分解能のスペクトルデータを得る補間部を備え、
     前記補間後のスペクトルデータからそれぞれ補間後のボクセルの温度情報を算出し、算出した各温度情報を画素値とする前記分解能の温度画像を、前記表示情報として生成すること
     を特徴とする磁気共鳴撮像装置。
  12.  請求項7記載の磁気共鳴撮影装置であって、
     前記表示情報生成部は、
     前記シーケンスで計測したボクセル毎のスペクトルを空間的に補間して所望の分解能のスペクトルデータを得る補間部と、
     前記補間後のスペクトルデータからそれぞれ補間後のボクセルの温度情報を算出し、算出した各温度情報を画素値とする前記分解能の温度画像を生成する温度画像生成部と、
     前記分解能の温度画像上で基準となる関心領域の選択を受け付ける基準関心領域受付部と、
     前記基準となる関心領域内の各補間後のボクセルの前記温度情報を基準温度情報として算出する基準温度情報算出部と、
     前記所望の分解能の温度画像内の各補間後のボクセルの温度情報と前記基準温度情報との差分を温度差情報として算出する温度差情報算出部と、を備え、
     前記各補間後のボクセルの温度差情報を画素値とする温度差画像を前記表示情報として生成すること
     を特徴とする磁気共鳴撮像装置。
  13.  請求項2記載の磁気共鳴撮影装置であって、
     前記関数は、前記共鳴周波数を変数に持つ、ローレンツ型関数であること
     を特徴とする磁気共鳴撮影装置。
  14.  請求項3記載の磁気共鳴撮影装置であって、
     前記温度精度情報は、前記仮想温度の標準偏差であること
     を特徴とする磁気共鳴撮影装置。
PCT/JP2013/050290 2012-01-30 2013-01-10 磁気共鳴撮影装置 WO2013114927A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013556292A JP5797782B2 (ja) 2012-01-30 2013-01-10 磁気共鳴撮影装置
US14/375,488 US9851424B2 (en) 2012-01-30 2013-01-10 Magnetic resonance imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012016781 2012-01-30
JP2012-016781 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013114927A1 true WO2013114927A1 (ja) 2013-08-08

Family

ID=48904971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050290 WO2013114927A1 (ja) 2012-01-30 2013-01-10 磁気共鳴撮影装置

Country Status (3)

Country Link
US (1) US9851424B2 (ja)
JP (1) JP5797782B2 (ja)
WO (1) WO2013114927A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017064175A (ja) * 2015-09-30 2017-04-06 株式会社日立製作所 磁気共鳴イメージング装置、および、画像処理装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207390B4 (de) * 2013-04-24 2015-03-05 Siemens Aktiengesellschaft Ermittlung einer Magnetresonanz-Ansteuersequenz mit einer automatischen Anpassung einer ersten und einer zweiten Selektionsrichtung
DE102015200695B4 (de) * 2015-01-19 2016-08-18 Siemens Healthcare Gmbh Generieren von Steuerinformationen für eine Magnetresonanz-Bildgebung unter Verwendung mehrerer Frequenzspektren von verschiedenen Spulenelementen
US11176717B2 (en) * 2019-09-26 2021-11-16 Siemens Healthcare Gmbh Guiding protocol development for magnetic resonance thermometry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253420A (ja) * 1998-03-11 1999-09-21 Technol Res Assoc Of Medical & Welfare Apparatus 磁気共鳴診断装置
JP2004527351A (ja) * 2001-05-30 2004-09-09 インサイテック−テキソニックス リミテッド 誤差補正を用いるmriベースの温度マッピング
JP2005304558A (ja) * 2004-04-16 2005-11-04 Toshiba Corp 磁気共鳴映像診断システム
JP2008086525A (ja) * 2006-09-29 2008-04-17 Shiga Univ Of Medical Science 小型マイクロ波温熱治療システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2619603A1 (en) * 2010-09-21 2013-07-31 Insightec Ltd. Magnetic resonance thermometry using prf spectroscopy
US20160192859A1 (en) * 2013-09-09 2016-07-07 Hitachi Medical Corporation Magnetic resonance imaging apparatus and temperature information measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253420A (ja) * 1998-03-11 1999-09-21 Technol Res Assoc Of Medical & Welfare Apparatus 磁気共鳴診断装置
JP2004527351A (ja) * 2001-05-30 2004-09-09 インサイテック−テキソニックス リミテッド 誤差補正を用いるmriベースの温度マッピング
JP2005304558A (ja) * 2004-04-16 2005-11-04 Toshiba Corp 磁気共鳴映像診断システム
JP2008086525A (ja) * 2006-09-29 2008-04-17 Shiga Univ Of Medical Science 小型マイクロ波温熱治療システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017064175A (ja) * 2015-09-30 2017-04-06 株式会社日立製作所 磁気共鳴イメージング装置、および、画像処理装置
WO2017056996A1 (ja) * 2015-09-30 2017-04-06 株式会社日立製作所 磁気共鳴イメージング装置、および、画像処理装置

Also Published As

Publication number Publication date
US9851424B2 (en) 2017-12-26
JP5797782B2 (ja) 2015-10-21
JPWO2013114927A1 (ja) 2015-05-11
US20150008925A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP5449903B2 (ja) 磁気共鳴イメージング装置
JP6014770B2 (ja) 磁気共鳴撮影装置および温度情報計測方法
JP5221570B2 (ja) 磁気共鳴イメージング装置及びマルチコントラスト画像取得方法
US8754645B2 (en) Method for spatially resolved determination of an MR parameter
US10215828B2 (en) Magnetic resonance imaging apparatus
US20150338492A1 (en) Magnetic resonance imaging device and quantitative susceptibility mapping method
CN107072586B (zh) 磁共振成像装置
JP6371554B2 (ja) 磁気共鳴イメージング装置
Hutter et al. Slice-level diffusion encoding for motion and distortion correction
JP2022041978A (ja) 磁気共鳴イメージング装置及び医用データ処理装置
US10203387B2 (en) MR imaging with enhanced susceptibility contrast
JP5797782B2 (ja) 磁気共鳴撮影装置
JP7115889B2 (ja) 医用画像診断支援装置、および、磁気共鳴イメージング装置
US10908235B2 (en) Method of fast imaging of NMR parameters with variably-accelerated sensitivity encoding
JP5278914B2 (ja) 磁気共鳴イメージング装置及び磁化率強調画像撮影方法
EP2757386A1 (en) Synthetic parameter-weigthed images based on relaxometry (SPARE)
JP7161377B2 (ja) 画像処理装置、及び、それを含む磁気共鳴イメージング装置及び磁気共鳴イメージングシステム
JP6843706B2 (ja) 磁気共鳴イメージング装置及び拡散強調画像の補正方法
JP5636058B2 (ja) 磁気共鳴撮影装置
JP5684888B2 (ja) 磁気共鳴イメージング装置
JP6267684B2 (ja) 磁気共鳴イメージング装置
JP6487554B2 (ja) 磁気共鳴イメージング装置
JP6776217B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム及び磁気共鳴イメージング装置
JP5881869B2 (ja) 磁気共鳴イメージング装置
JP6114846B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14375488

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13743643

Country of ref document: EP

Kind code of ref document: A1