WO2012137311A1 - 再生エネルギー型発電装置 - Google Patents

再生エネルギー型発電装置 Download PDF

Info

Publication number
WO2012137311A1
WO2012137311A1 PCT/JP2011/058647 JP2011058647W WO2012137311A1 WO 2012137311 A1 WO2012137311 A1 WO 2012137311A1 JP 2011058647 W JP2011058647 W JP 2011058647W WO 2012137311 A1 WO2012137311 A1 WO 2012137311A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
double pipe
tower
nacelle
double
Prior art date
Application number
PCT/JP2011/058647
Other languages
English (en)
French (fr)
Inventor
和久 堤
拓郎 亀田
卓 一柳
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to IN3058DEN2012 priority Critical patent/IN2012DN03058A/en
Priority to KR1020127010770A priority patent/KR20120139667A/ko
Priority to PCT/JP2011/058647 priority patent/WO2012137311A1/ja
Priority to AU2011310936A priority patent/AU2011310936A1/en
Priority to JP2011554017A priority patent/JP4950368B1/ja
Priority to EP11797295.0A priority patent/EP2530307A4/en
Priority to CN201180004417XA priority patent/CN102822513A/zh
Priority to US13/161,822 priority patent/US8403644B2/en
Priority to KR1020127034038A priority patent/KR101296054B1/ko
Priority to JP2012503813A priority patent/JP4995357B1/ja
Priority to JP2012507508A priority patent/JP5358020B2/ja
Priority to EP11810981.8A priority patent/EP2532890A4/en
Priority to PCT/JP2011/071674 priority patent/WO2012137371A1/ja
Priority to IN3061DEN2012 priority patent/IN2012DN03061A/en
Priority to PCT/JP2011/071673 priority patent/WO2012137370A1/ja
Priority to CN2011800043868A priority patent/CN102822511A/zh
Priority to AU2011310939A priority patent/AU2011310939A1/en
Priority to CN2011800220542A priority patent/CN102869881A/zh
Priority to EP11817195.8A priority patent/EP2530310B1/en
Priority to KR1020127010773A priority patent/KR20120139669A/ko
Priority to EP13160517.2A priority patent/EP2650533B1/en
Priority to JP2012507512A priority patent/JP5502190B2/ja
Priority to KR1020127034108A priority patent/KR20130053416A/ko
Priority to EP11799883.1A priority patent/EP2646685B1/en
Priority to CN2011800307298A priority patent/CN102959240A/zh
Priority to PCT/JP2011/006695 priority patent/WO2012073505A1/en
Priority to US13/390,362 priority patent/US20120285150A1/en
Priority to US13/363,166 priority patent/US8684682B2/en
Priority to US13/398,484 priority patent/US8601805B2/en
Priority to PCT/JP2012/001077 priority patent/WO2013051167A1/en
Priority to PCT/JP2012/070492 priority patent/WO2013042487A1/ja
Publication of WO2012137311A1 publication Critical patent/WO2012137311A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/26Reciprocating-piston liquid engines adapted for special use or combined with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/88Arrangement of components within nacelles or towers of mechanical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a regenerative energy type power generator that transmits the rotational energy of a rotor to a generator via a hydraulic transmission that combines a hydraulic pump and a hydraulic motor.
  • the renewable energy type power generation device is a power generation device using renewable energy such as wind, tidal current, ocean current, river flow, etc., and examples thereof include wind power generation device, tidal current power generation device, ocean current power generation device, river current power generation device and the like. be able to.
  • wind power generators using wind power and renewable energy power generators including power generators using tidal currents, ocean currents, or river currents are becoming popular.
  • the kinetic energy of wind, tidal current, ocean current or river current is converted into the rotational energy of the rotor, and the rotational energy of the rotor is converted into electric power by the generator.
  • Patent Document 1 describes a wind power generator that transmits rotational energy of a rotor to a generator via a hydraulic transmission.
  • the nacelle is turned according to the wind direction from the viewpoint of improving the power generation efficiency. For this reason, even when the hydraulic motor and the generator are installed at the ground level or the sea level, it is required to have a design that can cope with nacelle turning.
  • Patent Document 6 describes a wind power generator in which a hydraulic motor provided at a lower portion of a tower turns with a nacelle around a vertical axis.
  • a part of the hydraulic piping that connects the hydraulic pump installed in the nacelle and the hydraulic motor provided in the lower part of the tower rotates together with the nacelle.
  • a wind power generator is described.
  • the hydraulic piping on the nacelle side turns together with the nacelle by a hydraulic swivel provided at the lower part of the nacelle (see FIG. 7 of Patent Document 7 and FIG. 7 of Patent Document 8).
  • the hydraulic swivel includes an outer member and an inner member, and both members are rotatable relative to each other. And the piping provided in the inner member is connected with the annular flow path provided in the inner peripheral surface of the outer member.
  • Patent Document 6 does not disclose how to specifically configure the hydraulic piping connecting the hydraulic pump installed in the nacelle and the hydraulic motor provided at the lower part of the tower.
  • Patent Documents 7 and 8 describe a hydraulic swivel for enabling the nacelle-side hydraulic piping to pivot together with the nacelle, but the piping provided on the inner member and the annular flow path provided on the outer member The detailed structure of the hydraulic swivel is not fully disclosed.
  • An object of the present invention is to provide a renewable energy type power generation device.
  • a regenerative energy power generation device includes a tower, a nacelle provided at a tip portion of the tower, a main shaft housed in the nacelle and rotating together with a rotor blade, housed in the nacelle, and attached to the main shaft.
  • a hydraulic motor disposed around the base end of the tower and driven by pressure oil supplied from the hydraulic pump, a generator connected to the hydraulic motor, and the hydraulic pump
  • a first double pipe that is supported on the nacelle side and extends toward the base end of the tower through the inside of the tower, and the hydraulic motor.
  • a high-pressure oil discharged from the hydraulic pump and sent to the hydraulic motor flows in one of the inner flow path and the outer flow path, and the other of the inner flow path and the outer flow path.
  • the low-pressure oil discharged from the hydraulic motor and returned to the hydraulic pump flows, and the first double pipe supported on the nacelle side is rotatably connected to the second double pipe. It is characterized by.
  • an inner flow path is formed by the first inner pipe of the first double pipe and the second inner pipe of the second double pipe, while the first outer pipe of the first double pipe.
  • the second outer pipe of the second double pipe form an outer flow path.
  • High pressure oil flows through one of these inner and outer channels
  • low pressure oil flows through the other of the inner and outer channels. Since the first double pipe supported on the nacelle side is rotatably connected to the second double pipe, even if the nacelle turns, the hydraulic pump in the nacelle and the hydraulic motor around the tower base end The high-pressure oil and the low-pressure oil can be exchanged with each other via the first double pipe and the second double pipe.
  • the first double pipe is integrated by combining the first inner pipe and the first outer pipe at an end near the nacelle. .
  • the first inner pipe and the second inner pipe are merged at the end of the first double pipe close to the nacelle. Supporting to the side will suffice.
  • the high pressure oil flows in the inner flow path and the low pressure oil flows in the outer flow path.
  • the high-pressure oil in the inner flow path and low-pressure oil in the outer flow path in this way, even if the high-pressure oil in the inner flow path leaks due to corrosion or breakage of the inner flow path, It can be received in the outer channel. Therefore, leakage of high pressure oil to the outside can be prevented.
  • the regenerative energy type power generator further includes an inner seal that seals between a tube wall surface of the first inner pipe and a tube wall surface of the second inner pipe, and the inner seal is connected to the inner flow path. It is preferable that they are arranged so as to be sandwiched between the outer flow paths.
  • the inner seal that seals between the tube wall surface of the first inner pipe and the tube wall surface of the second inner pipe so as to be sandwiched between the inner channel and the outer channel, Even if the sealing function of the inner seal is impaired, the high-pressure oil flowing through the inner channel leaks into the outer channel. Therefore, leakage of high pressure oil to the outside can be prevented.
  • the renewable energy power generation device includes a pair of outer seals that seal between a tube wall surface of the first outer pipe and a tube wall surface of the second outer pipe, and the pair of outer seals. It is preferable to provide an oil sump that communicates with a tank that communicates with the oil sump. As a result, even if the sealing function of the pair of outer seals that seal between the tube wall surface of the first outer pipe and the tube wall surface of the second outer pipe is impaired, the low-pressure oil leaking from the outer channel is not oil. It is led to the tank through the reservoir. That is, the low-pressure oil leaking from the outer flow path is collected in the tank after the pressure is sufficiently lowered. Therefore, leakage of the low pressure oil to the outside can be prevented.
  • the first double pipe extends from the nacelle side to the base end of the tower over substantially the entire length of the tower, and the second double pipe is connected to the tower. It may be supported in the vicinity of the base end.
  • the hydraulic pipe can be configured consistently with a double pipe structure over substantially the entire length of the tower. Therefore, it is possible to suppress the installation space of the hydraulic piping in the tower.
  • the second double pipe may have a container shape with a closed bottom, and may be installed on a foundation on which the tower is erected.
  • the second double pipe connected to the first double pipe is configured in a container shape and installed on the foundation on which the tower is erected. No support structure is required.
  • the first double pipe is rotatably fitted to the second double pipe, and the first inner pipe and the second inner pipe slide relative to each other in the longitudinal direction.
  • the first outer pipe and the second outer pipe may be freely slidable in the longitudinal direction.
  • the first double pipe is slidable in the longitudinal direction relative to the second inner pipe and the first outer pipe relative to the second outer pipe.
  • the first double pipe is allowed to move in the longitudinal direction with respect to the second double pipe, the first double pipe is moved to the nacelle side by the high pressure oil and the low pressure oil flowing through the inner flow path and the outer flow path. Pressing hydraulic thrust is generated. Therefore, the load which should be borne by the nacelle increased by supporting the first double pipe on the nacelle side can be reduced. In addition, the load that the tower should bear is reduced accordingly.
  • the renewable energy type power generation device is fixed to the inner peripheral surface of the tower, and from the radially outer side of the first outer pipe to the outer peripheral surface of the first outer pipe of the first double pipe. It is preferable to further include a supporting means that comes into contact, and the supporting means supports the first double pipe so as to be rotatable and slidable in the longitudinal direction.
  • the nacelle is supported by the support means fixed to the inner peripheral surface of the tower and in contact with the first outer pipe from the outside in the radial direction so that the first double pipe can rotate and slide in the longitudinal direction.
  • the first double pipe is securely supported while absorbing the thermal elongation due to the oil temperature rise of the first double pipe and the second double pipe, etc. without disturbing the swiveling of the first double pipe accompanying the Can do.
  • the regenerative energy power generator is provided between the first inner pipe and the second inner pipe, and the inner bearing rotatably supports the first inner pipe on the second inner pipe.
  • an outer bearing provided between the first outer pipe and the second outer pipe and rotatably supporting the first outer pipe on the second outer pipe, wherein the inner bearing comprises the first
  • the outer bearing may be slidable in the longitudinal direction with respect to the inner pipe, and the outer bearing may be slidable in the longitudinal direction with respect to the first outer pipe.
  • the inner bearing is provided between the first inner pipe and the second inner pipe, the outer bearing is provided between the first outer pipe and the second outer pipe, and the inner bearing is connected to the first inner pipe.
  • the first double pipe is allowed to move in the longitudinal direction with respect to the second double pipe. Can absorb the thermal elongation of the double pipe. Further, since the first double pipe is allowed to move in the longitudinal direction with respect to the second double pipe, the first double pipe is moved to the nacelle side by the high pressure oil and the low pressure oil flowing through the inner flow path and the outer flow path. Pressing hydraulic thrust is generated. Therefore, the load which should be borne by the nacelle increased by supporting the first double pipe on the nacelle side can be reduced. In addition, the load that the tower should bear is reduced accordingly.
  • the first double pipe may extend from the nacelle side to the middle of the tower, and the second double pipe may be supported by the tower.
  • the hydraulic pipe can be configured with a double pipe structure in an arbitrary range in the tower.
  • the regenerative energy type power generation device rotatably supports the first double pipe on the second double pipe, and extends along the longitudinal direction of the first double pipe and the second double pipe.
  • a thrust bearing that receives a thrust load may be further provided.
  • the first double pipe is rotatably supported by the second double pipe by the thrust bearing, so that the turning of the first double pipe accompanying the nacelle is not hindered.
  • the thrust bearing can reliably receive the hydraulic thrust generated by the weight of the first double pipe and the high-pressure oil and the low-pressure oil flowing through the inner flow path and the outer flow path.
  • the thrust bearing may be a tapered roller bearing that receives a radial load along the radial direction in addition to the thrust load.
  • the first double pipe and the second double pipe are such that the first inner pipe and the second inner pipe are relatively slidable in the longitudinal direction, and The first outer pipe and the second outer pipe may be fitted so as to be relatively slidable in the longitudinal direction.
  • the first double pipe is slidable in the longitudinal direction relative to the second inner pipe and the first outer pipe relative to the second outer pipe. Is fitted to the second double pipe, the longitudinal movement of the first double pipe relative to the second double pipe is allowed, and the thermal elongation due to the oil temperature rise of each double pipe can be absorbed. it can.
  • the first double pipe is allowed to move in the longitudinal direction with respect to the second double pipe, the first double pipe is moved to the nacelle side by the high pressure oil and the low pressure oil flowing through the inner flow path and the outer flow path. Pressing hydraulic thrust is generated. Therefore, it is possible to reduce the load to be borne by the increased nacelle by supporting the first double pipe on the nacelle side. In addition, the load that the tower should bear is reduced accordingly.
  • the regenerative energy type power generator further includes a pulsation preventing accumulator provided between the hydraulic pump and the first double pipe in the nacelle to prevent pulsation of the hydraulic pump.
  • a pulsation prevention accumulator provided between the hydraulic pump and the first double pipe in the nacelle to prevent pulsation of the hydraulic pump.
  • the regenerative energy type power generator is provided between the second double pipe and the hydraulic motor, and is disposed around a bypass passage that bypasses the hydraulic motor and a base end portion of the tower, and the bypass flow It is preferable to further include a relief valve provided on the road, and an oil cooler provided near the proximal end of the tower and provided on the downstream side of the relief valve.
  • the relief valve opens when the pressure of the high pressure oil sent from the hydraulic pump to the hydraulic motor exceeds the upper limit value, and the high pressure oil is reduced in pressure through the bypass flow path. It flows to the oil flow path side and the pressure of the high pressure oil is reduced.
  • the renewable energy type power generator further includes a hydraulic pressure accumulator that is disposed around a base end portion of the tower and accumulates the hydraulic pressure of the high-pressure oil.
  • a hydraulic pressure accumulator that is disposed around a base end portion of the tower and accumulates the hydraulic pressure of the high-pressure oil.
  • the oil pressure of high pressure oil is accumulated to absorb excessive rotational energy when a gust of wind blows, or the oil pressure of high pressure oil is accumulated in advance to realize a ride-through function when the system voltage drops.
  • the hydraulic pressure of the high-pressure oil may be accumulated to absorb excessive rotational energy when the output of the wind turbine generator is excessive.
  • the renewable energy power generator is a wind power generator, and the tower extends vertically upward from the base end portion toward the tip end portion, and the main shaft rotates by receiving wind from the rotor blades. It may be like this.
  • the hydraulic motor may be arranged near the ground level, or may be arranged near the sea level or below the sea level.
  • the regenerative energy type power generation device is a power generation device using a tidal current, a sea current, or a river current, and the tower extends vertically downward in the sea or water from the base end toward the tip, and the rotor blades
  • the main shaft may be rotated by receiving a tidal current, ocean current or river current.
  • the hydraulic pump in the nacelle and the vicinity of the tower base end High-pressure oil and low-pressure oil can be exchanged with the hydraulic motor via the first double pipe and the second double pipe.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of the wind turbine generator according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a detailed structure of the end portion of the first double pipe on the hydraulic pump side.
  • FIG. 3 is a cross-sectional view showing a detailed structure around the joint between the first double pipe and the second double pipe.
  • a wind power generator 1 mainly includes a tower 2, a nacelle 4 provided on the tower 2, a rotor 6 that rotates by receiving wind, a hydraulic pump 8 and a hydraulic motor 10, and hydraulic pressure.
  • the generator 12 is connected to the motor 10.
  • the tower 2 is erected on the foundation 3 located at a height near the sea level SL, and extends from the base end 2A on the foundation 3 side to the tip 2B in the vertical direction.
  • a nacelle 4 is provided on the tip 2 ⁇ / b> B of the tower 2.
  • the nacelle 4 houses a main shaft 14 and a hydraulic pump 8 attached to the main shaft 14.
  • the main shaft 14 is rotatably supported on the nacelle 4 by a main shaft bearing 15.
  • the rotor 6 includes a hub 6A and a plurality of rotor blades 6B extending radially from the hub 6A.
  • the hub 6 ⁇ / b> A of the rotor 6 is connected to the main shaft 14. For this reason, when the rotor 6 rotates by receiving wind, the main shaft 14 also rotates together with the hub 6A. The rotation of the main shaft 14 is input to the hydraulic pump 8, whereby high pressure oil is generated in the hydraulic pump 8.
  • the hydraulic motor 10 is provided in the tower internal space 2 ⁇ / b> C at the base end 2 ⁇ / b> A of the tower 2 and is installed on the foundation 3.
  • the hydraulic motor 10 is driven by high-pressure oil supplied from a hydraulic pump 8 in the nacelle 4.
  • the generator 12 connected to the hydraulic motor 10 is also provided in the tower internal space 2 ⁇ / b> C at the base end 2 ⁇ / b> A of the tower 2 and installed on the foundation 3.
  • the nacelle 4 has a nacelle base plate 16, and the nacelle base plate 16 is supported by a nacelle bearing 18 in a freely rotatable manner at the tip end portion 2 ⁇ / b> B of the tower 2.
  • the nacelle base plate 16 is fixed to the inner ring 18 ⁇ / b> A of the nacelle bearing 18, and the tip 2 ⁇ / b> B of the tower 2 is fixed to the outer ring 18 ⁇ / b> B of the nacelle bearing 18.
  • a nacelle turning mechanism 19 is attached to the nacelle base plate 16, and the nacelle turning mechanism 19 turns the nacelle base plate 16 with respect to the front end 2 ⁇ / b> B of the tower 2.
  • the nacelle turning mechanism 19 includes, for example, a gear 19A that meshes with an internal gear 19B provided on the inner peripheral surface of the tip 2B of the tower 2, and a motor that is directly connected to the gear 19A and rotationally drives the gear 19A. May be.
  • the hydraulic pump 8 housed in the nacelle 4 and the hydraulic motor 10 provided in the tower internal space 2C at the base end 2A of the tower 2 are connected to the first double pipe 20 and the second double pipe. 30 is used for connection.
  • the first double pipe 20 extends downward from the distal end portion 2B to the proximal end portion 2A of the tower 2 over substantially the entire length of the tower 2.
  • the first double pipe 20 includes a first inner pipe 22 and a first outer pipe 24 provided on the outer periphery of the first inner pipe 22.
  • the 1st inner side piping 22 and the 1st outer side piping 24 are integrated by welding in the edge part by the side of the nacelle 4 (refer the welding part 21 of FIG. 2).
  • the first outer pipe 24 is supported by the nacelle base plate 16 by the nacelle side support mechanism 26. Therefore, the first outer pipe 24 and the first inner pipe 22 welded thereto are turned together with the nacelle base plate 16 when the nacelle 4 is turned.
  • the fixing of the first inner pipe 22 and the first outer pipe 24 is not particularly limited as long as the liquid tightness can be maintained, and may be performed by bolt connection of a flange with a seal instead of welding.
  • the first double pipe 20 is arranged so that the pipe centers of the first inner pipe 22 and the first outer pipe 24 are substantially concentric with the turning center of the nacelle 4. For this reason, even if the 1st double pipe 20 turns with the nacelle baseplate 16, the position in the tower 2 of the 1st double pipe 20 does not move.
  • the first outer pipe 24 is supported by a tower-side support mechanism 28 protruding from the inner wall surface of the tower 2 from the viewpoint of preventing deformation such as buckling and bending of the first double pipe 20.
  • the tower-side support mechanism 28 supports, for example, an annular shoe 28A that contacts the outer peripheral surface of the first outer pipe 24 and a shoe 28A that protrudes radially inward of the first outer pipe 24 from the inner wall surface of the tower 2.
  • a plurality of support bars 28B may be configured.
  • the first outer pipe 24 is slidable in the longitudinal direction by the shoes 28A and the support rods 28B, for example, by forming the inner peripheral surface of the shoe 28A with a low friction material or the shoe 28A itself by an elastic body or an elastic mechanism. It is preferable to support it movably.
  • the 1st double pipe 20 can be supported reliably, absorbing the thermal expansion of the 1st double pipe 20, without preventing turning of the 1st double pipe 20 accompanied with the nacelle 4.
  • the second double pipe 30 includes a second inner pipe 32 and a second outer pipe 34 provided on the outer periphery of the second inner pipe 32 as shown in FIG.
  • the second inner pipe 32 of the second double pipe 30 has a container shape with the bottom 33 closed, and is installed on the foundation 3 on which the tower 2 is erected.
  • the second double pipe 30 may be composed of a plurality of members.
  • the second double pipe 30 is configured by a lower member 35, a central member 36 and an upper member 37 that form the outer shape of the second double pipe 30, and an annular member 38 surrounded by the central member 36.
  • the lower member 35 has a large-capacity internal space closed at the bottom 33, and a high-pressure oil outlet connected to the suction side of the hydraulic motor 10 is provided on the side surface thereof.
  • the central member 36 is provided on the lower member 35, and a low pressure oil inlet connected to the discharge side of the hydraulic motor 10 is provided on the side surface thereof.
  • the upper member 37 is provided on the central member 36 and is formed to have a slightly larger diameter than the first outer pipe 24 of the first double pipe 20 and covers the outer periphery of the lower end portion of the first outer pipe 24.
  • the annular member 38 is provided on the lower member 35, is formed with a slightly larger diameter than the first inner pipe 22 of the first double pipe 20, and covers the outer periphery of the lower end portion of the first inner pipe 22.
  • the annular member 38 mainly forms the second inner pipe 32, while the central member 36 and the upper member 37 mainly form the second outer pipe 34.
  • the first double pipe 20 is rotatably connected to the second double pipe 30 having such a configuration. That is, an inner bearing 40 is provided between the first inner pipe 22 of the first double pipe 20 and the second inner pipe 32 of the second double pipe 30, and the first inner pipe 22 is provided by the inner bearing 40.
  • the second inner pipe 32 is rotatably supported.
  • an outer bearing 42 is provided between the first outer pipe 24 of the first double pipe 20 and the second outer pipe 34 of the second double pipe 30, and the first outer pipe 24 is provided by the outer bearing 42.
  • the second outer pipe 34 is rotatably supported.
  • the first double pipe 20 is preferably connected to the second double pipe 30 so as to be slidable in the longitudinal direction.
  • the outer ring of the inner bearing 40 is fixed to the second inner pipe 32, and the inner ring of the inner bearing 40 is slidable in the pipe longitudinal direction with respect to the first inner pipe 32.
  • the outer ring of the outer bearing 42 is fixed to the second outer pipe 34, and the inner ring of the outer bearing 42 is slidable in the pipe longitudinal direction with respect to the first outer pipe 24.
  • the dimensions of each part of the first double pipe 20 and the second double pipe 30 are determined so that the passage 44 and the outer flow path 46 are not blocked or interference of each part does not occur. .
  • the high pressure oil and the low pressure oil flowing through the first double pipe 20 and the second double pipe 30 cause the first double pipe 20 to move in the first direction.
  • a hydraulic thrust force along the hydraulic thrust direction in FIG. 3 that pushes the double pipe 20 toward the nacelle 4 side is generated. Therefore, the load which should be borne by the nacelle 4 increased by supporting the first double pipe 20 on the nacelle 4 side can be reduced. Further, the load that the tower 2 should bear is reduced accordingly.
  • An outer channel 46 is formed. That is, the inner flow path 44 through which the high-pressure oil flows is formed by the first inner pipe 22 of the first double pipe 20 and the second inner pipe 32 of the second double pipe 30.
  • the outer flow path 46 through which the low-pressure oil flows is formed by the first outer pipe 24 of the first double pipe 20 and the second outer pipe 34 of the second double pipe 30.
  • an inner seal 50 is provided between the outer wall surface of the first inner pipe 22 and the inner wall surface of the second inner pipe 32.
  • the inner seal 50 is disposed so as to be sandwiched between the inner channel 44 and the outer channel 46. That is, the inner seal 50 is surrounded by the inner channel 44 and the outer channel 46. For this reason, even if the sealing function of the inner seal 50 is impaired, the high-pressure oil flowing through the inner flow path 44 leaks into the outer flow path 46. Therefore, leakage of high pressure oil to the outside can be prevented.
  • a pair of outer seals 52 are provided between the outer wall surface of the first outer pipe 24 and the inner wall surface of the second outer pipe 34.
  • An oil sump 54 communicates with a position between the pair of outer seals 52 via a communication passage 53.
  • This oil sump 54 is connected to an atmospheric pressure tank 56.
  • a pulsation preventing accumulator 60 may be installed on the nacelle base plate 16.
  • capacitance of the pulsation prevention accumulator 60 may be comparatively small, it can fully accommodate in the nacelle 4.
  • the hydraulic motor 10 and the generator 12 are not installed in the nacelle 4, but are installed in the tower internal space 2C of the base end 2A of the tower 2, so that pulsation is prevented in the nacelle 4.
  • a sufficient installation space for the accumulator 60 can be secured.
  • bypass flow path 62 is a flow path that bypasses the hydraulic motor 10 and is provided between the second double pipe 30 and the hydraulic motor 10.
  • the bypass passage 62 is provided with a relief valve 64.
  • the oil cooler 66 is provided on the downstream side of the relief valve 64 (specifically, on the downstream side of the joining portion of the bypass flow path 62 and the low pressure oil flow path).
  • the oil cooler 66 reduces the oil temperature that has risen when the high-pressure oil passes through the relief valve 64, or cools the low-pressure oil during normal times (when the relief valve 64 is not operating).
  • the hydraulic pressure accumulator 68 has a sufficiently large capacity compared to the pulsation prevention accumulator 60.
  • the hydraulic pressure accumulator 68 stores, for example, the hydraulic pressure of the high pressure oil in order to absorb excessive rotational energy when a gust of wind blows, or the hydraulic pressure of the high pressure oil in advance to realize a ride-through function when the system voltage drops.
  • the first double pipe 20 supported on the nacelle 4 side is rotatably connected to the second double pipe 30, so that even if the nacelle 4 turns, High pressure oil and low pressure oil are exchanged between the hydraulic pump 8 and the hydraulic motor 10 installed at the base end 2 ⁇ / b> A of the tower 2 via the first double pipe 20 and the second double pipe 30. Can do.
  • connection mode with the second double pipe 30 is not limited to this example, and the first double pipe 20 may be connected to the second double pipe 30 without using the inner bearing 40 and the outer bearing 42.
  • FIG. 4 is a diagram illustrating another example of a connection mode between the first double pipe 20 and the second double pipe 30.
  • the first double pipe 20 may be rotatably fitted to the second double pipe 30.
  • the outer wall surface of the first inner pipe 22 and the inner wall surface of the second inner pipe 32 are in slidable contact so as to allow relative sliding movement in the rotational direction.
  • the outer wall surface of the first outer pipe 24 and the inner wall surface of the second outer pipe 34 are in slidable contact so that relative sliding motion in the rotational direction is allowed.
  • the first inner pipe 22 is slidable in the pipe longitudinal direction relative to the second inner pipe 32, and the first outer pipe 24 is relatively long relative to the second outer pipe 34.
  • the inner flow path it is preferable that the dimension of each part of the 1st double pipe 20 and the 2nd double pipe 30 is determined so that 44 and the outer side flow path 46 may not be obstruct
  • the second double pipe 30 is composed of a lower member 58 and an upper member 59.
  • the lower member 58 is provided with a high-pressure oil outlet connected to the suction side of the hydraulic motor 10 on the side surface, and an upper portion of the lower member 58 has a slightly larger diameter than the first inner pipe 22 of the first double pipe 20. And covers the outer periphery of the lower end of the first inner pipe 22.
  • the upper member 59 is provided on the lower member 58, and a low pressure oil inlet connected to the discharge side of the hydraulic motor 10 is provided on a side surface thereof, and an upper portion thereof is a first outer side of the first double pipe 20.
  • the pipe shape is slightly larger than that of the pipe 24, and covers the outer periphery of the lower end portion of the first outer pipe 24.
  • an inner seal 50 is provided between the outer wall surface of the first inner pipe 22 and the inner wall surface of the second inner pipe 32.
  • a pair of outer seals 52 are provided between the outer wall surface of the first outer pipe 24 and the inner wall surface of the second outer pipe 34, and a communication path is provided between the pair of outer seals 52.
  • An oil sump 54 communicates with the oil tank 53.
  • the oil sump 54 is connected to an atmospheric pressure tank 56 (see FIG. 3).
  • the 2nd double pipe 30 may be mounted on the foundation 3 like FIG.1 and 3, and is supported by the internal peripheral surface of the base end part 2A of the foundation 3 or the tower 2. FIG. Also good.
  • FIG. 5 is a diagram illustrating an overall configuration example of the wind turbine generator according to the second embodiment.
  • the wind power generator according to this embodiment is the same as the wind power generator 1 according to the first embodiment, except that the configurations of the first double pipe and the second double pipe are different. Therefore, here, the description will focus on the points different from the first embodiment, and in FIG. 5, the same reference numerals are assigned to portions common to the wind power generator 1, and description thereof is omitted.
  • the first double pipe 70 and the hydraulic pump 8 in the nacelle 4 and the hydraulic motor 10 provided in the tower internal space 2C of the base end 2A of the tower 2 are connected.
  • a second double tube 80 is provided.
  • the first double pipe 70 is provided only in a part of the tower 2 (only under the nacelle 4).
  • the first double pipe 70 is supported on the nacelle base plate 16 by the nacelle-side support mechanism 26, and rotates together with the nacelle base plate 16 when the nacelle 4 rotates.
  • the second double pipe 80 is provided below the first double pipe 70 and is rigidly supported by a tower-side support mechanism 81 protruding from the inner wall surface of the tower 2.
  • the second double pipe 80 is connected to the hydraulic motor 10 via a high pressure oil pipe 90 through which high pressure oil flows and a low pressure oil pipe 92 through which low pressure oil flows.
  • the high-pressure oil pipe 90 and the low-pressure oil pipe 92 may be constituted by rigid pipes, or a flexible tube (hose) or a joint such as a bellows that is fixed only in the rotational direction and absorbs only the thermal elongation in the longitudinal direction.
  • a rigid pipe may be used.
  • the high-pressure oil pipe 90 and the low-pressure oil pipe 92 are supported on the inner wall surface of the tower 2 so as to allow thermal expansion of each pipe.
  • the inner peripheral surface of the annular shoe 94 fixed to the inner wall surface of the tower 2 may be supported by contacting the outer peripheral surfaces of the high pressure oil pipe 90 and the low pressure oil pipe 92.
  • each of the high pressure oil pipe 90 and the low pressure oil pipe 92 may be slidably supported in the longitudinal direction of the pipe by each shoe 94, for example, by forming the inner peripheral surface of the shoe 94 with a low friction material.
  • FIG. 6 is a cross-sectional view showing a detailed structure of the first double tube 70 and the second double tube 80.
  • the first double pipe 70 is composed of an upper member 71 and a lower member 73 fastened with bolts 75 at the flange portion.
  • a seal 76 is provided on the joint surface between the upper member 71 and the lower member 73 to maintain liquid tightness.
  • the upper member 71 has a high-pressure oil inlet connected to the discharge side of the hydraulic pump 8 at the upper part.
  • the lower member 73 has an inner peripheral side cylindrical portion and an outer peripheral side cylindrical portion that hang downward from a flange portion joined to the upper member 71, and the side surface of the outer peripheral side cylindrical portion is on the suction side of the hydraulic pump 8.
  • a low-pressure oil outlet to be connected is provided.
  • the first inner pipe 72 of the first double pipe 70 is formed by the upper member 71 and a part of the lower member 73 (inner cylindrical part). Further, a first outer pipe 74 of the first double pipe 70 is formed by a part of the lower member 73 (the outer cylindrical part).
  • the second double pipe 80 has a second inner pipe 82 and a second outer pipe 84 provided on the outer periphery of the second inner pipe 82. Further, a high-pressure oil outlet connected to the high-pressure oil pipe 90 (see FIG. 5) is provided at the lower part of the second double pipe 80. Furthermore, a low pressure oil inlet connected to the low pressure oil pipe 92 (see FIG. 5) is provided on the side surface of the second double pipe 80.
  • the first double pipe 70 is rotatably fitted to the second double pipe 80. That is, the inner wall surface of the first inner pipe 72 and the outer wall surface of the second inner pipe 82 are in slidable contact so that relative sliding motion in the rotational direction is allowed. Similarly, the inner wall surface of the first outer pipe 74 and the outer wall surface of the second outer pipe 84 are in slidable contact so that relative sliding motion in the rotational direction is allowed.
  • the inner flow path 44 through which the high pressure oil supplied from the hydraulic pump 8 flows and the low pressure oil discharged from the hydraulic motor 10 flow.
  • An outer channel 46 is formed. By flowing high pressure oil through the inner flow path 44 and low pressure oil through the outer flow path 46, leakage of the high pressure oil to the outside can be prevented.
  • An inner seal 50 is provided between the inner wall surface of the first inner pipe 72 and the outer wall surface of the second inner pipe 82.
  • a pair of outer seals 52 are provided between the inner wall surface of the first outer pipe 74 and the outer wall surface of the second outer pipe 84, and an oil sump is provided at a position between the pair of outer seals 52. 54 is provided.
  • the oil sump 54 is connected to an atmospheric pressure tank 56 (see FIG. 3).
  • a tapered roller bearing 78 is provided between the inner wall surface of the first inner pipe 72 and the outer wall surface of the second inner pipe 82.
  • the tapered roller bearing 78 includes a first tapered tube 70 so that the first double tube 70 can rotate and the first double tube 70 does not move in the longitudinal direction relative to the second double tube 80.
  • the inner pipe 72 is supported by the second inner pipe 82.
  • the tapered roller bearing 78 can receive both a thrust load along the longitudinal direction of the first double pipe 70 and the second double pipe 80 and a radial load along their radial direction. Examples of the thrust load include hydraulic thrust generated by high pressure oil and low pressure oil flowing through the inner flow path 44 and the outer flow path 46.
  • first inner pipe 72 and the second inner pipe 82 are freely thermally expanded starting from the tapered roller bearing 78, a portion where the first inner pipe 72 and the second inner pipe 82 overlap (fitting portion) ) Is not affected by thermal elongation.
  • the first double pipe 70 supported on the nacelle 4 side is rotatably connected to the second double pipe 80, so that even if the nacelle 4 turns, High pressure oil and low pressure oil are exchanged between the hydraulic pump 8 and the hydraulic motor 10 installed at the base end 2 ⁇ / b> A of the tower 2 via the first double pipe 70 and the second double pipe 80. Can do.
  • FIG. 5 shows an example in which the first double pipe 70 is provided only directly under the nacelle 4. However, the first double pipe 70 extends from the nacelle 4 side to an arbitrary position in the tower 2. May be.
  • FIG. 6 illustrates an example in which the tapered roller bearing 78 is provided between the inner wall surface of the first inner pipe 72 and the outer wall surface of the second inner pipe 82, the tapered roller bearing 78 may be omitted.
  • FIG. 7 is a cross-sectional view showing another example of the detailed structure of the first double pipe 70 and the second double pipe 80.
  • the first double pipe 70 is rotatably fitted to the second double pipe 80 so as to be able to slide relative to the second double pipe 80 in the longitudinal direction. ing. That is, the first inner pipe 72 is slidable in the pipe longitudinal direction relative to the second inner pipe 82, and the first outer pipe 74 is relatively long in the pipe longitudinal direction. It is slidable in the direction.
  • the first double pipe 70 and the second double pipe 80 absorb the thermal elongation of the first double pipe 70 and the second double pipe 80.
  • the hydraulic thrust which pushes the 1 double pipe 80 to the nacelle 4 side is generated, and the load which the nacelle 4 should bear can be reduced.
  • the first double pipe 70 slides in the longitudinal direction of the pipe with respect to the second double pipe 80 within the range of the expected thermal elongation of the first double pipe 70 and the second double pipe 80.
  • the dimensions of the respective parts of the first double pipe 70 and the second double pipe 80 are determined so that the inner flow path 44 and the outer flow path 46 are not blocked or interference of the respective parts does not occur. It is preferred that
  • the hydraulic motor 10 is installed on the foundation 3 near the sea level SL.
  • the hydraulic motor 10 is installed near the ground level as long as it is around the tower base end.
  • it may be provided in the lower part of the tower below the sea level SL in the floating offshore wind power generator (the part of the tower that has submerged in the sea).
  • the vicinity of the tower base end means to include a place outside the tower.
  • the wind power generators 1 and 100 have been described as specific examples of the renewable energy power generator, but the present invention can also be applied to a renewable energy power generator other than the wind power generator.
  • a power generation device that uses tidal currents, ocean currents, or river flows, where the tower extends vertically downward in the sea or water from the base end toward the tip, and receives tidal currents, ocean currents, or river currents from the rotor blades.
  • the present invention may be applied to a power generation device in which the main shaft rotates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

【課題】ナセル内に設置される油圧ポンプとタワー基端部周辺に設置される油圧モータとの間の油圧配管がナセルの旋回運動に対応しうる再生エネルギー型発電装置を提供する。 【解決手段】再生エネルギー型発電装置(1,100)では、ナセル4内の油圧ポンプ8とタワー2の基端部2A周辺の油圧モータ10との間を、第1二重管(20,70)及び第2二重管(30,80)を用いて接続する。第1二重管は、第2二重管に回転自在に接続される。第1二重管は、第1内側配管(22,72)及び第1外側配管(24,74)を有する。第2二重管は、第2内側配管(32,82)及び第2外側配管(34,84)を有する。第1内側配管(22,72)と第2内側配管(32,82)とで内側流路44が形成され、第1外側配管(24,74)と第2外側配管(34,84)とで外側流路46が形成される。内側流路44には高圧油及び低圧油の一方が流れ、外側流路46には高圧油及び低圧油の他方が流れる。

Description

再生エネルギー型発電装置
 本発明は、油圧ポンプ及び油圧モータを組み合わせた油圧トランスミッションを介して、ロータの回転エネルギーを発電機に伝達する再生エネルギー型発電装置に関する。なお、再生エネルギー型発電装置は、風、潮流、海流、河流等の再生可能なエネルギーを利用した発電装置であり、例えば、風力発電装置、潮流発電装置、海流発電装置、河流発電装置等を挙げることができる。
 近年、地球環境の保全の観点から、風力を利用した風力発電装置や、潮流、海流又は河流を利用した発電装置を含む再生エネルギー型発電装置の普及が進んでいる。再生エネルギー型発電装置では、風、潮流、海流又は河流の運動エネルギーをロータの回転エネルギーに変換し、さらにロータの回転エネルギーを発電機によって電力に変換する。
 この種の再生エネルギー型発電装置では、従来、ロータの回転数が発電機の定格回転数に比べて小さいため、ロータと発電機との間に機械式(ギヤ式)の増速機を設けていた。これにより、ロータの回転数は増速機で発電機の定格回転数まで増速された後、発電機に入力されるようになっていた。
 ところが、発電効率の向上を目的として再生エネルギー型発電装置の大型化が進むにつれ、増速機の重量及びコストが増加する傾向にある。このため、機械式の増速機に替えて、油圧ポンプ及び油圧モータを組み合わせた油圧トランスミッションを採用した再生エネルギー型発電装置が注目を浴びている。
 例えば、特許文献1には、油圧トランスミッションを介してロータの回転エネルギーを発電機に伝達するようにした風力発電装置が記載されている。
 また、油圧ポンプ及び油圧モータの間を油圧配管で繋いだ油圧トランスミッションの採用により、ロータの回転エネルギーを発電機に伝達する伝達機構の配置の自由度が格段に向上する。そのため、従来の風力発電装置のようにタワー上に設置したナセル内に伝達機構の全てを配置する必要がなく、油圧モータ及びこれに連結される発電機をグランドレベル又はシーレベルに配置することも可能となる。これにより、タワーで支持すべき荷重が軽減され、風力発電装置の建設コストを低減できる。加えて、油圧モータ及び発電機のメンテナンスを容易に行うことが可能である。
 例えば、特許文献2~5には、油圧モータ及びこれに連結される発電機をグランドレベルに設置した風力発電装置が記載されている。
 ところが、一般的な風力発電装置では、発電効率の向上の観点から風向に応じてナセルを旋回させるようになっている。このため、油圧モータ及び発電機をグランドレベル又はシーレベルに設置する場合にも、ナセル旋回に対応可能な設計とすることが求められる。
 そこで、特許文献6には、タワー下部に設けられた油圧モータが鉛直軸周りにナセルとともに旋回する風力発電装置が記載されている。
 また、特許文献7及び8には、ナセル内に設置された油圧ポンプとタワー下部に設けられた油圧モータとを繋ぐ油圧配管(高圧油流路及び低圧油流路)の一部がナセルとともに旋回する風力発電装置が記載されている。この風力発電装置では、ナセル下部に設けた油圧スイベルによって、ナセル側の油圧配管がナセルとともに旋回するようになっている(特許文献7のFig.7および特許文献8のFig.7参照)。油圧スイベルは、外側部材および内側部材からなり、両部材は互いに相対的に回転可能である。そして、内側部材に設けられた配管は、外側部材の内周面に設けられた環状流路と連通している。
米国特許出願公開第2010/0032959号明細書 米国特許第7656055号明細書 米国特許第7569943号明細書 米国特許第7436086号明細書 米国特許第7183664号明細書 国際公開第2009/064192号 国際公開第2009/061209号 国際公開第2009/058022号
 しかしながら、特許文献6には、そもそも、ナセル内に設置された油圧ポンプとタワー下部に設けられた油圧モータとを繋ぐ油圧配管を具体的にどのように構成するか開示されていない。
 また、特許文献7及び8には、ナセル側の油圧配管をナセルとともに旋回可能にするための油圧スイベルが記載されているものの、内側部材に設けられた配管と外側部材に設けられた環状流路との接続部分に関して具体的な説明がなく、油圧スイベルの詳細構造が十分に開示されていない。
 したがって、ナセル内に設置された油圧ポンプと、タワー下部周辺に設けた油圧モータとを繋ぐ油圧配管を、ナセルの旋回運動に対応可能に構成する手法の開発が望まれていた。
 同様に、風力発電装置以外の再生エネルギー型発電装置においても、ナセル(主軸及び油圧ポンプの収納室)の旋回運動に対応しうる油圧配管の構造とする必要があった。
 本発明は、上述の事情に鑑みてなされたものであり、ナセル内に設置される油圧ポンプとタワー基端部周辺に設置される油圧モータとの間の油圧配管がナセルの旋回運動に対応しうる再生エネルギー型発電装置を提供することを目的とする。
 本発明に係る再生エネルギー型発電装置は、タワーと、前記タワーの先端部に設けられたナセルと、前記ナセルに収納され、回転翼とともに回転する主軸と、前記ナセルに収納され、前記主軸に取り付けられる油圧ポンプと、前記タワーの基端部周辺に配置され、前記油圧ポンプから供給される圧油によって駆動される油圧モータと、前記油圧モータに連結された発電機と、前記油圧ポンプに接続される第1内側配管及び第1外側配管を有し、前記ナセル側に支持されるとともに前記タワー内部を通って前記タワーの基端部に向かってに延びる第1二重管と、前記油圧モータに接続される第2内側配管及び第2外側配管を有し、前記第1二重管よりも前記ナセルから遠い側に位置して該第1二重管に嵌合される第2二重管とを備え、前記第1内側配管は、前記第2内側配管に連通し、前記第2内側配管とともに内側流路を形成し、前記第1外側配管は、前記第2外側配管に連通し、前記第2外側配管とともに外側流路を形成し、前記内側流路及び前記外側流路のいずれか一方には、前記油圧ポンプから吐出されて前記油圧モータに送られる高圧油が流れ、前記内側流路及び前記外側流路の他方には、前記油圧モータから排出されて前記油圧ポンプに戻される低圧油が流れ、前記ナセル側に支持された前記第1二重管は回転自在に前記第2二重管に接続されていることを特徴とする。
 この再生エネルギー型発電装置では、第1二重管の第1内側配管と第2二重管の第2内側配管とによって内側流路が形成される一方、第1二重管の第1外側配管と第2二重管の第2外側配管とによって外側流路が形成される。これら内側流路及び外側流路のいずれか一方に高圧油が流れ、内側流路及び外側流路の他方には低圧油が流れる。
 そして、ナセル側に支持された第1二重管は回転自在に第2二重管に接続されているので、ナセルが旋回しても、ナセル内の油圧ポンプとタワー基端部周辺の油圧モータとの間の高圧油及び低圧油のやり取りを第1二重管と第2二重管とを介して行うことができる。
 上記再生エネルギー型発電装置において、前記第1二重管は、前記ナセルに近い側の端部において、前記第1内側配管と前記第1外側配管とが結合されて一体化されていることが好ましい。
 このように、ナセルに近い側の第1二重管の端部において、第1内側配管と第2内側配管とを一体化することで、第1二重管のうち第1外側配管のみをナセル側に支持すれば足りるようになる。
 上記再生エネルギー型発電装置において、前記内側流路には前記高圧油が流れ、前記外側流路には前記低圧油が流れるようにすることが好ましい。
 このように内側流路に高圧油を流し、外側流路に低圧油を流すことで、万が一、内側流路の腐食や破損等によって内側流路の高圧油が漏れても、漏洩した高圧油を外側流路に受けることができる。よって、高圧油の外部への漏洩を防止できる。
 この場合、上記再生エネルギー型発電装置は、前記第1内側配管の管壁面と前記第2内側配管の管壁面との間をシールする内側シールをさらに備え、前記内側シールは、前記内側流路と前記外側流路との間に挟まれるように配置されていることが好ましい。
 このように第1内側配管の管壁面と第2内側配管の管壁面との間をシールする内側シールを、内側流路と外側流路との間に挟まれるように配置することで、万が一、内側シールのシール機能が損なわれても、内側流路を流れる高圧油は外側流路に漏れる。よって、高圧油の外部への漏洩を防止できる。
 また、上述の場合、上記再生エネルギー型発電装置は、前記第1外側配管の管壁面と前記第2外側配管の管壁面との間をシールする一対の外側シールと、前記一対の外側シール間に連通する油溜めと、前記油溜めに連通するタンクとを備えることが好ましい。
 これにより、万が一、第1外側配管の管壁面と第2外側配管の管壁面との間をシールする一対の外側シールのシール機能が損なわれても、外側流路から漏れ出た低圧油は油溜めを介してタンクに導かれる。すなわち、外側流路から漏れた低圧油は、圧力が十分に下げられてからタンクに回収される。よって、低圧油の外部への漏洩を防止できる。
 上記再生エネルギー型発電装置において、前記第1二重管は、前記タワーの略全長に亘って、前記ナセル側から前記タワーの基端部まで延びており、前記第2二重管は、前記タワーの基端部周辺に支持されていてもよい。
 このように、ナセル側からタワー基端部まで延びる第1二重管を用いることで、タワーの略全長に亘って二重管構造で一貫して油圧配管を構成できる。よって、タワー内の油圧配管の設置スペースを抑制することが可能である。
 この場合、前記第2二重管は、底部が閉じられた容器状であり、前記タワーが立設される基礎上に設置されていてもよい。
 このように、第1二重管に接続される第2二重管を容器状に構成して、タワーが立設される基礎上に設置することで、第2二重管のための特別な支持構造が不要になる。
 また、上述の場合、前記第1二重管は、前記第2二重管に回転自在に嵌合されており、前記第1内側配管及び前記第2内側配管が長手方向に相対的に摺動自在、かつ、前記第1外側配管及び前記第2外側配管が長手方向に相対的に摺動自在であってもよい。
 このように、第1内側配管が第2内側配管に対して、さらに、第1外側配管が第2外側配管に対して相対的に長手方向に摺動自在になるように第1二重管を第2二重管に嵌合することで、第1二重管の第2二重管に対する長手方向の動きが許容され、第1二重管及び第2二重管の油温上昇等による熱伸びを吸収することができる。
 また、第1二重管の第2二重管に対する長手方向の動きが許容されるため、内側流路及び外側流路を流れる高圧油と低圧油とによって、第1二重管をナセル側に押す油圧スラストが発生する。そのため、ナセル側に第1二重管を支持することによって増加した、ナセルで負担すべき荷重を軽減することができる。また、その分だけ、タワーが負担すべき荷重も軽減される。
 また、上述の場合、再生エネルギー型発電装置は、前記タワーの内周面に固定され、前記第1二重管の前記第1外側配管の外周面に該第1外側配管の径方向外方から接触する支持手段をさらに備え、前記支持手段は、前記第1二重管を回転自在かつ長手方向に摺動自在に支持することが好ましい。
 このように、タワー内周面に固定されて第1外側配管の径方向外方から接触する支持手段によって、第1二重管を回転自在かつ長手方向に摺動自在に支持することで、ナセルに伴われた第1二重管の旋回を妨げず、第1二重管及び第2二重管の油温上昇等による熱伸びを吸収しながら、第1二重管を確実に支持することができる。
 また、上述の場合、再生エネルギー型発電装置は、前記第1内側配管及び前記第2内側配管の間に設けられ、前記第1内側配管を回転自在に前記第2内側配管に支持する内側軸受と、前記第1外側配管及び前記第2外側配管の間に設けられ、前記第1外側配管を回転自在に前記第2外側配管に支持する外側軸受とをさらに備え、前記内側軸受は、前記第1内側配管に対してその長手方向に摺動自在であり、前記外側軸受は、前記第1外側配管に対してその長手方向に摺動自在であってもよい。
 このように、第1内側配管と第2内側配管との間に内側軸受を設け、第1外側配管と第2外側配管との間に外側軸受を設けるとともに、内側軸受を第1内側配管に対して、さらには、外側軸受を第1外側配管に対して相対的に長手方向に摺動自在にすることで、第1二重管の第2二重管に対する長手方向の動きが許容され、各二重管の熱伸びを吸収することができる。
 また、第1二重管の第2二重管に対する長手方向の動きが許容されるため、内側流路及び外側流路を流れる高圧油と低圧油とによって、第1二重管をナセル側に押す油圧スラストが発生する。そのため、ナセル側に第1二重管を支持することによって増加した、ナセルで負担すべき荷重を軽減することができる。また、その分だけ、タワーが負担すべき荷重も軽減される。
 あるいは、上記再生エネルギー型発電装置において、前記第1二重管は、前記ナセル側から前記タワーの途中まで延びており、前記第2二重管は、前記タワーに支持されていてもよい。
 このように、ナセル側からタワーの途中まで延びる第1二重管を用いることで、タワー内の任意の範囲において二重管構造で油圧配管を構成できる。
 この場合、上記再生エネルギー型発電装置は、前記第1二重管を前記第2二重管に回転自在に支持し、前記第1二重管及び前記第2二重管の長手方向に沿ったスラスト荷重を受けるスラスト軸受をさらに備えていてもよい。
 このように、スラスト軸受によって第1二重管を第2二重管に回転自在に支持することで、ナセルに伴われた第1二重管の旋回を妨げることがない。また、第1二重管の重量や、内側流路及び外側流路を流れる高圧油と低圧油とによって発生する油圧スラストをスラスト軸受によって確実に受けることができる。
 なお、前記スラスト軸受は、前記スラスト荷重に加えて、径方向に沿ったラジアル荷重をも受けるテーパコロ軸受であってもよい。
 あるいはスラスト軸受を用いずに、前記第1二重管と前記第2二重管とは、前記第1内側配管及び前記第2内側配管が長手方向に相対的に摺動自在、かつ、前記第1外側配管及び前記第2外側配管が長手方向に相対的に摺動自在となるように嵌合されていてもよい。
 このように、第1内側配管が第2内側配管に対して、さらには、第1外側配管が第2外側配管に対して相対的に長手方向に摺動自在になるように第1二重管を第2二重管に嵌合することで、第1二重管の第2二重管に対する長手方向の動きが許容され、各二重管の油温上昇等による熱伸びを吸収することができる。
 また、第1二重管の第2二重管に対する長手方向の動きが許容されるため、内側流路及び外側流路を流れる高圧油と低圧油とによって、第1二重管をナセル側に押す油圧スラストが発生する。そのため、ナセル側に第1二重管を支持することによって増加したナセルで負担すべき荷重を低減できる。また、その分だけ、タワーが負担すべき荷重も軽減される。
 上記再生エネルギー型発電装置は、前記ナセル内において前記油圧ポンプと前記第1二重管との間に設けられ、前記油圧ポンプの脈動を防止する脈動防止アキュムレータをさらに備えることが好ましい。
 このように、脈動防止アキュムレータをナセル内に設けることで、脈動防止アキュムレータと油圧ポンプとの距離が縮まり、油圧ポンプの脈動を効果的に防止できる。なお、脈動防止アキュムレータの容量は比較的小さくてもよいから、ナセル内に十分に収納できる。
 また上記再生エネルギー型発電装置は、前記第2二重管と前記油圧モータの間に設けられ、前記油圧モータをバイパスするバイパス流路と、前記タワーの基端部周辺に配置され、前記バイパス流路に設けられたリリーフ弁と、前記タワーの基端部周辺に設置され、前記リリーフ弁の下流側に設けられたオイルクーラとをさらに備えることが好ましい。
 このように、バイパス流路にリリーフ弁を設けると、油圧ポンプから油圧モータに送られる高圧油の圧力が上限値を超えたときにリリーフ弁が開いて、バイパス流路を介して高圧油が低圧油流路側に流れて、高圧油の圧力が低減される。このとき、リリーフ弁での摩擦によって油温が上昇するから、リリーフ弁の下流側に位置するオイルクーラで油の冷却を行う必要がある。これらリリーフ弁及びオイルクーラを、ナセルに比べて設置スペースの余裕があるタワー基端部周辺に設けることで、ナセルの大型化を防止できる。
 上記再生エネルギー型発電装置は、前記タワーの基端部周辺に配置され、前記高圧油の油圧を蓄積する油圧蓄積アキュムレータをさらに備えることが好ましい。
 再生エネルギー型発電装置では、高圧油の油圧を蓄積する必要が生じることがある。例えば、風力発電装置では、突風が吹いた時に過剰な回転エネルギーを吸収するために高圧油の油圧を蓄積したり、系統電圧低下時のライドスルー機能を実現するために高圧油の油圧を予め蓄積しておいたり、風力発電装置の出力が余剰である時に過剰な回転エネルギーを吸収するために高圧油の油圧を蓄積したりする場合がある。これらの目的を達成するには、容量が十分に大きな油圧蓄積アキュムレータを用いる必要がある。
 そこで、油圧蓄積アキュムレータをタワー基端部周辺に配置することで、油圧蓄積アキュムレータの容量を十分に大きくすることができる。よって、油圧蓄積アキュムレータの本来の役割を効果的に果たすことができる。
 また、前記再生エネルギー型発電装置は風力発電装置であり、前記タワーが前記基端部から前記先端部に向かって鉛直方向上方に延びるとともに、前記回転翼によって風を受けることで前記主軸が回転するようになっていてもよい。この場合、前記油圧モータは、グランドレベル近くに配置されていてもよいし、シーレベル近く又はシーレベルよりも下方に配置されていてもよい。
 あるいは、再生エネルギー型発電装置は、潮流、海流又は河流を利用した発電装置であり、前記タワーが前記基端部から前記先端部に向かって海中又は水中を鉛直方向下方に延びるとともに、前記回転翼によって潮流、海流又は河流を受けることで前記主軸が回転するようになっていてもよい。
 本発明によれば、ナセル側に支持された第1二重管を回転自在に第2二重管に接続したので、ナセルが旋回しても、ナセル内の油圧ポンプとタワー基端部周辺の油圧モータとの間の高圧油及び低圧油のやり取りを第1二重管と第2二重管とを介して行うことができる。
第1実施形態に係る風力発電装置の全体構成例を示す図である。 油圧ポンプ側の第1二重管の端部の詳細構造を示す断面図である。 第1実施形態における、第1二重管と第2二重管との接合部周辺の詳細構造を示す断面図である。 第1二重管と第2二重管との接続態様の図3とは異なる例を示す図である。 第2実施形態に係る風力発電装置の全体構成例を示す図である。 第2実施形態における、第1二重管および第2二重管の詳細構造を示す断面図である。 第1二重管および第2二重管の詳細構造の図6とは異なる例を示す断面図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
[第1実施形態]
 第1実施形態では、再生エネルギー型発電装置の一例として風力発電装置について説明する。図1は、第1実施形態に係る風力発電装置の全体構成例を示す図である。図2は、油圧ポンプ側の第1二重管の端部の詳細構造を示す断面図である。図3は、第1二重管と第2二重管との接合部周辺の詳細構造を示す断面図である。
 図1に示すように、風力発電装置1は、主として、タワー2と、タワー2上に設けられたナセル4と、風を受けて回転するロータ6と、油圧ポンプ8及び油圧モータ10と、油圧モータ10に連結された発電機12とで構成される。
 タワー2は、シーレベルSL付近の高さに位置する基礎3上に立設されており、基礎3側の基端部2Aから鉛直方向上方に先端部2Bまで延びている。タワー2の先端部2B上には、ナセル4が設けられている。そして、ナセル4には、主軸14及びこの主軸14に取り付けられた油圧ポンプ8が収納されている。なお、主軸14は、主軸軸受15によってナセル4に回転自在に支持されている。
 ロータ6は、ハブ6Aと、ハブ6Aから放射状に延びる複数枚の回転翼6Bとからなる。ロータ6のハブ6Aは、主軸14に連結されている。このため、風を受けてロータ6が回転すると、主軸14もハブ6Aとともに回転する。そして、主軸14の回転が油圧ポンプ8に入力されることで、油圧ポンプ8において高圧油が生成される。
 油圧モータ10は、タワー2の基端部2Aにおけるタワー内部空間2Cに設けられ、基礎3上に設置されている。油圧モータ10は、ナセル4内の油圧ポンプ8から供給される高圧油によって駆動される。
 また、油圧モータ10に連結される発電機12も、油圧モータ10と同様に、タワー2の基端部2Aにおけるタワー内部空間2Cに設けられ、基礎3上に設置されている。
 ナセル4は、ナセル台板16を有しており、このナセル台板16はナセル軸受18によってタワー2の先端部2Bに旋回自在に支持されている。具体的には、ナセル台板16はナセル軸受18の内輪18Aに固定され、タワー2の先端部2Bはナセル軸受18の外輪18Bに固定されている。
 そして、ナセル台板16にはナセル旋回機構19が取り付けられており、このナセル旋回機構19によって、ナセル台板16がタワー2の先端部2Bに対して旋回するようになっている。なお、ナセル旋回機構19は、例えば、タワー2の先端部2Bの内周面に設けられた内歯車19Bと噛み合うギヤ19Aと、このギヤ19Aに直結されてギヤ19Aを回転駆動するモータとで構成されていてもよい。
 本実施形態では、ナセル4に収納された油圧ポンプ8と、タワー2の基端部2Aにおけるタワー内部空間2Cに設けられた油圧モータ10とを、第1二重管20及び第2二重管30を用いて接続している。
 第1二重管20は、タワー2の略全長に亘って、タワー2の先端部2Bから基端部2Aまで下方に延びている。第1二重管20は、図2及び3に示すように、第1内側配管22及びこの第1内側配管22の外周に設けられた第1外側配管24で構成される。第1内側配管22と第1外側配管24とは、ナセル4側の端部において、溶接によって一体化されている(図2の溶接部21参照)。そして、第1外側配管24は、ナセル側支持機構26によって、ナセル台板16に支持されている。そのため、第1外側配管24及びこれに溶接された第1内側配管22とは、ナセル4の旋回時に、ナセル台板16とともに旋回するようになっている。
 なお、第1内側配管22と第1外側配管24との固定は、液密性が維持可能であれば特に限定されず、溶接に替えて、シール付きフランジのボルト結合で行ってもよい。
 なお、第1二重管20は、第1内側配管22及び第1外側配管24の管中心がナセル4の旋回中心と略同芯になるように配置されている。このため、ナセル台板16とともに第1二重管20が旋回しても、第1二重管20のタワー2内における位置は不動である。
 また、図1に示すように、第1二重管20の座屈や屈曲等の変形を防止する観点から、タワー2の内壁面から張り出すタワー側支持機構28によって第1外側配管24を支持してもよい。タワー側支持機構28は、例えば、第1外側配管24の外周面に接触する円環状のシュー28Aと、タワー2の内壁面から第1外側配管24の径方向内方に張り出してシュー28Aを支持する複数の支持棒28Bとで構成してもよい。
 この場合、シュー28Aの内周面を低摩擦材料或いはシュー28A自体を弾性体又は弾性機構で形成する等により、シュー28A及び支持棒28Bによって、第1外側配管24を回転自在かつ長手方向に摺動自在に支持することが好ましい。これにより、ナセル4に伴われた第1二重管20の旋回を妨げず、第1二重管20の熱伸びを吸収しながら、第1二重管20を確実に支持することができる。
 第2二重管30は、図3に示すように、第2内側配管32および第2内側配管32の外周に設けられた第2外側配管34で構成される。第2二重管30の第2内側配管32は、底部33が閉じられた容器状であり、タワー2が立設された基礎3上に設置されている。
 第2二重管30は、複数の部材で構成してもよい。図3に示す例では、第2二重管30の外形を作る下側部材35、中央部材36及び上側部材37と、中央部材36によって囲まれる環状部材38とで第2二重管30が構成されている。下側部材35は、底部33で閉じられた大容積の内部空間を有し、その側面には油圧モータ10の吸込側に接続される高圧油出口が設けられている。中央部材36は、下側部材35上に設けられ、その側面には油圧モータ10の吐出側に接続される低圧油入口が設けられている。上側部材37は、中央部材36上に設けられ、第1二重管20の第1外側配管24よりもやや大径に形成されて第1外側配管24の下端部外周を覆っている。環状部材38は、下側部材35上に設けられ、第1二重管20の第1内側配管22よりもやや大径に形成されて第1内側配管22の下端部外周を覆っている。
 第2二重管30では、主として環状部材38が第2内側配管32を形成する一方、主として中央部材36及び上側部材37が第2外側配管34を形成している。
 このような構成の第2二重管30には、第1二重管20が回転自在に接続されている。すなわち、第1二重管20の第1内側配管22と第2二重管30の第2内側配管32との間には内側軸受40が設けられ、この内側軸受40によって第1内側配管22は第2内側配管32に回転自在に支持されている。一方、第1二重管20の第1外側配管24と第2二重管30の第2外側配管34との間には外側軸受42が設けられ、この外側軸受42によって第1外側配管24は第2外側配管34に回転自在に支持されている。
 また、第1二重管20及び第2二重管30の熱延び(正確にはタワー2と第1二重管20及び第2二重管30との熱伸び差)を吸収する観点から、第1二重管20をその長手方向に摺動自在に第2二重管30に接続することが好ましい。この場合、内側軸受40の外輪を第2内側配管32に固定するとともに、内側軸受40の内輪を第1内側配管32に対して管長手方向に摺動自在とする。同様に、外側軸受42の外輪を第2外側配管34に固定するとともに、外側軸受42の内輪を第1外側配管24に対して管長手方向に摺動自在とする。また、想定される第1二重管20の熱伸び量の範囲内において、第1二重管20が第2二重管30に対して管長手方向に摺動しても、後述の内側流路44及び外側流路46が塞がれたり、各部の干渉が生じたりすることがないように、第1二重管20及び第2二重管30の各部の寸法が決定されることが好ましい。
 さらに、第1二重管20の第2二重管30に対する長手方向の動きが許容される結果、第1二重管20及び第2二重管30を流れる高圧油と低圧油とによって、第1二重管20をナセル4側に押す油圧スラスト(図3における油圧スラスト方向に沿った力)が発生する。そのため、ナセル4側に第1二重管20を支持することによって増加した、ナセル4で負担すべき荷重を軽減することができる。また、その分だけ、タワー2が負担すべき荷重も軽減される。
 このようにして接続された第1二重管20及び第2二重管30によって、油圧ポンプ8から供給される高圧油が流れる内側流路44と、油圧モータ10から排出される低圧油が流れる外側流路46とが形成される。
 すなわち、高圧油が流れる内側流路44は、第1二重管20の第1内側配管22と第2二重管30の第2内側配管32とで形成される。また、低圧油が流れる外側流路46は、第1二重管20の第1外側配管24と第2二重管30の第2外側配管34とで形成される。
 このように内側流路44に高圧油を流し、外側流路46に低圧油を流すことで、万が一、内側流路44の腐食や破損等によって内側流路44の高圧油が漏れても、漏洩した高圧油を外側流路46に受けることができる。よって、高圧油の外部への漏洩を防止できる。
 また、第1内側配管22の外壁面と第2内側配管32の内壁面との間には、内側シール50が設けられている。この内側シール50は、内側流路44と外側流路46との間に挟まれるように配置されている。すなわち、内側シール50は、内側流路44と外側流路46とで囲まれている。このため、万が一、内側シール50のシール機能が損なわれても、内側流路44を流れる高圧油は外側流路46に漏れる。よって、高圧油の外部への漏洩を防止できる。
 さらに、第1外側配管24の外壁面と第2外側配管34の内壁面との間には、一対の外側シール52が設けられている。そして、一対の外側シール52の間の位置には、連通路53を介して油溜め54が連通している。この油溜め54は、大気圧タンク56に接続されている。
 これにより、万が一、外側シール52のシール機能が損なわれても、外側流路46から漏れ出た低圧油は、連通路53及び油溜め54を介して大気圧タンク56に導かれる。すなわち、外側流路46から漏れた低圧油は、圧力が十分に下げられてから大気圧タンク56に回収される。よって、低圧油の外部への漏洩を防止できる。
 なお、油圧ポンプ8の脈動を抑える観点から、ナセル4内において油圧ポンプ8と第1二重管20との間に脈動防止アキュムレータを設けることが好ましい。例えば、図2に示すように、ナセル台板16上に脈動防止アキュムレータ60を設置してもよい。
 このように、脈動防止アキュムレータ60をナセル4内に設けることで、脈動防止アキュムレータ60と油圧ポンプ8との距離が縮まり、油圧ポンプ8の脈動を効果的に防止できる。なお、脈動防止アキュムレータ60の容量は比較的小さくてもよいから、ナセル4内に十分に収納できる。特に、本実施形態では、油圧モータ10及び発電機12をナセル4に設置するのではなく、タワー2の基端部2Aのタワー内部空間2Cに設置するようにしたので、ナセル4内において脈動防止アキュムレータ60のための設置スペースを十分に確保できる。
 また、ナセル4に比べてスペースの余裕があるタワー内部空間2Cには、図3に示すように、バイパス流路62、リリーフ弁64、オイルクーラ66及び油圧蓄積アキュムレータ68を設けることが好ましい。
 バイパス流路62は、油圧モータ10をバイパスする流路であり、第2二重管30と油圧モータ10との間に設けられる。このバイパス流路62にはリリーフ弁64が設けられており、油圧ポンプ8から油圧モータ10に送られる高圧油の圧力が上限値を超えたときにリリーフ弁64が開いて、バイパス流路62を介して高圧油が低圧油流路側に流れ、高圧油の圧力を抑制するようになっている。オイルクーラ66は、リリーフ弁64の下流側(具体的にはバイパス流路62と低圧油流路との合流部の下流側)に設けられている。オイルクーラ66は、高圧油がリリーフ弁64を通過する際に上昇した油温を低減したり、通常時(リリーフ弁64の非作動時)に低圧油を冷却したりする。
 油圧蓄積アキュムレータ68は、脈動防止アキュムレータ60に比べて十分に大きな容量を有する。油圧蓄積アキュムレータ68は、例えば、突風が吹いた時に過剰な回転エネルギーを吸収するために高圧油の油圧を蓄積したり、系統電圧低下時のライドスルー機能を実現するために高圧油の油圧を予め蓄積しておいたり、風力発電装置1の出力が余剰である時に過剰な回転エネルギーを吸収するために高圧油の油圧を蓄積したりする目的で使用される。油圧蓄積アキュムレータ68をタワー2の基端部2Aにおけるタワー内部空間2Cに配置することで、油圧蓄積アキュムレータ68の容量を十分に大きくすることができる。なお、油圧蓄積アキュムレータ68への高圧油の蓄積は、アキュムレータバルブ69を開閉制御することで行われる。
 上記構成の風力発電装置1によれば、ナセル4側に支持された第1二重管20を回転自在に第2二重管30に接続したので、ナセル4が旋回しても、ナセル4内の油圧ポンプ8とタワー2の基端部2Aに設置された油圧モータ10との間の高圧油及び低圧油のやり取りを第1二重管20と第2二重管30とを介して行うことができる。
 なお、図1~3には内側軸受40及び外側軸受42を用いて第1二重管20を第2二重管30に回転自在に接続する例を示したが、第1二重管20と第2二重管30との接続態様はこの例に限定されず、内側軸受40及び外側軸受42を用いずに第1二重管20を第2二重管30に接続してもよい。
 図4は、第1二重管20と第2二重管30との接続態様の他の例を示す図である。同図に示すように、第1二重管20は、第2二重管30に回転自在に嵌合させてもよい。図4に示す例では、第1内側配管22の外壁面と第2内側配管32の内壁面とは、回転方向における相対的な滑り運動が許容されるように摺接している。同様に、第1外側配管24の外壁面と第2外側配管34の内壁面とは、回転方向における相対的な滑り運動が許容されるように摺接している。
 このとき、第1内側配管22が第2内側配管32に対して相対的に管長手方向に摺動自在であり、かつ、第1外側配管24が第2外側配管34に対して相対的に管長手方向に摺動自在とすれば、第1二重管20の第2二重管30に対する長手方向の動きが許容される。その結果、第1二重管20及び第2二重管30の熱伸び(正確にはタワー2と第1二重管20及び第2二重管30との熱伸び差)を吸収するとともに、第1二重管20をナセル4側に押す油圧スラスト(図4における油圧スラスト方向に沿った力)を発生させてナセル4で負担すべき荷重を軽減することができる。また、その分だけ、タワー2が負担すべき荷重も軽減される。
 ここで、想定される第1二重管20の熱伸び量の範囲内において、第1二重管20が第2二重管30に対して管長手方向に摺動しても、内側流路44及び外側流路46が塞がれたり、各部の干渉が生じたりすることがないように、第1二重管20及び第2二重管30の各部の寸法が決定されることが好ましい。
 なお、図4に示す例では、第2二重管30は、下側部材58及び上側部材59で構成されている。下側部材58は、その側面には油圧モータ10の吸込側に接続される高圧油出口が設けられ、その上部は第1二重管20の第1内側配管22よりもやや大径の管形状になっており、第1内側配管22の下端部外周を覆っている。上側部材59は、下側部材58上に設けられており、その側面には油圧モータ10の吐出側に接続される低圧油入口が設けられ、その上部は第1二重管20の第1外側配管24よりもやや大径の管形状になっており、第1外側配管24の下端部外周を覆っている。
 なお、図3に示す例と同様に、第1内側配管22の外壁面と第2内側配管32の内壁面との間には、内側シール50が設けられている。また、第1外側配管24の外壁面と第2外側配管34の内壁面との間には、一対の外側シール52が設けられており、一対の外側シール52の間の位置には、連通路53を介して油溜め54が連通している。この油溜め54は、大気圧タンク56(図3参照)に接続されている。
 また、第2二重管30は、図1及び3のように基礎3上に載置されていてもよいし、基礎3上又はタワー2の基端部2Aの内周面に支持されていてもよい。
[第2実施形態]
 第2実施形態では、第1実施形態とは異なる態様の風力発電装置について説明する。図5は、第2実施形態に係る風力発電装置の全体構成例を示す図である。
 なお、本実施形態に係る風力発電装置は、第1二重管及び第2二重管の構成が異なる点を除けば、第1実施形態に係る風力発電装置1と同様である。よって、ここでは、第1実施形態と異なる点を中心に説明することとし、図5では風力発電装置1と共通する箇所には同一の符号を付し、その説明を省略する。
 本実施形態に係る風力発電装置100では、ナセル4内の油圧ポンプ8とタワー2の基端部2Aのタワー内部空間2Cに設けられた油圧モータ10との間に、第1二重管70及び第2二重管80を設けている。
 第1二重管70は、タワー2の一部のみ(ナセル4の直下のみ)に設けられている。第1二重管70は、ナセル側支持機構26によってナセル台板16に支持されており、ナセル4の旋回時にナセル台板16とともに旋回するようになっている。
 一方、第2二重管80は、第1二重管70の下方に設けられており、タワー2の内壁面から張り出すタワー側支持機構81によってリジッドに支持されている。また、第2二重管80の油圧モータ10への接続は、高圧油が流れる高圧油配管90と低圧油が流れる低圧油配管92とを介して行われる。なお、高圧油配管90及び低圧油配管92は、リジッドなパイプで構成してもよいし、フレキシブルなチューブ(ホース)又は回転方向のみ固定で長手方向の熱伸びのみ吸収する蛇腹の様な継手を介したリジッドなパイプで構成してもよい。
 高圧油配管90及び低圧油配管92は、それぞれ、各配管の熱伸びを許容するようにタワー2の内壁面に支持されている。例えば、タワー2の内壁面に固定された円環状のシュー94の内周面を高圧油配管90及び低圧油配管92のそれぞれの外周面に接触させて支持してもよい。この場合、シュー94の内周面を低摩擦材料で形成する等により、高圧油配管90及び低圧油配管92のそれぞれを各シュー94によって管長手方向に摺動自在に支持すればよい。
 図6は、第1二重管70および第2二重管80の詳細構造を示す断面図である。同図に示すように、第1二重管70は、フランジ部においてボルト75で締結された上側部材71及び下側部材73によって構成されている。なお、上側部材71と下側部材73との接合面にはシール76が設けられ、液密性が保たれている。上側部材71は、その上部において油圧ポンプ8の吐出側に接続される高圧油入口を有する。下側部材73は、上側部材71に接合されたフランジ部から下方に垂れる内周側円筒部と外周側円筒部とを有し、この外周側円筒部の側面には油圧ポンプ8の吸込側に接続される低圧油出口が設けられている。
 そして、上側部材71と下側部材73の一部(内周側円筒部)とによって、第1二重管70の第1内側配管72が形成されている。また、下側部材73の一部(外周側円筒部)によって、第1二重管70の第1外側配管74が形成されている。
 一方、第2二重管80は、第2内側配管82およびこの第2内側配管82の外周に設けられる第2外側配管84を有する。また、第2二重管80の下部には、高圧油配管90(図5参照)に接続される高圧油出口が設けられている。さらに、第2二重管80の側面には、低圧油配管92(図5参照)に接続される低圧油入口が設けられている。
 そして、第1二重管70は、第2二重管80に回転自在に嵌合されている。すなわち、第1内側配管72の内壁面と第2内側配管82の外壁面とは、回転方向における相対的な滑り運動が許容されるように摺接している。同様に、第1外側配管74の内壁面と第2外側配管84の外壁面とは、回転方向における相対的な滑り運動が許容されるように摺接している。
 このように嵌合された第1二重管70及び第2二重管80によって、油圧ポンプ8から供給される高圧油が流れる内側流路44と、油圧モータ10から排出される低圧油が流れる外側流路46とが形成される。内側流路44に高圧油を流し、外側流路46に低圧油を流すことで、高圧油の外部への漏洩を防止できる。
 なお、第1内側配管72の内壁面と第2内側配管82の外壁面との間には、内側シール50が設けられている。また、第1外側配管74の内壁面と第2外側配管84の外壁面との間には、一対の外側シール52が設けられており、一対の外側シール52の間の位置には、油溜め54が設けられている。この油溜め54は、大気圧タンク56(図3参照)に接続されている。
 また、第1内側配管72の内壁面と第2内側配管82の外壁面との間には、テーパーころ軸受78が設けられている。テーパーころ軸受78は、第1二重管70が回転しうるように、かつ、第1二重管70が第2二重管80に対して相対的に長手方向に動かないように、第1内側配管72を第2内側配管82に支持している。テーパーころ軸受78は、第1二重管70及び第2二重管80の長手方向に沿ったスラスト荷重及びそれらの径方向に沿ったラジアル荷重の両方を受けることができる。スラスト荷重としては、内側流路44及び外側流路46を流れる高圧油と低圧油とによって発生する油圧スラストが挙げられる。なお、テーパーころ軸受78を起点として第1内側配管72及び第2内側配管82がそれぞれ自由に熱伸びするので、第1内側配管72と第2内側配管82とがオーバーラップした部分(嵌合部分)を長くしても、熱伸びによる影響を受けることはない。
 上記構成の風力発電装置100によれば、ナセル4側に支持された第1二重管70を回転自在に第2二重管80に接続したので、ナセル4が旋回しても、ナセル4内の油圧ポンプ8とタワー2の基端部2Aに設置された油圧モータ10との間の高圧油及び低圧油のやり取りを第1二重管70と第2二重管80とを介して行うことができる。
 なお、図5には第1二重管70がナセル4の直下のみに設けられた例を示したが、第1二重管70はナセル4側からタワー2内の任意の位置まで延びるようにしてもよい。
 また、図6には第1内側配管72の内壁面と第2内側配管82の外壁面との間にテーパーころ軸受78を設ける例を説明したが、テーパーころ軸受78は省略してもよい。
 図7は、第1二重管70および第2二重管80の詳細構造の他の例を示す断面図である。同図に示す例では、第1二重管70は、第2二重管80に対して相対的に長手方向に摺動しうるように、第2二重管80に回転自在に嵌合されている。すなわち、第1内側配管72が第2内側配管82に対して相対的に管長手方向に摺動自在であり、かつ、第1外側配管74が第2外側配管84に対して相対的に管長手方向に摺動自在になっている。このように、第1二重管70の第2二重管80に対する長手方向の動きを許容することで、第1二重管70及び第2二重管80の熱伸びを吸収するとともに、第1二重管80をナセル4側に押す油圧スラストを発生させて、ナセル4が負担すべき荷重を軽減できる。
 なお、想定される第1二重管70及び第2二重管80の熱伸び量の範囲内において、第1二重管70が第2二重管80に対して管長手方向に摺動しても、内側流路44及び外側流路46が塞がれたり、各部の干渉が生じたりすることがないように、第1二重管70及び第2二重管80の各部の寸法が決定されることが好ましい。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 特に、上述の実施形態では、シーレベルSL付近の基礎3上に油圧モータ10を設置する例について説明したが、油圧モータ10は、タワー基端部の周辺であれば、グランドレベル付近に設置してもよいし、浮体式洋上風力発電装置におけるシーレベルSLよりも下方のタワー下部(タワーのうち海中に沈んだ部分)に設けてもよい。ここで、タワー基端部の周辺とは、タワーの外部の場所をも含む意味である。
 さらに、上述の実施形態では、再生エネルギー型発電装置の具体例として風力発電装置1及び100について説明したが、本発明は、風力発電装置以外の再生エネルギー型発電装置にも適用できる。
 例えば、潮流、海流又は河流を利用した発電装置であって、タワーが基端部から先端部に向かって海中又は水中を鉛直方向下方に延びるとともに、回転翼によって潮流、海流又は河流を受けることで主軸が回転するような発電装置に本発明を適用してもよい。
 1     風力発電装置
 2     タワー
 4     ナセル
 6     ロータ
 6A    ハブ
 6B    回転翼
 8     油圧ポンプ
 10    油圧モータ
 12    発電機
 14    主軸
 15    主軸軸受
 16    ナセル台板
 18    ナセル軸受
 18A   内輪
 18B   外輪
 19    ナセル旋回機構
 19A   ギヤ
 19B   内歯車
 20    第1二重管
 21    溶接部
 22    第1内側配管
 24    第2内側配管
 26    ナセル側支持機構
 28    タワー側支持機構
 28A   シュー
 28B   支持棒
 30    第2二重管
 32    第2内側配管
 34    第2外側配管
 35    下側部材
 36    中央部材
 37    上側部材
 38    環状部材
 40    内側軸受
 42    外側軸受
 44    内側流路
 46    外側流路
 50    内側シール
 52    外側シール
 53    連通路
 54    油溜め
 56    大気圧タンク
 60    脈動防止アキュムレータ
 62    バイパス流路
 64    リリーフ弁
 66    オイルクーラ
 68    油圧蓄積アキュムレータ
 69    アキュムレータバルブ
 70    第1二重管
 71    上側部材
 72    第1内側配管
 73    下側部材
 74    第1外側配管
 75    ボルト
 76    シール
 80    第2二重管
 81    タワー側支持機構
 82    第2内側配管
 84    第2外側配管
 90    高圧油配管
 92    低圧油配管
 94    シュー

Claims (20)

  1.  タワーと、
     前記タワーの先端部に設けられたナセルと、
     前記ナセルに収納され、回転翼とともに回転する主軸と、
     前記ナセルに収納され、前記主軸に取り付けられる油圧ポンプと、
     前記タワーの基端部周辺に配置され、前記油圧ポンプから供給される圧油によって駆動される油圧モータと、
     前記油圧モータに連結された発電機と、
     前記油圧ポンプに接続される第1内側配管及び第1外側配管を有し、前記ナセル側に支持されるとともに前記タワー内部を通って前記タワーの基端部に向かってに延びる第1二重管と、
     前記油圧モータに接続される第2内側配管及び第2外側配管を有し、前記第1二重管よりも前記ナセルから遠い側に位置して該第1二重管に嵌合される第2二重管とを備え、
     前記第1内側配管は、前記第2内側配管に連通し、前記第2内側配管とともに内側流路を形成し、
     前記第1外側配管は、前記第2外側配管に連通し、前記第2外側配管とともに外側流路を形成し、
     前記内側流路及び前記外側流路のいずれか一方には、前記油圧ポンプから吐出されて前記油圧モータに送られる高圧油が流れ、
     前記内側流路及び前記外側流路の他方には、前記油圧モータから排出されて前記油圧ポンプに戻される低圧油が流れ、
     前記ナセル側に支持された前記第1二重管は回転自在に前記第2二重管に接続されていることを特徴とする再生エネルギー型発電装置。
  2.  前記第1二重管は、前記ナセルに近い側の端部において、前記第1内側配管と前記第1外側配管とが結合されて一体化されていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  3.  前記内側流路には前記高圧油が流れ、前記外側流路には前記低圧油が流れることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  4.  前記第1内側配管の管壁面と前記第2内側配管の管壁面との間をシールする内側シールをさらに備え、
     前記内側シールは、前記内側流路と前記外側流路との間に挟まれるように配置されていることを特徴とする請求項3に記載の再生エネルギー型発電装置。
  5.  前記第1外側配管の管壁面と前記第2外側配管の管壁面との間をシールする一対の外側シールと、
     前記一対の外側シール間に連通する油溜めと、
     前記油溜めに連通するタンクとを備えることを特徴とする請求項3に記載の再生エネルギー型発電装置。
  6.  前記第1二重管は、前記タワーの略全長に亘って、前記ナセル側から前記タワーの基端部まで延びており、
     前記第2二重管は、前記タワーの基端部周辺に支持されることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  7.  前記第2二重管は、底部が閉じられた容器状であり、前記タワーが立設される基礎上に設置されていることを特徴とする請求項6に記載の再生エネルギー型発電装置。
  8.  前記第1二重管は、前記第2二重管に回転自在に嵌合されており、
     前記第1内側配管及び前記第2内側配管が長手方向に相対的に摺動自在、かつ、前記第1外側配管及び前記第2外側配管が長手方向に相対的に摺動自在であることを特徴とする請求項6に記載の再生エネルギー型発電装置。
  9.  前記タワーの内周面に固定され、前記第1二重管の前記第1外側配管の外周面に該第1外側配管の径方向外方から接触する支持手段をさらに備え、
     前記支持手段は、前記第1二重管を回転自在かつ長手方向に摺動自在に支持することを特徴とする請求項6に記載の再生エネルギー型発電装置。
  10.  前記第1内側配管及び前記第2内側配管の間に設けられ、前記第1内側配管を回転自在に前記第2内側配管に支持する内側軸受と、
     前記第1外側配管及び前記第2外側配管の間に設けられ、前記第1外側配管を回転自在に前記第2外側配管に支持する外側軸受とをさらに備え、
     前記内側軸受は、前記第1内側配管に対してその長手方向に摺動自在であり、
     前記外側軸受は、前記第1外側配管に対してその長手方向に摺動自在であることを特徴とする請求項6に記載の再生エネルギー型発電装置。
  11.  前記第1二重管は、前記ナセル側から前記タワーの途中まで延びており、
     前記第2二重管は、前記タワーに支持されていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  12.  前記第1二重管を前記第2二重管に回転自在に支持し、前記第1二重管及び前記第2二重管の長手方向に沿ったスラスト荷重を受けるスラスト軸受をさらに備えることを特徴とする請求項11に記載の再生エネルギー型発電装置。
  13.  前記スラスト軸受は、前記スラスト荷重に加えて、径方向に沿ったラジアル荷重をも受けるテーパコロ軸受であることを特徴とする請求項12に記載の再生エネルギー型発電装置。
  14.  前記第1二重管と前記第2二重管とは、前記第1内側配管及び前記第2内側配管が長手方向に相対的に摺動自在、かつ、前記第1外側配管及び前記第2外側配管が長手方向に相対的に摺動自在となるように嵌合されていることを特徴とする請求項11に記載の再生エネルギー型発電装置。
  15.  前記ナセル内において前記油圧ポンプと前記第1二重管との間に設けられ、前記油圧ポンプの脈動を防止する脈動防止アキュムレータをさらに備えることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  16.  前記第2二重管と前記油圧モータの間に設けられ、前記油圧モータをバイパスするバイパス流路と、
     前記タワーの基端部周辺に配置され、前記バイパス流路に設けられたリリーフ弁と、
     前記タワーの基端部周辺に設置され、前記リリーフ弁の下流側に設けられたオイルクーラとをさらに備えることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  17.  前記タワーの基端部周辺に配置され、前記高圧油の油圧を蓄積する油圧蓄積アキュムレータをさらに備えることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  18.  前記再生エネルギー型発電装置は風力発電装置であり、
     前記タワーが前記基端部から前記先端部に向かって鉛直方向上方に延びるとともに、
     前記回転翼によって風を受けることで前記主軸が回転する請求項1に記載の再生エネルギー型発電装置。
  19.  前記油圧モータは、グランドレベル近くに配置されることを特徴とする請求項18に記載の再生エネルギー型発電装置。
  20.  前記油圧モータは、シーレベル近く又はシーレベルよりも下方に配置されることを特徴とする請求項18に記載の再生エネルギー型発電装置。
PCT/JP2011/058647 2010-11-30 2011-04-05 再生エネルギー型発電装置 WO2012137311A1 (ja)

Priority Applications (31)

Application Number Priority Date Filing Date Title
IN3058DEN2012 IN2012DN03058A (ja) 2011-04-05 2011-04-05
KR1020127010770A KR20120139667A (ko) 2011-04-05 2011-04-05 재생 에너지형 발전 장치
PCT/JP2011/058647 WO2012137311A1 (ja) 2011-04-05 2011-04-05 再生エネルギー型発電装置
AU2011310936A AU2011310936A1 (en) 2011-04-05 2011-04-05 Power generating apparatus of renewable energy type
JP2011554017A JP4950368B1 (ja) 2011-04-05 2011-04-05 再生エネルギー型発電装置
EP11797295.0A EP2530307A4 (en) 2011-04-05 2011-04-05 RENEWABLE ELECTRICITY GENERATOR
CN201180004417XA CN102822513A (zh) 2011-04-05 2011-04-05 再生能源型发电装置
US13/161,822 US8403644B2 (en) 2011-04-05 2011-06-16 Power generating apparatus of renewable energy type
KR1020127034038A KR101296054B1 (ko) 2011-04-05 2011-09-22 재생 에너지형 발전 장치
JP2012503813A JP4995357B1 (ja) 2011-04-05 2011-09-22 再生エネルギー型発電装置
JP2012507508A JP5358020B2 (ja) 2011-04-05 2011-09-22 再生エネルギー型発電装置
EP11810981.8A EP2532890A4 (en) 2011-04-05 2011-09-22 DEVICE FOR GENERATING ELECTRICITY FROM REGENERATED ENERGY
PCT/JP2011/071674 WO2012137371A1 (ja) 2011-04-05 2011-09-22 再生エネルギー型発電装置
IN3061DEN2012 IN2012DN03061A (ja) 2011-04-05 2011-09-22
PCT/JP2011/071673 WO2012137370A1 (ja) 2011-04-05 2011-09-22 再生エネルギー型発電装置
CN2011800043868A CN102822511A (zh) 2011-04-05 2011-09-22 再生能量型发电装置
AU2011310939A AU2011310939A1 (en) 2011-04-05 2011-09-22 Power generating apparatus of renewable energy type
CN2011800220542A CN102869881A (zh) 2011-04-05 2011-09-22 再生能量型发电装置
EP11817195.8A EP2530310B1 (en) 2011-04-05 2011-09-22 Renewable energy generator
KR1020127010773A KR20120139669A (ko) 2011-04-05 2011-09-22 재생 에너지형 발전 장치
EP13160517.2A EP2650533B1 (en) 2010-11-30 2011-11-30 Power generating apparatus of renewable energy type
JP2012507512A JP5502190B2 (ja) 2010-11-30 2011-11-30 再生エネルギー型発電装置
KR1020127034108A KR20130053416A (ko) 2010-11-30 2011-11-30 재생 에너지형 발전 장치
EP11799883.1A EP2646685B1 (en) 2010-11-30 2011-11-30 Power generating apparatus of renewable energy type
CN2011800307298A CN102959240A (zh) 2010-11-30 2011-11-30 可再生能源型发电装置
PCT/JP2011/006695 WO2012073505A1 (en) 2010-11-30 2011-11-30 Power generating apparatus of renewable energy type
US13/390,362 US20120285150A1 (en) 2010-11-30 2011-11-30 Power generating apparatus of renewable energy type
US13/363,166 US8684682B2 (en) 2011-04-05 2012-01-31 Power generating apparatus of renewable energy type
US13/398,484 US8601805B2 (en) 2011-04-05 2012-02-16 Power generating apparatus of renewable energy type
PCT/JP2012/001077 WO2013051167A1 (en) 2011-04-05 2012-02-17 Blade attaching and detaching device and method for wind turbine generator
PCT/JP2012/070492 WO2013042487A1 (ja) 2011-04-05 2012-08-10 再生エネルギー型発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058647 WO2012137311A1 (ja) 2011-04-05 2011-04-05 再生エネルギー型発電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/161,822 Continuation US8403644B2 (en) 2011-04-05 2011-06-16 Power generating apparatus of renewable energy type

Publications (1)

Publication Number Publication Date
WO2012137311A1 true WO2012137311A1 (ja) 2012-10-11

Family

ID=45806877

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/058647 WO2012137311A1 (ja) 2010-11-30 2011-04-05 再生エネルギー型発電装置
PCT/JP2011/071674 WO2012137371A1 (ja) 2010-11-30 2011-09-22 再生エネルギー型発電装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071674 WO2012137371A1 (ja) 2010-11-30 2011-09-22 再生エネルギー型発電装置

Country Status (8)

Country Link
US (2) US8403644B2 (ja)
EP (2) EP2530307A4 (ja)
JP (1) JP4950368B1 (ja)
KR (2) KR20120139667A (ja)
CN (2) CN102822513A (ja)
AU (1) AU2011310936A1 (ja)
IN (1) IN2012DN03058A (ja)
WO (2) WO2012137311A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097427A1 (ja) * 2012-12-19 2014-06-26 三菱重工業株式会社 再生可能エネルギー型発電装置
JP2014234836A (ja) * 2013-05-31 2014-12-15 株式会社日立製作所 スイベルジョイント及びそれを備えた風力発電設備
JP2015042866A (ja) * 2013-07-23 2015-03-05 大洋プラント株式会社 油圧伝達機構および該油圧伝達機構を備えた風力エネルギー利用装置
EP3318752A1 (en) 2016-11-04 2018-05-09 Mitsubishi Heavy Industries, Ltd. Renewable-energy type power generating apparatus

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541897B2 (en) * 2009-09-01 2013-09-24 University Of Southern California Generation of electric energy using cable-supported windmills
US20130028729A1 (en) * 2011-07-28 2013-01-31 Jones Jack A Power generation systems and methods
US8777555B1 (en) * 2013-02-21 2014-07-15 Lockheed Martin Corporation Yaw drive tidal turbine system and method
GB2515298B (en) * 2013-06-18 2015-06-17 Tidal Generation Ltd Water current power generation structure
WO2016006965A1 (ko) * 2014-07-10 2016-01-14 송길봉 베어링 장치 및 이를 포함하는 발전장치
US9885340B2 (en) * 2015-01-26 2018-02-06 Patrick Kenneth Powell Aerodynamic screen system
WO2016135800A1 (ja) * 2015-02-23 2016-09-01 株式会社日立製作所 発電システム
EP3096007A1 (en) * 2015-05-21 2016-11-23 Rotation Consultancy & Science Publications A wind turbine
US20170074248A1 (en) * 2015-09-10 2017-03-16 Ben M. Enis Wind turbine station and tower with vertical storage tanks
US9845792B2 (en) * 2015-10-13 2017-12-19 Huseyin Ozcan Wind turbine system
WO2017106530A1 (en) * 2015-12-16 2017-06-22 Daniel Khalitov Air jet device and method
CN106121928A (zh) * 2016-07-25 2016-11-16 燕山大学 一种液压型风浪互补发电机组
CN106640527A (zh) * 2016-12-12 2017-05-10 江苏金风科技有限公司 液压控制系统及风力发电机组
DE102017004800A1 (de) * 2017-05-18 2018-11-22 Senvion Gmbh Gondelkomponente für eine Windenergieanlage und Verfahren zum Montieren einer Gondelkomponente
CN109667721B (zh) * 2019-01-02 2021-01-29 武汉船用机械有限责任公司 一种塔筒单元竖立工装
CN110360057B (zh) * 2019-07-30 2020-11-13 上海电气风电集团股份有限公司 一种风力发电机组单叶片吊装盘车装置及其吊装方法
FR3109804B1 (fr) * 2020-05-01 2023-07-14 Roux Jean Francois Eolienne en mer fixee sur une embarcation submersible actionnant trois generatrices electriques logees dans la coque centrale.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928136Y2 (ja) * 1979-08-30 1984-08-14 株式会社島津製作所 風力エネルギ−の変換装置
JPS61212674A (ja) * 1985-03-19 1986-09-20 Matsushita Seiko Co Ltd 風車の動力伝達装置
US7183664B2 (en) 2005-07-27 2007-02-27 Mcclintic Frank Methods and apparatus for advanced wind turbine design
WO2009058022A1 (en) 2007-10-30 2009-05-07 Chapdrive As Wind turbine with hydraulic swivel
WO2009061209A1 (en) 2007-11-08 2009-05-14 Chapdrive As Wind turbine with electrical swivel
WO2009064192A1 (en) 2007-11-13 2009-05-22 Chapdrive As Wind turbine with rotating hydrostatic transmission system
US7569943B2 (en) 2006-11-21 2009-08-04 Parker-Hannifin Corporation Variable speed wind turbine drive and control system
US7656055B2 (en) 2007-04-12 2010-02-02 Rosalia Torres Hydro-wind power generating turbine system and retrofitting method
US20100032959A1 (en) 2008-08-08 2010-02-11 General Electric Company Wind turbine system

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT527036A (ja) * 1950-04-24
US2706255A (en) * 1954-01-18 1955-04-12 Garrett Corp Electric power generating and air cooling system
US3030118A (en) * 1958-05-13 1962-04-17 Cocker Machine & Foundry Compa Seal for a rotating shaft
US3547556A (en) * 1968-12-23 1970-12-15 Herman P Smith Hydraulically driven wind machine
US3943717A (en) * 1974-01-07 1976-03-16 Caterpillar Tractor Co. Contaminant removal from a hydraulic cylinder
US4280061A (en) 1978-10-25 1981-07-21 Sir Henry Lawson-Tancred, Sons & Co. Ltd. Method and apparatus for generating electricity from a fixed pitch wind wheel
JPS6220678A (ja) * 1985-07-19 1987-01-29 Matsushita Seiko Co Ltd 風力暖房装置
JPH04181041A (ja) * 1990-11-16 1992-06-29 Toyota Motor Corp 車両振動低減装置
DK9500262U4 (da) 1995-07-07 1996-10-07 Bonus Energy As Bundramme til vindmøllehus samt vindmølle omfattende samme
DE19814629A1 (de) 1998-03-26 1999-09-30 Tacke Windenergie Gmbh Anordnung zur drehbaren Lagerung der Maschinengondel einer Windkraftanlage
JP2975923B1 (ja) * 1998-05-22 1999-11-10 日本ピラー工業株式会社 回転継手装置
JP2002213842A (ja) 2001-01-17 2002-07-31 Calsonic Kansei Corp 膨張弁に対する二重管の接続構造及び膨張弁
DE10229390A1 (de) 2001-09-25 2003-04-24 Thomas Nikolaus Windkraftmaschine
US7436083B2 (en) * 2001-12-28 2008-10-14 Mitsubishi Heavy Industries, Ltd. Up-wind type windmill and operating method therefor
ES2310655T3 (es) * 2002-05-16 2009-01-16 Mlh Global Corporation Inc. Turbina eolica con transmision hidraulica.
ATE441029T1 (de) 2004-02-18 2009-09-15 Franz Mitsch Elastomerlagerung mit regulierbarer steifigkeit
JP2005248738A (ja) 2004-03-02 2005-09-15 Fuchu Giken:Kk 風力発電装置の運転制御方法
EP1637733A1 (en) * 2004-09-17 2006-03-22 Elsam A/S A power plant, a windmill, and a method of producing electrical power from wind energy
ES2264625B1 (es) 2004-12-15 2007-12-01 GAMESA INNOVATION & TECHNOLOGY, S.L. Procedimiento de retirada de la cubierta de un aerogenerador.
ES2315042B1 (es) 2004-12-15 2010-01-11 GAMESA INNOVATION & TECHNOLOGY, S.L. Sistema de retirada de la capota de un aerogenerador.
AU2006309370B2 (en) 2005-10-31 2012-06-07 Chapdrive As A turbine driven electric power production system and a method for control thereof
NO323807B1 (no) * 2005-10-31 2007-07-09 Chapdrive As Fremgangsmate og system for hydraulisk overforing
JP3118509U (ja) 2005-11-11 2006-01-26 興國機工株式会社 ツインスイベルジョイントの構造
US20080047271A1 (en) * 2006-05-19 2008-02-28 General Compression, Inc. Wind turbine system
US7615884B2 (en) * 2007-01-30 2009-11-10 Mcmastercorp, Inc. Hybrid wind turbine system, apparatus and method
WO2008113699A2 (de) * 2007-03-21 2008-09-25 Rle-International Gmbh Energieumwandlungsvorrichtung mit hydraulischem antrieb
PT2003362T (pt) 2007-06-14 2018-02-06 Fm Energie Gmbh & Co Kg Elemento de mola elastomérico polarizado hidraulicamente e seu uso em rolamentos de turbinas de energia eólica
DE602007011653D1 (de) 2007-06-26 2011-02-10 Media Patents Sl Router zur Verwaltung von Multicastgruppen
KR100832053B1 (ko) * 2007-08-21 2008-05-27 김동용 유체 토크 컨버터를 이용한 풍력 발전 시스템
JP4796039B2 (ja) * 2007-11-22 2011-10-19 三菱重工業株式会社 風力発電装置
WO2009076757A2 (en) * 2007-12-14 2009-06-25 David Mcconnell Wind to electric energy conversion with hydraulic storage
JP2009162305A (ja) 2008-01-07 2009-07-23 Tgk Co Ltd フレキシブルホース
DE102008013728A1 (de) 2008-03-11 2009-09-17 Kenersys Gmbh Windenergieanlage zur Erzeugung elektrischer Energie
WO2009132671A2 (de) 2008-04-30 2009-11-05 Multibird Gmbh Verkleidung einer gondel einer windenergieanlage
WO2009150729A1 (ja) * 2008-06-11 2009-12-17 三菱重工業株式会社 風力発電装置
GB2463647B (en) 2008-09-17 2012-03-14 Chapdrive As Turbine speed stabillisation control system
US8882355B2 (en) 2008-12-15 2014-11-11 Jochen Corts Segmented composite bearings and wind generator utilizing hydraulic pump/motor combination
US8021101B2 (en) 2008-12-15 2011-09-20 General Electric Company Wind turbine and method of assembling the same
WO2010102635A2 (en) 2009-03-13 2010-09-16 Vestas Wind Systems A/S Wind turbine nacelle
US20100232977A1 (en) 2009-03-13 2010-09-16 Vestas Wind Systems A/S Height Adjustable Wind Turbine Nacelle
US7763989B2 (en) 2009-07-07 2010-07-27 General Electric Company Method and apparatus for controlling the tip speed of a blade of a wind turbine
US9091248B2 (en) 2009-10-27 2015-07-28 Vestas Wind Systems A/S Wind turbine
DK2317137T3 (da) 2009-11-02 2012-09-03 Gen Electric Konfiguration af en vindturbinenacelle
US8591186B2 (en) 2009-11-17 2013-11-26 Vestas Wind Systems A/S Nacelle for wind turbine
JP5509314B2 (ja) 2010-02-23 2014-06-04 アルテミス インテリジェント パワー リミティド 可変容量型ラジアルピストン流体作動機械
EP2550453B1 (en) 2010-03-22 2014-04-23 Vestas Wind Systems A/S A nacelle for a wind turbine, the nacelle comprising side units
EP2375066B1 (en) 2010-04-06 2016-06-01 Siemens Aktiengesellschaft Canopy for a wind turbine nacelle
CN201747854U (zh) 2010-05-14 2011-02-16 华锐风电科技(集团)股份有限公司 大型风力发电机组的齿轮箱液压弹性支撑
US8016569B2 (en) 2010-06-09 2011-09-13 General Electric Company Configuration of a wind turbine nacelle for transportation
CN201982255U (zh) 2010-12-17 2011-09-21 中国石油天然气集团公司 一种风机齿轮箱液压支撑装置
EP2530306A4 (en) * 2011-04-05 2013-10-02 Mitsubishi Heavy Ind Ltd RENEWABLE ELECTRICITY GENERATOR AND METHOD FOR ASSEMBLY TO A HYDRAULIC PUMP

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928136Y2 (ja) * 1979-08-30 1984-08-14 株式会社島津製作所 風力エネルギ−の変換装置
JPS61212674A (ja) * 1985-03-19 1986-09-20 Matsushita Seiko Co Ltd 風車の動力伝達装置
US7183664B2 (en) 2005-07-27 2007-02-27 Mcclintic Frank Methods and apparatus for advanced wind turbine design
US7436086B2 (en) 2005-07-27 2008-10-14 Mcclintic Frank Methods and apparatus for advanced wind turbine design
US7569943B2 (en) 2006-11-21 2009-08-04 Parker-Hannifin Corporation Variable speed wind turbine drive and control system
US7656055B2 (en) 2007-04-12 2010-02-02 Rosalia Torres Hydro-wind power generating turbine system and retrofitting method
WO2009058022A1 (en) 2007-10-30 2009-05-07 Chapdrive As Wind turbine with hydraulic swivel
WO2009061209A1 (en) 2007-11-08 2009-05-14 Chapdrive As Wind turbine with electrical swivel
WO2009064192A1 (en) 2007-11-13 2009-05-22 Chapdrive As Wind turbine with rotating hydrostatic transmission system
US20100032959A1 (en) 2008-08-08 2010-02-11 General Electric Company Wind turbine system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530307A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097427A1 (ja) * 2012-12-19 2014-06-26 三菱重工業株式会社 再生可能エネルギー型発電装置
JP2014234836A (ja) * 2013-05-31 2014-12-15 株式会社日立製作所 スイベルジョイント及びそれを備えた風力発電設備
JP2015042866A (ja) * 2013-07-23 2015-03-05 大洋プラント株式会社 油圧伝達機構および該油圧伝達機構を備えた風力エネルギー利用装置
EP3318752A1 (en) 2016-11-04 2018-05-09 Mitsubishi Heavy Industries, Ltd. Renewable-energy type power generating apparatus

Also Published As

Publication number Publication date
US20120063898A1 (en) 2012-03-15
US8601805B2 (en) 2013-12-10
CN102869881A (zh) 2013-01-09
EP2530310A4 (en) 2013-10-30
KR20130018954A (ko) 2013-02-25
KR20120139667A (ko) 2012-12-27
EP2530307A4 (en) 2013-07-17
JP4950368B1 (ja) 2012-06-13
EP2530310B1 (en) 2014-05-14
EP2530310A1 (en) 2012-12-05
WO2012137371A1 (ja) 2012-10-11
US8403644B2 (en) 2013-03-26
IN2012DN03058A (ja) 2015-07-31
AU2011310936A1 (en) 2012-10-18
KR101296054B1 (ko) 2013-08-12
EP2530307A1 (en) 2012-12-05
JPWO2012137311A1 (ja) 2014-07-28
CN102822513A (zh) 2012-12-12
US20120255291A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP4950368B1 (ja) 再生エネルギー型発電装置
WO2012137370A1 (ja) 再生エネルギー型発電装置
CA2973250C (en) Tidal current energy electric generating device
EP2650533B1 (en) Power generating apparatus of renewable energy type
US20080110168A1 (en) Dynamic Fluid Energy Conversion System and Method of Use
JP4995357B1 (ja) 再生エネルギー型発電装置
JP2013024161A (ja) 高層ビル下水の落下エネルギーを利用するビル内水力発電システム
EP3865701B1 (en) Conduit turbine for supporting conduit of water wheel rotational body, and hydroelectric generator having conduit turbines serially provided in multiple levels
JP5358020B2 (ja) 再生エネルギー型発電装置
JP5502190B2 (ja) 再生エネルギー型発電装置
KR20130026797A (ko) 수차와 부력을 이용한 수력 발전시스템
JP6106697B2 (ja) 風力発電装置
US10731623B2 (en) Water-flow power generating apparatus
KR102544893B1 (ko) 풍력 양수발전 시스템
KR102208524B1 (ko) 수차회전체 관로지지형 관로터빈과 관로터빈을 다단으로 직렬 설치한 수력 발전장치
EP2769087B1 (en) Apparatus and method for tidal energy extraction and storage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004417.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011554017

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011797295

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011310936

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3058/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127010770

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE